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Much of the value that IoT (Internet-of-Things) devices bring to “smart” homes lies in their ability to automatically trigger other
devices’ actions: for example, a smart camera triggering a smart lock to unlock a door. Manually setting up these rules for smart devices
or applications, however, is time-consuming and inefficient. Rule recommendation systems can automatically suggest rules for users
by learning which rules are popular based on those previously deployed (e.g., in others’ smart homes). Conventional recommendation
formulations require a central server to record the rules used in many users’ homes, which compromises their privacy and leaves
them vulnerable to attacks on the central server’s database of rules. Moreover, these solutions typically leverage generic user-item
matrix methods that do not fully exploit the structure of the rule recommendation problem. In this paper, we propose a new rule
recommendation system, dubbed as FedRule, to address these challenges. One graph is constructed per user upon the rules s/he is
using, and the rule recommendation is formulated as a link prediction task in these graphs. This formulation enables us to design a
federated training algorithm that is able to keep users’ data private. Extensive experiments corroborate our claims by demonstrating
that FedRule has comparable performance as the centralized setting and outperforms conventional solutions.
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1 INTRODUCTION

With the rapid expansion of smart devices and applications in recent years, it becomes imperative to automate the
actions of different devices and applications by connecting them together. For example, an occupancy sensor change
can trigger a smart thermostat to turn on, or a code merge can trigger software updates. These connections are broadly
construed as rules between entities in different systems. Setting up these rules between many entities can involve
a tedious and challenging search process, especially for new users. Hence, it is helpful to provide new users with
meaningful recommendations by learning from other users’ sets of rules.

Recommendation systems are growing in various applications from e-commerce [25] to social networks [36] and
entertainment industries [2, 13]. In most cases, the recommendation problem is formulated as a matrix completion
∗Both authors contributed equally to this research.
†This work was done during Yuhang Yao’s internship at Wyze Labs.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/3450268.1234567


2 Yao and Kamani, et al.

(a) User-Item Matrix Design (b) Graph Structure Design

Fig. 1. Illustrations of the conventional structure of recommendation systems based on user-item structure (left), and the proposed
graph-based structure for rule recommendation system in a smart home device connections setting (right). In the conventional setting,
each rule is considered an item while in the graph structure each rule is represented as an edge between pairs of entity nodes.

task of a user-item matrix [3, 9, 38] to recommend new items to the users based on previous items chosen by the
user. In this way, the recommendation problem is reduced to a dual link between users and items, as depicted in
Figure 1(a). Following this setting, we consider each rule as an item for recommending linked rules to users. However,
this is not desirable as the structure of entities (e.g. the structure of devices or applications owned by a user) on the
user side is not considered. Hence, we are not able to distinguish between different instances of an entity type (e.g.
multiple cameras or multiple motion sensors) to provide meaningful recommendations for each separate entity based
on their existing structure. For instance, in a smart home network, there could be multiple contact sensors connected
to a different set of devices in their vicinity. Without considering the existing structure of the connected devices, the
recommendation system tends to recommend the same rules for all contact sensors as they are recognized as one
general entity instead of several independent ones. Moreover, privacy and security concerns for training models on
users’ data in recommendation systems formulated as user-item matrix completion become a great challenge in the IoT
system. The user-item formulations require a central server to know all users’ rules: these may be sensitive, especially
if they involve smart devices’ behavior in users’ homes.

In this paper, we, first, propose a new rule recommendation framework dubbed as GraphRule, based on the graph
structure of entities for each user. In our proposed setup, we create a directed graph for each user based on their available
entities (e.g. light bulb and contact sensor) as nodes and their rule connections as edges in this graph. Therefore, instead
of representing a user’s rules as a row in the user-item matrix (each item is an entity-rule-entity triplet, e.g. when
contact sensor is open, turn on light bulb), we represent each users’ rules as a graph that encapsulates the structure of
entities and how they are connected together through the available rules. As an example, in Figure 1(b), for user 1,
we have two separate cameras denoted by different nodes in the graph, each connecting to a distinct set of devices by
their specific rules. However, it is infeasible to distinguish between these cameras in the user-item structure without
separating the rule and entities representations from the entity-rule-entity items in user-item matrices. In fact, in
user-item design, we condense entities with the same type into one general entity (e.g. camera 1 and camera 2 into
the camera) to only emphasize their connections to other entities as rules. Based on our graph structure design, the
goal of the rule recommendation system is then to predict the newly formed edges (rules) in the graph, which can be
formulated as a graph link prediction problem [43]. The system first learns node embeddings for each entity in the
user’s graph using graph neural network architectures [31, 35, 39]. Based on the learned embeddings, a parametric
prediction model can be used to estimate the probability of different rules connecting each pair of entities in the graph.
Manuscript submitted to ACM
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For privacy concerns, unlike the conventional user-item structure, the proposed graph structure can be easily
distributed across different users for training the main recommendation model locally. Indeed, by casting the rule
recommendation problem as a link prediction task across graphs for different users, we can employ privacy-preserving
training setups such as federated learning [27], which allows data to remain at the user’s side. Moreover, federated
training methods are generally iterative, and can thus easily adapt the model to new users’ data instead of having to
retrain the whole model from scratch, as is common in previous approaches for recommendation systems.

There has been a surge in applications of federated learning in the training of machine learning models recently [5,
10, 11, 14, 19, 27], with some applications in recommendation systems [8, 37]. However, most of the proposals for
recommendation tasks in federated learning are for cross-silo setups (i.e., data could be distributed across pre-defined
silos) based on user-item matrix completion, and not for cross-device settings [19] (i.e., with limited data at each user,
where here "device" represents one user and its entities), as in our rule recommendation task.

