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Abstract

An Agol cycle is a complete invariant of the conjugacy class of a pseudo-Anosov mapping
class. We study necessary and sufficient conditions for equivalent Agol cycles of pseudo-
Anosov 3-braids.
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1 Introduction

Nielsen-Thurston’s classification states that every surface homeomorphism is isotopic to
either a periodic, reducible or pseudo-Anosov map [16]. If a map ¢ is pseudo-Anosov, there
are two transverse, singular measured foliations on the surface and a dilatation A > 1 such
that ¢ stretches along one foliation by A and the other by 1/A. A dilatation is also called a
stretch factor.

By definition, the dilatation is an invariant of the conjugacy class of a pseudo-Anosov map.
The dilatation can be the first tool for the conjugacy problem since it is often easy to compute.
However, the downside of the dilatation is that it is not always an effective conjugacy class
invariant as demonstrated in Theorem 10:

Theorem 10 There are infinitely many integers x, y and z, such that pseudo-Anosov 3-braids
B =00, 101) o5 and B’ = o 0j0{ 05 Y belong to distinct conjugacy classes but have the

same dilatali()n
J— 2 4

where
Yy =y(x,y,2) = sgn(xyz)(=2 —x — y + xz + yz + xy2). (1)
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Fig.1 A vertex of a train track
where the weights satisfy
a=b+c a

Fig. 2 Maximal splitting when a < c¢ (equivalently » > d). The horizontal edge has the largest weight
a + b = c + d. After the splitting, the largest weight will be either b or ¢

Fortunately, there exists a stronger invariant. The Agol cycle [1] (see Definition 2) is
another conjugacy class invariant of a pseudo-Anosov map on an orientable surface S, ,
with genus g and n punctures. More importantly, it is a complete conjugacy invariant.

An Agol cycle is a sequence of measured train tracks generated by maximal splitting.

A measured train track is a combinatorial object encoding the transverse measured foliation
of a pseudo-Anosov map. (It is also called an invariant train track since the train track is
invariant under action of the pseudo-Anosov map, and often we call it a train track without
the adjective measured or invariant for simplicity.) It is a graph and each edge is labeled by
a positive number called its weight (or measure). As depicted in Fig. 1, at each vertex three
edges meet tangentially and the weights satisfy the switch condition a = b+-c. For a detailed
definition of a measured train track, see Sect.2 of Agol’s paper [1] or Chapter 15 of Farb and
Margalit’s book [8].

Maximal splitting is defined as follows:

Definition 1 Maximal splitting (—) on a train track is an operation along all edges with the
largest weight simultaneously as depicted in Fig. 2. Note that maximal splitting preserves the
numbers of edges and vertices of the train track.

Definition 2 [1] Given a pseudo-Anosov map 8 € MCG(S) with dilatation A > 1 and a
measured train track (g, (o) which is suited to the stable lamination for 8, we can create an
infinite maximal splitting sequence of train tracks: (to, ;o) —(t1, 1) —(t2, 2)—--- .

If t; = B(7p) and gy = A‘lﬂ*(up) for some 0 < p < g we say that an Agol cycle

(Tps mp)—= - = (Tg—1, Hg—1)—(Tg, ug) = (B(zp), A_I,B*(Mp))

for B is formed. The length of the Agol cycle is g — p.
The head (7o, wo)—(1, 1)—---—(tp—1, up—1) of the sequence is called the pre-
periodic part. The length of the pre-periodic part is p.

Theorem 1 [1, Theorem 3.5] Let S be a closed oriented surface possibly with punctures.
Every pseudo-Anosov map B : S — S has an Agol cycle.

Hodgson, Issa and Segerman defined the following equivalence relation.
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Definition 3 [9, Definition 7] Let ¢, ¢’ : S — S be pseudo-Anosov homeomorphisms. We
say that two Agol cycles {(z;, ,u,-)}?: » and {(‘L'i’ , ,ug)}iq;]: & are combinatorially isomorphic
if there exists an orientation preserving homeomorphism % : § — S (possibly permuting the

punctures) and a positive constant s € R~ o such that

1. ¢ =hogpoh ' and
2. h(tj) = titr and Ay (i) = sp

iy foralli > p.

In this paper, if the above condition (2) is satisfied (regardless of the truth of condition
(1)), we say that the Agol cycles are equivalent.

The following theorem is proved in [9, Theorem 2]. We note that it is implicit in Agol’s

paper [1, Section 7].

Theorem 2 Pseudo-Anosov maps ¢ and ¢’ are conjugate in MCG(S) if and only if their
Agol cycles are combinatorially isomorphic.

In this paper we only consider a 3-punctured disk, denoted D3, as a surface. Let MCG(D3)
be the mapping class group of Ds; thatis, the group of isotopy classes of orientation preserving
homeomorphisms of D3 that fix the boundary d D3 point-wise. Itis proved that MCG(D3) and
the 3-stranded braid group B3 are isomorphic (see [2] and Chapter 9 of Farb and Margalit’s
book [8]).

Clearly D3 has boundary. On the other hand, Agol assumes surfaces to have no boundary.
To align with Agol’s setting, we consider mapping classes in the quotient group MCG(D3)/Z
where Z = Z(MCG(Dz3)) is the center of MCG(D3) and Z is generated by a positive Dehn
twist along the boundary. Therefore,

MCG(D3)/Z ~ B3/Z(B3)

where Z(B3) is the center of B3 and generated by the full twist A? = (op01)3.

A known example of an Agol cycle for a pseudo-Anosov 4-braid can be found in Agol’s
paper [1]. Margalit’s talk slides [11] contain an Agol cycle for the pseudo-Anosov 3-braid
0105 ! We also compute this 3-braid in detail in Example 5. In general, it is not easy to com-
pute Agol cycles by hand. Therefore, necessary or sufficient conditions for combinatorially
isomorphic Agol cycles will be helpful to solve the conjugacy problem.

In Theorem 6, we give three equivalent conditions for combinatorially isomorphic Agol
cycles.

Theorem 6 Let 8 and B’ be pseudo-Anosov 3-braids with the same dilatation. The following
conditions are equivalent. Equivalence of (1) and (2) is due to Hodgson, Issa and Segerman
(see Theorem 2) and implicit in Agol’s paper [1].

1. B and B’ are conjugate in B3/ Z(B3). In other words, B’ = Azkwﬂw’lfor some w € B3
and k € 7.

2. B and B’ have combinatorially isomorphic Agol cycles.

3. (Topological condition) There exist | and m € N such that sgn(7;) = sgn(7,,) and the

triple-weight train track sequences Tj—Tj 11— T 42— - - - (for B)and T, =T, | =T, ,— -

(for B') give the same periodic I-1I-I'-1I’-sequence (cf. Definition 12).
4. (Number theoretic condition) There exist [ and m € N such that sgn(7;) = sgn(7,),)
and the nested Farey interval sequences J; D Ji41 D Ji42 D -+ for B and J), D
J;;1+1 D) J,’n+2 D .- for B’ give the same periodic LR-sequences (cf. Definition 16).

5. (Numerical condition) There exist I and m € N such that sgn(7;) = sgn(7,)) and the
4-ratios (cf. Definition 9) of T; and T,), are the same.
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The equivalence (1) < (2) is due to Agol. See [1, Section 7] and also Margalit’s talk
slides [11]. Our new conditions (3), (4) and (5) have different characteristics as follows:

An Agol cycle contains a large amount of information and each train track in the cycle
can be very complicated with many twists. After untwisting (which is a homeomorphism
operation), we will show that there are only four types of train tracks that appear in a cycle
(Type L 1L, I’, I’ defined in Fig. 6). In Condition (3), we focus on the topological types (Type
L II, I’, II’) and forget the numerical data of the weights of the train track edges.

In Condition (4), we estimate a particular algebraic number « (the MP-ratio defined in
Proposition 1) associated to the pseudo-Anosov braid in the Farey tessellation. Since the
number « is irrational, there exists an infinite sequence of nested intervals (J; D Ji+1 D
Ji+2 D -+ -) in the Farey tessellation that converges to «. For each pair of adjacent intervals
Jr D Jiy1, we may forget their exact location in the Farey tessellation, and instead focus
on the relative location of the sub-interval J;; | with respect to J;. In the Farey tessellation,
J; splits into two sub-intervals. We record whether J; is in the left-subinterval (L) or the
right-subinterval (R) of J;. This is how we generate an LR-sequence.

In Condition (5), we focus on just one train track in the infinite sequence. In contrast to
(3), we forget the topological side and focus on the numerical data of the edge weights of
train tracks. Here is a useful consequence of (5): If the algebraic numbers (MP-ratios) o and
a’ do not satisfy A + Ba + Ca’ + Daa’ = 0 for any A, B, C, D € Z, then the 3-braids 8 and
B’ are not conjugate.

A concrete example is presented in Example 4.

Definition 4 Two Agol cycles are mirror-combinatorially isomorphic if they are combinato-
rially isomorphic after taking mirror image.

In Theorem 7, we study a more general statement regarding the direction of (5) = (2) in
Theorem 6.

Weak version of Theorem 7 Let 8 and B’ be pseudo-Anosov 3-braids with the same dilata-
tion. Suppose that there exist | and m such that triple-weight train tracks T; and T,), have the
same 4-ratio. Then the Agol cycles of B and B’ are combinatorially isomorphic or mirror-
combinatorially isomorphic.

Examples for Theorem 7 are given in Example 6.

The outline of the paper is as follows: In Sect. 2, we study the stability property of a
maximal splitting sequence which is summarized in Theorem 3. In Sect. 3, we focus on
proving that there is a closed system of triple-weight train tracks in Theorem 4. The goal of
Sect. 4 is to establish a connection between triple-weight train tracks and Farey sequences. In
Sect. 5, we define nested intervals in the Farey tessellation and LR-sequences which will be
needed to state our main result in Theorem 6. In Sect. 6, we state and prove our main result
Theorem 6 which provides equivalent conditions for combinatorially isomorphic Agol cycles.
In Sect. 7, we show that the same 4-ratio implies that the Agol cycles are combinatorially
isomorphic or mirror combinatorially isomorphic. Lastly, we show in Sect. 8 that dilatation
is a weaker invariant than Agol cycles in Theorem 10 by showing that dilatation is preserved
under flype moves.
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Fig.3 Train tracks M(a, b) and
W(a, b) a b

2 Stability of maximal splitting sequence

The goal of this section is to study the stability property of a maximal splitting sequence in
Theorem 3. We show that a maximal splitting sequence arrives at a train track with only three
distinct weights and any subsequent train track also has triple-weight type.

