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Abstract
An Agol cycle is a complete invariant of the conjugacy class of a pseudo-Anosov mapping
class. We study necessary and sufficient conditions for equivalent Agol cycles of pseudo-
Anosov 3-braids.
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1 Introduction

Nielsen-Thurston’s classification states that every surface homeomorphism is isotopic to
either a periodic, reducible or pseudo-Anosov map [16]. If a map φ is pseudo-Anosov, there
are two transverse, singular measured foliations on the surface and a dilatation λ > 1 such
that φ stretches along one foliation by λ and the other by 1/λ. A dilatation is also called a
stretch factor.

By definition, the dilatation is an invariant of the conjugacy class of a pseudo-Anosovmap.
The dilatation can be the first tool for the conjugacy problem since it is often easy to compute.
However, the downside of the dilatation is that it is not always an effective conjugacy class
invariant as demonstrated in Theorem 10:

Theorem 10 There are infinitely many integers x, y and z, such that pseudo-Anosov 3-braids
β = σ x

1 σ−1
2 σ

y
1 σ z

2 and β ′ = σ x
1 σ z

2σ
y
1 σ−1

2 belong to distinct conjugacy classes but have the
same dilatation

λ = 1

2
(γ +

√
γ 2 − 4)

where
γ = γ (x, y, z) = sgn(xyz)(−2 − x − y + xz + yz + xyz). (1)
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Fig. 1 A vertex of a train track
where the weights satisfy
a = b + c

Fig. 2 Maximal splitting when a < c (equivalently b > d). The horizontal edge has the largest weight
a + b = c + d. After the splitting, the largest weight will be either b or c

Fortunately, there exists a stronger invariant. The Agol cycle [1] (see Definition 2) is
another conjugacy class invariant of a pseudo-Anosov map on an orientable surface Sg,n
with genus g and n punctures. More importantly, it is a complete conjugacy invariant.

An Agol cycle is a sequence of measured train tracks generated by maximal splitting.
Ameasured train track is a combinatorial object encoding the transversemeasured foliation

of a pseudo-Anosov map. (It is also called an invariant train track since the train track is
invariant under action of the pseudo-Anosov map, and often we call it a train track without
the adjective measured or invariant for simplicity.) It is a graph and each edge is labeled by
a positive number called its weight (or measure). As depicted in Fig. 1, at each vertex three
edges meet tangentially and the weights satisfy the switch condition a = b+c. For a detailed
definition of a measured train track, see Sect. 2 of Agol’s paper [1] or Chapter 15 of Farb and
Margalit’s book [8].

Maximal splitting is defined as follows:

Definition 1 Maximal splitting (⇀) on a train track is an operation along all edges with the
largest weight simultaneously as depicted in Fig. 2. Note that maximal splitting preserves the
numbers of edges and vertices of the train track.

Definition 2 [1] Given a pseudo-Anosov map β ∈ MCG(S) with dilatation λ > 1 and a
measured train track (τ0, μ0) which is suited to the stable lamination for β, we can create an
infinite maximal splitting sequence of train tracks: (τ0, μ0)⇀(τ1, μ1)⇀(τ2, μ2)⇀ · · · .

If τq = β(τp) and μq = λ−1β∗(μp) for some 0 ≤ p < q we say that an Agol cycle

(τp, μp)⇀ · · · ⇀(τq−1, μq−1)⇀(τq , μq) = (β(τp), λ
−1β∗(μp))

for β is formed. The length of the Agol cycle is q − p.
The head (τ0, μ0)⇀(τ1, μ1)⇀ · · · ⇀(τp−1, μp−1) of the sequence is called the pre-

periodic part. The length of the pre-periodic part is p.

Theorem 1 [1, Theorem 3.5] Let S be a closed oriented surface possibly with punctures.
Every pseudo-Anosov map β : S → S has an Agol cycle.

Hodgson, Issa and Segerman defined the following equivalence relation.
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Definition 3 [9, Definition 7] Let φ, φ′ : S → S be pseudo-Anosov homeomorphisms. We
say that two Agol cycles {(τi , μi )}qi=p and {(τ ′

i , μ
′
i )}q+k

i=p+k are combinatorially isomorphic
if there exists an orientation preserving homeomorphism h : S → S (possibly permuting the
punctures) and a positive constant s ∈ R>0 such that

1. φ′ = h ◦ φ ◦ h−1 and
2. h(τi ) = τi+k and h∗(μi ) = sμ′

i+k for all i ≥ p.

In this paper, if the above condition (2) is satisfied (regardless of the truth of condition
(1)), we say that the Agol cycles are equivalent.

The following theorem is proved in [9, Theorem 2]. We note that it is implicit in Agol’s
paper [1, Section 7].

Theorem 2 Pseudo-Anosov maps φ and φ′ are conjugate in MCG(S) if and only if their
Agol cycles are combinatorially isomorphic.

In this paper we only consider a 3-punctured disk, denoted D3, as a surface. LetMCG(D3)

be themapping class groupof D3; that is, the groupof isotopy classes of orientation preserving
homeomorphisms of D3 that fix the boundary ∂D3 point-wise. It is proved thatMCG(D3) and
the 3-stranded braid group B3 are isomorphic (see [2] and Chapter 9 of Farb and Margalit’s
book [8]).

Clearly D3 has boundary. On the other hand, Agol assumes surfaces to have no boundary.
To alignwithAgol’s setting, we considermapping classes in the quotient groupMCG(D3)/Z
where Z = Z(MCG(D3)) is the center ofMCG(D3) and Z is generated by a positive Dehn
twist along the boundary. Therefore,

MCG(D3)/Z 	 B3/Z(B3)

where Z(B3) is the center of B3 and generated by the full twist Δ2 = (σ2σ1)
3.

A known example of an Agol cycle for a pseudo-Anosov 4-braid can be found in Agol’s
paper [1]. Margalit’s talk slides [11] contain an Agol cycle for the pseudo-Anosov 3-braid
σ1σ

−1
2 . We also compute this 3-braid in detail in Example 5. In general, it is not easy to com-

pute Agol cycles by hand. Therefore, necessary or sufficient conditions for combinatorially
isomorphic Agol cycles will be helpful to solve the conjugacy problem.

In Theorem 6, we give three equivalent conditions for combinatorially isomorphic Agol
cycles.

Theorem 6 Let β and β ′ be pseudo-Anosov 3-braids with the same dilatation. The following
conditions are equivalent. Equivalence of (1) and (2) is due to Hodgson, Issa and Segerman
(see Theorem 2) and implicit in Agol’s paper [1].

1. β and β ′ are conjugate in B3/Z(B3). In other words, β ′ = Δ2kwβw−1 for somew ∈ B3

and k ∈ Z.
2. β and β ′ have combinatorially isomorphic Agol cycles.
3. (Topological condition) There exist l and m ∈ N such that sgn(Tl) = sgn(T ′

m) and the
triple-weight train track sequencesTl⇀Tl+1⇀Tl+2⇀ · · · (forβ) andT ′

m⇀T ′
m+1⇀T ′

m+2⇀ · · ·
(for β ′) give the same periodic I-II-I’-II’-sequence (cf. Definition 12).

4. (Number theoretic condition) There exist l and m ∈ N such that sgn(Tl) = sgn(T ′
m)

and the nested Farey interval sequences Jl ⊃ Jl+1 ⊃ Jl+2 ⊃ · · · for β and J ′
m ⊃

J ′
m+1 ⊃ J ′

m+2 ⊃ · · · for β ′ give the same periodic LR-sequences (cf. Definition 16).
5. (Numerical condition) There exist l and m ∈ N such that sgn(Tl) = sgn(T ′

m) and the
4-ratios (cf. Definition 9) of Tl and T ′

m are the same.
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The equivalence (1) ⇔ (2) is due to Agol. See [1, Section 7] and also Margalit’s talk
slides [11]. Our new conditions (3), (4) and (5) have different characteristics as follows:

An Agol cycle contains a large amount of information and each train track in the cycle
can be very complicated with many twists. After untwisting (which is a homeomorphism
operation), we will show that there are only four types of train tracks that appear in a cycle
(Type I, II, I’, II’ defined in Fig. 6). In Condition (3), we focus on the topological types (Type
I, II, I’, II’) and forget the numerical data of the weights of the train track edges.

In Condition (4), we estimate a particular algebraic number α (the MP-ratio defined in
Proposition 1) associated to the pseudo-Anosov braid in the Farey tessellation. Since the
number α is irrational, there exists an infinite sequence of nested intervals (Jl ⊃ Jl+1 ⊃
Jl+2 ⊃ · · · ) in the Farey tessellation that converges to α. For each pair of adjacent intervals
Jt ⊃ Jt+1, we may forget their exact location in the Farey tessellation, and instead focus
on the relative location of the sub-interval Jt+1 with respect to Jt . In the Farey tessellation,
Jt splits into two sub-intervals. We record whether Jt+1 is in the left-subinterval (L) or the
right-subinterval (R) of Jt . This is how we generate an LR-sequence.

In Condition (5), we focus on just one train track in the infinite sequence. In contrast to
(3), we forget the topological side and focus on the numerical data of the edge weights of
train tracks. Here is a useful consequence of (5): If the algebraic numbers (MP-ratios) α and
α′ do not satisfy A + Bα + Cα′ + Dαα′ = 0 for any A,B,C,D ∈ Z, then the 3-braids β and
β ′ are not conjugate.

A concrete example is presented in Example 4.

Definition 4 Two Agol cycles aremirror-combinatorially isomorphic if they are combinato-
rially isomorphic after taking mirror image.

In Theorem 7, we study a more general statement regarding the direction of (5) ⇒ (2) in
Theorem 6.

Weak version of Theorem 7 Let β and β ′ be pseudo-Anosov 3-braids with the same dilata-
tion. Suppose that there exist l and m such that triple-weight train tracks Tl and T ′

m have the
same 4-ratio. Then the Agol cycles of β and β ′ are combinatorially isomorphic or mirror-
combinatorially isomorphic.

Examples for Theorem 7 are given in Example 6.
The outline of the paper is as follows: In Sect. 2, we study the stability property of a

maximal splitting sequence which is summarized in Theorem 3. In Sect. 3, we focus on
proving that there is a closed system of triple-weight train tracks in Theorem 4. The goal of
Sect. 4 is to establish a connection between triple-weight train tracks and Farey sequences. In
Sect. 5, we define nested intervals in the Farey tessellation and LR-sequences which will be
needed to state our main result in Theorem 6. In Sect. 6, we state and prove our main result
Theorem6which provides equivalent conditions for combinatorially isomorphicAgol cycles.
In Sect. 7, we show that the same 4-ratio implies that the Agol cycles are combinatorially
isomorphic or mirror combinatorially isomorphic. Lastly, we show in Sect. 8 that dilatation
is a weaker invariant than Agol cycles in Theorem 10 by showing that dilatation is preserved
under flype moves.
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Fig. 3 Train tracks M(a, b) and
W(a, b)

2 Stability of maximal splitting sequence

The goal of this section is to study the stability property of a maximal splitting sequence in
Theorem 3.We show that a maximal splitting sequence arrives at a train track with only three
distinct weights and any subsequent train track also has triple-weight type.

Definition 5 We define two types of measured train tracks called TypesM andW as in Fig. 3.
Each type has exactly six edges and four vertices.With theweights a, b > 0, the leftmeasured
train track is denoted by M(a, b) and the right by W(a, b). The weights are considered up to
scaling.

The next Proposition 1 follows from the fact that the projective measured foliation space
for a 4-punctured sphere is homeomorphic to RP1 = S1, see Figure 15.6 in [8].

Proposition 1 For every pseudo-Anosov 3-braid β, there exists a unique irrational number
α ∈ (0, 1) such that exactly one of

Mα := M(1, α), M′
α := M(α, 1), Wα := W(α, 1), W′

α := W(1, α)

yields a train track of β. Since α describes the width-height ratio of the Markov partition
rectangle, we call α the MP-ratio for β.