Our cross-device setting with the proposed graph structure, however, introduces new challenges: the amount of data
on each individual user is very limited (as each user generally has only a few entities, e.g., a few smart home devices)
and the local data is not independent and identically distributed (non-IID). The non-IID data distribution with a small
sample size severely increases the variance of gradients among clients. Hence, when simply applying federated training
methods, like FedAvg [16, 18, 27], the model will not converge easily and cannot have comparable performance on par
with the centralized training. To overcome the issue of severely non-IID data distribution across clients, we use two
control parameters in local machines for each client to correct the gradients for different parts of our model and avoid
drifting too much from the average model. Given the limited data of users, we sample negative edges (rules that do
not exist) to balance the numbers of positive and negative edges. With these solutions, we then introduce FedRule, a
federated rule recommendation system with graph neural networks. FedRule can learn the representation and link
prediction models of the recommendation system at the user level with a decent convergence rate using variance
reduction techniques with control parameters while preserving the privacy of users’ data. With negative sampling and
variance reduction to alleviate the effects of limited and non-IID data, this system enables us to learn a better model in
a graph-based cross-device setting over user-item-based settings. In our empirical results, we show the effectiveness of
our FedRule over other approaches.

Our main contributions are:
• We propose a new rule recommendation framework, called GraphRule, based on the graph structure of current
users by representing rules as edges between entity nodes over conventional user-item structure.
• We propose an effective federated learning system, called FedRule, which effectively learns from limited non-IID
data on each user’s rules with fast convergence and preserving the privacy of users’ data.
• Extensive empirical investigation shows the effectiveness of both the proposed structure for the GraphRule
and the FedRule algorithms. Our FedRule algorithm is able to achieve the same performance as the centralized
version (GraphRule) due to its variance reduction mechanism.

2 RELATEDWORK

Rule Recommendation Systems. Traditional recommendation systems are mainly based on matrix factorization
techniques [4, 22] and aim to match users to a set of items they are interested in, based on the features of users and
items as well as prior data expressing users’ interests in a given set of items. Recently, graph neural networks have been
widely adopted by many recommendation systems to model this relationship as a bipartite graph structure. GCMC [3]
provides a graph-based auto-encoder framework for matrix completion problems. Given different relations between
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users and items, R-GCNs [32] models relational data with graph convolutional networks and HetGNN [42] is to deal
with heterogeneous graphs with features of users and items. RotatE [33] uses knowledge graph embedding by relational
rotation in complex number space.

With the development of the smart home technology [41], rule recommendation systems for IoT devices exhibit
great practical and research potential. IFTTT, a mobile app providing rule execution services for mobile applications
and IoT devices, provides open access data with users and rules for analysis [28, 34]. For recommending rules in IFTTT,
RecRule [9] provides rule recommendation based on a user-rule matrix with a semantic reasoning process to enrich
rules with semantic information of rules, and TaKG [38] builds a trigger-action knowledge graph with the user-rule
collaborative filtering to recommend rules.

Graph Neural Networks. Graph neural networks aim to learn representations of graphically structured data that
capture features associated with graph nodes as well as edges between the nodes [6]. Recently graph neural networks,
Graph Convolutional Networks (GCN) [21], GraphSage [17], and Graph Attention Networks (GAT) [35], are proposed
and show great performance on various graph learning tasks. A popular task is that of link prediction [43], i.e., predicting
whether a link exists between two nodes in the graph, given information on the presence or absence of links between
other pairs of nodes. We show that the rule recommendation problem can be formulated as a link prediction one, and
go beyond prior work on GNNs for link prediction by considering a federated solution algorithm that can be learned in
a distributed way across multiple users.

Federated Learning. Federated learning is first proposed in [27], which allows clients to train a common machine
learning model on their collective data while keeping personal data on clients. Instead of uploading data to the server
for centralized training, clients iteratively process their local data and share model updates with the server. Weights
from a large population of clients are periodically aggregated by the server and combined to create an improved global
model. The widely adopted FedAvg algorithm [27] is used on the server to combine client updates and produce a new
global model. However, FedAvg may fail to converge if data from different clients follow different distributions (i.e., is
non-IID), as is often the case in federated learning scenarios, including our rule recommendation system. To deal with
the non-IID local data distribution [24, 45], various solutions such as SCAFFOLD [20], FedProx [23], and more recently,
FedGate [15] are proposed to reduce the variance of data distribution and speed up the learning.

Recent work proposes federated learning algorithms specialized to graph neural networks, and the model aims to
predict characteristics of the graph, such as link prediction, node classification, and graph classification. FedGraphNN [18]
provides a federated learning system and benchmark for graph neural networks, which mainly focuses on system
deployment. FedGCN [40] focuses on reducing the communication cost of training a large graph with cross-client edges.
Both work only uses FedAvg for the training process. Our work, however, focuses on learning techniques to handle the
challenges of limited and non-IID data in rule recommendation problems.

There are also algorithms that aim to use federated learning to make recommendations. FedMF [7] provides secure
federated matrix factorization. FCF [1] provides federated collaborative filtering for privacy-preserving personalized
recommendation systems. Wu et al. [37] uses a federated heterogeneous graph neural network to model user-item
relationships. All these federated recommendation systems use the user-item matrix formulation, which requires
communication among clients to exchange user information and is not fully federated, potentially raising privacy
and security concerns. By re-formulating the rule recommendation problem to a link prediction task in a graph, we
eliminate the need for communication among clients, helping to preserve user privacy and reducing the overhead of
communication during training.
Manuscript submitted to ACM
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3 FEDERATED RULE RECOMMENDATION

Recommendation systems often rely on gathering data from all users and their interactions with items or other users to
learn prediction models. This procedure poses a great threat to user privacy, as seen in the Netflix Recommendation
challenge, where researchers were able to identify individuals by matching Netflix profiles with those of IMDB
profiles [29]. Hence, it is of paramount importance to consider privacy-preserving systems for recommendation services.
Federated Learning [27] provides a viable solution for training such models without the need to move users’ data to a
server. Thus, it can be employed in training these models on user-item or user-user interaction data.

