
The First Two Years of FLEET: An Active Search for Superluminous Supernovae

Sebastian Gomez1 , Edo Berger2,3 , Peter K. Blanchard4 , Griffin Hosseinzadeh5 , Matt Nicholl6 , Daichi Hiramatsu2,3 ,

V. Ashley Villar7,8,9 , and Yao Yin2
1
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; sgomez@stsci.edu

2
Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA

3
The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, USA

4
Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Avenue,

8th Floor, Evanston, IL 60201, USA
5
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA

6
Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

7
Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA

8
Institute for Computational & Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA
9
Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA

Received 2022 October 19; revised 2023 March 1; accepted 2023 March 3; published 2023 June 2

Abstract

In 2019 November, we began operating Finding Luminous and Exotic Extragalactic Transients (FLEET), a
machine-learning algorithm designed to photometrically identify Type I superluminous supernovae (SLSNe) in
transient alert streams. Through this observational campaign, we spectroscopically classified 21 of the 50 SLSNe
identified worldwide between 2019 November and 2022 January. Based on our original algorithm, we anticipated
that FLEET would achieve a purity of about 50% for transients with a probability of being an SLSN, P(SLSN-
I)> 0.5; the true on-sky purity we obtained is closer to 80%. Similarly, we anticipated FLEET could reach a
completeness of about 30%, and we indeed measure an upper limit on the completeness of 33%. Here we present
FLEET 2.0, an updated version of FLEET trained on 4780 transients (almost three times more than FLEET 1.0).
FLEET 2.0 has a similar predicted purity to FLEET 1.0 but outperforms FLEET 1.0 in terms of completeness,
which is now closer to ≈40% for transients with P(SLSN-I)> 0.5. Additionally, we explore the possible
systematics that might arise from the use of FLEET for target selection. We find that the population of SLSNe
recovered by FLEET is mostly indistinguishable from the overall SLSN population in terms of physical and most
observational parameters. We provide FLEET as an open source package on GitHub:https://github.com/
gmzsebastian/FLEET.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Core-collapse supernovae (304); Surveys (1671)

1. Introduction

Type I superluminous supernovae (SLSNe) can be up to 100
times more luminous than “normal” Type Ic SNe (SNe Ic).
They are identified by their high luminosity and blue spectra,
and, much like their normal-luminosity SN Ic counterparts,
SLSNe are thought to be the end stage of massive stripped-
envelope stars (Chomiuk et al. 2011; Quimby et al. 2011). To
date, we know of ∼200 spectroscopically classified SLSNe
(Chen et al. 2023; S. Gomezet al. 2023, in preparation). Many
open questions remain about the nature of SLSNe, what powers
them, their environments, their progenitors, and their connec-
tion to other transients (e.g., Ofek et al. 2007; Pastorello et al.
2010; Dessart et al. 2012; Gal-Yam 2012; Inserra et al. 2013;
Lunnan et al. 2014; Nicholl et al. 2017; Blanchard et al. 2020b;
Ørum et al. 2020; Yan et al. 2020c; Könyves-Tóth &
Vinkó 2021; Gomez et al. 2022a; Hosseinzadeh et al. 2022).
To address these questions, it is imperative that we find SLSNe
early and efficiently.

Telescope resources worldwide can only spectroscopically
classify ∼10% of all transients discovered by current optical
time-domain surveys. Since SLSNe only make up ∼1.5% of all
discovered transients (Perley et al. 2020b), we need efficient

methods to select the most likely SLSN candidates for
spectroscopic follow-up and make the most efficient use of
limited telescope time. Toward this end, we developed Finding
Luminous and Exotic Extragalactic Transients (FLEET), a
machine-learning algorithm that can determine the probability
of being an SLSN, P(SLSN-I), for any transient, calculated
using the properties of both its light curve and host galaxy
(Gomez et al. 2020a). We presented three versions of FLEET, a
rapid version trained on the first 20 days of photometry, a late-
time version that uses the first 70 days of photometry, and a
redshift version, the only one that includes the redshift as a
required parameter. The rapid version is meant to be used for
real-time classification, including additional photometry as it
becomes available, before the SN fades. The late-time version,
on the other hand, can provide more robust predictions and be
used to create photometric samples for population studies at the
expense of the SN being either dimmer or having faded. The
redshift version is the most accurate of the three but requires
knowing the redshift of the transient a priori.
The structure of this paper is as follows. In Section 2, we

present the results from our first 2 yr of FLEET operations and
confirm that we have been able to accurately and efficiently
discover SLSNe. In Section 3, we describe the expanded
training set used for FLEET, present updated performance
metrics of purity and completeness, and explore how FLEET
can be used to generate photometric samples of SLSNe. In
Section 4, we compare the SLSNe from FLEET to the overall