In the proof of Lemma 9, we show how to compute a transition matrix and determine the
type (Type M or W) for certain pseudo-Anosov 3-braids. It is straightforward to generalize
the construction to general pseudo-Anosov 3-braids. With a transition matrix in hand, the

dilatation λ is its largest eigenvalue. The eigenvector for λ is

[
α

1

]
or

[
1
α

]
where 0 < α < 1

is the MP-ratio. Since the dilatation λ is irrational, the MP-ratio is also an irrational number.
Note that Mα andWα are related to each other by a 180◦-rotation, and so are M′

α andW′
α .

We further note that Mα and M′
α are related by a mirror reflection across a vertical line, and

so are Wα and W′
α .

Based on Proposition 1, we present the Triple-Weight Train Track Theorem:

Theorem 3 Let α ∈ (0, 1) be an irrational number and n = 
 1
α
�. Thus, 1

n+1 < α < 1
n .

Consider the maximal splitting sequence starting fromWα .

Wα = τ0⇀τ1⇀τ2⇀ · · ·
The train track τn+4 in the sequence is the train track Tn shown in Fig.4. We call it a triple-
weight train track as it has only three different weights. This is the first triple-weight train
track in the sequence and all the train tracks after τn+4 have triple-weight type.

If τ0 = W′
α ,M

′
α , orMα , then the same result holds with the reflection of the figure about

a vertical axis, the reflection about a horizontal axis, or a 180◦-rotation, respectively.

An immediate consequence is:
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Fig. 4 The train track Tn . The weight of a red edge is −1+(n+1)α
2 and of a black edge is 1−nα

2 . The blue

edges have the largest weight which is α
2 = −1+(n+1)α

2 + 1−nα
2 . (Color figure online)

Fig. 5 Train track Dn

Corollary 1 The length l of the pre-periodic part must satisfy l ≥ n + 4.

Here is a lemma for Theorem 3.

Lemma 1 Suppose that τ0 = W (α, 1). If n = 
 1
α
� ≥ 3, then τn+1 = Dn as in Fig.5.

Proof of Lemma 1 This is a proof by induction. We begin with the base case of n = 3 and
detail the splittings below with the labeled edges.

τ0 = Splitting α+1−−−−−−−⇀ τ1 = Splitting 1−−−−−⇀ τ2 =

123
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Isotopy−−−−→ Splitting α+1
2−−−−−−−⇀ τ3 = Isotopy−−−−→

Splitting 1
2−−−−−−⇀ τ4 = Isotopy−−−−→ = D3

Inductive Hypothesis: Suppose that if α < 1/n and n ≥ 3, then after (n + 1) maximal
splittings, the train track τ0 becomes Dn .

Inductive Step: Assume that α < 1
n+1 . Since

1
n+1 < 1

n , α < 1/n and we can apply the
inductive hypothesis. Thus, after (n + 1) maximal splittings, τ0 becomes Dn . We perform
another maximal splitting to the edge 1−(n−2)α

2 to obtain Dn+1.

Dn = ⇀

(+)twist−−−−→ = Dn+1

This completes the proof of Lemma 1. ��
Now we are ready to prove the Triple-Weight Train Track Theorem.

Proof of Theorem 3 We prove that the train track τn+4 is the train track in Fig. 4. Once this is
done, it is easy to see that τi has triple-weight type for all i ≥ n + 3 since τn+3 has six edges
and the maximal splitting preserves the numbers of edges and vertices.

We first provide the explicit details for n = 1 and n = 2 and then apply Lemma 1 for
n ≥ 3.
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(n = 1): Note that 1
2 < α < 1.

τ0 = Splitting α+1−−−−−−−⇀ τ1 = Splitting 1−−−−−⇀ τ2 =

Splitting α+1
2−−−−−−−⇀ τ3 = Splitting α−−−−−−⇀ τ4 =

Splitting 1
2−−−−−−⇀ τ5 = Isotopy−−−−→ = T1

This shows τ1+4 = T1.
(n = 2): Note that 1

3 < α < 1
2 . Thus the initial part of the sequence τ0⇀τ1⇀τ2 is exactly

the same as the n = 1 case. The difference between n = 1 and n = 2 cases occur at τ3.

τ0 = Splitting α+1−−−−−−−⇀ τ1
Splitting 1−−−−−⇀ τ2

Splitting α+1
2−−−−−−−⇀ τ3 =
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Splitting 1
2−−−−−−⇀ τ4 = Splitting α−−−−−−⇀ τ5 =

Splitting 1−α
2−−−−−−−⇀ τ6 = Isotopy−−−−→ = T2

This shows τ2+4 = T2.
Assume n ≥ 3 and 1

n+1 < α < 1
n . By Lemma 1, after (n + 1) maximal splittings, we

arrive at train track τn+1 = Dn . We now apply three more maximal splittings and obtain
τn+1+3 = Tn .

τn+1 = Dn = Splitting 1−(n−2)α
2−−−−−−−−−−⇀ τn+2 =

Absorb Half Twist−−−−−−−−−−→
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Splitting α−−−−−−⇀ τn+3 = Isotopy−−−−→

Absorb Half Twist−−−−−−−−−−→

Splitting 1−(n−1)α
2−−−−−−−−−−⇀

τn+4 =

Absorb Half Twist−−−−−−−−−−→ = Tn

This completes the proof of Theorem 3. ��
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Fig. 6 (Theorem 4) The I, I’, II, and II’ triple-weight train tracks. The symbol (±) represents the sign (Defi-

nition 9) of the train track explained in Corollary 4. The arrow
(∗)
⇀ (resp.

(∗∗)
⇀ ) means the maximal splitting is

Type 1 (resp. Type 2) as defined in Proposition 2. Arrows
l

⇀ (resp.
l

⇀) means the l-splitting (resp. r -splitting)
as defined in Fig. 9

3 System of triple-weight train tracks

The goal of this section is to study a closed system of triple-weight train tracks and prove
Theorem 4.

Definition 6 We consider four types, Type I, I’, II, and II’, of triple-weight train tracks up to
rotation as in Fig. 6. Edges with the same color have the same weight and the same thickness.
Thickness of edges reflect the transverse measures. If we forget the thickness of the edges, I
and II are the same and I’ and II’ are the same.

For instance, for train tracks of I and I’, the measures of blue, black, and red edges satisfy
μ(blue) > μ(black) > μ(red) and the switch condition μ(blue) = μ(black) + μ(red).
Types I and I’ are mirror image to each other including the thickness data, and so are II and
II’.

Theorem 4 Train track types I, II, I’, II’ are related to each other by maximal splittings
followed by a homeomorphism of the 3-punctured disk (i.e., a 3-braid) as shown in Fig.6.

The first triple-weight train track τn+4 (Fig. 4) studied in Theorem 3 is Type I or II if
we ignore the half twists σ−n

2 ∈ B3 and assuming the initial train track τ0 is Mα or Wα .
(This is because Mα is a 180◦-rotation of Wα .) Similarly, if τ0 = M′

α or W′
α then the first

triple-weight train track τn+4 is Type I’ or II’ if we forget the half twists σ n
1 ∈ B3.

Definition 7 It is convenient to define T1 := τn+4 as it is the first triple-weight train track in
our maximal splitting sequence and further define Tk := τn+4+k−1 for k ≥ 1. Thus, given a
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Fig. 7 Obtaining T0 from τn+3

braid β, we obtain a maximal splitting sequence of triple-weight train tracks:

T1⇀T2⇀T3⇀ · · ·
Folding is the inverse operation of a splitting.

Definition 8 We fold the train track τn+3 and we call the resulting train track T0. See Fig. 7.
Note that T0 is a triple-weight train track. The three weights of T0 are

1 − nα

2
(red) <

α

2
(black) <

1 − (n − 1)α

2
(blue).

We also note that T0 is Type I’ (resp. Type I) in Fig. 6 up to the negative half twists
σ

−(n−1)
2 ∈ B3 (resp. σn−1) if we start with the train track Wα or Mα (resp. W′

α or M′
α).

An important observation is that applying maximal splitting to T0 results in T1. So we can
extend the above maximal splitting sequence to the following:

T0⇀T1⇀T2⇀T3⇀ · · ·
Before proving Theorem 4, we introduce new words (4-tuple, sign, 4-ratio of a triple-

weight train track) in Definition 9 that are extensively used in the later discussion. Then
we proceed to prove Theorem 4. In the proof, we find a nice relation between the types of
4-tuples and the types of triple-weight train tracks, which is stated as Corollary 2.

We have shown in Theorem 3 that the three weights of the train track T1 are
1 − nα

2
,

−1 + (n + 1)α

2
,

α

2
. (2)

Therefore, every weight of a triple-weight train track Tk is in 1
2Z + 1

2αZ.

Definition 9 Suppose that the smallest weight of a triple-weight train track T is given by
1
2 x + 1

2 yα and the second smallest weight is 1
2 z + 1

2wα. Thus x + yα < z + wα. We call

– (x, y z, w) the 4-tuple of the triple train track T ,
– sgn(x) ∈ {−1, 1} the sign of the triple-weight train track T (we will show that x �= 0),

and we denote sgn(T ) = sgn(x),
– x+yα

z+wα
the 4-tuple ratio (or 4-ratio for short) of the triple-weight train track T .

Due to the switch condition of train tracks, the largest weight of the triple-weight train
track is the sum of the other two, that is 1

2 (x + z)+ 1
2 (y +w)α. Thus the 4-tuple (x, y z, w)

carries all the weight data of the triple-weight train track.
We introduce a 4-tuple sequence {(xk, yk zk, wk) | k = 0, 1, . . .} that plays an important

role to prove the main results.
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Fig. 8 Maximal splitting of triple-weight train track

Definition 10 For k = 0, 1, 2, . . . , let (xk, yk zk, wk) denote the 4-tuple of Tk .

For example, the 4-tuple of T0 is

(x0, y0 ; z0, w0) := (1,−n ; 0, 1). (3)

Among the three weights of T1 in (2), α
2 is the largest. Depending on the value of α we

have either

1

2
(−1 + (n + 1)α) <

1

2
(1 − nα) or

1

2
(1 − nα) <

1

2
(−1 + (n + 1)α).

In the former (resp. latter) case,

(x1, y1 z1, w1) = (−1, n + 1 1,−n) (resp. (1,−n − 1, n + 1))

and we say that the 4-tuple (x1, y1 z1, w1) is Type 1 (resp. Type 2). Combine this with the
fact 1

n+1 < α < 1
n , and we obtain that the 4-tuple of T1 is

(x1, y1 z1, w1) =
⎧
⎨
⎩

(−1, n + 1 1,−n) if 1
n+1 < α < 1

n+ 1
2

(Type 1)

(1,−n − 1, n + 1) if 1
n+ 1

2
< α < 1

n (Type 2).

Proposition 2 In general, the 4-tuple (xk+1, yk+1 zk+1, wk+1) can be computed from
(xk, yk zk, wk) as follows.

(xk+1, yk+1 zk+1, wk+1)

:=
{

(zk − xk, wk − yk xk, yk) if zk − 2xk < (2yk − wk)α (Type1)

(xk, yk zk − xk, wk − yk) if (2yk − wk)α < zk − 2xk (Type2)

For the first (resp. second) case, we say that the 4-tuple (xk+1, yk+1 zk+1, wk+1) has Type 1
(resp. Type 2) and the maximal splitting Tk⇀Tk+1 has Type 1 (resp. Type 2), which we denote

Tk
(∗)
⇀ Tk+1 (resp. Tk

(∗∗)
⇀ Tk+1).

Proof Start with a triple-weight train track with (x, y z, w). See Fig. 8.
After a maximal splitting, the 4-tuple becomes (z−x, w− y x, y) if (z−x)+(w− y)α <

x + yα, equivalently z − 2x < (2y − w)α. We call it Type 1.
Otherwise, we will have (x, y z − x, w − y). We call it Type 2. ��
Before proving Theorem 4we introduce two types of maximal splitting; l-split and r -split.