The main challenge that hinders the applications of federated learning in recommendation systems is the structure
of data in such systems, which cannot be distributed easily. For instance, matrix factorization or even recent algorithms
such as Graph Convolutional Matrix Completion (GCMC) [3] require access to the full user-item matrix they intend
to complete. Although some distributed variations of these algorithms have been proposed [12, 26], they are mostly
focused on computational efficiency in a structured homogeneous distribution of data. Thus, it addresses neither user
privacy concerns nor heterogeneity of data across the users’ network. For the rule recommendation problem, we address
these concerns by proposing a federated learning setup based on the graph structure of rules. Despite our focus on rule
recommendation with graph link prediction, the proposed learning approach can evidently be applied to other tasks
such as graph classification [44] and node classification [21].

3.1 Graph Rule Recommendation

In common recommendation systems, the goal is to predict unknown links between users and items. However, in rule
recommendation problems we want to suggest how users can connect two or more entities (e.g. smart devices) together.
In previous approaches, we are limited to considering multiple entities’ connections as the connections of one abstract
entity to create a user-item matrix (with items as rules). In this case, the item is a rule between those entities, and hence,
we are losing information on the graph structure of entities and their connections.

In the rule recommendation problem, similar to the graph link prediction problem [43], we need to consider the
relationship between different entities as well. Hence, instead of representing the connections as a row in a 2D matrix
of user-item relationships, we have a graph of entities’ connections for each user (see Figure 1). The graph also enables
us to represent entities with the same type (i.e., Cameras) as separate entity nodes in the graph. In addition, in this
setting, compared to a simple graph, instead of binary connections between different entities, we can have multiple
types of edge connections. This will enable us to represent different types of connections as different rules between
entities. Using this structure, we can leverage advancements in the graph neural network domain to learn a better
model for recommending new rules to the users.

Therefore, given the set of usersU and the set of connection types R, for each user 𝑢𝑘 ∈ U in our setting, we create
a graph of entities denoted by G𝑘 = (V𝑘 ,X𝑘 , E𝑘 ), whereV𝑘 is a set of nodes (entities), X𝑘 is the set of nodes’ (entities’)
features (e.g., types of entities), and E𝑘 is the set of connections between nodes in this graph. X𝑘 can be represented as
{x𝑣,∀𝑣 ∈ V𝑘 }, where x𝑣 represents the feature vector of node 𝑣 . Each connection in E𝑘 can be represented as (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ),
which means there is an edge (rule) between node 𝑣𝑖 and node 𝑣 𝑗 with connection type 𝑟 ∈ R (e.g. "is open, turn on"
in "when the contact sensor is open turn on the light"). The goal of the recommendation system in this problem is to
learn an embedding model 𝜽 for nodes in the graph of user 𝑢𝑘 and a predictor 𝝓 that can use the node embeddings to
estimate the following probability:

P
(
(𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) ∈ E𝑘 |𝜽 , 𝝓;G𝑘

)
. (1)
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Algorithm 1: GraphSage Node Embedding Generation Algorithm for Client 𝑢𝑘
Inputs: Graph G𝑘 = (V𝑘 ,X𝑘 , E𝑘 ), where input features X𝑘 = {x𝑣,∀𝑣 ∈ V𝑘 }; Weight matrices 𝜽 1 and 𝜽 2;
Differentiable aggregator function AGG (.); Neighborhood function N : 𝑣 → 2V𝑘 .

Output: Node embeddings z𝑣 for all 𝑣 ∈ V𝑘 .
// Node Features as Hidden State

h0𝑣 ← x𝑣,∀𝑣 ∈ V𝑘 ;
// First GraphSage Layer with ReLU Activation

for 𝑣 ∈ V𝑘 do
h1N(𝑣) ← AGG({h0𝑣𝑛 ,∀𝑣𝑛 ∈ N (𝑣)});
h1𝑣 ← ReLU(𝜽 1 · CONCAT(h0𝑣, h0N(𝑣) ));

end
// Second GraphSage Layer

for 𝑣 ∈ V𝑘 do
h2N(𝑣) ← AGG({h1𝑣𝑛 ,∀𝑣𝑛 ∈ N (𝑣)});
h2𝑣 ← 𝜽 2 · CONCAT(h1𝑣, h1N(𝑣) );

end
z𝑘𝑣 ← h2𝑣,∀𝑣 ∈ V𝑘

Based on this probability we can then recommend new edges to the users.

3.2 Model

For each client, our rule recommendation model has two parts: a Graph Neural Network (GNN) to calculate the node
embeddings and a predictor to predict the connections between nodes (the types of rules) as well as their probabilities.
As discussed above, each client 𝑢𝑘 has a graph G𝑘 to represent the ground truth connections between different nodes.

3.2.1 GNN. We choose a two-layer graph neural network to get the embedding of nodes. Algorithm 1 shows
the GraphSage [17] model that we used. In each GraphSage layer 𝑙 , at first the differentiable aggregator function
AGG({h𝑙𝑣𝑛 ,∀𝑣𝑛 ∈ N (𝑣)}) aggregates information from node neighbors, where h𝑙𝑣𝑛 denotes the hidden state of node 𝑣𝑛
and N(𝑣) denotes the set of neighbors of node 𝑣 . We use the mean operator as the aggregator function which takes the
element-wise mean of the hidden states. Then, weight matrices 𝜽 1 and 𝜽 2 are used to propagate information between
different layers of the model. After the two-layer GNN, we can then get the node embeddings z𝑘𝑣 for all 𝑣 ∈ V𝑘 .