The Astrophysical Journal, 949:114 (7pp), 2023 June 1 https://doi.org/10.3847/1538-4357/acc536

© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1



sample of SLSNe and explore possible selection effects from
FLEET in terms of both physical and observational parameters.
Finally, we summarize our conclusions in Section 5. FLEET is
provided as a Python package on GitHub10 and Zenodo
(Gomez et al. 2020b), as well as included in the Python
Package Index under the name fleet-pipe.

2. FLEET 1.0: Operations and Discoveries

We began operating FLEET in 2019 November with the aim
of finding SLSNe in ongoing transient alert streams. We
selected candidates from transients reported to the Transient
Name Server (TNS)11 and followed up the ones that were most
likely to be SLSNe using the Blue Channel (Schmidt et al.
1989) and Binospec (Fabricant et al. 2019) spectrographs on
the MMT 6.5 m telescope and the Low Dispersion Survey
Spectrograph (Stevenson et al. 2016) and Inamori-Magellan
Areal Camera and Spectrograph (Dressler et al. 2011) on the
Magellan 6.5 m telescopes. Since we began running FLEET
and up to 2022 January, there have been 50 SLSNe spectro-
scopically classified worldwide, and FLEET is responsible for
classifying 21 of them (42%); the full list is shown in Table 1.
For completeness, in Table 2, we include a list of 17 transients
classified by FLEET that turned out to be something other than
SLSNe (six SNe IIn, six SNe Ia, three SNe II, and two SLSNe
II). We define an SLSN-II as an SN IIn with a peak absolute
magnitudeMr<−20. The classifications and spectra of all SNe
classified as part of this program were published on the TNS.

FLEET is a binary classifier that can determine if a transient
either is an SLSN with a probability P(SLSN-I)� 0.5 or, if the
probability is lower, is not. Purity is defined as the number of
true-positive SLSNe divided by the sum of true- and false-
positive SLSNe. For our purity measurements, we only
consider transients with P(SLSN-I)� 0.5, whether they are
SLSNe (N= 14) or not (N= 4). Completeness is defined as the
number of true-positive SLSNe divided by the sum of true-
positive and false-negative SLSNe. Since we do not know the
true number of undiscovered SLSNe, we cannot measure the
true completeness of the classifier. Nevertheless, we can obtain
an upper limit on the completeness by considering all SLSNe
discovered by FLEET with P(SLSN-I)� 0.5 (N= 14) divided
by the total number of SLSNe discovered worldwide (N= 46),
whether classified by FLEET or by someone else in the
community. We do not include the four SLSNe with P(SLSN-
I)� 0.5 discovered by others in our estimate of completeness to
be more conservative about our estimates. We find that the on-
sky performance surpassed the expected performance for
almost every metric:

1. rapid purity = 85% (predicted 50%),
2. late-time purity = 78% (predicted 59%),
3. rapid completeness 33% (predicted 30%), and
4. late-time completeness 30% (predicted 44%).

The on-sky measurements of purity are particularly success-
ful, given that FLEET was originally designed to optimize for
purity as opposed to completeness. Additionally, it is
reassuring to see that even when optimizing for purity, the
measured completeness is consistent with the predicted level.
In addition to the SLSN candidates with high P(SLSN-I)
values, we observed some transients that had P(SLSN-I)< 0.5