Definition 11 Near an edge of a triple weight train track where maximal splitting occurs,
there are two cases. When lower-left and upper-right have more weight than upper-left and
lower-right, we call it an l-split. Otherwise we call it an r -split. See Fig. 9.

123



   81 Page 14 of 43 Geometriae Dedicata           (2023) 217:81 

Fig. 9 Two types of maximal splittings. (Top) is l-split and (Bottom) is r -split where x + yα < z + wα

The terminologies l-split and r -split come from Mosher’s article [13].
Now we prove Theorem 4.

Proof of Theorem 4 Suppose that we have a train track T with 4-tuple (x, y z, w). Assume
that T is Type I. The computation in Fig. 10 shows that the resulting train track T spl of the
maximal splitting followed by the action of σ−1

1 is Type I’ or II’.
Looking into the weights carefully with Proposition 2, we see that the 4-tuple of T spl is

Type 1 (resp. Type 2) if and only if (z − x) + (w − y)α < x + yα (resp. >) if and only

if T spl followed by the action of σ−1
1 is Type I’ (resp II’). This yields the arrows

l,(∗)
⇀

σ−1
1→

(resp.
l,(∗∗)
⇀

σ−1
1→ ) in Fig. 6 coming out of the Type I train track.

Suppose next that we have the train track II with 4-tuple (x, y z, w). In Fig. 11, we show
that that the resulting train track after the maximal splitting followed by the action of σ−1

1
is either Type I or II. More precisely, after the maximal splitting we obtain a train track of
Type I (resp. II) if and only if (z − x) + (w − y)α < z + wα (resp. >) if and only if the
new 4-tuple (equivalently, the splitting type) is Type 1 (resp. Type 2). This yields the arrows
r ,(∗)
⇀

σ−1
1→ (resp.

r ,(∗∗)
⇀

σ−1
1→ ) in Fig. 6 coming out of the Type II train track (resp. coming back to

itself).
Recall Types I and I’ are mirror to each other, and so are Types II and II’. This yields

the rest of the maximal splitting and homeomorphism arrows and completes the maximal
splitting diagram in Fig. 6. ��

We extend the notion of Types I, II, I’ and II’ in Definition 6, and to each triple-weight
train track Ti we inductively assign one of the four types.

Definition 12 As discussed in Definition 8 if we start with Wα or Mα (resp. W′
α or M′

α) the
triple-weight train track T0 is Type I’ (resp. I) denoted Type(T0) = I’ (resp. Type(T0) = I).

We inductively define Type(Tk+1) from Type(Tk). We need consider four cases. See
Fig. 12.

– Assume that Type(Tk) = I or II’ and the 4-tuple of Tk+1 is Type 1. Then we define
Type(Tk+1) = I’.

– Assume that Type(Tk) = I or II’ and the 4-tuple of Tk+1 is Type 2. Then we define
Type(Tk+1) = II’.
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Fig. 10 A Type I train track admits l-split followed by action of σ−1
1 and it yields a train track of Type I’ or

II’

– Assume that Type(Tk) = II and the 4-tuple of Tk+1 has Type 1. Then we define
Type(Tk+1) = I.

– Assume that Type(Tk) = II and the 4-tuple of Tk+1 has Type 2. Then we define
Type(Tk+1) = II.

We observe the following relation between topological types (Type I, I’, II, II’) of triple-
weight train tracks and types of 4-tuples (Type 1, 2).

Corollary 2 Type I and Type I’ triple-weight train tracks are results of a Type 1 maximal
splitting. Likewise, Type II and Type II’ triple-weight train tracks are results of a Type 2
maximal splitting. In other words, a triple-weight train track is

– Type I or I’ if and only if its 4-tuple is Type 1,
– Type II or II’ if and only if its 4-tuple is Type 2.

Here is an immediate consequences of Theorem 4.

Corollary 3 Type I and Type II’ train tracks only admit l-splittings.
Type I’ and Type II train tracks only admit r-splittings.

Proof Let X ∈ {I, II, I’, II’}. For a Type X train track T one can find a self homeomorphism
of D3 that takes T to the train track X (Fig. 6). By Theorem 4 we see that the train tracks
I and II’ only admit an l-splitting. We also see that the train tracks I’ and II only admit an
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Fig. 11 A Type II train track admits an r -split followed by action of σ−1
1 which yields a train track of Type I

or II

Fig. 12 Four train track types I,
II, I’, and II’

r -splitting. The splitting type (r or l) only depends on nearby weights of the maximal weight
edge. Since the homeomorphism preserves the local weight system, the statements follow. ��

4 Triple-weight train track and Farey sequence

In this section, we establish a relationship between triple-weight train tracks and Farey
sequences that we use to prove our main result Theorem 6.
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Let α ∈ ( 1
n+1 ,

1
n ) \ Q be the MP-ratio of some pseudo-Anosov 3-braid. We will define

an infinite set of intervals and then construct a map T which associates to each interval a
4-tuple of numbers. There is a unique infinite sequence I1,i1 ⊃ I2,i2 ⊃ I3,i3 ⊃ · · · such that⋂∞

k=1 Ik,ik = {α}. The goal of the section is to prove Theorem 5, where we relate the interval
Ik,ik and the 4-tuple (xk, yk zk, wk) under the map T .

4.1 Farey sequence

First, we recall the Farey sum, �. Given two fractions, s
t and

s′
t ′ , we define:

s

t
� s′

t ′
:= s + s′

t + t ′
.

Notice that if s
t < s′

t ′ , then
s
t < s

t � s′
t ′ < s′

t ′ .
For k = 0, 1, 2, . . . , we inductively define an ordered set Lk of fractions with cardinality

2k + 1. The set Lk is called the Farey sequence of order k + 1. Define

L0 = {a0,1, a0,2} =
{
0

1
,
1

1

}

whereweare deliberately not simplifying the fractions.Assume Lk = {ak,1, ak,2, . . . , ak,2k+1}
where

0

1
= ak,1 < ak,2 < · · · < ak,2k < ak,2k+1 = 1

1
.

Define

Lk+1 = {ak+1,1, . . . , ak+1,2k+1+1} = Lk ∪ {ak,i � ak,i+1|i = 1, 2, . . . , 2k}
as a set and then reorder them to have 0

1 = ak+1,1 < ak+1,2 < · · · < ak+1,2k+1+1 = 1
1 .

Example 1

L1 = {
a1,1, a1,2, a1,3

} =
{
0

1
,
1

2
,
1

1

}

L2 = {
a2,1, . . . , a2,5

} =
{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}

L3 = {
a3,1, . . . , a3,9

} =
{
0

1
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
1

1

}

Definition 13 Let n = 
 1
α
�. For k = 0, 1, . . . and i = 1, 2, . . . , 2k , define the following open

interval:

Ik,i :=
(

1

n + ak,i+1
,

1

n + ak,i

)

In particular, we have that I0,1 =
(

1
n+ 1

1
, 1
n+ 0

1

)
=

(
1

n+1 ,
1
n

)
and

2k⊔
i=1

Ik,i =
[

1

n + 1
,
1

n

]
\

{
1

n + a
| a ∈ Lk

}
. (4)
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Example 2 For k = 1,

I1,2 ∪ I1,1 =
(

1

n + 1
1

,
1

n + 1
2

)
∪

(
1

n + 1
2

,
1

n + 0
1

)

=
[

1

n + 1
,
1

n

]
\

{
1

n + 1
1

,
1

n + 1
2

,
1

n + 0
1

}

For k = 2,

I2,4 ∪ I2,3 ∪ I2,2 ∪ I2,1

=
(

1

n + 1
1

,
1

n + 2
3

)
∪

(
1

n + 2
3

,
1

n + 1
2

)
∪

(
1

n + 1
2

,
1

n + 1
3

)
∪

(
1

n + 1
3

,
1

n + 0
1

)

=
[

1

n + 1
,
1

n

]
\

{
1

n + 1
1

,
1

n + 2
3

,
1

n + 1
2

,
1

n + 1
3

,
1

n + 0
1

}

We observe that I1,2\
{

1
n+ 2

3

}
= I2,4 ∪ I2,3 and I1,1\

{
1

n+ 1
3

}
= I2,2 ∪ I2,1.

In general, we have the following:

Lemma 2 For any k = 0, 1, . . . and i = 1, 2, . . . , 2k , the interval Ik,i =
(

1
n+ak,i+1

, 1
n+ak,i

)

at the kth stage splits into two at the (k + 1)st stage.

Ik,i \
{

1

n + ak+1,2i

}
= Ik+1,2i � Ik+1,2i−1

=
(

1

n + ak+1,2i+1
,

1

n + ak+1,2i

)
�

(
1

n + ak+1,2i
,

1

n + ak+1,2i−1

)

(5)

A standard fact about Farey sequence is that L1 ⊂ L2 ⊂ · · · ⊂ ∪∞
k=1Lk = Q ∩ [0, 1],

which gives the following.

Lemma 3 Let α ∈
(

1
n+1 ,

1
n

)
\Q. By Eq.4, for every k = 0, 1, . . ., there exists an index

ik ∈ {1, 2, 3, . . . , 2k} such that

α ∈ Ik,ik =
(

1

n + ak,ik+1
,

1

n + ak,ik

)
. (6)

Moreover, by Lemma 2 we obtain a sequence of nested intervals

I0,1 ⊃ I1,i1 ⊃ I2,i2 ⊃ I3,i3 ⊃ · · · ⊃
∞⋂
k=1

Ik,ik = {α}. (7)

with ik ∈ {2ik−1, 2ik−1 − 1}. In particular, the sequence {ik}∞k=1 is an invariant of the
irrational number 1

n+1 < α < 1
n .
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4.2 Computation of 4-tuples

The goal of this subsection is to prove Theorem 5 which allows us to compute the 4-tuple
(xk, yk ; zk, wk)of the triple-weight train trackTk inductively.Wedo this using 2×2matrices.

Definition 14 We inductively define a function T which associates to each interval Ik,i a
2 × 2 matrix. Set

T (I0,1) =
(

1 0
−n 1

)
. (8)

Suppose that we have defined the function for Ik,i as

T (Ik,i ) =
(
x z
y w

)
. (9)

Then we define the function for Ik+1,2i−1 and Ik+1,2i as follows:

T (Ik+1,2i ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
x z

y w

) (
−1 1

1 0

)
=

(
z − x x

w − y y

)
if x > 0

(
x z

y w

) (
1 −1

0 1

)
=

(
x z − x

y w − y

)
if x < 0

(10)

T (Ik+1,2i−1) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
x z

y w

) (
1 −1

0 1

)
=

(
x z − x

y w − y

)
if x > 0

(
x z

y w

) (
−1 1

1 0

)
=

(
z − x x

w − y y

)
if x < 0

(11)

The next lemma shows that elements of the matrix T (Ik,i ) are in Zn +Z and contains all
the information of the intervals Ik,i .

Lemma 4 For each k, i , there exist ε = εk,i ∈ {−1, 1}, a = ak,i ∈ Z>0 and b = bk,i , c =
ck,i , d = dk,i ∈ Z≥0 such that

T (Ik,i ) = ε

(
a −b

−an − c bn + d

)
. (12)

Moreover, the non-negative integers a, b, c, d satisfy;

Ik,i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

n+ c+d
a+b

, 1
n+ c

a

)
if ε = 1

(
1

n+ c
a
, 1
n+ c+d

a+b

)
if ε = −1

(13)

and
det T (Ik,i ) = ad − bc = sgn(ε). (14)

We call εk,i the sign of the interval Ik,i .

Proof (Induction on k) When k = 0, the initial condition (8) gives ε = 1, a = 1, b = 0,

c = 0, d = 1, and I0,1 =
(

1
n+ 1

1
, 1
n+ 0

1

)
. Thus, all the assertions hold.
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We assume that the assertions hold for Ik,i and will show that assertions (12) and (13)
hold for both Ik+1,2i and Ik+1,2i−1.