Definition 5 We define two types of measured train tracks called Types M and W as in Fig. 3.
Each type has exactly six edges and four vertices. With the weightsa, b > 0, the left measured
train track is denoted by M(a, b) and the right by W(a, b). The weights are considered up to
scaling.

The next Proposition 1 follows from the fact that the projective measured foliation space
for a 4-punctured sphere is homeomorphic to RP! = S!, see Figure 15.6 in [8].

Proposition 1 For every pseudo-Anosov 3-braid B, there exists a unique irrational number
o € (0, 1) such that exactly one of

M, = M(1, &), M, := M(a, 1), Wy := W(a, 1), W, := W(1, &)

vields a train track of B. Since o describes the width-height ratio of the Markov partition
rectangle, we call « the MP-ratio for f.

In the proof of Lemma 9, we show how to compute a transition matrix and determine the
type (Type M or W) for certain pseudo-Anosov 3-braids. It is straightforward to generalize
the construction to general pseudo-Anosov 3-braids. With a transition matrix in hand, the
o
1
is the MP-ratio. Since the dilatation A is irrational, the MP-ratio is also an irrational number.

Note that My and Wy, are related to each other by a 180°-rotation, and so are M/, and WJ,.
We further note that M, and M; are related by a mirror reflection across a vertical line, and
so are W, and W/,

Based on Proposition 1, we present the Triple-Weight Train Track Theorem:

dilatation X is its largest eigenvalue. The eigenvector for A is ] or [a] where 0 < o < 1

S|

Theorem 3 Let o € (0, 1) be an irrational number and n = Léj. Thus, ﬁ <o <
Consider the maximal splitting sequence starting from W,.

WO{ =TT —~Tp— -

The train track t,14 in the sequence is the train track T, shown in Fig.4. We call it a triple-
weight train track as it has only three different weights. This is the first triple-weight train
track in the sequence and all the train tracks after t,44 have triple-weight type.

If 1o = W,,, M, or My, then the same result holds with the reflection of the figure about
a vertical axis, the reflection about a horizontal axis, or a 180°-rotation, respectively.

An immediate consequence is:
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N negative (71 .* 2) negative
half twists half twists
T, — Isotopic
—14+(n+1)a l-na «
2 2 2

Fig. 4 The train track 7),. The weight of a red edge is w and of a black edge is 172"“ . The blue
edges have the largest weight which is § = w + ]7%. (Color figure online)

(7’1 — 3) negative half twists

1—(n—2)«
2

1—(n—1)a

Fig.5 Train track D,

Corollary 1 The length | of the pre-periodic part must satisfy l > n + 4.

Here is a lemma for Theorem 3.

Lemma1 Suppose that 1y = W (e, 1). If n = | L | > 3, then t,41 = D, as in Fig. 5.

Proof of Lemma 1 This is a proof by induction. We begin with the base case of n = 3 and
detail the splittings below with the labeled edges.

L]
.
o\ Splitting a+1 Splitting 1
T0 = s —_— = LS
[PANE
I ! %
2 <+ ® 3 S \
> 3 Y FY > =
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ittine 2t
Splitting 3~

Isotopy Isotopy
—_— —_—

(% \
B Y
Splitting % Isotopy
_

—_— 7y =

Inductive Hypothesis: Suppose that if « < 1/n and n > 3, then after (n 4+ 1) maximal

splittings, the train track to becomes D,,.
: . 1 : 1 1
Inductive Step: Assume that o < .—7. Since =7 < -, @ < 1/n and we can apply the

inductive hypothesis. Thus, after (n 4+ 1) maximal splittings, top becomes D,,. We perform
another maximal splitting to the edge @ to obtain Dj,41.

(n 433 ne%o;h\l&

(n—'ﬁ) neaoN&
B o€ FurstS

ol ol ust®

\-toet EES
D, = > N 2
5/
2
l'(vvﬂ'* \-nok \-ndt
2 S > ==
\-lader
)
] A\ n oINS
(“\mw RN
(+)twist %
—_— = Dn+]
2
B
[-(na)a i
>
This completes the proof of Lemma 1. O

Now we are ready to prove the Triple-Weight Train Track Theorem.

Proof of Theorem 3 We prove that the train track t,,14 is the train track in Fig.4. Once this is
done, it is easy to see that 7; has triple-weight type for all i > n + 3 since 7,43 has six edges
and the maximal splitting preserves the numbers of edges and vertices.

We first provide the explicit details for n = 1 and n = 2 and then apply Lemma 1 for
n>3.
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(n = 1): Note that% <a<l1.

0(-\—\
Splitting a-+1 Splitting 1 LS
T0 = — = — = o RN
" \ % &
\ \ K
i - S = *
> > > EY >
Splitting %L Splitting
N 3= & —_ N\
b
O% a o
o \
> >
A
LS
>
Splitting } Lo
5= ES

L3
>

This shows 1144 = T7.
(n = 2): Note that § < a < }

5. Thus the initial part of the sequence ro— 71 —17 is exactly
the same as the n = 1 case. The difference between n = 1 and n = 2 cases occur at 3.

0(-\—\
Spliting a1 Splitting 1 Splitting &
0 = T

\ 1 T2 LX)
A

¥l
»l-
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»|x

Splitting o
— T5 = -3¢

Splitting }
2

¥l®

Splitting 1%"‘ Isotopy
e

This shows 1514 = T>.
Assume n > 3 and T <a< % By Lemma 1, after (n 4+ 1) maximal splittings, we
arrive at train track t,41 = D,. We now apply three more maximal splittings and obtain

Tn+143 = Ty.
(@3 “e%oj-\\li’. (0-3) neg™e
o oM FuastS ¥ ol et
JEUS) — I=t-2a OIS
Tl = Dy = Tpt2 = %
< /
2>
l—(vv?\“ \-ndk \-net
& 2 2
|-l ) e
il n-3) neg
S RolE FuostS
N
Absorb Half Twist
_—
o \-nd
¢ )
(re)s-A
)
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G
(n-3) negei™&
finde 2\&\; Fusts
Splitting o s Isotopy
—— T3 = ‘ —
I/
%
=
\—Ln—l\xx

(“-\3 na%oj'we,
o A Junsts
%
a9
2
Splitting ]7("27])"
Lm—\ ® -\
3
(r\-D ne%od“@
N Ro\E HunstS
2
Th+d =
\-ngy
LN—\ -l e
an oINS
WM russts
Absorb Half Twist
_— — =T,
%
This completes the proof of Theorem 3. O
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o) LN 7N © )
(*) /
N I\
o1 l=oy o2
A /
o] e
r=01 l= U’.)_l

Fig.6 (Theorem 4) The I, I’, II, and II’ triple-weight train tracks. The symbol (%) represents the sign (Defi-
nition 9) of the train track explained in Corollary 4. The arrow ® (resp. (ﬁ)) means the maximal splitting is

1 1
Type 1 (resp. Type 2) as defined in Proposition 2. Arrows — (resp. —) means the /-splitting (resp. r-splitting)
as defined in Fig.9

3 System of triple-weight train tracks

The goal of this section is to study a closed system of triple-weight train tracks and prove
Theorem 4.

Definition 6 We consider four types, Type I, I, II, and IT’, of triple-weight train tracks up to
rotation as in Fig. 6. Edges with the same color have the same weight and the same thickness.
Thickness of edges reflect the transverse measures. If we forget the thickness of the edges, I
and II are the same and I’ and II” are the same.

For instance, for train tracks of I and I, the measures of blue, black, and red edges satisfy
u(blue) > p(black) > u(red) and the switch condition w(blue) = w(black) + w(red).
Types [ and I’ are mirror image to each other including the thickness data, and so are II and
Ir.

Theorem 4 Train track types I, II, I, II’ are related to each other by maximal splittings

followed by a homeomorphism of the 3-punctured disk (i.e., a 3-braid) as shown in Fig. 6.

The first triple-weight train track 7,44 (Fig.4) studied in Theorem 3 is Type I or II if
we ignore the half twists o, " € Bj and assuming the initial train track 7o is My or Wy,.
(This is because My, is a 180°-rotation of W,,.) Similarly, if 79 = M/, or W/, then the first
triple-weight train track 7,44 is Type I’ or II’ if we forget the half twists o' € Bj.

Definition 7 It is convenient to define 7] := 7,44 as it is the first triple-weight train track in
our maximal splitting sequence and further define 7y := t,444+—1 for k > 1. Thus, given a
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(n—1)

negative

To

isotopy Q

—14+(n+l)a 1—na 1—(n—1)a
2 2 2

Fig.7 Obtaining 7q from 7,43

braid 8, we obtain a maximal splitting sequence of triple-weight train tracks:
’]'i_\'z'é_\’z'é_\ e
Folding is the inverse operation of a splitting.
Definition 8 We fold the train track 7,43 and we call the resulting train track 7¢. See Fig.7.
Note that 7 is a triple-weight train track. The three weights of 7 are
1 — na
2

We also note that 7q is Type I’ (resp. Type 1) in Fig.6 up to the negative half twists

oy =1 ¢ By (resp. o,_1) if we start with the train track W, or M, (resp. W/, or M/,).
An important observation is that applying maximal splitting to 7¢ results in 77. So we can
extend the above maximal splitting sequence to the following:

(red) < % (black) < w (blue).

76_\’]—1_\’2—2_\’]3_\ e

Before proving Theorem 4, we introduce new words (4-tuple, sign, 4-ratio of a triple-
weight train track) in Definition 9 that are extensively used in the later discussion. Then
we proceed to prove Theorem 4. In the proof, we find a nice relation between the types of
4-tuples and the types of triple-weight train tracks, which is stated as Corollary 2.

We have shown in Theorem 3 that the three weights of the train track 7; are

l—nae —-14+m+ 1) o
2 7 2 T2

Therefore, every weight of a triple-weight train track 7; is in %Z + %er.

(@)

Definition 9 Suppose that the smallest weight of a triple-weight train track 7 is given by
%x + %ya and the second smallest weight is %z + %wa. Thus x + yo < z + wa. We call

- (x,y z,w) the 4-tuple of the triple train track 7,
— sgn(x) € {—1, 1} the sign of the triple-weight train track 7 (we will show that x # 0),
and we denote sgn(7) = sgn(x),

;Lf)z the 4-tuple ratio (or 4-ratio for short) of the triple-weight train track 7.