when other methods independent of FLEET suggested that they
could be possible SLSNe. For example, we targeted
SN 2021jmm, SN 2021jtu, and SN 2021owc because they were
part of the Zwicky Transient Facility (ZTF) SLSN candidate
reports (Perley et al. 2021a; Yan et al. 2021b, 2021c). We also
observed a few targets as part of an experimental attempt to
target Type II SLSNe, which, although they had low P(SLSN-
I) values, had P(SLSN-II) values above 0.7: SN 2019itq,
SN 2019otl, SN 2019pvs, SN 2019sgh, SN 2021xfu (all spec-
troscopically classified as Type I SLSNe), SN 2021owc,
SN 2021srg (SN IIn), and SN 2020mad (SLSN-II). We
manually vetted every transient before triggering spectroscopic
follow-up, removing transients with very poor or erroneous
data or misidentified host galaxies or that were clearly stellar in
nature. This means that we did not observe every transient with
P(SLSN-I)> 0.5, which might have lowered our measured
purity.
The redshift classifier was originally designed with the goal

of using it with data from the Legacy Survey of Space and
Time once it provides photometric redshift estimates for
galaxies down to i≈ 25 mag (Graham et al. 2018). Therefore,
we do not include a comparable validation of the redshift
classifier, since we have not yet tested it on active surveys.

3. FLEET 2.0: Updates and Predictions

The original version of FLEET was trained on 1813
spectroscopically classified transients. Here we retrain FLEET
on an updated and more extensive list of 4780 spectro-
scopically classified transients with the following distinct labels
from the TNS: 2983 SNe Ia, 749 SNe II, 187 SLSNe I, 157
SNe IIn, 143 CVs, 105 SNe Ic, 89 SNe IIP, 80 SNe Ib, 68 SNe
IIb, 52 SLSNe II, 46 tidal disruption events (TDEs), 35 SNe Ic-
BL, 26 SNe Ibc, 23 active galactic nuclei (AGNs), 19 SNe Ibn,
and 18 variable stars. We retrain the algorithm using the same
procedures outlined in Gomez et al. (2020a), where we
optimize the depth of the random forest trees, the features
included, and the number of days of photometry to consider.
We find that the optimal parameters we determined for FLEET
1.0 still perform best for FLEET 2.0, with the exception that a
tree depth of 11 branches now results in a higher completeness
than the original depth of seven branches.
Given that the number of transients per class varies

substantially, the classification would tend to be biased toward
selecting the more common classes. To prevent this, we
oversample each class to have a total of number of objects as
the most common class (i.e., 2983 SNe Ia) using the Synthetic
Minority Over-sampling Technique (Chawla et al. 2002). This
algorithm draws random samples from a vector connecting
every pair of objects across their parameter space until the
desired number of events is reached.
In Figure 1, we show the updated purity and completeness

obtained from the new FLEET 2.0 compared to those of
FLEET 1.0 for all three classifiers. The uncertainties for all
predictions represent the 1σ scatter of 25 different realizations
of each model generated using a different initial random seed.
We find that for transients with P(SLSN-I)� 0.5, the expected
purity is ≈50% for both the rapid and late-time classifiers. The
expected completeness for the same threshold is ≈50% for the
late-time classifier and ≈40% for the rapid classifier. FLEET
1.0 had a comparable purity to FLEET 2.0 but a completeness
≈10% lower for both classifiers. For the redshift classifier, the
purity increased in FLEET 2.0 compared to FLEET 1.0, from

10
https://github.com/gmzsebastian/FLEET

11
https://www.wis-tns.org/
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≈50% to ≈60%, and the completeness increased from ≈55%
to ≈60%. The drop seen in the FLEET 1.0 rapid classifier at P
(SLSN-I)> 0.9, which was due to the small sample size, is
now not present in FLEET 2.0.

3.1. Photometric Sample of SLSNe

We use FLEET 2.0 to generate a photometric sample of
SLSN candidates by running it on every optical transient
reported to the TNS and searching for unclassified SLSNe.

Table 1

Spectroscopically Classified SLSNe

SLSNe with P(SLSN-I) � 0.5

Classified by FLEET Classified by Others

Name Redshift P(SLSN-I) References Name Redshift P(SLSN-I) References

SN 2019zbv 0.370 0.77 (1) SN 2019sgg 0.573 0.62 (14)

SN 2019zeu 0.390 0.87 (1) SN 2020abjx 0.390 0.56 (15)

SN 2020abjc 0.219 0.51 (2) SN 2020auv 0.250 0.83 (16)

SN 2020adkm 0.226 0.62 (3) SN 2020rmv 0.270 0.64 (17)

SN 2020jii 0.396 0.84 (4)