When εk,i = 1, by the induction hypothesis we have Ik,i =
(

1
n+ c+d

a+b
, 1
n+ c

a

)
. By (10) and

(11), we have

T (Ik+1,2i )
(10)= −

(
a + b −a

−(a + b)n − (c + d) an + c

)
=: −

(
a′ −b′

−a′n − c′ b′n + d ′
)

and

T (Ik+1,2i−1)
(11)=

(
a −(a + b)

−an − c (a + b)n + c + d

)
=:

(
a′′ −b′′

−a′′n − c′′ b′′n + d ′′
)

.

We see that a′, a′′ ∈ Z>0 and b′, b′′, c′, c′′, d, d ′′ ∈ Z≥0. Thus (12) is satisfied for k + 1
where εk+1,2i = −1 and εk+1,2i−1 = 1. Next we check (13) for k + 1. By Lemma 2 and the
induction hypothesis (13),

Ik+1,2i =
(

1

n + c+d
a+b

,
1

n + c+d
a+b � c

a

)
=

(
1

n + c+d
a+b

,
1

n + 2c+d
2a+b

)
=

(
1

n + c′
a′

,
1

n + c′+d ′
a′+b′

)

and

Ik+1,2i−1 =
(

1

n + c+d
a+b � c

a

,
1

n + c
a

)
=

(
1

n + 2c+d
2a+b

,
1

n + c
a

)
=

(
1

n + c′′+d ′′
a′′+b′′

,
1

n + c′′
a′′

)
.

Thus the assertion (13) is true for Ik+1,2i and Ik+1,2i−1.
When εk,i = −1, a similar argument works. Thus, (13) is proved for k + 1.
Finally, for the last assertion (14) we observe that | det T (Ik,i )| = |ad − bc| = 1 by the

inductive definition of the function T . When ε = 1 by (13) we get c
a < c+d

a+b , which gives
0 < ad − bc and thus ad − bc = 1. Similarly when ε = −1 we get ad − bc = −1.

Recall Lemma 2 which states that the interval Ik,i splits into Ik+1,2i and Ik+1,2i−1.

Lemma 5 The signs of the intervals Ik+1,2i and Ik+1,2i−1 are

εk+1,2i = −1 and εk+1,2i−1 = 1.

Proof By (9) and (12)wehave x = εa and z = −εb. Knowing thata > 0wegetsgn(x) = ε.
We also seesgn(z−x) = sgn(−ε(b+a)) = −ε = −sgn(x). The second equation follows
since a > 0 and b ≥ 0. The definition of T in (11) gives

εk+1,2i−1 =
{
sgn(x) = 1 if x > 0
sgn(z − x) = 1 if x < 0.

A similar argument with (10) yields εk+1,2i = −1.

Now, using the map T we can finally relate the nested intervals Ik,ik that converge to α

(Lemma 3) and the 4-tuple (xk, yk ; zk, wk) of the train track Tk defined in Definition 10.

Theorem 5 For every k = 0, 1, . . . , the 4-tuple (xk, yk ; zk, wk) of the train track Tk satisfies(
xk zk
yk wk

)
= T (Ik,ik )

Lem4= εk

(
ak −bk

−akn − ck bkn + dk

)
(15)

for εk ∈ {1,−1} and some ak ∈ Z>0 and bk, ck, dk ∈ Z≥0 with akdk − bkck = εk .
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Note that εk = sgn(Tk), the sign of the train track Tk as in Definition 9.

Proof The proof is done by induction. When k = 0, the assertion holds by (3) and (8).
Assume that (15) holds for k. Recall that∩∞

l=1 Il,il = {α}. Since Ik,ik splits into two intervals
Ik+1,2ik and Ik+1,2ik−1,we have either Ik+1,ik+1 = Ik+1,2ik or Ik+1,2ik−1, equivalently ik+1 =
2ik or 2ik − 1. There are four cases to consider depending on the sign of εk and the type (see
Proposition 2) of the 4-tuple.

Suppose that εk = 1 and (xk+1, yk+1 zk+1, wk+1)hasType1.By the inductionhypothesis,
we get

εk(2(−akn − ck) − (bkn + dk))α
(15)= (2yk − wk)α

Type1
> zk − 2xk

(15)= εk(−bk − 2ak),

which yields α < 1
n+ 2ck+dk

2ak+bk

. Since Ik,ik =
(

1
n+ ck+dk

ak+bk

, 1
n+ ck

ak

)
by (13) and the assumption

εk = 1, we have

α ∈
(

1

n + ck+dk
ak+bk

,
1

n + 2ck+dk
2ak+bk

)
(5)= Ik+1,2ik .

This gives
ik+1 = 2ik . (16)

The assertion can be verified as follows:(
xk+1 zk+1

yk+1 wk+1

)
Prop2=

(
zk − xk xk
wk − yk yk

)
(10)= T (Ik+1,2ik ) = T (Ik+1,ik+1).

Similarly, we can verify the assertion for the remaining three cases. ��
The following technical corollary is deduced in the discussion of the above proof and it

will be useful later.

Corollary 4 In the above proof of Theorem 5, we have observed that:

1. If εk = +1 and (xk+1, yk+1 zk+1, wk+1) has Type 1 then ik+1 = 2ik .
2. If εk = +1 and (xk+1, yk+1 zk+1, wk+1) has Type 2 then ik+1 = 2ik − 1.
3. If εk = −1 and (xk+1, yk+1 zk+1, wk+1) has Type 1 then ik+1 = 2ik − 1.
4. If εk = −1 and (xk+1, yk+1 zk+1, wk+1) has Type 2 then ik+1 = 2ik .

With Lemma 5, we obtain:

– for Case (1) and (4) εk+1 = −1, and
– for Case (2) and (3) εk+1 = +1.

In particular, a Type 1 maximal splitting
(∗)
⇀ changes the sign of the train track and a Type 2

maximal splitting
(∗∗)
⇀ preserves the sign of the train track. Thus, in Fig.6, we only see

(±)
(∗)
⇀ (∓) and (±)

(∗∗)
⇀ (±).

Here is a corollary of Corollary 4.

Corollary 5 If β ∈ B3 starts with Wα or Mα then Type(T0) = I’ and sgn(T0) = +1. In
this case Type I’ or Type II train tracks that appear in the splitting sequence always have
sgn = +1, and Type I and Type II’ train tracks have sgn = −1. For the (±) and (∓)

labellings in Fig.6 we use the upper signs.
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On the other hand, ifβ ∈ B3 startswithW′
α orM

′
α thenType(T0) = I andsgn(T0) = +1.

In this case Type I or Type II’ train tracks have sgn = +1, and Type I’ and Type II train
tracks have sgn = −1. For the (±) and (∓) labellings in Fig.6 we use the lower signs.

Proof The statement follows from the last part of Corollary 4, the definition of T0 (Defini-
tion 8), and the definition of Type(T0) (Definition 12). ��
Corollary 6 If 3-braids β and β ′ are conjugate in B3/Z(B3) then

Type(T0) = Type(T ′
0 ) ∈ {I, I′}.

5 Nested Farey intervals

In this section we define nested intervals {Jk}k in the Farey tessellation and an LR-sequence.
Let β be a pseudo-Anosov 3-braid with the MP-ratio α. Let n = 
1/α�. In Lemma 3, we

have shown that α is the intersection of nested intervals I1,i1 ⊃ I2,i2 ⊃ I3,i3 ⊃ · · · where

the interval Ik,ik =
(

1
n+ak,ik+1

, 1
n+ak,ik

)
. We define Jk as a ‘reciprocal’ of Ik,ik :

Definition 15 Define an open interval

Jk := (ak,ik , ak,ik+1)

for k = 0, 1, . . .. Note that J0 = ( 01 ,
1
1 ) and Jk is a Farey interval since there is an arc in the

Farey tessellation connecting the boundary points ak,ik and ak,ik+1.

The fact α ∈ Ik,ik is equivalent to
1
α

−n ∈ Jk and the nested sequence (7) can be translated
into

J0 ⊃ J1 ⊃ J2 ⊃ J3 ⊃ · · · ⊃
∞⋂
k=1

Jk =
{
1

α
− n

}
, (17)

which we call the sequence of nested Farey intervals for the braid β.

Definition 16 The interval Jk = (ak,ik , ak,ik+1) splits into two Farey intervals;

(L) the left subinterval (ak,ik , ak,ik � ak,ik+1) that is reciprocal to Ik+1,2ik−1, and
(R) the right subinterval (ak,ik � ak,ik+1, ak,ik+1) that is reciprocal to Ik+1,2ik .

For each k = 0, 1, . . ., the interval Jk+1 is exactly the left or right subinterval. We associate
a letter L or R to each interval Jk+1 depending on the left or right subinterval status. The
nested interval sequence (17) can be encoded into a sequence in L and R. We call it the
LR-sequence for β.

Example 3 Let β = σ 4
1 σ2σ

3
1 σ 4

2 which is a pseudo-Anosov 3-braid. The MP-ratio is α =
(19 − √

221)/14 ≈ 0.2952 · · · and n = 
1/α� = 3. Here is an estimate of 1/α − n:

0

1
<

1

3
<

3

8
<

5

13
< · · · <

1

α
− n < · · · <

7

18
<

2

5
<

1

2
<

1

1
This gives the nested Farey intervals that converges to 1/α − n (see Fig. 13)

J0 = (0/1, 1/1) ⊃ J1 = (0/1, 1/2) ⊃ J2 = (1/3, 1/2) ⊃ J3 = (1/3, 2/5)

⊃ J4 = (3/8, 2/5) ⊃ J5 = (5/13, 2/5) ⊃ J6 = (5/13, 7/18) ⊃ · · ·
and its associated LR-sequence; L,R,L,R,R,L, · · ·. To see this, we note that J1 is the
left subinterval of J0; thus the first letter of the sequence is L. Likewise, J2 is the right
subsequence of J1; thus the second letter of the sequence is R.
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Fig. 13 (Example 3) Nested Farey intervals for β = σ 4
1 σ2σ

3
1 σ 4

2 ; J1 = (0/1, 1/2) red, J2 = (1/3, 1/2)
orange, J3 = (1/3, 2/5) yellow, J4 = (3/8, 2/5) green, J5 = (5/13, 2/5) blue, J6 = (5/13, 7/18) purple.
(Color figure online)

Example 4 Let β = σ 4
1 σ2σ

3
1 σ 4

2 and β ′ = σ−4
1 σ−4

2 σ−3
1 σ−1

2 be pseudo-Anosov 3-braids. It is
interesting that β is conjugate to β ′Δ8 in B3. Therefore, β and β ′ are conjugate in the quotient
group B3/Z(B3) 	 MCG(D3)/Z . It is also interesting thatβ is conjugate to themirror image
of the negative flype (Definition 17) of β ′, where β ′′ := flype(β ′) = σ−4

1 σ−1
2 σ−3

1 σ−4
2 and

mirror(β ′′) = σ 4
2 σ1σ

3
2 σ 4

1 .
By Theorem 1 of Agol, they must have combinatorially isomorphic Agol cycles. Indeed,

their I-II-I’-II’-sequences and LR-sequences are the same up to shift.
The I-II-I’-II’-sequences of β and β ′ are

II′, I′, I, I′, II, I, II′, I′, I, I′, II, I, II′, I′, I, I′, II, I, II′, I′, I, I′, II, I, · · ·
and

I′, I, II′, I′, I, I′, II, I, II′, I′, I, I′, II, I, II′, I′, I, I′, II, I, II′, I′, I, I′, II, I, · · · ,

respectively. The computationswere completedwith the use ofMatLab. Removing the begin-
ning I′, I from the latter sequence, the two I-II-I’-II’-sequences become identical.

The LR-sequences of β and β ′ are

L,R,L,R,R,L,L,R,L,R,R,L,L,R,L,R,R,L,L,R,L,R,R,L, · · ·
and

R,L,L,R,L,R,R,L,L,R,L,R,R,L,L,R,L,R,R,L,L,R,L,R,R,L, · · ·,
respectively. Again, removing the beginning R,L from the latter sequence, the two LR-
sequences are identical.