3.2.2 Predictor. For each client 𝑢𝑘 , after we get the node embeddingsZ𝑘 = {z𝑘𝑣 ,∀𝑣 ∈ V𝑘 }. We then need to predict the
edge connection probability p𝑘𝑣𝑖 ,𝑣𝑗 ∈ [0, 1]

|R | between node 𝑣𝑖 and node 𝑣 𝑗 for all 𝑣𝑖 ∈ V𝑘 and all 𝑣 𝑗 ∈ V𝑘 . In our case,
for the predictor model, we use a two-layer fully-connected neural network with ReLU activation for the first layer
and the Sigmoid function in the last layer. The predictor uses z𝑘𝑣𝑖 and z𝑘𝑣𝑗 , embeddings of node 𝑣𝑖 and node 𝑣 𝑗 as input,
makes it pass the 2-layer neural network (𝝓) with weight matrices 𝝓1 and 𝝓2, then outputs the link probability of edges.

3.2.3 Centralized Optimization. The model can be easily trained in a centralized setting where the centralized server
stores all user graphs G𝑘 = (V𝑘 ,X𝑘 , E𝑘 ) for all 𝑢𝑘 ∈ U. We call this centralized training on the graph structure for
rule recommendation as GraphRule. User graphs are mainly sparse, meaning most of the connections between nodes
are not set yet. Given the number of possible types of edges between nodes, there are only a few positive edges Epos

𝑘

where the positive edge means that there is a formed connection between the two entities. The other possible edges can
Manuscript submitted to ACM
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then be considered as negative edges Eneg
𝑘

. Considering all negative edges lengthens the training time, so we sample

negative edges to balance the numbers of positive and negative edges.
We then use binary cross entropy loss including positive and negative edges as our objective function:

L𝑘 (P𝑘 , E
pos
𝑘
, Eneg
𝑘
) = − 1

|Epos
𝑘
| + |Eneg

𝑘
|
©­­«

∑︁
𝑒∈Epos

𝑘

log(𝑝𝑒 ) +
∑︁

𝑒∈Eneg
𝑘

log(1 − 𝑝𝑒 )
ª®®¬ , (2)

where P𝑘 ∈ [0, 1] |V𝑘 |× |V𝑘 |× |R | denotes all pairs of edge connection probability in G𝑘 , and 𝑝𝑒 ∈ [0, 1] denotes the
connection probability of a specific edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ).

By denoting the GNN as 𝜽 and predictor as 𝝓, the loss given user graph G𝑘 can then be represented as

L𝑘 (𝜽 , 𝝓;G𝑘 ) = L𝑘 (P𝑘 (𝜽 , 𝝓) , E
pos
𝑘
, Eneg
𝑘
) . (3)

At each iteration, the centralized server performs gradient descent by calculating the loss

L(𝜽 , 𝝓;G1, ..,G|U |) =
∑︁
𝑢𝑘 ∈U

L𝑘 (𝜽 , 𝝓;G𝑘 ), (4)

then updates the model.

3.3 FedRule

Learning the aforementioned models at scale requires gathering the graph data of every user at a server to run the
training. The GraphRule training, despite its fast convergence speed, can expose users’ private data related to the
devices or applications they are using and how they are connected together. Hence, it is important to facilitate a
privacy-preserving training procedure to safeguard users’ data. Federated learning [27] is the de-facto solution for such
purpose in distributed training environments.

Recently, there have been some proposals to apply federated learning in recommendation problems such as in [8, 30,
37]. However, almost all these proposals are for cross-silo federated learning and are not as granular as cross-device
federated learning. In this paper, the problem of rule recommendation is formulated so as to be more suited for the
cross-device federated learning setup. Although the cross-device federated learning setup is more desirable for the
purpose of privacy-preserving algorithms, it makes the training procedure more challenging. The reason behind this
is that for the problem of rule recommendation, the size of the data (i.e., the graph structure for each client) is small,
and it follows non-IID distribution due to heterogeneous user behaviors. The non-IID data distribution increases the
variance of gradients among users and makes the gradient updates coming from different users go in different directions.
Hence, the local training in federated learning by averaging the gradients is hard to converge due to misaligned
directions of gradients. As it is shown in Section 4, applying FedAvg with GNN on cross-device settings [18, 27] like
rule recommendation problem can fail in some cases due to the non-IID problem mentioned above.

We then propose the FedRule, federated rule recommendation system with graph neural network. The design schema
of the system is depicted in Figure 2. We use negative sampling, which samples negative edges in the graph, to balance
the numbers of positive and negative edges. To avoid the non-IID problem, we use two control parameters in local
machines for each client to correct the gradients and avoid drifting too much from the average model. FedRule as
presented in Algorithm 2 consists of four main parts as follows:
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Fig. 2. Overview of FedRule System Architecture Design.

Local Updates. At the beginning of each local training stage (communication round 𝑐), clients will get the updated
global GNN (𝜽𝑘 ) and prediction (𝝓𝑘 ) models. Then, in each local iteration 𝑡 , the client’s device computes the gradients
of models using local data. The gradient for the GNN part is with respect to the graph data (G𝑘 ) and for the prediction
model is with respect to the set of node embeddings (Z𝑘 ) from the local graph. With the control parameters described
next, the gradients get corrected and then the local models (𝜽 (𝑡,𝑐)

𝑘
, 𝝓 (𝑡,𝑐)
𝑘

) get updated using their respective learning
rates (𝜂𝜃 , 𝜂𝜙 ). Note that since the GNN model is a global representation of nodes and the prediction model is more of a
personalized classifier, the learning rates of the models might be different.