SN 2020myh 0.283 0.67 (4)

SN 2020onb 0.153 0.85 (4)

SN 2020xgd 0.454 0.86 (5), (6)

SN 2021ejo 0.440 0.65 (7)

SN 2021gtr 0.303 0.47 (8)

SN 2021hpc 0.240 0.63 (9)

SN 2021txk 0.460 0.75 (10)

SN 2021vuw 0.200 0.81 (11)

SN 2021yrp 0.300 0.65 (12)

SLSNe with P(SLSN-I) < 0.5

Classified by FLEET Classified by Others

Name Redshift P(SLSN-I) References Name Redshift P(SLSN-I) References

SN 2019itq 0.481 0.03 (1) SN 2019pud 0.114 0.16 (18)

SN 2019otl 0.514 0.11 (1) SN 2019szu 0.213 0.02 (19)

SN 2019pvs 0.167 0.03 (1) SN 2019unb 0.064 0.12 (20)

SN 2019sgh 0.344 0.06 (1) SN 2020aewh 0.345 0.06 (21)

SN 2019ujb 0.165 0.04 (1) SN 2020ank 0.249 0.28 (22), (23)

SN 2019xaq 0.200 0.02 (1) SN 2020exj 0.133 0.04 (24)

SN 2021xfu 0.320 0.06 (13) SN 2020qef 0.183 0.09 (25)

SN 2020qlb 0.159 0.03 (26)

SN 2020tcw 0.065 0.08 (27)

SN 2020vpg 0.257 0.06 (28)

SN 2020wfh 0.330 0.20 (15)

SN 2020xga 0.440 0.11 (29)

SN 2020znr 0.100 0.16 (30)

SN 2020zzb 0.166 0.10 (15)

SN 2021bnw 0.098 0.06 (31)

SN 2021een 0.160 0.08 (32)

SN 2021ek 0.193 0.13 (33)

SN 2021fpl 0.115 0.11 (34)

SN 2021hpx 0.213 0.06 (35)

SN 2021kty 0.159 0.09 (36)

SN 2021lwz 0.065 0.00 (37)

SN 2021mkr 0.280 0.06 (38), (39)

SN 2021nxq 0.150 0.03 (40)

SN 2021rwz 0.190 0.24 (41)

SN 2021ybf 0.130 0.07 (42)

Note. All SLSNe spectroscopically classified between 2019 November and 2021 November either by FLEET or by other groups. We include the spectroscopic

redshifts and P(SLSN-I) values from the late-time FLEET classifier, sorted alphabetically. Only the SLSNe with P(SLSN-I) � 0.5 were used for measuring the purity.

All of the SLSNe with P(SLSN-I) � 0.5, excluding the ones discovered by other groups, were used to estimate the completeness. (1) Gomez et al. (2021b); (2)

Blanchard et al. (2020a); (3) Blanchard et al. (2021a); (4) Gomez et al. (2020c); (5) Gomez et al. (2020d); (6) Weil & Milisavljevic (2020); (7) Gomez et al. (2021a);

(8) Gomez et al. (2021d); (9) Gomez et al. (2021c); (10) Gomez et al. (2021e); (11) Gomez et al. (2021j); (12) Gomez et al. (2021h); (13) Gomez et al. (2021g); (14)

Yan et al. (2019); (15) Yan et al. (2020a); (16) Yan et al. (2020b); (17) Terreran (2020b); (18) Fremling et al. (2019); (19) Dahiwale & Fremling (2019); (20) Dahiwale

& Fremling (2020b); (21) Yan et al. (2021a); (22) Poidevin et al. (2020); (23) Dahiwale & Fremling (2020a); (24) Dahiwale & Fremling (2020c); (25) Terreran

(2020a); (26) Perez-Fournon et al. (2020); (27) Perley et al. (2020a); (28) Terreran (2020c); (29) Gromadzki et al. (2020); (30) Ihanec et al. (2020); (31) Magee et al.