Due to the switch condition of train tracks, the largest weight of the triple-weight train
track is the sum of the other two, that is %(x +2)+ %(y + w)a. Thus the 4-tuple (x, y z, w)
carries all the weight data of the triple-weight train track.

We introduce a 4-tuple sequence {(xx, yx zx, wx) | kK =0, 1, ...} that plays an important
role to prove the main results.
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T+ ya z + wa T+ ya z + wa
N\ (z—2)+ (w -y
z + wa T+ yo z +wa T+ yo

Fig.8 Maximal splitting of triple-weight train track

Definition 10 Fork =0, 1,2, ..., let (xk, yx zk, wi) denote the 4-tuple of 7.

For example, the 4-tuple of 7y is
(x0, Y0 5 z0, wo) := (1, —n; 0, 1). 3)

Among the three weights of 77 in (2), % is the largest. Depending on the value of @ we
have either

1 1 1 1
5(—1 +m+ Do) < 5(1 — na) or 5(1 —na) < 5(—1 + (n+ Da).
In the former (resp. latter) case,
(x1,y1 z1,wy) =(=L,n+11,-n) @esp. (1,—n —1,n+1))

and we say that the 4-tuple (x1, y1 z1, wy) is Type 1 (resp. Type 2). Combine this with the
fact nlﬁ <a< % and we obtain that the 4-tuple of 77 is

o1 1
(-l,n+11,—n) 1fm <o < s (Type 1)
(I,—n —1n+1) if 1+ <a <1 (Type2).

n+% n

(x1,y1 21, wy) =

Proposition 2 In general, the 4-tuple (Xgt1, Yk+1 Zk+1, Wkt1) can be computed from
(Xk, Yk Zk, wg) as follows.
(Xk+15 Ykl Zht1> Wit1)
)@= X wie =y Xk v i e — 2x < 2y — wi)a (Typel)
k> Yo 2k — X, wi — Yo) if Qyk — wp)e < zx — 2xx (Type2)

For the first (resp. second) case, we say that the 4-tuple (X1, Yk+1 Zk+1, Wk+1) has Type 1
(resp. Type 2) and the maximal splitting Ty —Ti1 has Type I (resp. Type 2), which we denote

(%) (k)
Tk = Ty (resp. Te = Tit1)
Proof Start with a triple-weight train track with (x, y z, w). See Fig.8.
After a maximal splitting, the 4-tuple becomes (z—x, w—y x, y)if (z—x)+(w—y)a <

X + ya, equivalently z — 2x < (2y — w). We call it Type 1.
Otherwise, we will have (x, y z —x, w — y). We call it Type 2. O

Before proving Theorem 4 we introduce two types of maximal splitting; /-split and r-split.

Definition 11 Near an edge of a triple weight train track where maximal splitting occurs,
there are two cases. When lower-left and upper-right have more weight than upper-left and
lower-right, we call it an /-split. Otherwise we call it an r-split. See Fig.9.
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T+ yo Z +wo T+ yo Z +wo

l—split

\ (z = 2) + (w = y)a

Z + wo T+ yo Z +wo T+ yo

Z + wa T+ ya z + wa T+ ya

T-split

\ (z =) + (w - y)

T+ yo Z t+wo T+ yo Z +wo

Fig. 9 Two types of maximal splittings. (Top) is /-split and (Bottom) is r-split where x + ya < z + wa

The terminologies [-split and r-split come from Mosher’s article [13].
Now we prove Theorem 4.

Proof of Theorem 4 Suppose that we have a train track 7 with 4-tuple (x, y z, w). Assume
that 7 is Type I. The computation in Fig. 10 shows that the resulting train track 77! of the
maximal splitting followed by the action of al_l is Type I’ or IT’.

Looking into the weights carefully with Proposition 2, we see that the 4-tuple of 757 is
Type 1 (resp. Type 2) if and only if (z — x) + (w — y)a < x + ya (resp. >) if and only

1 (>s<)(7]_1

if 757! followed by the action of o, s Type I’ (resp II’). This yields the arrows — —

-1
(resp. b )(l> ) in Fig. 6 coming out of the Type I train track.

Suppose next that we have the train track II with 4-tuple (x, y z, w). In Fig. 11, we show
that that the resulting train track after the maximal splitting followed by the action of al_l
is either Type I or II. More precisely, after the maximal splitting we obtain a train track of
Type I (resp. II) if and only if (z — x) + (w — y)a < z + wa (resp. >) if and only if the
new 4-tuple (equivalently, the splitting type) is Type 1 (resp. Type 2). This yields the arrows

r,(*)afl r,(**)afl . . X . .
— — (resp. — —)in Fig.6 coming out of the Type II train track (resp. coming back to

itself).

Recall Types I and I’ are mirror to each other, and so are Types II and II’. This yields
the rest of the maximal splitting and homeomorphism arrows and completes the maximal
splitting diagram in Fig. 6. O

We extend the notion of Types I, I, I’ and II’ in Definition 6, and to each triple-weight
train track 7; we inductively assign one of the four types.

Definition 12 As discussed in Definition 8 if we start with W, or M, (resp. W/, or M) the
triple-weight train track 7y is Type I’ (resp. I) denoted Type(7Zp) =1 (resp. Type(Zp) =1).

We inductively define Type(Zx+1) from Type(7Z;). We need consider four cases. See
Fig. 12.

— Assume that Type(7;) = I or II’ and the 4-tuple of 7;1 is Type 1. Then we define

Type(Ziy1) =T
— Assume that Type(7;) =1 or II' and the 4-tuple of 71 is Type 2. Then we define

Type(ZTit+1) =11
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9 l—split
—\

r+ya < z+ wa

Type I

Type I’

(z—2)+ (w—y)a <z +y«a

or

Type II

@ D=5

r+ya<(z—z)+ (w—ya

Fig. 10 A Type I train track admits /-split followed by action of o' ! and it yields a train track of Type I’ or
r

— Assume that Type(7;) = II and the 4-tuple of 7;4+; has Type 1. Then we define
Type(Zi+1) =L

— Assume that Type(7;) = II and the 4-tuple of 7;4; has Type 2. Then we define
Type(Zk+1) =1L

We observe the following relation between topological types (Type I, I, IL, IT") of triple-
weight train tracks and types of 4-tuples (Type 1, 2).

Corollary 2 Type I and Type I’ triple-weight train tracks are results of a Type 1 maximal
splitting. Likewise, Type Il and Type II’ triple-weight train tracks are results of a Type 2
maximal splitting. In other words, a triple-weight train track is

— Type I or I’ if and only if its 4-tuple is Type 1,
— Type Il or II if and only if its 4-tuple is Type 2.

Here is an immediate consequences of Theorem 4.

Corollary 3 Type I and Type II’ train tracks only admit l-splittings.
Type I’ and Type II train tracks only admit r-splittings.

Proof Let X € {I, I, I", II’}. For a Type X train track 7 one can find a self homeomorphism
of D3 that takes 7 to the train track X (Fig.6). By Theorem 4 we see that the train tracks
I and II’ only admit an /-splitting. We also see that the train tracks I’ and II only admit an
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9 7-split
— X

T+ ya < z+wa

Type I1

Type I

isotopy

|
L
)

—
N

—z)+ (w—y)a <z+wa

Type 11
isotopy O'fl 9

z+wa<(z—x)+ (w—y)a

9 |
=

Fig. 11 A Type II train track admits an r-split followed by action of o ! which yields a train track of Type I
orII

Fig. 12 Four train track types I,
IL T, and I (F) (%) (£)

r-splitting. The splitting type (r or /) only depends on nearby weights of the maximal weight
edge. Since the homeomorphism preserves the local weight system, the statements follow. O

4 Triple-weight train track and Farey sequence

In this section, we establish a relationship between triple-weight train tracks and Farey
sequences that we use to prove our main result Theorem 6.
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Leta € ( 1 1) \ Q be the MP-ratio of some pseudo-Anosov 3-braid. We will define

nt+1’n
an infinite set of intervals and then construct a map 7 which associates to each interval a
4-tuple of numbers. There is a unique infinite sequence /1 ;, D I, D I3, D --- such that

Mee Ix.i; = {«}. The goal of the section is to prove Theorem 5, where we relate the interval
Iy ;, and the 4-tuple (xx, yr zx, wi) under the map 7.

4.1 Farey sequence

s

First, we recall the Farey sum, H. Given two fractions, ; and 7, We define:

s s s+

tr T 4t
Notice that if 3 < %,thenf < %Bﬂ% < %,l
Fork =0, 1,2, ..., we inductively define an ordered set L of fractions with cardinality
2k 4+ 1. The set Ly is called the Farey sequence of order k + 1. Define
01
Lo ={ao,1,a02} ==, ~
1'1
where we are deliberately not simplifying the fractions. Assume Ly = {ak.1, ak2, - - -, @ 2k 41}

where
0 1
I =dai,1 <ag2 <--- <ak72k <llk.2k+1 = I

Define
. k
Li+1 = {ak+1.1, - - ,ak+1,2k+1+1} =Ly U{ar; Bagiqli=1,2,...,2%}

as a set and then reorder them to have % =qp41,1 < Q12 < v < Qg gkl = %

Example 1
011
Ly ={ai1,a12,a13}) = 17321
01121
Ly={ay1.....a05} = 1'32°3°1
011213231
belor ol =1 03525 500

Definition 13 Letn = Léj. Fork=0,1,...andi = 1,2, ..., 2% define the following open
interval:

1 1
I i = ( , )
n+api+1 N+ ag

(=[5 2] s 1] @
" ! n+1 n n+a ’
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Example2 Fork =1,

1 1 1
hoUl = T T Y
n+1 n+ n—+

For k =2,

haUbhL3UbLyUl
_ 1 1 U 1 1 U 1 1 U 1 1
T ont) v aer) ) e

_|: 1 1]\ 1 1 1 1 1
S ln+17n n+in+3n+t n+in+

We observe that I 2\ {}H_%} =D 4U3zand I1 1\ {n-yl-l } =hyUl;.
3

[

In general, we have the following:

Lemma2 Foranyk =0,1,... andi =1,2,..., 2k the interval Iy = (ﬁ, VH_L“)
at the kth stage splits into two at the (k + 1)st stage.