Gradient Correction. For each local iteration, after computing the gradients, we adapt the FedGATE algorithm [15]
and use two control parameters (𝜹𝜽𝑘 , 𝜹𝝓𝑘

) for GNN model and predictor model respectively. The use of these control
parameters will help the training to reduce the variance of convergence, as it can be inferred from the experimental
results in Section 4 as well. Similar to learning rates, due to the different natures of the models, they might get corrected
with different rates using parameters 𝜆𝜽 , 𝜆𝝓 .

Model Aggregation. After 𝜏𝑘 local steps in each client’s device, we aggregate the models from the devices. To do so,
we first compute the difference between the current local models and the starting global models at round 𝑐 , denoted by
𝚫
(𝜏𝑘 ,𝑐)
𝜽𝑘

,𝚫
(𝜏𝑘 ,𝑐)
𝝓𝑘

. Then, the server averages over these updates from clients and send back these averages to the clients

(𝚫(𝑐)𝜽 ,𝚫
(𝑐)
𝝓 ). Also, the server uses these average updates to update the global models that need to be broadcast to the

clients in the next round. Secure gradient aggregation methods can be integrated into the system to better protect
privacy.
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Algorithm 2: FedRule Federated Learning for Rule Recommendation Systems
for 𝑐 = 1, . . . ,𝐶 do

for each client 𝑘 ∈ [𝐾] do in parallel
Set 𝜽 (1,𝑐)

𝑘
= 𝜽 (𝑐) , 𝝓 (1,𝑐)

𝑘
= 𝝓 (𝑐) ,

for 𝑡 = 1, . . . , 𝜏𝑘 do
Set 𝒈 (𝑡,𝑐)𝜽𝑘

= ∇𝜽𝑘L𝑘 (𝜽
(𝑡,𝑐)
𝑘

, 𝝓 (𝑡,𝑐)
𝑘

;G𝑘 )
Set 𝒈 (𝑡,𝑐)𝝓𝑘

= ∇𝝓𝑘
L𝑘 (𝜽

(𝑡,𝑐)
𝑘

, 𝝓 (𝑡,𝑐)
𝑘

;Z𝑘 )
// Correct Gradients

𝒈̃ (𝑡,𝑐){𝜽𝑘 ,𝝓𝑘 }
= 𝒈 (𝑡,𝑐){𝜽𝑘 ,𝝓𝑘 }

− 𝜆{𝜽 ,𝝓 }𝛿 {𝜽𝑘 ,𝝓𝑘 }
// Update Parameters

𝜽 (𝑡+1,𝑐)
𝑘

= 𝜽 (𝑡,𝑐)
𝑘
− 𝜂𝜃 𝒈̃ (𝑡,𝑐)𝜽𝑘

𝝓 (𝑡+1,𝑐)
𝑘

= 𝝓 (𝑡,𝑐)
𝑘
− 𝜂𝜙 𝒈̃ (𝑡,𝑐)𝝓𝑘

end
// Update Control Parameters

send 𝚫
(𝜏𝑘 ,𝑐)
{𝜽𝑘 ,𝝓𝑘 }

=

{
𝜽 (𝑐)
𝑘
, 𝝓 (𝑐)
𝑘

}
−
{
𝜽 (𝜏𝑘 ,𝑐)
𝑘

, 𝝓 (𝜏𝑘 ,𝑐)
𝑘

}
to server and gets 𝚫(𝑐){𝜽 ,𝝓 }

Update control parameters using Eq. (5)
end
// Server Operations

// Difference Aggregation

𝚫
(𝑐)
{𝜽 ,𝝓 } =

1
𝐾

∑𝐾
𝑘=1 𝚫

(𝜏𝑘 ,𝑐)
{𝜽𝑘 ,𝝓𝑘 }

and broadcasts back to clients
// Update Global Models

Compute
{
𝜽 (𝑐+1) , 𝝓 (𝑐+1)

}
=

{
𝜽 (𝑐) , 𝝓 (𝑐)

}
− 𝚫(𝑐){𝜽 ,𝝓 } and broadcast to local clients

end

Parameter Updates. Using the calculated average updates in the previous stage, clients update their local control
parameters using the deviation of the local updates from average updates:

𝛿
(𝑐+1)
𝜽𝑘

= 𝛿
(𝑐)
𝜽𝑘
+ 1
𝜂𝜽𝜏𝑘

(
𝚫
(𝜏𝑘 ,𝑐)
𝜽𝑘

− 𝚫(𝑐)𝜽

)
𝛿
(𝑐+1)
𝝓𝑘

= 𝛿
(𝑐)
𝝓𝑘
+ 1
𝜂𝝓𝜏𝑘

(
𝚫
(𝜏𝑘 ,𝑐)
𝝓𝑘

− 𝚫(𝑐)𝝓

)
(5)

4 EMPIRICAL EVALUATION

After introducing our recommendation formulation, model, and training algorithm, we empirically evaluate the proposed
algorithm. In this section, we first introduce the two datasets used in our experiments and comparison methods, then
compare our methods in both the centralized and federated settings with baseline algorithms. After that, we show that
our proposal can handle multiple entities of the same type cases efficiently.

4.1 Datasets

Wyze Smart Home Rules Dataset. To experiment the efficacy of our proposed algorithm, we first use a real-world
dataset for smart home devices from the Wyze Labs’1 rule engine. This dataset contains the rules that connect smart
devices in different clients’ houses. Hence, by nature, the distribution of rules among different clients is non-IID, which

1https://www.wyze.com/
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is in line with the federated learning setting. We call this dataset the “Wyze Smart Home Rules” dataset, which contains
76, 218 users with 201, 940 rules. We cleaned the dataset to remove all personally identifiable information (PII) in order
to address privacy concerns. We simplify the current rules into the following form: < trigger entity, trigger-action pairs,
action entity>, where the trigger-action pairs denote the connection type. For instance, we can connect a smart doorbell
to another camera, when by pressing the doorbell we want to power on the camera for recording. Then, the rule format
is < Doorbell, Doorbell Pressed - Power On, Camera>. We have 11 unique entities and 163 unique trigger-action pairs,
resulting in a total of 1, 207 unique rules. The types of entities and trigger-action pairs are shown in Table 1.