(2021); (32) Dahiwale & Fremling (2021); (33) Gillanders et al. (2021); (34) Deckers et al. (2021); (35) Padilla Gonzalez et al. (2021); (36) Yao et al. (2021); (37)

Perley et al. (2021b); (38) Chu et al. (2021b); (39) Poidevin et al. (2021); (40) Weil et al. (2021); (41) Weil & Milisavljevic (2021); (42) Bruch et al. (2021).
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Since these are mostly transients that have faded away by the
time of this analysis, we use the late-time classifier that was
trained on the first 70 days of photometry. For this reason, we
exclude transients that were too young, discovered after 2022
March 1. At that time, there were a total of 95,729 transients
reported to the TNS. Of these, 83,589 have a decl.>−32°,
required for FLEET to query the PS1/3π (Chambers & Pan-
STARRS Team 2018) or Sloan Digital Sky Survey (SDSS)
catalogs (Alam et al. 2015; Ahumada et al. 2020). Of these,
34,805 were discovered before ZTF began operations and have
either only one data point or minimal discovery photometry
available. An additional 2078 transients were excluded because
they only had coverage in one band, despite having tens to
hundreds of detections in ZTF. Of the remaining transients,
31,922 had at least two g-band and two r-band points, required
for FLEET to fit a model to their light curve. Finally, we
excluded 30 transients that were located in regions with a
Galactic extinction 1.5 mag. The final list of transients on
which we run FLEET contains 31,892 transients.

In Figure 2, we show the P(SLSN-I) values from FLEET 2.0
compared to the estimates from FLEET 1.0 for all 31,892
transients. The increase in completeness of FLEET 2.0 is
evident in the cluster of transients that had low P(SLSN-I)
values in FLEET 1.0 that now lie at P(SLSN-I)> 0.5. In
Figure 2, we also include the sample of 106 spectroscopically
classified SLSNe, shown in blue. A total of 69 of these SLSNe
had P(SLSN-I)< 0.2 in FLEET 1.0, 20 of which now have P
(SLSN-I)> 0.5 in FLEET 2.0, representing the improvement in
completeness. While 21 SLSNe now have a lower P(SLSN-I)
in FLEET 2.0, 85 have a higher P(SLSN-I) in FLEET 2.0

Table 2

Non-SLSNe Classified by FLEET

Name Type Redshift P(SLSN-I) References

SNe with P(SLSN-I) � 0.5

SN 2020mad SLSN-II 0.123 0.60 (1)

SN 2020tyk SN IIn 0.087 0.73 (2), (3)

SN 2021abjs SN Ia 0.160 0.52 (6)

SN 2021ali SLSN-II 0.192 0.80 (8)

SNe with P(SLSN-I) < 0.5

SN 2020hvw SN II 0.093 0.41 (1)

SN 2020oqy SN Ia 0.135 0.12 (1)

SN 2021aeaj SN Ia 0.205 0.47 (7)

SN 2021jmm SN IIn 0.190 0.45 (4)

SN 2021jtu SN IIn 0.113 0.48 (4)

SN 2021osr SN IIn 0.085 0.01 (8), (9)

SN 2021owc SN IIn 0.127 0.42 (8)

SN 2021rcn SN Ia 0.121 0.05 (10)

SN 2021srg SN IIn 0.069 0.07 (5)

SN 2021stu SN II 0.034 0.27 (11)

SN 2021uuz SN II 0.175 0.36 (12)

SN 2021wkg SN Ia 0.120 0.06 (13)

SN 2021zqa SN Ia 0.120 0.34 (13)

Note. All transients spectroscopically classified by FLEET that turned out to

not be SLSNe, including their redshift and P(SLSN-I) estimate from the late-

time classifier, sorted alphabetically. Only the SNe with P(SLSN-I) � 0.5 were

used to calculate our purity estimates. (1) Gomez et al. (2020c); (2) Gomez

et al. (2020d); (3) Weil & Milisavljevic (2020); (4) Gomez et al. (2021c); (5)

Gomez et al. (2021e); (6) Gomez et al. (2021k); (7) Gomez et al. (2022b); (8)

Hosseinzadeh et al. (2021); (9) Chu et al. (2021a); (10) Gomez et al. (2021e);

(11) Gomez et al. (2021f); (12) Gomez et al. (2021i); (13) Gomez et al. (2021l).

Figure 1. Purity and completeness estimates for FLEET 2.0. Top: purity as a
function of classification confidence for the rapid, late-time, and redshift
versions of the classifier. Bottom: completeness as a function of classification
confidence for the same classifiers. The dashed lines show the equivalent
measurements from FLEET 1.0 taken directly from Gomez et al. (2020a) but
without the uncertainty regions for clarity.