Iri\{———— = lk+1,2i U Dgy1,2i-1
n+ ag+1,2i

1 1 1 1
= 9 |—| 9
<n + ak+1.2i41 N+ ak+1,25> (n + ag+1,2i N+ Ag1,2i-1 )
)

A standard fact about Farey sequence is that Ly C Ly C --- C U,filLk =QnJo,1],
which gives the following.

Lemma3 Let a € (ﬁ, %) \Q. By Eq.4, for every k = 0,1, ..., there exists an index
ir €{1,2,3,...,2%} such that
e I ( ! ! ) (6)
a €l = , .
* n+ akig+1 N+ Ak

Moreover, by Lemma 2 we obtain a sequence of nested intervals
o0
Iog D iy D Dy D Baiy D+ D () ki = {a). (N
k=1

with iy € {2ix_1,2ix—1 — 1}. In particular, the sequence {ix}72 | is an invariant of the

1 1
e S e <y

irrational number e
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4.2 Computation of 4-tuples

The goal of this subsection is to prove Theorem 5 which allows us to compute the 4-tuple
(Xx, Yk 5 zk, wi) of the triple-weight train track 7 inductively. We do this using 2 x 2 matrices.

Definition 14 We inductively define a function 7" which associates to each interval I ; a
2 x 2 matrix. Set

10

T(lo.1) = (_n 1>. ®)
Suppose that we have defined the function for I ; as
Xz

T (k) = (y w) : ©

Then we define the function for I;41,2i—1 and Ix41 2; as follows:
X z —11 _fz—xx

yw 10) \w- yy

X z 1 -1 _ X z—X fr <0
yw/ \0 1 yw—y

X z 1 -1 _[xz—x

yw/ \0 1 N yw-—y
T(Ig+1,2i-1) = (11)
PV () e <0

yw 10 w—yYy

The next lemma shows that elements of the matrix 7' (I ;) are in Zn + Z and contains all
the information of the intervals Iy ;.

ifx >0

TIxy1,2i) = (10)

ifx >0

Lemma4 For each k, i, there existe = €x; € {—1,1}, a = ar; € Z=oand b = by i, c =
Ck.i,d = dk;i € Zxo such that

a —b
Ti) =€ (—an —cbn—+ d) ’ (12)

Moreover, the non-negative integers a, b, c, d satisfy;

1 1 : _
(n_"_% . @) if e=1
i = (13)

1 1 e
(”+§’n+;¢§f) if € =—1

det T (Ix,;) = ad — bc = sgn(e). (14)

and

We call € ; the sign of the interval Iy ;.

Proof (Induction on k) When k& = 0, the initial condition (8) givese = 1,a = 1,b = 0,
c=0,d=1,and Iy | = (%, %) Thus, all the assertions hold.
’ }’l+T }’l+T
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We assume that the assertions hold for ; ; and will show that assertions (12) and (13)
hold for both Ij 1 2; and Iy 2i—1.

When ¢, ; = 1, by the induction hypothesis we have I; ; = ( 1 1 ) By (10) and

+d > <
”+ZW n+y

(11), we have

Tl 2) W = a+b —a \_. _( o -V
k+1,2i) = _(a + b)l’l _ (C + d) an+c¢ = —a'n—c b'n + d’

and

Tesroiy D (@ —@a+b) \_ ( —b"
L2 = \ _gn—c@+bn+c+d) “\=a'n—c"b'n+d")"

We see that @', a” € Z-o and b',b", ¢, c¢",d,d" € Zso. Thus (12) is satisfied for k + 1
where €41,2; = —1 and €41 2;—1 = 1. Next we check (13) for k + 1. By Lemma 2 and the
induction hypothesis (13),

. 1 1 1 1 1 1
k+1,2i = , = s =\ 7
nt g o+ @58 \n+ G5 a3 ntgont

and

I 1 1 1 1 1 1
k+12i—1 = ) = ’ = " "o " .
! n+ S me T+ g n4 3t n+ ¢ n+SEL i+ 5
Thus the assertion (13) is true for Iy 2; and Ix41,2i—1.

When €, ; = —1, a similar argument works. Thus, (13) is proved for k 4 1.

Finally, for the last assertion (14) we observe that |det 7' (I ;)| = |ad — bc| = 1 by the
inductive definition of the function 7. When € = 1 by (13) we get £ < %, which gives
0 < ad — bc and thus ad — bc = 1. Similarly when € = —1 we get ad — bc = —1.

Recall Lemma 2 which states that the interval i ; splits into Iy 2; and lxy1.2i—1.
Lemma5 The signs of the intervals Iy 2; and Iy 2i—1 are
€k+1,2i = —l and €gq12i-1 = 1.

Proof By (9)and(12) wehavex = eaandz = —eb. Knowingthata > Owe get sgn(x) = €.
We also see sgn(z—x) = sgn(—e(b+a)) = —e = —sgn(x). The second equation follows
since a > 0 and b > 0. The definition of 7 in (11) gives

sgn(x) =1 if x>0

Ckt1.2i-1 = {sgn(z —x)=11if x <O0.
A similar argument with (10) yields €x41,2; = —1.

Now, using the map T" we can finally relate the nested intervals Iy ;, that converge to «
(Lemma 3) and the 4-tuple (xx, yx ; 2k, wk) of the train track 7; defined in Definition 10.

Theorem5 Foreveryk =0, 1, ..., the4-tuple (xk, yr ; zk, Wk) of the train track Ty, satisfies
Xk Zk ) | Lem4 ag —by
(yk wk> =TUki) = & (—akn —ck bkn + dk> (15)

for ex € {1, —1} and some ay € Z~o and by, ck, di € Z>o with ardy — byck = €.
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Note that €, = sgn(7g), the sign of the train track 7; as in Definition 9.

Proof The proof is done by induction. When k = 0, the assertion holds by (3) and (8).
Assume that (15) holds for k. Recall that N2, Iy ;, = {a}. Since I ;, splitsinto two intervals
Iit1,2i and Ixy 1 2 —1, we have either Iy 41, = Ix41,2i OF Ix11,2i—1, equivalently ix 1 =
2iy or 2i; — 1. There are four cases to consider depending on the sign of €; and the type (see
Proposition 2) of the 4-tuple.
Suppose thatey = 1and (Xx+1, Yk+1 Zk+1, Wk+1) has Type 1. By the induction hypothesis,
we get

1

15 Type 15
e Q(—awn — c) — (en + d)e 2 @y —wa 2z — 20 2 ex(—bx — 2ap),

which yields o < ﬁ. Since Iy ;, = ﬁ, ﬁ by (13) and the assumption
n+2ak+bk +ak+bk k

€x = 1, we have

c 1 1 Q) I
EN a2 | T kL2
ax+by 2ai+by

This gives
i1 = 2ig. (16)

The assertion can be verified as follows:

Xk+1 Tk+1 Prop2 Tk — Xk Xk (l())
+ + e 4 =" T(I Y = T(I , .
<Yk | W 1) = <wk Vi Yk) = ( k+l,2zk) =T( k+1,zk+1)

Similarly, we can verify the assertion for the remaining three cases. O
The following technical corollary is deduced in the discussion of the above proof and it
will be useful later.
Corollary 4 In the above proof of Theorem 5, we have observed that:

1. Ifex = +1 and (Xkq1, Yig1 Zks1, Wit1) has Type 1 then ixyq = 2iy.
2. Ifek =41 and (xk+1, Yik+1 Zk+1, wk+1) has Type 2 then ik+1 = 2ik —1.
3. Ifex = —1 and (Xg+1, Yk+1 Zk+1, Wik+1) has Type 1 then iy = 2i; — 1.
4. If g = —1 and (Xg+1, Yk+1 Zk+1, We+1) has Type 2 then iyyy = 2iy.

With Lemma 5, we obtain:
— for Case (1) and (4) €x+1 = —1, and
— for Case (2) and (3) €x4+1 = +1.
In particular, a Type 1 maximal splitting ® changes the sign of the train track and a Type 2
maximal splitting * preserves the sign of the train track. Thus, in Fig.6, we only see
@ 2 e and ) Y @),
Here is a corollary of Corollary 4.

Corollary 5 If B € Bj starts with Wy or My, then Type(7y) = I’ and sgn(Zp) = +1. In
this case Type I’ or Type II train tracks that appear in the splitting sequence always have
sgn = +1, and Type I and Type II’ train tracks have sgn = —1. For the (£) and (F)
labellings in Fig. 6 we use the upper signs.
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Onthe other hand, if B € Bs starts with W, or M, then Type(7y) =1and sgn(7p) = +1.
In this case Type I or Type II’ train tracks have sgn = +1, and Type I’ and Type Il train
tracks have sgn = —1. For the () and (F) labellings in Fig. 6 we use the lower signs.

Proof The statement follows from the last part of Corollary 4, the definition of 7y (Defini-
tion 8), and the definition of Type(7p) (Definition 12). o

Corollary 6 If 3-braids B and B’ are conjugate in B3/ Z(B3) then

Type(Ty) = Type(Ty) € {I,I'}.

5 Nested Farey intervals

In this section we define nested intervals {J; }x in the Farey tessellation and an LR-sequence.
Let B be a pseudo-Anosov 3-braid with the MP-ratio «. Let n = |1/c¢]. In Lemma 3, we
have shown that « is the intersection of nested intervals I1; D I, D I3; D --- where

. o 1 1
the interval Iy ;, = <n+ak,zk+1 Ty,

) . We define Ji as a ‘reciprocal’ of Iy ;, :
Definition 15 Define an open interval

Ji = (i, ak,ix+1)

fork =0, 1,.... Note that Jy = (?, %) and Ji is a Farey interval since there is an arc in the
Farey tessellation connecting the boundary points ay ;, and ai j, +1.

The facta € I ;, is equivalent to % —n € Ji and the nested sequence (7) can be translated
into

pag 1
103113123J33---3ﬂJk= ~ —n, (17)
k=1 o

which we call the sequence of nested Farey intervals for the braid §.

Definition 16 The interval Jx = (ax,j, , ax,i+1) splits into two Farey intervals;

(L) the left subinterval (ay ;,, ak,, B ak +1) thatis reciprocal to Iy412i,—1, and

(R) the right subinterval (ak ;, B ak j+1, ak,i,+1) thatis reciprocal to Ix11 2.