IFTTT Dataset. The IFTTT Dataset [9] is one of the most popular EUD tools. To the best of our knowledge, this
is the only publicly available dataset of IF-THEN rules defined and shared by different users. But it does not support
entities of the same type. It was obtained by Ur et al. [34] with a web scrape of the IFTTT platform as of September
2016. The dataset contains 144 different users with 8, 729 rules. There are 3, 020 types of rules used by users. In the
current dataset, we use 53 unique entities and 132 unique trigger-action pairs. The types of entities and trigger-action
pairs are shown in Table 2.

Types of Entities

Camera
Chime Sensor
Contact Sensor
Light
Lock
Mesh Light
Motion Sensor
Outdoor Plug
Plug
Thermostat
Outdoor Camera

Types of Trigger-Action Pairs

Open, Power On
Open, Power Off
Open, Motion Alarm On
Open, Change Brightness
...
Open, Siren On
Open, Alarm Action
...
Person Detected, Power Off
Smoke Detected, Power Off
Doorbell Pressed, Power On

Table 1. Smart Home Rules Dataset entities and trigger-
action pairs.

Types of Entities

Android Device
Weather
Gmail
YouTube
...
Facebook
Instagram
Linkedin
...
Twitter
Reddit

Types of Trigger-Action Pairs

New Post, Share a Link
New Follower, Post a Tweet
New Like, Add File from Url
New Liked Video, Create a Post
...
New Photo, Send Me an Email
New Photo, Add File from Url
New Screenshot, Add File from Url
...
You Exit an Area, Set Temperature
Battery Low, Send an Sms

Table 2. IFTTT Dataset entities and trigger-action pairs.

4.2 Experimental Setups

Comparing Methods. We compare these methods
• Matrix Factorization [4]: Complete user-item matrix by matrix factorization.
• GCMC [3]: Graph-based auto-encoder framework for matrix completion based on a user-item bipartite graph.
• GraphRule: The proposed centralized optimization for graph formulation of rule recommendation.
• FedAvg with GNN [18, 27]: Each user has a user graph and a local model. The server aggregates the local models
and uses FedAvg to train the global model. We call this FedGNN.
• FedRule: Our proposed federated rule recommendation algorithm.

Experiment Setting. We use the Adam optimizer with a learning rate of 0.1 and 100 training rounds. For FL algorithms,
we use 3 local steps at each communication round, for 300 total iterations. The dimensions of the hidden states between
the two GraphSage layers and the two NN layers are 16 and the number of possible trigger-action pairs, respectively.
For GraphRule, users’ graphs are stored in the central server and we do the gradient descent with all users’ graphs. For
Manuscript submitted to ACM
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FL methods, we compute the batch gradient descent on each user’s graph with 3 local epochs to train the local models,
then the server aggregates the local models to update the global model. We set the hyper-parameter 𝜆 = 1 for the
FedRule algorithm. For each user, we use 80% rules set by the user for training and the remaining 20% rules for testing.

Evaluation Metrics. We use the following metrics to compare algorithms:
• Loss: Binary cross entropy loss with the positive and negative edges.
• AUC: Area Under the Curve.
• Mean Rank: Mean rank of positive testing edges between specific entities.
• Hit Rate@N: Recommend N rules and check if the positive test edges are included.

4.3 Comparison of Graph-Based and User-Item-Based Methods

Fig. 3. Hit Rate on the test set of Smart Home Rules
Dataset vs. number of recommendations, comparing
GraphRule with conventional recommendation sys-
tems. Recommendations are filtered by valid rules for
fair comparison.

Quantitative Evaluation. We first compare our centralized graph
model, GraphRule, with user-item-based methods. For a fair com-
parison with user-item-based methods, we consider entities with
the same type as one entity. As shown in Figure 3, the hit rate of
GraphRule is outperforming both GCMC and Matrix Factorization
in this task, which validates our analysis in Section 3.1. With the
increase of the number of recommendations, GraphRule has a better
hit rate, close to 0.91, when recommends 40 rules, which means by
recommending 40 rules among 1207 rules total, the user has 91%
chance to choose rules in the recommendation lists on average.

Qualitative Evaluation. To qualitatively evaluate the performance
of these algorithms we provide a case, where we feed a user’s rule
data to each of the models while omitting one of the rules set by that
user. The user’s rule examples are described in Table 3. Then, we show what is the rank of that omitted rule in the
recommendations made by each algorithm as well as other top recommendations in Table 4. As it can be seen in Table 4,
the removed rule is the third rank in the recommendation by GraphRule, while it is the 17th by GCMC. It was not in
any of the top 20 recommendations of the matrix factorization approach. Also, note that most of the recommendations
by matrix factorization are for cameras, which is due to the popularity of camera rules among other users. Also, GCMC
top rules are for a motion sensor that is not available in the user’s entity set. On the other hand, all recommendations
by GraphRule are applicable to the current set of entities for the user.

Triggers Actions

Entity Trigger Action Entity

Contact Sensor Open Power On Camera
Contact Sensor Open Motion Alarm Camera
Contact Sensor Open Power On Plug
Contact Sensor Open Power On Light

Contact Sensor Open Notifications Camera
Table 3. Arbitrary user’s rules. The last rule is omitted from the users’ rules for prediction.
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GraphRule Matrix Factorization GCMC

Rank Recommendation Rule Prob. Recommendation Rule Prob. Recommendation Rule Prob.