In fact,β ′ hasα′ = (37+√
221)/82 ≈ 0.6325130335 · · · andn′ = 
1/α′� = 1 and nested

Farey intervals J0 = ( 01 ,
1
1 ) ⊃ J1 = ( 12 ,

1
1 ) ⊃ J2 = ( 12 ,

2
3 ) ⊃ J3 = ( 12 ,

3
5 ) ⊃ J4 = ( 47 ,

3
5 ) ⊃
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Fig. 14 (Example 4) Nested Farey intervals for β ′ = σ−4
1 σ−4

2 σ−3
1 σ−1

2

J5 = ( 47 ,
7
12 ) ⊃ J6 = ( 1119 ,

7
12 ) ⊃ J7 = ( 1831 ,

7
12 ) ⊃ J8 = ( 1831 ,

25
43 ) ⊃ · · · that are converging

to 1
α′ − n′. In Fig. 14 the intervals J3, . . . , J8 are highlighted.
Up to zooming in, the pictures in Figs. 13 and 14 are the same.

In Margalit’s slide [11] the Agol cycle of σ1σ
−1
2 is shown. We study it from our viewpoint

here.

Example 5 Let β = σ1σ
−1
2 which is a pseudo-Anosov 3-braid. The dilatation is λ = 3+√

5
2

with MP-ratio α = −1+√
5

2 ≈ 0.618 · · · , n = 
1/α� = 1 and the initial train track is Wα .
We would like to find the Agol cycle for β. The 4-tuple associated to T0 is (1,−n ; 0, 1) =
(1,−1 ; 0, 1) and is of Type I’ as defined in Fig. 6. We perform two maximal splittings in
Fig. 15 to find T1 and T2.We verify that β(T0) = T2 by showing that β−1(T3) = T1 in Fig. 16.
Thus,

(T0, μ0)⇀(T1, μ1)⇀(T2, μ2) = (β(T0), λ−1β∗(μ0))

is the Agol cycle for β.
One can verify that the 4-tuples of σ1σ

−1
2 satisfy

(xk, yk, ; zk, wk) = (−1)k(Fk+1,−Fk+2, ; −Fk, Fk+1)

where {Fk}∞k=0 = {0, 1, 1, 2, 3, 5, . . .} is the Fibonacci sequence. Therefore, all the 4-tuples
are Type 1. This gives that the I-II-I’-II’ sequence for σ1σ

−1
2 is I’, I, I’, I, I’, I, I’, I, · · · .

Let ak := Fn
Fn+1

. The MP-ratio α is the reciprocal of the golden ratio: limk→∞ Fn
Fn+1

=
−1+√

5
2 = α. Since Fn

Fn+1
= Fn−2

Fn−1
� Fn−1

Fn
in the Farey tessellation an is between an−2 and

an−1. Define a nested sequence of intervals Jk = (ak+1, ak) if k = odd and Jk = (ak, ak+1)

if k = even. For instance J0 = ( 01 ,
1
1 ) ⊃ J1 = ( 12 ,

1
1 ) ⊃ J2 = ( 12 ,

2
3 ) ⊃ J3 = ( 35 ,

2
3 ) ⊃

J4 = ( 35 ,
5
8 ) ⊃ · · · . Clearly, Jk+1 is the left half of Jk if and only if k is odd. We also see

∩∞
k=0 Jk = α. Therefore, the LR-sequences of σ1σ

−1
2 is L,R,L,R,L,R,L,R, · · ·.
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Fig. 15 An Agol cycle for β = σ1σ
−1
2

Fig. 16 Verifying β−1(T3) = T1 for β = σ1σ
−1
2

6 Necessary conditions for combinatorially isomorphic Agol cycles

We are ready to state the main theorem that gives a number of equivalent conditions for
combinatorially isomorphic Agol cycles. Those conditions have different characteristics:
topological, number theoretic, and numerical.

Theorem 6 Let β and β ′ be pseudo-Anosov 3-braids with the same dilatation. The following
conditions are equivalent. (Equivalence of (1) and (2) is shown in Theorem 2.)

1. β and β ′ are conjugate in B3/Z(B3).
2. β and β ′ have combinatorially isomorphic Agol cycles.
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3. (Topological condition) There exist l and m ∈ N such that sgn(Tl) = sgn(T ′
m) and the

triple-weight train track sequences

Tl⇀Tl+1⇀Tl+2⇀ · · · (for β)

and

T ′
m⇀T ′

m+1⇀T ′
m+2⇀ · · · (for β ′)

give the same periodic I-II-I’-II’-sequence.
4. (Number theoretic condition) There exist l and m ∈ N such that sgn(Tl) = sgn(T ′

m)

and the nested Farey interval sequences Jl ⊃ Jl+1 ⊃ Jl+2 ⊃ · · · for β and J ′
m ⊃

J ′
m+1 ⊃ J ′

m+2 ⊃ · · · for β ′ give the same periodic LR-sequences.
5. (Numerical condition) There exist l and m ∈ N such that sgn(Tl) = sgn(T ′

m) and the
4-ratios of Tl and T ′

m are the same; namely,

xl + ylα

zl + wlα
= x ′

m + y′
mα′

z′m + w′
mα′ .

The same LR-sequence condition in (4) implies the existence of integers A, B,C, D with
AD − BC = 1 or −1 (if sgn(Tl) = −sgn(T ′

m) we have AD − BC = −1) such that

1

α
− n = A( 1

α′ − n′) + B

C( 1
α′ − n′) + D

.

In particular, when l = m = 1 we obtain

1

α
− n = 1

α′ − n′.

More detail and precise expression of A, B,C, D are given in the proof of the theorem.
A feature of condition (5) is that it is not seeing the entire infinite sequences like (3) and

(4), but rather focusing on two particular train tracks Tl and T ′
m .

Proof of Theorem 6 The equivalence of (1) and (2) is due to Agol [1]. See also Margalit’s talk
slides [11].

(2)⇒ (3): Suppose that an orientation preserving homeomorphism φ : D3 → D3 satisfies
φ(Tl+t ) = T ′

m+t and φ∗(μl+t ) = μ′
m+t for all t ≥ 1. This implies that 4-tuples of Tl+t and

T ′
m+t have the same type (Type 1 or Type 2). Since a homeomorphism and an r -/l-splitting

commute, Tl+t and T ′
m+t admit the same type (r or l) of splitting.

The chart in Fig. 6 shows that

– an r -splitting of Type 2 (
r ,(∗∗)
⇀ ) yields a Type II train track.

– an l-splitting of Type 2 (
l,(∗∗)
⇀ ) yields a Type II’ train track.

– an r -splitting of Type 1 (
r ,(∗)
⇀ ) yields a Type I train track.

– an l-splitting of Type 1 (
l,(∗)
⇀ ) yields a Type I’ train track.

As a consequence, Type(Tl+t ) = Type(T ′
m+t ) ∈ {I, II, I’, II’} for all t ≥ 1.

Recall that our maximal splitting sequence always starts from one of the train tracks
Mα,M′

α,Wα,W′
α (Proposition 1). Up to rotation, Mα = Wα and M′

α = W′
α , and the two

are related by taking mirror image.
Assume to the contrary that sgn(Tl+t ) = −sgn(T ′

m+t ) for some t . Since Type(Tl+t ) =
Type(T ′

m+t ) Corollary 5 implies that β starts with M or W if and only if β ′ starts with W’
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or M’. This means β and β ′ are not conjugate to each other, which is a contradiction. This
concludes sgn(Tl+t ) = sgn(T ′

m+t ) for all t ≥ 1.
(3) ⇒ (4): We need to show for all t = 0, 1, 2, . . ., Jl+t and J ′

m+t correspond to the same
letter, either L or R.

We first check the base case (t = 0): By Lemma 5 and Definition 16, the condition
εl = sgn(Tl) = sgn(T ′

m) = ε′
m implies that the Farey intervals Jl and J ′

m correspond to the
same letter, either L or R.

To see the next stage (t = 1), we first note that by the assumption (3) and Corollary 2,
the 4-tuples of Tl+1 and T ′

m+1 have the same type (Type 1 or Type 2). Then by Corollary 4,
εl = ε′

m implies that εl+1 = ε′
m+1. The argument for the base case applies here and we can

conclude that Jl+1 and J ′
m+1 correspond to the same letter, either L or R.

Inductively, for all t = 2, 3, . . . , we can show that Jl+t and J ′
m+t correspond to the same

letter, either L or R.
(4) ⇒ (5): We first note that condition (4) is equivalent to the existence of a 2×2 matrix

N =
(
A B
C D

)
∈ SL(2,Z) that takes the Farey interval Jl+t = ( ut

vt
, wt
st

) to J ′
m+t = (

u′
t

v′
t
,

w′
t

s′t
)

simultaneously; whichmeans N

(
ut wt

vt st

)
=

(
u′
t w′

t
v′
t s′

t

)
for each t = 0, 1, . . .. Since the nested

sequences have convergences∩∞
k=1{Jk} = { 1

α
−n} and∩∞

k=1{J ′
k} = { 1

α′ −n′}, it is equivalent
to

1

α
− n = A( 1

α′ − n′) + B

C( 1
α′ − n′) + D

.

In other words, the following vectors are parallel (the symbol ‖ stands for parallel):
( 1

α
− n
1

)
‖ N

( 1
α′ − n′

1

)
(18)

The matrix N can be explicitly computed as follows: By Lemma 4, the Farey numbers
ut
vt

, wt
st

,
u′
t

v′
t
,

w′
t

s′t
for t = 0 satisfy one of the two cases (here we use the assumption εl = ε′

m):

• u0
v0

= cl
al

,
w0

s0
= cl + dl

al + bl
,

u′
0

v′
0

= c′
m

a′
m

,
w′
0

s′
0

= c′
m + d ′

m

a′
m + b′

m
if εl = εm = 1,

• u0
v0

= cl + dl
al + bl

,
w0

s0
= cl

al
,

u′
0

v′
0

= c′
m + d ′

m

a′
m + b′

m
,

w′
0

s′
0

= c′
m

a′
m

if εl = εm = −1.

In either case,

N =
(
cl dl
al bl

) (
c′
m d ′

m
a′
m b′

m

)−1

and det N = (−εl)(−ε′
m) = 1 since εl = εm .

Next, we note that
(

al −cl
−bl dl

)−1 (
a′
m −c′

m
−b′

m d ′
m

)
=

(
cl dl
al bl

) (−1 0
0 −1

) (
c′
m d ′

m
a′
m b′

m

)−1

= −N .

By (18) we have
(

al −cl
−bl dl

)( 1
α

− n
1

)
‖

(
a′
m −c′

m
−b′

m d ′
m

) ( 1
α′ − n′

1

)
. (19)
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Using Theorem 5, we can rewrite the 4-ratio of Tl as

xl + ylα

zl + wlα
= al − (aln + cl)α

−bl + (bln + dl)α
= al(

1
α

− n) − cl

−bl(
1
α

− n) + dl
,

which is equal to the slope of the left hand side vector of (19). Likewise the 4-ratio of T ′
m is

equal to the slope of the right hand side vector of (19). Therefore, we conclude the 4-ratios

of Tl and T ′
m are the same: xl+ylα

zl+wlα
= x ′

m+y′
mα′

z′m+w′
mα′ .

(5) ⇒ (2): It follows from Theorem 7 below.

7 Mirror combinatorially isomorphic Agol cycles

In Sect. 6, we studied equivalent conditions of combinatorially isomorphic Agol cycles. In
this section we explore generalization of the statement (5) ⇒ (2) in Theorem 6. Our goal is
to prove: if Tl and T ′

m have the same 4-ratio for some l and m, then Agol cycles of β and β ′
are combinatorially isomorphic or mirror combinatorially isomorphic.

Let T be a triple-weight train track and Type(T ) ∈ {I, II, I′, II′} denote the homeomor-
phism type (Type I, II, I’, and II’) as introduced in Fig. 6.