Foreach k =0, 1, ..., the interval Ji4 is exactly the left or right subinterval. We associate
a letter L or R to each interval Ji4| depending on the left or right subinterval status. The
nested interval sequence (17) can be encoded into a sequence in L and R. We call it the
LR-sequence for B.

Example3 Let § = 014 02013024 which is a pseudo-Anosov 3-braid. The MP-ratio is @ =

(19 — /221)/14 ~ 0.2952 - - - and n = |1/«] = 3. Here is an estimate of 1 /o — n:
o 1 3 5 1 7 2 1 1
<o << —< < ——A< < —< =< =< —

1 3 8 13 o 18 5 2 1
This gives the nested Farey intervals that converges to 1/« — n (see Fig. 13)
Jo=0/1,1/1) > J1 = (0/1,1/2) > J» = (1/3.1/2) > J3 = (1/3.2/5)
DJs=3/8,2/5) D Js=(5/13,2/5) D Js¢ = (5/13,7/18) D> - --
and its associated LR-sequence; L, R, L, R, R, L, - - -. To see this, we note that J; is the

left subinterval of Jy; thus the first letter of the sequence is L. Likewise, J; is the right
subsequence of Ji; thus the second letter of the sequence is R.
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Fig. 13 (Example 3) Nested Farey intervals for 8 = ofoyafoss Ji = (0/1,1/2) red, Jo = (1/3,1/2)
orange, J3 = (1/3,2/5) yellow, J4 = (3/8, 2/5) green, J5 = (5/13,2/5) blue, J¢ = (5/13,7/18) purple.
(Color figure online)

Example 4 Let 8 = afazafof and B’ = af4a{4of3a{1 be pseudo-Anosov 3-braids. It is

interesting that j is conjugate to 8’ A% in Bs. Therefore, 8 and g are conjugate in the quotient
group B3/ Z(B3) ~ MCG(D3)/Z.1tis also interesting that § is conjugate to the mirror image
of the negative flype (Definition 17) of 8/, where 8” := £1lype(B’) = 01_402_101_302_4 and
mirror(B”) = afalogaf.

By Theorem 1 of Agol, they must have combinatorially isomorphic Agol cycles. Indeed,
their I-I1I-I’-II’-sequences and LR-sequences are the same up to shift.

The I-II-I’-II’-sequences of B and B’ are
w,r,,r, oL, LU, oL, LY, oL, LT, I,
and
L, LY, oL, LY, oL, LU, L, L, U, LT, ILL, -,

respectively. The computations were completed with the use of MatLab. Removing the begin-
ning I, T from the latter sequence, the two I-1I-I’-II’-sequences become identical.
The LR-sequences of 8 and B’ are

LR LRRLLRLRRLLRLRRLLRLRRIL,-:-
and
R,L,L,R,L,RRLLRLRRLLRLRRLLRLRRL-:--,

respectively. Again, removing the beginning R, L. from the latter sequence, the two LR-
sequences are identical.

Infact, 8’ haso’ = (374++/221)/82 ~ 0.6325130335 - -- andn’ = |1/a’] = 1 and nested
Farey intervals Jy = (%, %) D J = (%, %) D Jr = (%, %) D Jz= (%, %) DJy= (%, %) D
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SIS

Fig. 14 (Example 4) Nested Farey intervals for 8/ = 01_402_401_302_1

=G 5ok=0 52k =0E 5 >J={E %)> . thatare converging

to 5 — n’. In Fig. 14 the intervals Js, ..., Jg are highlighted.
Up to zooming in, the pictures in Figs. 13 and 14 are the same.

In Margalit’s slide [11] the Agol cycle of o105 !'is shown. We study it from our viewpoint
here.

Example5 Let B = 010, ! which is a pseudo-Anosov 3-braid. The dilatation is A = #

with MP-ratio o = _1%[5 ~ 0.618---,n = |1/a] = 1 and the initial train track is Wy.
We would like to find the Agol cycle for 8. The 4-tuple associated to 7g is (1, —n; 0, 1) =
(1,—1; 0,1) and is of Type I’ as defined in Fig.6. We perform two maximal splittings in
Fig. 15 to find 77 and 75. We verify that 8(7p) = 7> by showing that ,3_1 (73) = 77 inFig. 16.
Thus,

(To, 10)=(Ti, 1) = (Ta, 2) = (B(T0), 1~ Bu(10))

is the Agol cycle for 8.
One can verify that the 4-tuples of o107, ! satisfy

ks Vs 5 2k i) = (=D (Fig1, —Firas 3 —F, Fig1)

where {F;}72, =1{0,1,1,2,3,5, ...} is the Fibonacci sequence. Therefore, all the 4-tuples
are Type 1. This gives that the I-II-I’-II” sequence for o 02_] s, LI, LI, LTI, ---.

Let a; = Ff i] . The MP-ratio « is the reciprocal of the golden ratio: limy_, % =
_1%[5 = a. Since & i = ?j H % in the Farey tessellation a;, is between a,_» and

ap—1. Define a nested sequence of intervals Jy = (ag+1, ax) if Kk = odd and Jy = (ax, ag+1)
if k = even. For instance Jy = (%, %) D Ji = (%, %) D L= (%, %) D J3 = (%, %) D
Jy = (%, %) D --- . Clearly, Ji41 is the left half of J; if and only if k is odd. We also see
ﬂ,fiojk = «. Therefore, the LR-sequences of 0102_1 isLLR,L,R,L,R,L,R, ---.
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Type I

To

7-split isotopy

l-a<a<l —14+2a<l-a<a

(L,-1:0,1) (~1.251,-1)

Type I negative Type I’ negative

T 1/2 twist T 1/2 twist
lfsplit I

(%)

—1l4+2a<l—-—a<a
<—-l4+2a0a<1—-«

—-1,2;1,-1
( ) ( 5 _1a2)
Fig. 15 An Agol cycle for 8 = U]J{l
o2(T2) = ® = °
[ ]
BHT2) = o7 (02(T2)) = =To

Fig. 16 Verifying =1 (73) = 7j for f = 010, |

6 Necessary conditions for combinatorially isomorphic Agol cycles

We are ready to state the main theorem that gives a number of equivalent conditions for
combinatorially isomorphic Agol cycles. Those conditions have different characteristics:
topological, number theoretic, and numerical.

Theorem 6 Let B and B’ be pseudo-Anosov 3-braids with the same dilatation. The following
conditions are equivalent. (Equivalence of (1) and (2) is shown in Theorem 2.)

1. B and B’ are conjugate in B3/Z(B3).
2. B and B’ have combinatorially isomorphic Agol cycles.
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3. (Topological condition) There exist | and m € N such that sgn(7;) = sgn(7,,,) and the
triple-weight train track sequences

'Z}A'Z}+1 _\’27+2A . (for /3)
and
Ty—=Tpi1— Ty (for p)

give the same periodic I-1I-I’-1I’-sequence.

4. (Number theoretic condition) There exist [ and m € N such that sgn(7;) = sgn(7,))
and the nested Farey interval sequences J; D Ji41 D Ji42 D -+ for B and J), D
Jr;1+1 D J,/n+2 D .- for B’ give the same periodic LR-sequences.

5. (Numerical condition) There exist | and m € N such that sgn(7;) = sgn(7,)) and the
4-ratios of Ij and 7;’1 are the same; namely,

Xty X, +
u+we  z, +wha

The same LR-sequence condition in (4) implies the existence of integers A, B, C, D with
AD — BC = 1or —1 (if sgn(7;) = —sgn(7,,) we have AD — BC = —1) such that
1 AL —n)+B

n= 7
o C(; —n')+ D

o

In particular, when / = m = 1 we obtain

1 1 ,
——n=——n.
o of
More detail and precise expression of A, B, C, D are given in the proof of the theorem.
A feature of condition (5) is that it is not seeing the entire infinite sequences like (3) and

(4), but rather focusing on two particular train tracks 7; and 7).

Proof of Theorem 6 The equivalence of (1) and (2) is due to Agol [1]. See also Margalit’s talk
slides [11].

(2) = (3): Suppose that an orientation preserving homeomorphism ¢ : D3 — Dj satisfies
¢ (T41) = Ty, and oy (g 44) = W, for all # > 1. This implies that 4-tuples of 7, and
7, have the same type (Type 1 or Type 2). Since a homeomorphism and an r-//-splitting
commute, 774, and 7, , admit the same type (r or /) of splitting.

The chart in Fig. 6 shows that

an r-splitting of Type 2 (r’(i*)) yields a Type II train track.

1,
an [-splitting of Type 2 ( (—*\*)) yields a Type II’ train track.

an r-splitting of Type 1 (rﬁ)) yields a Type I train track.
L, . .
— an [-splitting of Type 1 ( i’i)) yields a Type I’ train track.

As a consequence, Type(7;4+;) = Type(T,,’H,) e {1, ', I’} forall ¢t > 1.

Recall that our maximal splitting sequence always starts from one of the train tracks
My, M,,, W, W, (Proposition 1). Up to rotation, M, = W, and M, = W/, and the two
are related by taking mirror image.

Assume to the contrary that sgn(7;4;) = —sgn(Tn’qH) for some ¢. Since Type(7j4+;) =
Type(7,,,,) Corollary 5 implies that § starts with M or W if and only if g’ starts with W’

@ Springer



Geometriae Dedicata (2023) 217:81 Page270f43 81

or M’. This means 8 and 8’ are not conjugate to each other, which is a contradiction. This
concludes sgn(7;4,) = sgn(7,,,,) forallr > 1.

(3) = (4): We need to show forallt =0, 1,2, ..., Ji4; and J,’,H_l correspond to the same
letter, either L or R.

We first check the base case (t = 0): By Lemma 5 and Definition 16, the condition
€ = sgn(7;) = sgn(7,) = ¢, implies that the Farey intervals J; and J;, correspond to the
same letter, either L or R.

To see the next stage (+ = 1), we first note that by the assumption (3) and Corollary 2,
the 4-tuples of 7,1 and 7, , ; have the same type (Type 1 or Type 2). Then by Corollary 4,
€| = €, implies that €/ = ¢€;, ;. The argument for the base case applies here and we can
conclude that J;1 1 and J;, 41 correspond to the same letter, either L or R.

Inductively, forall 7 = 2, 3, ..., we can show that J;4, and J,, . correspond to the same
letter, either L or R.