Figure 2. Classification confidence P(SLSN-I) for both the new and old
versions of FLEET using the late-time classifier. We find that some SLSNe that
had low values of P(SLSN-I) in FLEET 1.0 are now well above 0.5 in FLEET
2.0. Both histograms showing the distribution of the distinct samples have been
normalized by sample size.
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compared to FLEET 1.0, indicating a net gain. Of the 21
SLSNe that lowered in confidence, only six decreased
significantly from P(SLSN-I)> 0.5 in FLEET 1.0 to P
(SLSN-I)< 0.5 in FLEET 2.0.

There were 25 SLSNe classified by other groups, which had
P(SLSN-I)< 0.5 in FLEET 1.0. Of these, nine have P(SLSN-
I)> 0.5 in FLEET 2.0. Of the remaining ones, nine still have
significantly low values of P(SLSN-I)< 0.25. These low P
(SLSN-I) values are mostly due to sparse or noisy light curves
and, in the case of SN 2021lwz, a very quickly evolving light
curve.

Of the 106 spectroscopically confirmed SLSNe in the sample
shown in Figure 2, 45 have P(SLSN-I)> 0.5, corresponding to
a completeness of 43%. We find a total of 382 transients with P
(SLSN-I)> 0.5, including the 45 known SLSNe. This
corresponds to a purity of 12%, much lower than the on-sky
purity presented in Section 2, for two main reasons. First,
obvious failure modes still exist that pollute the sample (e.g.,
variable AGNs or variable stars with long light curves, and no
detected host can be misclassified as an SLSN). We can
visually purge these obvious failure modes to increase the
purity of our sample, as was done during the first 2 yr of
operations to obtain the observed purity cited in Section 2.
Second, there are likely still some SLSNe in those 382
transients that have not been classified but can be considered to
create a photometrically selected sample of SLSNe. Of those

382 transients, we exclude 139 from being possible SLSNe
because either their light curves are too noisy or sparse or they
strongly resemble a stellar transient or AGN (these are the
green points in Figure 2 with P(SLSN-I)> 0.5 in FLEET 2.0).
That leaves 243 transients as possible SLSNe, noting that none
of the 45 spectroscopic classified SLSNe were rejected in the
manual purging process. Of these, 70 transients are already
classified: 2 AGNs, 2 CVs, 11 SLSNe II, 1 SN I, 13 SNe II, 2
SNe IIP, 17 SNe IIn, 16 SNe Ia, 2 SNe Ia-91T-like, 1 SN Ia-
CSM, 2 SNe Ic, and 1 TDE. Finally, 128 remain unclassified
SLSN candidates. We show the 128 photometrically selected
SLSN candidates in orange in Figure 2. We find that 45% of
these candidates also had P(SLSN-I)> 0.5 in FLEET 1.0,
whereas the other half were previously below this threshold. If
we were to spectroscopically classify these 128 SLSN
candidates, assuming that the likelihood of any one target
being an SLSN is equal to their P(SLSN-I), we expect that
about 82 of them would be true SLSNe, or an ∼40% increase
of the current total population size of SLSNe. A full
exploration of this population will be presented in future work.

4. Selection Effects

In this section, we explore whether the use of FLEET
introduces biases or selection effects in terms of observed or
physical SLSN parameters. For this test, we use the sample of