Theorem 7 Let β and β ′ be pseudo-Anosov 3-braids with the same dilatation. Suppose that
there exist l and m such that triple-weight train tracks Tl and T ′

m have the same 4-ratio; i.e.,
xl+ylα
zl+wlα

= x ′
m+y′

mα′
z′m+w′

mα′ . Then one of the following cases occur:

1. Type(Tl+1) = Type(T ′
m+1)

2. Type(Tl+1) = (Type(T ′
m+1))

′

In (1) the Agol cycles are combinatorially isomorphic. That is, there exists an orientation-
preserving homeomorphism φ : D3 → D3 and a constant a > 0 such that

β = φ−1 ◦ β ′ ◦ φ

and

(T ′
m+t , aμ′

m+t ) = φ(Tl+t , μl+t )

for all t ≥ 1.
In (2) the Agol cycles are mirror combinatorially isomorphic. Namely, there exists an

orientation-reversing homeomorphism ψ : D3 → D3 and a constant a > 0 such that

β = ψ−1 ◦ β ′ ◦ ψ

and

(T ′
m+t , aμ′

m+t ) = ψ(Tl+t , μl+t )

for all t ≥ 1.

Example 6 Related to Example 4, let β = σ 4
1 σ2σ

3
1 σ 4

2 , β ′ = σ−4
1 σ−4

2 σ−3
1 σ−1

2 , and β ′′ =
σ−4
1 σ−1

2 σ−3
1 σ−4

2 . The pair (β, β ′) falls into Case (1) of Theorem 7. and the pair (β ′′, β ′) falls
into Case (2). It is interesting to point out that β ′′ and β ′ are related by a non-degenerate
flype. Thus they belong to distinct conjugacy classes and their Agol cycles are mirror com-
binatorially isomorphic.
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Below is a lemma for Theorem 7.

Lemma 6 Suppose that Tl and T ′
m have the same 4-ratio. Then for all t ≥ 1, the subsequent

train tracks Tl+t and T ′
m+t have the same 4-ratio and their 4-tuples have the same type (either

Type 1 or Type 2).

Proof of Lemma 6 Define A,B,C,D by

A + Bα + Cα′ + Dαα′ = (xl + ylα)(z′m + w′
mα′) − (zl + wlα)(x ′

m + y′
mα′).

Since Tl and T ′
m have the same 4-ratio

A + Bα + Cα′ + Dαα′ = 0.

Using Theorem 5 we may describe A,B,C,D as follows.

A = εlε
′
m(−alb

′
m + bla

′
m)

B = εlε
′
m

(
(alb

′
m − bla

′
m)n + (clb

′
m − dla

′
m)

)

C = εlε
′
m

(
(alb

′
m − bla

′
m)n′ + (ald

′
m − blc

′
m)

)

D = εlε
′
m

(
(alb

′
m − bla

′
m)nn′ + (ald

′
m − blc

′
m)n + (clb

′
m − dla

′
m)n′ + (cld

′
m − dlc

′
m)

)

We have:

Cα′ + A = −α(Dα′ + B)

1

α
= −Dα′ + B

Cα′ + A
1

α
− n = − (D + nC)α′ + (B + nA)

Cα′ + A

= −(B + nA)( 1
α′ − n′) − (D + nC) − n′(B + nA)

A( 1
α′ − n′) + C + An′

= εlε
′
m(dla′

m − clb′
m)( 1

α′ − n′) + εlε
′
m(cld ′

m − dlc′
m)

εlε′
m(−alb′

m + bla′
m)( 1

α′ − n′) + εlε′
m(ald ′

m − blc′
m)

From the last fraction, we define a matrix

N = εlε
′
m

(
dla′

m − clb′
m −dlc′

m + cld ′
m

bla′
m − alb′

m −blc′
m + ald ′

m

)
= εl

(
cl dl
al bl

) (
c′
m d ′

m
a′
m b′

m

)−1

so that the following vectors are parallel:
( 1

α
− n
1

)
‖ N

( 1
α′ − n′

1

)
(20)

For later use, we note that:

N

(
c′
m d ′

m
a′
m b′

m

)
= εl

(
cl dl
al bl

)
, (21)

and the determinant of N is either 1 or -1.

det N = (blcl − aldl)(b
′
mc

′
m − a′

md
′
m)−1 (14)= εlε

′
m ∈ {−1, 1} (22)
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By Lemma 3, α ∈ ⋂∞
k=0 Ik,ik and α′ ∈ ⋂∞

k=0 I
′
k,i ′k

. By Lemma 4, we have

Il,il =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

n+ cl+dl
al+bl

, 1
n+ cl

al

)
thus cl

al
< 1

α
− n <

cl+dl
al+bl

if εl = 1
(

1
n+ cl

al

, 1
n+ cl+dl

al+bl

)
thus cl+dl

al+bl
< 1

α
− n <

cl
al

if εl = −1

(23)

and

I ′
m,i ′m =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

n′+ c′m+d′
m

a′
m+b′m

, 1

n+ c′m
a′
m

)
thus c′

m
a′
m

< 1
α′ − n′ <

c′
m+d ′

m
a′
m+b′

m
if ε′

m = 1
(

1

n′+ c′m
a′
m

, 1

n′+ c′m+d′
m

a′
m+b′m

)
thus c′

m+d ′
m

a′
m+b′

m
< 1

α′ − n′ <
c′
m
am

if ε′
m = −1.

(24)

By Lemma 2, Il,il =
(

1
n+ pl

ql

, 1
n+ rl

sl

)
splits into Il+1,2il =

(
1

n+ pl
ql

, 1
n+ pl+rl

ql+sl

)
and Il+1,2il−1 =

(
1

n+ pl+rl
ql+sl

, 1
n+ rl

sl

)
. Thus il+1 = 2il or 2il − 1. We observe

– If il+1 = 2il then
pl
ql

� rl
sl

= pl+rl
ql+sl

< 1
α

− n <
pl
ql
.

– If il+1 = 2il − 1 then rl
sl

< 1
α

− n <
pl
ql

� rl
sl

= pl+rl
ql+sl

.

Similarly, i ′m+1 = 2i ′m or 2i ′m − 1.

– If i ′m+1 = 2i ′m then p′
m+r ′

m
q ′
m+s′m

< 1
α′ − n′ <

p′
m

q ′
m
.

– If i ′m+1 = 2i ′m − 1 then r ′
m
s′m

< 1
α′ − n′ <

p′
m+r ′

m
q ′
m+s′m

.

Claim 1 The indices il+1 and i ′m+1 obey the following rule.

– If εlε
′
m = 1 then il+1 = 2il if and only if i ′m+1 = 2i ′m .

– If εlε
′
m = −1 then il+1 = 2il − 1 if and only if i ′m+1 = 2i ′m .

Proof of Claim 1 We have four cases to consider.
(Case 1: εl = ε′

m = 1) By (24) with ε′
m = 1, we note that p′

m
q ′
m

= c′
m+d ′

m
a′
m+b′

m
and r ′

m
s′m

= c′
m
a′
m
. Thus,

we have i ′m+1 = 2i ′m if and only if

2c′
m + d ′

m

2a′
m + b′

m
= p′

m

q ′
m

� r ′
m

s′
m

<
1

α′ − n′ <
p′
m

q ′
m

= c′
m + d ′

m

a′
m + b′

m
.

Since det N = 1 > 0 by (22) the slopes of the following three vectors satisfy

slope

(
N

(
2c′

m + d ′
m

2a′
m + b′

m

))
< slope

(
N

( 1
α′ − n′

1

))
< slope

(
N

(
c′
m + d ′

m
a′
m + b′

m

))
.

By (20) and (21), we obtain

2cl + dl
2al + bl

<
1

α
− n <

cl + dl
al + bl

.

By (23), with εl = 1 it is equivalent to il+1 = 2il .

(Case 2: εl = ε′
m = −1) We have i ′m+1 = 2i ′m if and only if 2c′

m+d ′
m

2a′
m+b′

m
< 1

α′ − n′ <
c′
m
a′
m
. Since

det N > 0 we obtain 2cl+dl
2al+bl

< 1
α

− n <
cl
al

. It is equivalent to il+1 = 2il .
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(Case 3: εl = −ε′
m = 1) We have i ′m+1 = 2i ′m if and only if 2c′

m+d ′
m

2a′
m+b′

m
< 1

α′ − n′ <
c′
m
a′
m
. Since

det N < 0 we obtain cl
al

< 1
α

− n <
2cl+dl
2al+bl

. It is equivalent to il+1 = 2il − 1.

(Case 4: −εl = ε′
m = 1) We have i ′m+1 = 2i ′m if and only if 2c′

m+d ′
m

2a′
m+b′

m
< 1

α′ − n′ <
c′
m+d ′

m
a′
m+b′

m
.

Since det N < 0 we have cl+dl
al+bl

< 1
α

− n <
2cl+dl
2al+bl

. It is equivalent to il+1 = 2il − 1. ��
It is interesting to note that Claim 1 and Lemma 5 imply that the product of the signs is

preserved:

εl+1ε
′
m+1 = εlε

′
m . (25)

Claim 2 The 4-tuples of Tl+1 and T ′
m+1 have the same type (Type 1 or Type 2) as stated in

the following table.

(sgn(εl ), sgn(ε′
m )) Case 1 Case 2 Case 3 Case 4

(+, +) (−,−) (+, −) (−, +)

il+1 = 2il Type 1 Type 2 Type 1 Type 2
il+1 = 2il − 1 Type 2 Type 1 Type 2 Type 1

Proof All the eight cases can be checked similarly. For example, we check the claim for Case
3 where il+1 = 2il −1. By Corollary 4-(2) the 4-tuple of Tl+1 is Type 2. Next, Claim 1 states
i ′m+1 = 2i ′m . By Corollary 4-(4), the 4-tuple of T ′

m+1 is Type 2. ��
We will continue the proof of Lemma 6 and show that Tl+1 and T ′

m+1 have the same
4-ratio, which by induction concludes Lemma 6.

Since Tl and T ′
m have the same 4-ratio

(xl + ylα)(z′m + w′
mα′) − (zl + wlα)(x ′

m + y′
mα′) = 0. (26)

Having Claim 2 proved, both Tl+1 and T ′
m+1 have the same 4-tuple type, say Type 1. By

Proposition 2, their 4-tuples are:

(xl+1, yl+1, zl+1, wl+1) = (zl − xl , wl − yl xl , yl)

and (x ′
m+1, y

′
m+1, z

′
m+1, w

′
m+1) = (z′m − x ′

m, w′
m − y′

m x ′
m, y′

m). (27)

We obtain xl+1+yl+1α
zl+1+wl+1α

= x ′
m+1+y′

m+1α
′

z′m+1+w′
m+1α

′ since

(xl+1 + yl+1α)(z′m+1 + w′
m+1α

′) − (zl+1 + wl+1α)(x ′
m+1 + y′

m+1α
′)

(27)= −(xl + ylα)(z′m + w′
mα′) + (zl + wlα)(x ′

m + y′
mα′) (26)= 0.

Thus, Tl+1 and T ′
m+1 have the same 4-ratio. When both the 4-tuples of Tl+1 and T ′

m+1 are
Type 2, a similar argument holds.

This concludes Lemma 6. ��
Finally we are ready to prove Theorem 7.

Proof of Theorem 7 Assume that triple-weight train tracks Tl and T ′
m have the same sign

sgn(Tl+1) = sgn(T ′
m+1) and the same 4-ratio; i.e., xl+ylα

zl+wlα
= x ′

m+y′
mα′

z′m+w′
mα′ . By Lemma 6, Tl+t

and T ′
m+t have the same 4-tuple types (Type 1 or Type 2) for all t ≥ 1.

By Corollary 2 their topological types (I, II, I’, II’) satisfy either
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1. Type(Tl+1) = Type(T ′
m+1) or

2. Type(Tl+1) = Type(T ′
m+1)

′.