(4) = (5): We first note that condition (4) is equivalent to the existence of a 2x2 matrix

A B . Lo
N = (C D) € SL(2, Z) that takes the Farey interval J;,, = (';—:, 'f—”) toJ, = (’:72’ %})

Uy w u, w
simultaneously; which means N (vt ;) = < ! s’t) foreacht = 0, 1, . ... Since the nested
t ot t St
sequences have convergences NZ2 | {Ji} = {é —n}and NP2, {J,é} = {5 —n'}, itis equivalent
to
1 AF-n)+B

o n_C(L_n/)+D'
a/

In other words, the following vectors are parallel (the symbol || stands for parallel):

E-n) (B
QERIEE

The matrix N can be explicitly computed as follows: By Lemma 4, the Farey numbers
ﬁ—;, % % % for r = 0 satisfy one of the two cases (here we use the assumption €; = €/,):
t t
u g w o+d  uy wy, ¢ +d .
e W _4a Yo_amd 0 _Zm 20 _Zm " mfe — ¢, =1,

v ooa so a+b’ vy, a, sy al,+b),

uo co+d wo o uy c,+d, w, c, .
e — = e e S N VL A 1f€[=€m=—1.
) a; + by S0 aj v, a,, + b, 50 a

m
TN

_f(ad ¢, d,

“\a b ) \a, b,

and det N = (—¢;)(—¢,,) = 1 since €/ = €.

Next, we note that

a —cy - a, —cp,\ _(cd\(-10 c, d, _l——N
—b; d; =b, d, )] \a b 0 —1 a, b, - ’
By (18) we have
1 / ’ 1 ’
a —¢\ (+—n a, —cp\ (> —n
() G, ) (7): 4
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Using Theorem 5, we can rewrite the 4-ratio of 7; as

oty a—(an+o)e  aly—n—q
g+wea  —b+Gmtdye —b(L—n)+d’

which is equal to the slope of the left hand side vector of (19). Likewise the 4-ratio of 7, is
equal to the slope of the right hand side vector of (19). Therefore, we conclude the 4-ratios

!/ . —
of 7; and 7,,, are the same: Z-=7 = Twha

(5) = (2): It follows from Theorem 7 below.

7 Mirror combinatorially isomorphic Agol cycles

In Sect. 6, we studied equivalent conditions of combinatorially isomorphic Agol cycles. In
this section we explore generalization of the statement (5) = (2) in Theorem 6. Our goal is
to prove: if 7; and 7,, have the same 4-ratio for some / and m, then Agol cycles of 8 and S’
are combinatorially isomorphic or mirror combinatorially isomorphic.

Let 7 be a triple-weight train track and Type(7) € {I, I, I', '} denote the homeomor-
phism type (Type L, I, I, and II") as introduced in Fig. 6.

Theorem 7 Let B and B’ be pseudo-Anosov 3-braids with the same dilatation. Suppose that
there exist | and m such that triple-weight train tracks Tj and T, have the same 4-ratio; i.e.,
xtye _ Xpty,e
z+wiee Tz, 4w o
1. Type(Ti41) = Type(7,, )

2. Type(Tiy1) = (Type(T,,,,))

. Then one of the following cases occur:

In (1) the Agol cycles are combinatorially isomorphic. That is, there exists an orientation-
preserving homeomorphism ¢ : D3 — D3 and a constant a > 0 such that

B=¢'op oo
and

(Tn/1+t’ al’l';n-',—t) = ¢ (Dj4s, i)

forallt > 1.
In (2) the Agol cycles are mirror combinatorially isomorphic. Namely, there exists an
orientation-reversing homeomorphism  : D3 — D3 and a constant a > 0 such that

B=yv'op oy
and
(Tn/H—t’ aM;n+;) =Y (Digts Mitr)
forallt > 1.
Example 6 Related to Example 4, let 8 = afazafoz“, B = af4o;4af3a{1, and B’ =
o0, Yo 305 4. The pair (8, B) falls into Case (1) of Theorem 7. and the pair (8", ) falls
into Case (2). It is interesting to point out that 8” and B’ are related by a non-degenerate

flype. Thus they belong to distinct conjugacy classes and their Agol cycles are mirror com-
binatorially isomorphic.
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Below is a lemma for Theorem 7.

Lemma 6 Suppose that T; and T, have the same 4-ratio. Then for all t > 1, the subsequent
train tracks Tj 4+ and T, |, have the same 4-ratio and their 4-tuples have the same type (either
Type 1 or Type 2).

Proof of Lemma 6 Define A, B, C, D by
A+ Ba + Ca’ + Daa’ = (x; + yia)(z,, + w,, ') — (z1 + wie) (x,, + y,,e').
Since 7; and 7,), have the same 4-ratio
A+ Ba + Ca’ + Daa’ = 0.
Using Theorem 5 we may describe A, B, C, D as follows.

A= 6[6;,1(—1111);” + bla,/n)

B = €€, ((aib), — bia,)n + (¢;b),, — dja;,))

C = ge,, ((aiby, — bia,)n’ + (aid,, — bic;,))

D = €, ((aib), — ba,)nn’ + (aid), — bic,)n + (¢;b), — dia,)n’ + (cid;, — djc;,))

‘We have:

ca' +2A = —a(@a’ + B)

1 Da’ + B

a :_Cot’—i-A
1 _ (D+n0)d' + (B+nn)
a "TT Ca’ 4+ A

—®+n2) (L —n') — (D+nC) —n'(B+nn)
AL —n)+c+an
ere, (dia), — cib,) (L —n') + €€, (ad), — dic),)

e, (~aib), + ba,) (& — n') + e, (ad), — bic),)

From the last fraction, we define a matrix

N = e dia), — cib), —djc,, + cid), —q c d; e, d, -
m \ba,, — aib,, —bic,, + aid), a by ) \a,, b,

so that the following vectors are parallel:

Ly L
< 1 >||N< 1 ) (20)

e, d, _ ¢ d
N (a,’n b, €l a b )’ @h

and the determinant of N is either 1 or -1.

For later use, we note that:

det N = (et — ard) (e, —aydl )y D qel e (—1,1) (22)

" Y%m
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By Lemma 3, o € (2 Ix.i, and o’ € ({2 ] ,,. By Lemma 4, we have
i

ﬁv% thus & <1 —p < addjf ¢ — |

+b;
n+y n+y ai o a
1+b; 1
I = (23)
D S atd _ 1 _ < - _
pn R TET thus ah <@~ "<g if ¢ =—1
aj aj+by
and
1 1 G 1 cutd, ro_
7+‘nt+d;rl s —H—# thus @ <o TN < if e, =1
Ly = i (24)
1 1 o, +d), 1 Cu e 1
R ,+cm+dm thus aTh <o "< if ¢, =—1.
“;n am+bm

By Lemma?2, [ ;, = | —L5r, —+ ) splitsinto [ 1.2, = | —5r, —4= ) and Ij41.2i,—1 =
7 PR/ 20 Iy P 20

qr qp+s;
1 1 . . .
(W’ m) Thus i;41 = 2i; or 2i; — 1. We observe
q1+sy st
CIfi =2 pmn —ptn 1 L
If i;41 = 2i; then o H 5 _]q1+w <, ,—n< qz'+
_ . o n 1 PLmn pirn
Ifij41 = 2i; — 1 then v <@ n<y H S gt
Similarly, i, | = 2i,, or 2i, —
. . + /
- If i) ., = 2i,, then gt"+7" < &—n’ < Z—Z;.
/ / /
— " 1 Pmt'm
Ifzerl =2, —1 then < w T <
Claim 1 The indices i+ and i, | obey the following rule.
, . .. ey .
— If ¢, = 1 theni;1; = 2i; if and .only 1f’m+l =2i,,
- If €, = —1thenijyy = 2i) — lifand only if i), | = 2i,,
Proof of Claim 1 We have four cases to consider. , -
asel:¢) = ¢/ = with €/ = 1, we note that 22 = @tm anq 'm '” . Thus,
Case 1 =1 By (24) with ¢}, = 1 te that 2 = 2o
m b ’ll

we have i), | = 2i,, if and only if

R A B A
2 by ah @ a @+,

Since det N = 1 > 0 by (22) the slopes of the following three vectors satisfy

2¢ +d A c +d
slope <N( m ’”)) < slope (N (04 )) < slope (N( m m .
2a,, + b}, 1 a,, + by,
By (20) and (21), we obtain
2¢; + d; 1 c+d

< n< .
2a; + by o a; + by
By (23), with ¢; = 1 it is equivalent to i;1| = 2i;.

/

(Case2: ¢ =€, = —1) We havez = = 2/, if and only if 2 2 +b’,” < 5 —n' < 2—,”‘ Since
m
s 2044 1 L .
det N > 0 we obtain Sarih <a "< a- It is equivalent to i;+1 = 2i;.
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(Case 3: ¢, = —e¢,, = 1) We have i, ., = 2i,, if and only if Z;Zi(bi';%, < & —n' < % Since
det N < 0 we obtain 2—; < é —n< gzr;i . It is equivalent to ;1 = 2i; — 1.

(Case 4: —¢; = €, = 1) We have i), | = 2i,, if and only if ;Ziziiéz < $ —n < Z;;:rblé:
Since det N < 0 we have ;ﬁiiﬁ < é —n< 5531’2? . Itis equivalent to ;1| = 2i; — 1. |

It is interesting to note that Claim 1 and Lemma 5 imply that the product of the signs is
preserved:
416041 = €16p,. (25)

Claim 2 The 4-tuples of ;1 and 7,
the following table.