Figure 3. Gray data points represent the parameters of the full sample of SLSNe, while the green points are SLSNe that were recovered by FLEET using the late-time
classifier with P(SLSN-I) > 0.5. We show distributions of the most relevant physical and observational parameters. Top left: peak apparent r-band magnitude and
redshift. Top right: (g − r) color during peak and the host minus transient magnitude, Δm. Bottom left: ejecta mass and neutron star magnetic field. Bottom right:
magnetar spin period and ejecta velocity. We include the K-S metric for each parameter in the upper right corner of each panel.
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187 SLSNe used for training FLEET. We run these SLSNe
through the late-time classifier in FLEET and compare the
observational parameters of the SLSN population at large, with
those of 74 “recovered” SLSN with P(SLSN-I)> 0.5. To
quantify how different the parameter distributions are, we
implement a two-sample Kolmogorov–Smirnov (K-S), where a
K-S metric of D = 0.0 indicates that the two samples are drawn
from the same distribution, and D = 1.0 means that there is no
overlap between the distributions. We show how the apparent
r-band magnitude, redshift, (g− r) color, and Δm compare
between the two samples in the top panels of Figure 3, where
Δm is defined as the host magnitude minus the transient peak
magnitude. We find no obvious selection effects in terms of
redshift r-band magnitude or (g− r) color, which have K-S
metrics (and p values) of 0.13 (0.4), 0.07 (0.96), and 0.09 (0.3),
respectively. The only observational parameter for which we do
find a possible difference between the full and recovered
sample is Δm, where SLSNe with Δm< 0 are generally not
selected as likely SLSNe. This is reflected in its K-S metric of
0.18 (0.09). To calculate Δm, we use as reference the r-band
magnitudes of the host galaxies obtained from either PS1/3π,
SDSS, or values published in compilation studies of the hosts
of SLSNe (Inserra et al. 2013; Lunnan et al. 2014; Angus et al.
2016, 2019; Perley et al. 2016; Schulze et al. 2018, 2021) or
studies of individual SLSNe (Leloudas et al. 2012; Vreeswijk
et al. 2014; Lunnan et al. 2016, 2018; Yan et al. 2017;
Blanchard et al. 2018, 2021b; Yin et al. 2022).

The power source behind SLSNe is still a debated topic, but the
most likely one appears to be a magnetar central engine (Angus
et al. 2016; Nicholl et al. 2017; Margalit et al. 2018). When a
millisecond magnetar is born after the explosion of the progenitor,
it will spin down and deposit this energy into the ejecta, powering
the bright optical light curves observed in SLSNe (Kasen &
Bildsten 2010; Woosley 2010). Therefore, we explore the
selection effects in terms of the physical parameters of the SLSN
population, assuming these are powered by magnetars. We derive
the physical parameters of the 187 SLSNe from light-curve fits
using MOSFiT, a Python code designed to model the light curves
of transients using a variety of different power sources and derive
their physical parameters (Guillochon et al. 2018). We show how
the population of recovered SLSNe compares to the overall
population in the bottom panels of Figure 3. We find a K-S metric
(and p value) of 0.15 (0.26) for the magnetic field B⊥, 0.09 (0.79)
for the ejecta mass Mej, 0.05 (0.99) for the ejecta velocity Vej, and
0.12 (0.03) for the spin period Pspin. This shows that the two
populations are very similar at the 5%–10% level and that FLEET
is not introducing a bias in terms of physical parameters. We note
that here we are concerned mostly with the relative distribution of
physical parameters, and the specific choice of physical model is
not the discerning factor.

In conclusion, we find that even if FLEET is less likely to
select SLSNe with low values of Δm, this does not translate
into a bias on the derived physical parameters.

5. Conclusion

We have provided an evaluation of the on-sky performance
of FLEET during our first 2 yr of operations. We include the
list of 21 SLSNe found by FLEET 1.0 from 2019 November to
2022 January, which represent 42% of all SLSNe discovered
worldwide in the same time period. We show that our estimate
for purity of ≈50% from FLEET 1.0 was surpassed with a

measured purity of ≈80%. The measured completeness was in
line with our predicted value of ≈30%.
We describe an updated version, FLEET 2.0, trained on

4780 transients, or almost three times as many as FLEET 1.0.
The updated estimates for purity and completeness are both
≈50% for the late-time classifier and ≈50% purity and ≈40%
completeness for the rapid classifier. The estimated purity and
completeness for the redshift classifier are both ≈60%. It is of
course possible that the on-sky purity will be higher, as was the
case for FLEET 1.0. We test whether FLEET might be
introducing selection effects into the recovered SLSN popula-
tion and find no significant biases against any physical or most
observational parameters.
Finally, we generate a photometric sample of 128 likely

SLSN candidates selected by FLEET from ZTF archival data.
We find that if we were to spectroscopically classify all of these
candidates, assuming that the likelihood of any transient being
an SLSN is equal to its P(SLSN-I) value, ∼80 of them would
result in true SLSNe, which would represent an ∼40% increase
in the current population size of SLSNe.
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