1 (Contact Sensor, Open, Change Brightness, Light) 0.997 (Camera, Motion Detected, Alarm, Camera) 0.999 (Motion Sensor, Motion Detected, Power On, Light) 0.910
2 (Contact Sensor, Open, Alarm, Camera) 0.996 (Camera, Motion Detected, Motion Alarm, Camera) 0.980 (Motion Sensor, Motion Detected, Change Brightness, Light) 0.855
3 (Contact Sensor, Open, Notifications, Camera) 0.995 (Camera, Motion Detected, Notification, Camera) 0.972 (Motion Sensor, Being Off, Power Off, Light) 0.840

.

.

.
.
.
.

.

.

.

17 (Contact Sensor, Being Open, Notification On, Camera) 0.882 (Camera, Sound Detected, Notification, Cloud) 0.335 (Contact Sensor, Open, Notifications, Camera) 0.623
18 (Contact Sensor, Condition Met, Alarm, Camera) 0.860 (Camera, Condition Met, Power On, Camera) 0.322 (Motion Sensor, Condition Met, Power On, Light) 0.592
19 (Contact Sensor,Being Open , Power On, Camera) 0.860 (Camera, Condition Met, Motion Alarm, Camera) 0.321 (Camera, Motion Detected, Alarm, Camera) 0.552
20 (Contact Sensor, Being Open, Alarm, Camera) 0.851 (Camera, Condition Met, Notification, Camera) 0.315 (Camera, Person Detected, Notification, Cloud) 0.541

Table 4. Qualitative comparison of GraphRule, Matrix Factorization, and GCMC methods in predicting the removed rule from the
rule set of an arbitrary user in Table 3. The removed rule is the third recommendation in GraphRule, but it is the 17th one in GCMC.
The removed rule is not included in the first 20 rules recommended by matrix factorization.

Fig. 4. Train and test performance of different algorithms on Wyze Smart Home Rules Dataset. FedRule smoothly converges while
FedGNN training diverges after a while.

4.4 Evaluation of Centralized and Federated Algorithms

In this part, we evaluate the performance of our proposed FedRule, and compare it with FedGNN training, as well as
our proposed centralized GraphRule. We perform the evaluations on both train and test datasets.

Results on Wyze Smart Home Rules Dataset. The results of applying the aforementioned algorithms on the Wyze
Smart Home Rules dataset are depicted in Figure 4. During the training, the centralized algorithm, GraphRule, converges
faster since it utilizes the training data of all users in an IID manner. For federated settings, given the heterogeneous
data distribution among users and the heterogeneity of the number of rules and entities for each user, FedGNN diverges
after 50 iterations. This is especially exacerbated by a large number of users with a small amount of data (76, 218 users
and 2.65 rules per user on average). On the other hand, FedRule smoothly converges to the same loss as the GraphRule
due to its variance reduction mechanism. The test loss shows that even GraphRule overfits after 20 iterations and
FedGNN diverges after 50 iterations. The test loss of FedRule smoothly decreases and converges to the same value as
the minimum loss in GraphRule after 200 iteration. Similarly, the test AUC of GraphRule converges faster. During the
training process, FedGNN has a better test AUC at the start but increases slowly after 50 iterations as the training loss
Manuscript submitted to ACM
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Fig. 5. Training and test performance of different centralized and federated algorithms on IFTTT Dataset. Again, FedRule smoothly
converges while FedGNN overfits.

Fig. 6. Hit Rate on the test set of Smart Home Rules
Dataset vs. number of recommendations, comparing
GraphRule with federated approaches.

Fig. 7. The Hit Rate on the IFTTT test dataset for
centralized and federated algorithms with the rule
filter.

Loss AUC MR MR(RT)
GraphRule 0.1997 0.9768 4.349 3.0970
FedGNN 0.3878 0.9521 6.661 5.3946
FedRule 0.1892 0.9804 4.156 2.9150

Table 5. Final test results on Smart Home Rules Dataset (RT:
remove rules shown in training graph).

Loss AUC MR MR(RT)
GraphRule 0.3238 0.9491 9.6997 9.6745
FedGNN 0.4905 0.9072 12.4479 12.4240
FedRule 0.3614 0.9417 8.8812 8.8564

Table 6. Final test results on IFTTT Dataset. (RT: remove rules
shown in training graph).

diverges. The test AUC of FedRule increases steadily to the same level as GraphRule after 200 iteration. The test Mean
Rank also shows similar patterns.

Table 5 shows the final test results of Wyze Smart Home Rules data. Although the GraphRule has access to all users’
graphs during the training, FedRule slightly outperforms GraphRule since it employs variance reduction, making the
convergence more smooth. FedRule greatly outperforms FedGNN in all criteria. The mean rank of FedRule is 2.915
after removing the rules in training graphs, which means that for any rules between two specific entities, we need to
recommend three rules on average and the user is very likely to adopt at least one of them. Also, Figure 6 shows the
test hit rate of the Wyze Smart Home Rules dataset. FedRule and GraphRule have very close performance and are at
most 26.8% better than FedGNN.

Results on IFTTT Dataset. The results of applying these methods on the IFTTT dataset are shown in Figure 5. The
IFTTT dataset is relatively smaller than the Wyze Smart Home Rules data, so it is easier to converge during the training
process. For the training loss, the centralized training, GraphRule, convergences faster since it benefits from the IID
distribution of data. For the federated setting, given it is a small dataset, the train loss of FedGNN converges faster
than FedRule with the same learning rate but the test loss of FedGNN diverges after 50 iterations. Similar to the Wyze
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Fig. 8. Training and test performance of different centralized and federated algorithms on Wyze Smart Home Rules Dataset, when
considering multiple entities with the same type.

Smart Home Rules dataset, FedGNN has a better test AUC at the start but it decreases after 50 iterations as the test loss
diverges. The test AUC of FedRule increases steadily during the training. Also, its test mean rank smoothly decreases,
converging to an even lower value than the GraphRule. Table 6 shows the final test results on IFTTT data. Although
GraphRule has a better testing loss and a slightly better AUC, the Mean Ranks of FedRule are better than those of
GraphRule, which is a better indicator of the recommendation performance.