+1 have the same type (Type 1 or Type 2) as stated in

(sgn(e)), sgn(e),)) Case 1 Case 2 Case 3 Case 4

+.+ (=) +.-) =+
ij+1 =2i; Type 1 Type 2 Type 1 Type 2
iy =2ij—1 Type 2 Type 1 Type 2 Type 1

Proof All the eight cases can be checked similarly. For example, we check the claim for Case
3 where i;4+1 = 2i; — 1. By Corollary 4-(2) the 4-tuple of 7.1 is Type 2. Next, Claim 1 states
iy,41 = 2i,,. By Corollary 4-(4), the 4-tuple of 7, , , is Type 2. |

We will continue the proof of Lemma 6 and show that 74, and 7, . | have the same
4-ratio, which by induction concludes Lemma 6.
Since 7; and 7,,, have the same 4-ratio

1+ yi@) (2, + wy,a) — (21 + wie) (x,, + y,a") =0. (26)

Having Claim 2 proved, both 7;4| and 7,
Proposition 2, their 4-tuples are:

11 have the same 4-tuple type, say Type 1. By

X415 Y11 201, wi1) = (21 — X, wp — Y1 X1, Y1)

i / / / / I I / / /
and (X, 1+ Y1 Zone 1> Wt 1) = @ = Xops Wy = Yoo X Y- (27)
’ ’ /
We obtain MELHY _ et Pmn® oo
Artwipia Zr/lz+l+w;n+la/

(X141 4 Y110 @y g + w1 — @41 + wip 1) (K41 + Yy @)
27 26
=+ yie) () + whe!) + @+ we) @), + y,a) =0,
Thus, 7741 and Ty;l 41 have the same 4-ratio. When both the 4-tuples of 771 and Tn; 41 are
Type 2, a similar argument holds.
This concludes Lemma 6. m]
Finally we are ready to prove Theorem 7.

Proof of Theorem 7 Assume that triple-weight train tracks 7; and 7,, have the same sign
xi+ye X Fypa
le+wt]a = Pt By Lemma 6, 774,
and 7, have the same 4-tuple types (Type 1 or Type 2) for all t > 1.

By Corollary 2 their topological types (I, I, I’, II’) satisfy either

sgn(7i4+1) = sgn(7,,, ;) and the same 4-ratio; i.e.,
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1. Type(Ti41) = Type(T,, ) or
2. Type(7i+1) = Type(Z, )"

The system of Types L, I, I, I’ is closed under maximal splitting operations and follow the
rule as described in Fig. 6. Notice the diagram in Fig. 6 is mirror symmetric with respect to a
vertical axis. Thus, in Case (1) the I-II-I’-II’-sequences corresponding to 741 —~740— - - -
and 7,  ,—7,  ,— --- are exactly the same, and in Case (2) exactly the same up to simul-
taneously putting ’. Namely,

1. Type(74) = Type(Z,,,) forallz > 1 or
2. Type(7i4;) = (Type(7,,,,)) forallt > 1.

For Case (1) let ¢ € Homeo™ (D3) be an orientation preserving homeomorphism such
that ¢ (7;) = 7). By Corollary 3 both 7; and 7, admit the same type of maximal splitting
(r-split or /-split). Since a homeomorphism and a splitting operation commute, we have the
following commutative diagram:

I
T — T T = T
ol o) or ¢ @
l r
Ty = Ty Ty = Ty

In particular ¢ (7;41) = 7, , ;. Repeating the same argument we obtain
¢ (Ti41) =T, forallr > 1.

Lemma 6 also states that 77, and 7, , , have the same 4-ratios. Therefore, for some constant
a > 0, the induced map ¢, yields

$u1t (i) = ap/ (T,,) forall 1 > 1.

Since B and B’ have the same dilatation, their Agol cycles have the same length (call it p).
Therefore, B and B’ have equivalent Agol-cycles We have a diagram
B
(Tv /J‘l) I (77-'1-[)5 Ml+ﬁ)
¢ ¢\

ﬂ/
(Tn/17 M;n) — (T,,/H_p, /J“;n+p)
Let ® :=¢ Lo (B) L ogop. Wesee:
(a) @ is an orientation preserving homeomorphism.
(b) @ restricted to the boundary d D3 is the identity map.
(© &(T) =1T.
(d) @ also preserves the thickness data; namely, @ (@ Ua’) = aUd/, ®(bUb") = bUb' and

®(cUc)=cUc'. Here,a,ad’,b, b, c,c are thickened edges as in Fig. 17. Edges a, a’
have the same weight, as do b, " and c, c’.

It is impossible that @ (a) = a’ because the circle a U b U ¢ and 8 D3 bound an annulus,
which is fixed by @. Therefore by (d) ®(a) = a and ®(a’) = a’. Likewise, ®(b) = b,
D) =b',®(c) =cand &(c’) = . This yields

7 =idg.
The set D3\ 7; is disjoint union of the annulus along the boundary 0 D3 and three 1-punctured

monogons (one for each puncture of D3). By the Alexander trick (see [8] for example) we
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Fig. 17 7; C D3 5D
3

Annulus

conclude @ = idp,, which means
p=¢"'op 0.
Similarly, for Case (2) there exist constant a > 0 and orientation preserving homeomor-
phism ¢ € Homeo™ (D3) such that for all > 1
O(T141) = mirror(T,;l_H)

and

(mirror o ¢)wiu(Ti4r) = ap' (T, 1,).

This implies that 8 and 8 have mirror equivalent Agol cycles. Furthermore we can also show
that 8 = ¢ ! omirror ! o omirror o ¢.

8 Dilatation is preserved under 3-braid flypes

The goal of this section is to prove Theorem 10, which states that the dilatation is preserved
under flype moves. Thus, dilatation is not as strong invariant as Agol cycle. However, com-
putation of a dilatation is easier than that of Agol cycle in general. In fact, in the proof of
Lemma 9 we describe how to compute the transition matrix of a given 3-braid, from which
the dilatation can be explicitly computed as the eigenvalue > 1.

8.1 Birman-Menasco’s classification of links of braid index 3
We briefly review well-known facts on 3-braid flypes that are relevant to this paper.

Definition 17 Lete = +landx,y,z € Z. If B = afafclyazz and B’ = alxafalyaf, then we
say that 8 and B’ are related by an e-flype. See Fig. 18. If 8 and B’ are conjugate (resp. not
conjugate), then the flype is called degenerate (resp. non-degenerate).

Non-degenerate flypes play a significant role in low-dimensional topology. Flypes are used
in the classification of 3-braids in Birman and Menasco’s work [3], in Markov’s Theorem
without Stabilization [4], and the classification of transversally simple knots [5], [6]. Many
other transversally simple knots admit a negative flype like those found by Etnyre and Honda
[7] (cf. Matsuda and Menasco [12]) and Ng, Ozsvath, and Thurston [15]. In the Tait flype
conjecture, Thistlethwaite and Menasco proved that two reduced alternating diagrams of an
alternating link are related by a sequence of flypes [14].
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~

\ J - J

Fig. 18 (Definition 17) The braid closures ,3 and /§’ obtained from a negative flype

It is easy to see that a flype move preserves the topological link type of the braid closure.
On the contrary, the following Birman and Menasco’s theorem states that a flype changes the
conjugacy class in general.

Theorem 8 [3] Let L be a link type of braid index three. Then one of the following holds:

1. There exists a unique conjugacy class of 3-braid representatives of L.
2. There exists two conjugacy classes of 3-braid representatives of L.

Case (2) happens if and only if L has a 3-braid representative that admits a non-degenerate
flype.

Moreover, Ko and Lee determine all the non-degenerate flypes.

Theorem 9 /10, Theorem 5] The 3-braids B = oi'o5oi 05 and B’ = ooj0{ 05 have
distinct conjugacy classes if and only if

— Neither x nor y is equal to 0, €, 2¢ or 7 + &,
- x #y,and
- lzl =2

8.2 Dilatation is preserved under flypes

Now we state the main result of this section.
Theorem 10 There are infinitely many integers x,y and z, such that the braids B =

oo,y 101y oy and B’ = leazzaly o,y ! belong to distinct conjugacy classes (suggested by
Theorem 9) but have the same dilatation

1 2
A=Yy =9

where
Yy =y(x,y,2) = sgnxyz)(=2 —x — y + x2 + yz + xy2). (28)

The theorem is an immediate consequence of Theorem 9 and Lemma 9 below.
We need three lemmas to prove Theorem 10. We start by analyzing behavior of train tracks
under the braid generators o and o, and compute transition matrices.
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Lemma 7 Measured train tracks are affected by olil and crzil as shown in Figs. 19 and 20.
The matrices between train track types are defined below. They designate how the labels
change after the application of aiil

(10 (10 (10
=) = () v=(2)
(11 (11 _(-11
p=for) o=l = ()

Note TB™' = BT and VA~! = AV.

Proof 1In this proof, we unzip and zip the edges of the train track, which is an operation where
we separate or condense, respectively, the edges according to the assigned weights. More
details about this operation can be found in [8].

We consider the case of o acting on M(a, b).

amb Gl b
a

If a < b, then 2a < a + b and we unzip the train track along a.

—a+b

b Unzip a a Isotopy Zip
a — — —>
—a+b a

—a+b b

Notice that the labels have changed by an application of the matrix 7.
If a > b, then a + b > 2b and we unzip the train track along b.

a—b>b b
b Unzip b
a B

Notice that the labels have changed by an application of the matrix B~!.
All other cases follow similarly. O

Lemma 8 Based on Lemma 7, we obtain four commutative diagrams.

— The action of o1 is shown in the following commutative diagram. For x > 0, Type M
converges to Type Wunder o1 and the change in weights on the train track is represented

M(a,b) *> M(a —b,b) *> M(a —2b,b) ﬁ ------
T

by B*~IT. \ m

W(—a+b,b) 25 W(—a + 2b, b)i> ......
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<o
S]

a+b

a+bm

_ o _
a+b b T 1 a a—>b
a<b
B! |a>b
Fig. 19 (Lemma 7) Action of alil and 0'2il on Type M
a —a-+b
A=l la<b
o9 1
—a+b b a>b a a—b
a b
1
o, /| B A\ o,

a+b b aW—H}

Fig.20 (Lemma 7) Action of alil and 0'2il on Type W
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— The action of o Uis shown the following commutative diagram. For x > 0, Type W
converges to Type M under af * and the change in weights on the train track is represented

W(a, b) *> W(a —b,b) *> W(a —2b, b) m ------

by B*7IT.
Y \ m %
M(—a+b,b) AN M(—a+2b,b) By
— The action of oy is shown in the following commutative diagram. For x > 0, Type W
converges to Type M under o5 and the change in weights on the train track is represented

Al A~ Al
W(a, b) ﬁ W(a, —a + b) @ Wi(a, —2a + b) m ~~~~~~

by A1y % m &Mb\V)

M(a,a — b) *} M(a,2a — b) *> ......

— The action of o, Vis shown in the following commutative diagram. For x > 0, Type M
converges to Type W under a{ * and the change in weights on the train track is represented

M(a.b) “= M(a,~a+Db) @ M(a,~2a+b) 2 ...

by A*1Y. \ 20>b 3%

W(a,a — b) *} Wi(a,2a — b) *> ......