The system of Types I, II, I’, II’ is closed under maximal splitting operations and follow the
rule as described in Fig. 6. Notice the diagram in Fig. 6 is mirror symmetric with respect to a
vertical axis. Thus, in Case (1) the I-II-I’-II’-sequences corresponding to Tl+1⇀Tl+2⇀ · · ·
and T ′

m+1⇀T ′
m+2⇀ · · · are exactly the same, and in Case (2) exactly the same up to simul-

taneously putting ′. Namely,

1. Type(Tl+t ) = Type(T ′
m+t ) for all t ≥ 1 or

2. Type(Tl+t ) = (Type(T ′
m+t ))

′ for all t ≥ 1.

For Case (1) let φ ∈ Homeo+(D3) be an orientation preserving homeomorphism such
that φ(Tl) = T ′

m . By Corollary 3 both Tl and T ′
m admit the same type of maximal splitting

(r -split or l-split). Since a homeomorphism and a splitting operation commute, we have the
following commutative diagram:

Tl
l

⇀ Tl+1

φ ↓ φ ↓
T ′
m

l
⇀ T ′

m+1

or
Tl

r
⇀ Tl+1

φ ↓ φ ↓
T ′
m

r
⇀ T ′

m+1

In particular φ(Tl+1) = T ′
m+1. Repeating the same argument we obtain

φ(Tl+1) = T ′
m+1 for all t ≥ 1.

Lemma 6 also states that Tl+t and T ′
m+t have the same 4-ratios. Therefore, for some constant

a > 0, the induced map φ∗ yields

φ∗μ(Tl+t ) = aμ′(T ′
m+t ) for all t ≥ 1.

Since β and β ′ have the same dilatation, their Agol cycles have the same length (call it p).
Therefore, β and β ′ have equivalent Agol-cycles We have a diagram

(Tl , μl)
β−→ (Tl+p, μl+p)

φ ↓ φ ↓
(T ′

m, μ′
m)

β ′
−→ (T ′

m+p, μ
′
m+p)

Let Φ := φ−1 ◦ (β ′)−1 ◦ φ ◦ β. We see:

(a) Φ is an orientation preserving homeomorphism.
(b) Φ restricted to the boundary ∂D3 is the identity map.
(c) Φ(Tl) = Tl .
(d) Φ also preserves the thickness data; namely, Φ(a ∪ a′) = a ∪ a′, Φ(b∪ b′) = b∪ b′ and

Φ(c ∪ c′) = c ∪ c′. Here, a, a′, b, b′, c, c′ are thickened edges as in Fig. 17. Edges a, a′
have the same weight, as do b, b′ and c, c′.

It is impossible that Φ(a) = a′ because the circle a ∪ b ∪ c and ∂D3 bound an annulus,
which is fixed by Φ. Therefore by (d) Φ(a) = a and Φ(a′) = a′. Likewise, Φ(b) = b,
Φ(b′) = b′, Φ(c) = c and Φ(c′) = c′. This yields

ΦTl = idTl .

The set D3\Tl is disjoint union of the annulus along the boundary ∂D3 and three 1-punctured
monogons (one for each puncture of D3). By the Alexander trick (see [8] for example) we
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Fig. 17 Tl ⊂ D3

conclude Φ = idD3 , which means

β = φ−1 ◦ β ′ ◦ φ.

Similarly, for Case (2) there exist constant a > 0 and orientation preserving homeomor-
phism φ ∈ Homeo+(D3) such that for all t ≥ 1

φ(Tl+t ) = mirror(T ′
m+t )

and

(mirror ◦ φ)∗μ(Tl+t ) = aμ′(T ′
m+t ).

This implies that β and β ′ have mirror equivalent Agol cycles. Furthermore we can also show
that β = φ−1 ◦ mirror−1 ◦ β ′ ◦ mirror ◦ φ.

8 Dilatation is preserved under 3-braid flypes

The goal of this section is to prove Theorem 10, which states that the dilatation is preserved
under flype moves. Thus, dilatation is not as strong invariant as Agol cycle. However, com-
putation of a dilatation is easier than that of Agol cycle in general. In fact, in the proof of
Lemma 9 we describe how to compute the transition matrix of a given 3-braid, from which
the dilatation can be explicitly computed as the eigenvalue > 1.

8.1 Birman–Menasco’s classification of links of braid index 3

We briefly review well-known facts on 3-braid flypes that are relevant to this paper.

Definition 17 Let ε = ±1 and x, y, z ∈ Z. If β = σ x
1 σε

2 σ
y
1 σ z

2 and β ′ = σ x
1 σ z

2σ
y
1 σε

2 , then we
say that β and β ′ are related by an ε-flype. See Fig. 18. If β and β ′ are conjugate (resp. not
conjugate), then the flype is called degenerate (resp. non-degenerate).

Non-degenerate flypes play a significant role in low-dimensional topology. Flypes are used
in the classification of 3-braids in Birman and Menasco’s work [3], in Markov’s Theorem
without Stabilization [4], and the classification of transversally simple knots [5], [6]. Many
other transversally simple knots admit a negative flype like those found by Etnyre and Honda
[7] (cf. Matsuda and Menasco [12]) and Ng, Ozsváth, and Thurston [15]. In the Tait flype
conjecture, Thistlethwaite and Menasco proved that two reduced alternating diagrams of an
alternating link are related by a sequence of flypes [14].
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Fig. 18 (Definition 17) The braid closures β̂ and β̂ ′ obtained from a negative flype

It is easy to see that a flype move preserves the topological link type of the braid closure.
On the contrary, the following Birman andMenasco’s theorem states that a flype changes the
conjugacy class in general.

Theorem 8 [3] Let L be a link type of braid index three. Then one of the following holds:

1. There exists a unique conjugacy class of 3-braid representatives of L.
2. There exists two conjugacy classes of 3-braid representatives of L.

Case (2) happens if and only if L has a 3-braid representative that admits a non-degenerate
flype.

Moreover, Ko and Lee determine all the non-degenerate flypes.

Theorem 9 [10, Theorem 5] The 3-braids β = σ x
1 σε

2 σ
y
1 σ z

2 and β ′ = σ x
1 σ z

2σ
y
1 σε

2 have
distinct conjugacy classes if and only if

– Neither x nor y is equal to 0, ε, 2ε or z + ε,
– x �= y, and
– |z| ≥ 2.

8.2 Dilatation is preserved under flypes

Now we state the main result of this section.

Theorem 10 There are infinitely many integers x, y and z, such that the braids β =
σ x
1 σ−1

2 σ
y
1 σ z

2 and β ′ = σ x
1 σ z

2σ
y
1 σ−1

2 belong to distinct conjugacy classes (suggested by
Theorem 9) but have the same dilatation

λ = 1

2
(γ +

√
γ 2 − 4)

where
γ = γ (x, y, z) = sgn(xyz)(−2 − x − y + xz + yz + xyz). (28)

The theorem is an immediate consequence of Theorem 9 and Lemma 9 below.
We need three lemmas to prove Theorem 10.We start by analyzing behavior of train tracks

under the braid generators σ1 and σ2, and compute transition matrices.
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Lemma 7 Measured train tracks are affected by σ±1
1 and σ±1

2 as shown in Figs.19 and 20.
The matrices between train track types are defined below. They designate how the labels
change after the application of σ±1

i .

A =
(
1 0
1 1

)
, A−1 =

(
1 0

−1 1

)
, V =

(
1 0
1 −1

)
,

B =
(
1 1
0 1

)
, B−1 =

(
1 −1
0 1

)
, T =

(−1 1
0 1

)
.

Note T B−1 = BT and V A−1 = AV .

Proof In this proof, we unzip and zip the edges of the train track, which is an operation where
we separate or condense, respectively, the edges according to the assigned weights. More
details about this operation can be found in [8].

We consider the case of σ1 acting on M(a, b).

a b
σ1

a

b

If a < b, then 2a < a + b and we unzip the train track along a.

a
b Unzip a

−a+ b

a Isotopy

−a+ b a

Zip

−a+ b b

Notice that the labels have changed by an application of the matrix T .
If a > b, then a + b > 2b and we unzip the train track along b.

a
b Unzip b

a − b b

Notice that the labels have changed by an application of the matrix B−1.
All other cases follow similarly. ��

Lemma 8 Based on Lemma 7, we obtain four commutative diagrams.

– The action of σ1 is shown in the following commutative diagram. For x � 0, Type M
converges to Type W under σ1 and the change in weights on the train track is represented

by Bx−1T .
M(a, b) M(a − b, b) M(a − 2b, b) · · · · · ·

W (−a + b, b) W (−a + 2b, b) · · · · · ·
T

a<b

B−1

a>b
T

a<2b

B−1

a>2b
T

a<3b

B−1

a>3b

B B
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Fig. 19 (Lemma 7) Action of σ±1
1 and σ±1

2 on Type M

Fig. 20 (Lemma 7) Action of σ±1
1 and σ±1

2 on Type W
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– The action of σ−1
1 is shown the following commutative diagram. For x � 0, Type W

converges to TypeMunderσ−x
1 and the change inweights on the train track is represented

by Bx−1T .
W (a, b) W (a − b, b) W (a − 2b, b) · · · · · ·

M(−a + b, b) M(−a + 2b, b) · · · · · ·
T

a<b

B−1

a>b
T

a<2b

B−1

a>2b
T

a<3b

B−1

a>3b

B B

– The action of σ2 is shown in the following commutative diagram. For x � 0, Type W
converges to Type M under σ2 and the change in weights on the train track is represented

by Ax−1V .
W (a, b) W (a,−a + b) W (a,−2a + b) · · · · · ·

M(a, a − b) M(a, 2a − b) · · · · · ·
V

a>b

A−1

a<b
V

2a>b

A−1

2a<b
V

3a>b

A−1

3a<b

A A

– The action of σ−1
2 is shown in the following commutative diagram. For x � 0, Type M

converges to TypeWunderσ−x
2 and the change inweights on the train track is represented

by Ax−1V .
M(a, b) M(a,−a + b) M(a,−2a + b) · · · · · ·

W (a, a − b) W (a, 2a − b) · · · · · ·
V

a>b

A−1

a<b
V

2a>b

A−1

2a<b
V

3a>b

A−1

3a<b

A A

Let β ∈ B3 	 MCG(D3) be a pseudo-Anosov 3-braid. Suppose that β has an invariant
train track of Type X, where X = M or W. That is, if we apply β to a Type X train track, then
we return to the same type of train track. A transition matrix M tells how the weights of the
train track edges have changed after applying β. The key idea of the upcoming Lemma 9 is
to compute the type of β and the transition matrix by applying Lemmas 7 and 8.

Lemma 9 Let β = σ x
1 σ−1

2 σ
y
1 σ z

2 and β ′ = σ x
1 σ z

2σ
y
1 σ−1

2 be pseudo-Anosov 3-braids related
by a negative flype. For large |x |, |y| and |z|, the transition matrices M and M ′ associated
to β and β ′ respectively are the following:

M = sgn(xyz)

( −1 − y sgn(z)(x + y + xy)
sgn(z)(1 − z − yz) −1 − x + xz + yz + xyz

)

M ′ = sgn(xyz)

( −1 + yz −x − y + xyz
−1 + z + yz −1 − x − y + xz + xyz

)

Furthermore, we have det(M) = det(M ′) = 1 and

tr(M) = tr(M ′) = γ (x, y, z) = sgn(xyz)(−2 − x − y + xz + yz + xyz).

In the proof of Lemma 9we separate all the applicable 3-braids into eight cases, depending
on the sign of x, y, and z:

x y z
Case 1 − − −
Case 2 − − +
Case 3 − + −
Case 4 − + +
Case 5 + − −
Case 6 + − +
Case 7 + + −
Case 8 + + +
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Remark 1 There is a bijection between the set of Case 3 braids and the set of Case 5 braids.
Suppose x,y,z > 0. Then

(Case 3) σ−x
1 σ−1

2 σ
y
1 σ−z

2
conj∼ σ−z

2 σ−x
1 σ−1

2 σ
y
1

rev∼ σ
y
1 σ−1

2 σ−x
1 σ−z

2 (Case 5)

where
conj∼ means conjugation and

rev∼ means reverse orientation or read the word backward.
Thus swapping x and y gives a bijection between the two sets.