Figure 7 shows the hit rate of different algorithms in the IFTTT dataset. Given the huge number of rules and apps,
there are trigger-action pairs that are infeasible between some entities in practice. Since the number of users is small
and hard to train a general model to avoid these infeasible pairs, we do rule filtering on the recommended rules to
keep valid rules. Due to the small size of the dataset, the evaluation has high variance. FedGNN is slightly better than
GraphRule and FedRule for the top-5 recommendations. But FedRule is the best in general and has at the best 8.1%
higher hit rate than GraphRule and FedGNN.

Fig. 9. The Hit Rate on the test set for Smart Home
Rules dataset, considering multiple entities with the
same type.We compare GraphRulewith FedRule and
FedGNN algorithms.

Entities with Same Type. As it was mentioned, the graph structure
allows us to distinguish between different entities with the same type
in a user’s graph. In this case, user-item-based methods become in-
feasible. User graph-based methods, however, can solve this problem
by simply considering these entities as different nodes in the graph
and using a node embedding to distinguish between different nodes
with the same type. Figure 8 shows the training and testing results
for centralized and federated methods. Similar to the previous part,
GraphRule converges faster, and FedGNN diverges after 150 itera-
tions. Similarly, the test loss of FedGNN diverges after 100 iterations
while FedRule converges smoothly. Also, the AUC and Mean Rank
results show that FedRule has a better performance than FedGNN.
Moreover, Figure 9 shows test hit rates. GraphRule has a better performance than federated approaches.
Manuscript submitted to ACM



FedRule: Federated Rule Recommendation System with Graph Neural Networks 15

Fig. 10. Train and test performance of different Graph Neural Network models on Wyze Smart Home Rules Dataset. GraphSage has
better model performance than GCN and GAT.

4.5 GNN Model Selection

To select the best model for our system we run an ablation study with two other GNN structures. We compare the
GraphSage model with GCN [21] and GAT [35]. As shown in Figure 10, GraphSage has better performance (loss, AUC,
and mean rank) during training and testing. The main reason is the 0-in-degree nodes in the device graphs. Output for
those nodes is invalid since no message will be passed to those nodes, which causes silent performance regression.
As in Algorithm 1, for the 0-in-degree nodes, GraphSage concatenates its node feature and the neighbor features (the
neighbor feature is a zero vector in this case) to avoid this issue.

4.6 System Implementation

We have implemented our rule recommendation in our smart home system, where users’ devices and rules are
represented as graphs. The system designed for this purpose has three major components, that are the data pipeline,
the training API, and the inference API. For each user, the data pipeline connects to two databases, device ownership,
and rules. By combining these two datasets, it can generate a complete graph for each user based on their available
rules and devices (even those devices that have not been set up for any rules yet). The data pipeline functionalities are
mainly the same for both the training and inference processes. It also generates a 3-dimensional tensor for valid rules
based on source and target node types. This tensor will be used to heavily boost the inference time by about 20 times
reduction when searching for valid rules. In the training process for the GraphRule, we generate the graphs for each
user and keep 20% of the rules as the test cases to avoid overfitting. The inference API is written to be called either by
each user independently or with a bulk of users in parallel. When the app from the user side calls the inference API,
first the data pipeline generates the user graphs, and then the latest trained models are called to run the inference.

Figure 11(a) and 11(b) represent the performance of the API model on a c5.4xlarge instance of Amazon Web
Services (AWS). This instance is configured on an Intel® Xeon® Platinum CPU with 3.00GHz frequency and 32 GB of
RAM. In Figure 11(a), the time required to complete the inference task from generating the graph to generating new
recommendations based on the size of the user’s graph is depicted. It is evident that by increasing the graph size the
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(a) (b)

Fig. 11. The system performance of the Inference API for rule recommendation system. Figure (a) shows the delay time of the
inference based on the size of the user’s graph. Figure (b) shows the histogram of the memory used for the inference for various users.
Most of the users got their recommendations with less than 10 MB of memory used and in less than 500 ms.

time required to complete the inference would increase. However, this increase seems to be linear, and for most users, it
can be done in less than 500 ms on a normal machine. Figure 11(b), shows the memory usage histogram for different
users. As it can be inferred almost all users’ inference tasks can be done with as low as 10 MB in memory. This shows
that this task can be easily done on edge devices on the user side.

5 CONCLUSION

In this paper, we have presented a new formulation for the rule recommendation systems, called GraphRule, based
on the graph structure of entities and their connections in a network of users. Despite the user-item format has been
widely adopted in conventional recommendation systems, the graph structure is better at handling multiple entities
with the same type and providing feasible recommendations based on the available entities in the user’s graph. In
addition, this graph structure enables us to have local models for each user and hence can further improve the privacy
of users. We therefore further propose FedRule, a federated rule recommendation setting based on the graph structure.
When compared with the previous proposals for federated learning on graphs, FedRule is designed for cross-device
federated learning to ensure each user’s data is kept private locally. Due to the variance reduction mechanisms in
FedRule, we are able to overcome the Non-IID issue of prior approaches in highly heterogeneous networks of users.

Extensive experimental results on Smart Home Rules and IFTTT datasets present the effectiveness of the proposed
formulation and training approaches over prior proposals. Providing more personalized recommendations based on
each user’s behavior in the federated learning setup is left as a future direction. Another direction of future work might
be to learn further about privacy: federated learning models can sometimes be reverse-engineered to reveal private
information about a user. To provide a more insightful comparison, real-world implementation of the proposed system
and investigating it with rigorous A/B testing is necessary and will be also considered as future work.
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