Let B € Bz >~ MCG(D3) be a pseudo-Anosov 3-braid. Suppose that 8 has an invariant
train track of Type X, where X =M or W. That is, if we apply S to a Type X train track, then
we return to the same type of train track. A transition matrix M tells how the weights of the
train track edges have changed after applying 8. The key idea of the upcoming Lemma 9 is
to compute the type of 8 and the transition matrix by applying Lemmas 7 and 8.

1 y

Lemma9 Let B = o0, '0]0f and p' = o{ 0}0; 02_1 be pseudo-Anosov 3-braids related
by a negative flype. For large |x|, |y| and |z|, the transition matrices M and M’ associated
to B and B’ respectively are the following:

—1—y sgn(z)(x +y + xy)
M =
sgn(xyz) <sgn(z)(1 —z=yz) —l=x+xz+yz+ayz
. —1+yz —X —y+xyz
M = Sgn(xyz) <_1 +z+yz —1 —x —yY+xz+xyz

Furthermore, we have det(M) = det(M') = 1 and
tr(M) =tr(M") = y(x,y,z) = sgn(xyz) (=2 — x — y +xz + yz + xyz).

In the proof of Lemma 9 we separate all the applicable 3-braids into eight cases, depending
on the sign of x, y, and z:

Case1|— — —
Case2|— — +
Case 3|— + —
Case 4|— + +
Case 5|4+ — —
Case 6|4+ — +
Case 7|4+ + —
Case 8|+ + +
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Remark 1 There is a bijection between the set of Case 3 braids and the set of Case 5 braids.
Suppose x,y, z > 0. Then

conj rev

z ) o~z _—x _—1 vy vy -1 _—x_—z
0, ‘o) "0, 0 ojo, o, o, (Case5)

(Case 3) Ul_xaz_lalyoz_
conj . . rev . .
where ~" means conjugation and ~ means reverse orientation or read the word backward.
Thus swapping x and y gives a bijection between the two sets.
Similarly, we can find a bijection between the sets for Case 4 and Case 6 braids by swapping
x and v.

Proofof Lemma 9 We calculate the matrices M; and M associated to § and B’ respectively
for each Case i. Below we manipulate the braid word of 8 and B’ in each case to force x, y,
and z to be positive in our calculations.

Case 1:.(,3 =00, 0, o, % and B’ = 0, "0, %0, Y0, ") We use Lemmas 7 and 8 in the
calculations for 8 and B'.

x—1 y—1 z—1
BwWwE I MY wEILMAYN W (Typew)
o o5 o’ o, "

B*IT M A ly W BT

M Lf W (Type W)

x . _
9

Z y
o1 92

o
Both 8 and B’ have Type W invariant measured train tracks. Transition matrices are:
My = Ay Ty BT

1—y —Xx —y+xy
= 2
(1+z—yz1—x—xz—yz+xyz @9)

M| = VB ITA Yy BT

1 —yz —X —y-+xyz
= 30
<l+z—yz1—x—y—xz+xyz (30)

Below we turn M; and M| into Perron-Frobenius by taking conjugates of the original
matrices. When x > 3,y > 3, and z > 2, we can verify that A 'MAis a non-negative
integral (i.e., Perron-Frobenius) matrix. Here are the computations. The (1, 1) element of the
matrix A" M A is

xy—x—-2y+1l=x-2)(y -1)—1>0.
The (1, 2) element is
x-—1DHH -1 —-1=>0.

The (2, 1) element is

1 1
(X—Z)(Z—l)(()’—l)—m—z_l>ZO.
The (2, 2) element is
1 1
(x—l)(z—1)<(y—1)—7— )20.
x—1 z—1
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Ifx > 3,y > 3, and z > 2, the matrix C’lMiC where C := <? i) is also Perron-
Frobenius. Indeed, the (1, 1) element is
zx—2)—1=>0.
The (1, 2) element is
zZx—1)—1>0.
The (2, 1) element is

1 1
(x—z)(y—2)<z—yf2—x_2)zo.

The (2, 2) element is

1 1
<x—1)(y—2)<z—yf2—x_l>zo.

Case2: (8 = 0, “0, '0; Jo5 and B/ = al_xozzofyaz_l) We have:

B M———>M———>W M—>M (Type M)
o oy Ulﬂ %
x—1 z y

gwEZ IMAEME ML W (Typew)
A Y

My = AB*2TB~ v B*
_ —14+y —Xx—y-+xy
l—z4+yz-14+x—xz—yz+xyz
My =VBYA*B*'T
_ —1—-yz x+y+xyz
S \-l+z—yz—l4+x+y—xz+xyz

For x, y, z > 1, both M, and C"MﬁC are Perron-Frobenius.
Case 3: (B = afxa;laly(r{z and 8’ = afxagzolyagl) We have:

BT BY A%
BW— M — W —>W — W (Type W)
o 051 %] oy
/ BT Aty
BW —F>M— W—>W—>W (Type W)
o oy ° af oy

Msy = A*BYVB*'T

. —1—-y x—y+xy

T \-l—z—yz—-1l4+x+xz—yz+xyz
M} = ABY Ay BT

. —1-yz X —y+xyz
—1l—z—yz—-l+x—y+xz+xyz
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For x,y,z>> 1,both A='M3A and A~! M} A are Perron-Frobenius.
Case 4: (B = afxoglafaf and B/ = Gfxafaivagl) We have:

B: M—>M—>W—>W—>M—>M (Type M)

o2

op ‘72 ai o5
BT
B : W———)M—)M—)W———)W—» (Type W)
o " % o™ oy !

My = A 'vBYV B*

_ I+y X —y+xy
—l4+z4+yzl—x+xz—yz+xyz

M, = AB’"'TA*B*!IT
_ I-yz —Xx+y+xyz
T \l—z—yzl—x+y+xz+xyz

For x, y, z > 1, both M4 and Al M[‘A are Perron-Frobenius.
Case 5: (B = cri‘crz_lol_ycrz_Z and B’ = of‘oz_zol_yoz_l)We have:

1 AZ
B W—>W—£—>W———>MB—>M—X—>W—>W (Type W)
o —1 7y+l —z+1
1 ‘72 o o] oy 9

B W—)W—)W—)M—)M—)W (Type W)

—y+1
0’1 02 o'l 0} y+

Ms = A 'vBYTITAB”
_ —1+y —x+y+xy
—l—z+yz -1 —x—xz+yz+xyz
M, = VB 'TA*B"
o —l+yz —X+y+xyz
S \-l—z+yz-1—x+y—xz+xy2
For x, y, z > 1, both M5 and Mg are Perron-Frobenius.
Case 6: (8 = af‘o{lal_yazz and B/ = af‘azzal_yogl) We have:
BX— IT y—l
M — W——)W M—>M (Type M)

—1 -y
oy oy o

B : W—>W—>M———>M——>M——>W (Type W)
1

o2 z—
9 ‘71 oy

Mg = A*B>ITABIT

_ 1—y —x+y+xy
—14+z—yz1l4+x—xz+yz+xyz
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M, = VB ATy B*

. 1+yz X —y-+Xxyz
T \l—z+4yzl4+x—y—xz+xyz

For x, y, z > 1, both A~'MgA and Mé are Perron-Frobenius.
Case7: (B = alxaz_lalyaz_z and B’ = alxaz_zalyaz_l) We have:

BWE W AWE WA W (Typew)
O A

X z y
ﬂ’:wB—>wA—>wB—y>wil>w (Type W)

Jf (7{2 oj (r{
My = ABYABT = 1T XHy+ay
I+z+yz1+x+xz+yz+xyz
M, = AB AR =, 1 T2 ryhnz
l+z+yzl+x+y+xz+xyz

Both M7 and M}, are Perron-Frobenius.
Case 8: (B = alxa{lalyazz and B/ = afafafa{l) We have:

x—1 2 z—1
ﬂ:MB—;T»W—LwiWLMi—?M (Type M)

2 1 )
% 0 9]

X z—1 —1
ﬁ’:w3—>wl>MA—l>Ml>wLI>Wil>w (Type W)

Mg = A'WBYABIT

_( —1-y xX+y+xy

T \l—z—yz—-l—x+4+xz+yz+xyz
My = AB*'T ATy B~

[ —l+yz —X —y+xyz
T \-l+z4+yz—l—x—y+xz+xyz

For x, y, z > 1, both A" 'MgA and Mé are Perron-Frobenius. O

Remark 2 In Proposition 9, we assume that x, y,z > 1. More precisely in Case 1, for
example, we require (x — 1) — 1 > .

o-D-1
Let a and b be positive integers. After scaling, we can identify W(a, b) with W(«, 1) for
some o = . We start with W(a, 1) and apply o . If x > a, we obtain

W) 25 M —a, 1),

If x — 1 > «, we then obtain
—1
Mix—a,l) L Wx—a,x—1—a).
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Ifkx-1)— y]j > o, we obtain

W(x—ot,x—l—a)i';M((y—1)(x—l)—l—a(y—l),(x—l)—a).

Ifkx—-1)— ﬁ > «, we further obtain

M(G-Dec-D—-1-a@(y—D, =1 -
O,—Z
S WOH-Dae-D-1l-a@(y -1, @c-DEy-z—D—z—alzy—z—1)
=W{d=-ya—-—x—-y+xy,l+z—yd)a+ 1 —-x —xz—yz+xyz2)) 31)
The expression in (31) matches with the matrix M7 in (29). Therefore, as long as
1

- 32
x—=1D o1 >a (32)

n =

holds, the transition matrix M is valid.

Remark 3 With regard to Theorem 10, the referee kindly shared with the authors a very short
proof to show that braids B = o{050{ 05 and B’ = flype(B) = o{'0;0; 0§ related by
a flype have the same dilatation, without explicitly computing the dilatation. Here is the
referee’s argument:

Clearly the inverse B! = 0, “0; Y0, “o;* and B have the same dilatation.

Consider the reverse B of the braid S:

p = o5a) ofor.,
which is the braid obtained from 8 by reading the word of 8 from the right.
Since B! and B™ are related by mirror image and conjugate, 8~ and 8™ have the
same dilatation.
Since B and B’ are conjugate 8" and B’ have the same dilatation.
This shows B and B’ have the same dilatation.
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