Similarly,we canfind a bijection between the sets forCase 4 andCase 6 braids by swapping
x and y.

Proof of Lemma 9 We calculate the matrices Mi and M ′
i associated to β and β ′ respectively

for each Case i . Below we manipulate the braid word of β and β ′ in each case to force x, y,
and z to be positive in our calculations.
Case 1: (β = σ−x

1 σ−1
2 σ

−y
1 σ−z

2 and β ′ = σ−x
1 σ−z

2 σ
−y
1 σ−1

2 ) We use Lemmas 7 and 8 in the
calculations for β and β ′.

β : W Bx−1T−−−−→
σ−x
1

M
V−−→

σ−1
2

W
By−1T−−−−→
σ

−y
1

M
Az−1V−−−−→
σ−z
2

W (Type W)

β ′ : W Bx−1T−−−−→
σ−x
1

M
Az−1V−−−−→
σ−z
2

W
By−1T−−−−→
σ

−y
1

M
V−−→

σ−1
2

W (Type W)

Both β and β ′ have Type W invariant measured train tracks. Transition matrices are:

M1 = Az−1V By−1T V Bx−1T

=
(

1 − y −x − y + xy
1 + z − yz 1 − x − xz − yz + xyz

)
(29)

M ′
1 = V By−1T Az−1V Bx−1T

=
(

1 − yz −x − y + xyz
1 + z − yz 1 − x − y − xz + xyz

)
(30)

Below we turn M1 and M ′
1 into Perron-Frobenius by taking conjugates of the original

matrices. When x ≥ 3, y ≥ 3, and z ≥ 2, we can verify that A−1M1A is a non-negative
integral (i.e., Perron-Frobenius) matrix. Here are the computations. The (1, 1) element of the
matrix A−1M1A is

xy − x − 2y + 1 = (x − 2)(y − 1) − 1 ≥ 0.

The (1, 2) element is

(x − 1)(y − 1) − 1 ≥ 0.

The (2, 1) element is

(x − 2)(z − 1)

(
(y − 1) − 1

x − 2
− 1

z − 1

)
≥ 0.

The (2, 2) element is

(x − 1)(z − 1)

(
(y − 1) − 1

x − 1
− 1

z − 1

)
≥ 0.
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If x ≥ 3, y ≥ 3, and z ≥ 2, the matrix C−1M ′
1C where C :=

(
2 1
1 1

)
is also Perron-

Frobenius. Indeed, the (1, 1) element is

z(x − 2) − 1 ≥ 0.

The (1, 2) element is

z(x − 1) − 1 ≥ 0.

The (2, 1) element is

(x − 2)(y − 2)

(
z − 1

y − 2
− 1

x − 2

)
≥ 0.

The (2, 2) element is

(x − 1)(y − 2)

(
z − 1

y − 2
− 1

x − 1

)
≥ 0.

Case 2: (β = σ−x
1 σ−1

2 σ
−y
1 σ z

2 and β ′ = σ−x
1 σ z

2σ
−y
1 σ−1

2 ) We have:

β : M Bx−−→
σ−x
1

M
V−−→

σ−1
2

W
By−1T−−−−→
σ

−y
1

M
Az−→
σ z
2

M (Type M)

β ′ : W Bx−1T−−−−→
σ−x
1

M
Az−→
σ z
2

M
By−−→

σ
−y
1

M
V−−→

σ−1
2

W (Type W)

M2 = Az By−2T B−1V Bx

=
( −1 + y −x − y + xy
1 − z + yz −1 + x − xz − yz + xyz

)

M ′
2 = V By Az Bx−1T

=
( −1 − yz x + y + xyz

−1 + z − yz −1 + x + y − xz + xyz

)

For x, y, z � 1, both M2 and C−1M ′
2C are Perron-Frobenius.

Case 3: (β = σ−x
1 σ−1

2 σ
y
1 σ−z

2 and β ′ = σ−x
1 σ−z

2 σ
y
1 σ−1

2 ) We have:

β : W Bx−1T−−−−→
σ−x
1

M
V−−→

σ−1
2

W
By−→
σ
y
1

W
Az−−→

σ−z
2

W (Type W)

β ′ : W Bx−1T−−−−→
σ−x
1

M
Az−1V−−−−→
σ−z
2

W
By−→
σ
y
1

W
A−−→

σ−1
2

W (Type W)

M3 = Az ByV Bx−1T

=
( −1 − y x − y + xy

−1 − z − yz −1 + x + xz − yz + xyz

)

M ′
3 = ABy Az−1V Bx−1T

=
( −1 − yz x − y + xyz

−1 − z − yz −1 + x − y + xz + xyz

)
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For x, y, z � 1, both A−1M3A and A−1M ′
3A are Perron-Frobenius.

Case 4: (β = σ−x
1 σ−1

2 σ
y
1 σ z

2 and β ′ = σ−x
1 σ z

2σ
y
1 σ−1

2 ) We have:

β : M Bx−−→
σ−x
1

M
V−−→

σ−1
2

W
By−→
σ
y
1

W
V−→
σ2

M
Az−1−−−→
σ z−1
2

M (Type M)

β ′ : W Bx−1T−−−−→
σ−x
1

M
Az−→
σ z
2

M
T−→
σ1

W
By−1−−−→
σ
y−1
1

W
A−−→

σ−1
2

W (Type W)

M4 = Az−1V ByV Bx

=
(

1 + y x − y + xy
−1 + z + yz 1 − x + xz − yz + xyz

)

M ′
4 = ABy−1T Az Bx−1T

=
(

1 − yz −x + y + xyz
1 − z − yz 1 − x + y + xz + xyz

)

For x, y, z � 1, both M4 and A−1M ′
4A are Perron-Frobenius.

Case 5: (β = σ x
1 σ−1

2 σ
−y
1 σ−z

2 and β ′ = σ x
1 σ−z

2 σ
−y
1 σ−1

2 ) We have:

β : W Bx−→
σ x
1

W
A−−→

σ−1
2

W
T−−→

σ−1
1

M
By−1−−−→

σ
−y+1
1

M
V−−→

σ−1
2

W
Az−1−−−→

σ−z+1
2

W (Type W)

β ′ : W Bx−→
σ x
1

W
Az−−→

σ−z
2

W
T−−→

σ−1
1

M
By−1−−−→

σ
−y+1
1

M
V−−→

σ−1
2

W (Type W)

M5 = Az−1V By−1T ABx

=
( −1 + y −x + y + xy

−1 − z + yz −1 − x − xz + yz + xyz

)

M ′
5 = V By−1T Az Bx

=
( −1 + yz −x + y + xyz

−1 − z + yz −1 − x + y − xz + xyz

)

For x, y, z � 1, both M5 and M ′
5 are Perron-Frobenius.

Case 6: (β = σ x
1 σ−1

2 σ
−y
1 σ z

2 and β ′ = σ x
1 σ z

2σ
−y
1 σ−1

2 ) We have:

β : M Bx−1T−−−−→
σ x
1

W
A−−→

σ−1
2

W
By−1T−−−−→
σ

−y
1

M
Az−→
σ z
2

M (Type M)

β ′ : W Bx−→
σ x
1

W
V−→
σ2

M
Az−1−−−→
σ z−1
2

M
By−−→

σ
−y
1

M
V−−→

σ−1
2

W (Type W)

M6 = Az By−1T ABx−1T

=
(

1 − y −x + y + xy
−1 + z − yz 1 + x − xz + yz + xyz

)
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M ′
6 = V By Az−1V Bx

=
(

1 + yz x − y + xyz
1 − z + yz 1 + x − y − xz + xyz

)

For x, y, z � 1, both A−1M6A and M ′
6 are Perron-Frobenius.

Case 7: (β = σ x
1 σ−1

2 σ
y
1 σ−z

2 and β ′ = σ x
1 σ−z

2 σ
y
1 σ−1

2 ) We have:

β : W Bx−→
σ x
1

W
A−−→

σ−1
2

W
By−→
σ
y
1

W
Az−−→

σ−z
2

W (Type W)

β ′ : W Bx−→
σ x
1

W
Az−−→

σ−z
2

W
By−→
σ
y
1

W
A−−→

σ−1
2

W (Type W)

M7 = Az By ABx =
(

1 + y x + y + xy
1 + z + yz 1 + x + xz + yz + xyz

)

M ′
7 = ABy Az Bx =

(
1 + yz x + y + xyz

1 + z + yz 1 + x + y + xz + xyz

)

Both M7 and M ′
7 are Perron-Frobenius.

Case 8: (β = σ x
1 σ−1

2 σ
y
1 σ z

2 and β ′ = σ x
1 σ z

2σ
y
1 σ−1

2 ) We have:

β : M Bx−1T−−−−→
σ x
1

W
A−−→

σ−1
2

W
By−→
σ
y
1

W
V−→
σ2

M
Az−1−−−→
σ z−1
2

M (Type M)

β ′ : W Bx−→
σ x
1

W
V−→
σ2

M
Az−1−−−→
σ z−1
2

M
T−→
σ1

W
By−1−−−→
σ
y−1
1

W
A−−→

σ−1
2

W (Type W)

M8 = Az−1V By ABx−1T

=
( −1 − y x + y + xy
1 − z − yz −1 − x + xz + yz + xyz

)

M ′
8 = ABy−1T Az−1V Bx

=
( −1 + yz −x − y + xyz

−1 + z + yz −1 − x − y + xz + xyz

)

For x, y, z � 1, both A−1M8A and M ′
8 are Perron-Frobenius. ��

Remark 2 In Proposition 9, we assume that x, y, z � 1. More precisely in Case 1, for
example, we require (x − 1) − 1

(y−1)− 1
z

> α.

Let a and b be positive integers. After scaling, we can identify W(a, b) with W(α, 1) for
some α = a

b . We start with W(α, 1) and apply σ−x
1 . If x > α, we obtain

W (α, 1)
σ−x
1−→ M(x − α, 1).

If x − 1 > α, we then obtain

M(x − α, 1)
σ−1
2−→ W (x − α, x − 1 − α).
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If (x − 1) − 1
y−1 > α, we obtain

W (x − α, x − 1 − α)
σ

−y
1−→ M((y − 1)(x − 1) − 1 − α(y − 1), (x − 1) − α).

If (x − 1) − 1
(y−1)− 1

z
> α, we further obtain

M((y − 1)(x − 1) − 1 − α(y − 1), (x − 1) − α)

σ−z
2−→ W ((y − 1)(x − 1) − 1 − α(y − 1), (x − 1)(zy − z − 1) − z − α(zy − z − 1))

= W ((1 − y)α − x − y + xy, (1 + z − yz)α + (1 − x − xz − yz + xyz)) (31)

The expression in (31) matches with the matrix M1 in (29). Therefore, as long as

(x − 1) − 1

(y − 1) − 1
z

> α (32)

holds, the transition matrix M1 is valid.

Remark 3 With regard to Theorem 10, the referee kindly shared with the authors a very short
proof to show that braids β = σ x

1 σ ε
2 σ

y
1 σ z

2 and β ′ = flype(β) = σ x
1 σ z

2σ
y
1 σ ε

2 related by
a flype have the same dilatation, without explicitly computing the dilatation. Here is the
referee’s argument:

Clearly the inverse β−1 = σ−z
2 σ

−y
1 σ−ε

2 σ−x
1 and β have the same dilatation.

Consider the reverse βrev of the braid β:

βrev = σ z
2σ

y
1 σ ε

2 σ x
1 ,

which is the braid obtained from β by reading the word of β from the right.
Since β−1 and βrev are related by mirror image and conjugate, β−1 and βrev have the

same dilatation.
Since βrev and β ′ are conjugate βrev and β ′ have the same dilatation.
This shows β and β ′ have the same dilatation.
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