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1. Introduction

Quantum Hall e�ect (QHE) has long been a fascinating phenomenon. It is associated with
systems of nonrelativistic electrons in two spatial dimensions in the presence of a strong perpendic-
ular magnetic field and low temperatures [1]. The hallmark of QHE is the remarkable quantization
of the Hall electrical conductivity f� = a42

/⌘, where the filling fraction a takes integer or special
fractional values.

In addition to a variety of important experimental results QHE has provided a theoretical
framework to study the interplay of many interesting ideas such as noncommutative geometries and
fuzzy spaces, bosonization, topological field theories, bulk-edge dynamics, etc. It turns out that
these connections as well as most of the important features of the original two-dimensional QHE
extend to higher dimensions and the results are quite interesting.

One of the first attempts to extend the QHE to four dimensions was by Hu and Zhang, who
formulated QHE on (4 [2]. Right after that, in collaboration with Nair we extended this to arbitrary
even dimensions by formulating QHE on the complex projective spaces CP: [3]-[10]. (For : = 1,
this reduces to the well known case of QHE on (

2
⇠ CP1 [11].) This extension introduces

two important new features. First, higher dimensionality and second, the possibility of having both
abelian and nonabelian background magnetic fields when : > 1. The nonabelian case is relevant for
a many-body system of fermions with internal degrees of freedom. Subsequently, di�erent versions
of higher dimensional QHE have been developed by other groups in both even and odd spatial
dimensional spaces [12]. Over the last few years four-dimensional QHE has been experimentally
realized in optical and cold atom systems, using the concept of synthetic dimensions [13], providing
an exciting interface between theory and experiment for higher dimensional QHE ideas.

In this talk I will briefly outline how the dynamics of integer QHE in any dimension is described
by a noncommutative bosonic field theory and how this has been used to construct e�ective actions
that capture the response of the system to electromagnetic and/or gravitational fluctuations [3]-[9].
I will then briefly describe the spectrum of the QHE on CP: and focus on the more recent work
regarding the entanglement entropy for integer QHE in higher dimensions [10].

2. Lowest Landau level dynamics as a noncommutative bosonic field theory

When QHE is defined on a compact space, each Landau level provides a finite dimensional
Hilbert space. In general, the spectrum decomposes into distinct, degenerate Landau levels separated
by an energy gap proportional to the external magnetic field. In the presence of a strong magnetic
field the dynamics is restricted in the lowest Landau level (LLL). Let us assume that the dimension
of the LLL is # and  of these states are occupied by fermions. For simplicity, we can ignore the
spin degree of freedom so that each state can be occupied by a single fermion. The observables
of the full theory projected onto the lowest Landau level are (# ⇥ #) matrices and the dynamics
of all possible excitations within the LLL is then described by a one-dimensional matrix action.
In a physical sample there is also a potential +̂ which confines the fermions within the sample.
The fermions are localized around the minimum of the potential but, because of the exclusion
principle, they spread out and form droplets of almost constant density, the so-called quantum
Hall droplets. The low energy excitations of these droplets, corresponding to transitions of outer
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electrons to states of higher energy within the same Landau level are boundary fluctuations, the
so-called edge excitations. The ground state droplet is characterized by a diagonal density matrix
d̂0, with diagonal elements equal to 1 for occupied states and 0 for unoccupied ones. The most
general fluctuations whithin the LLL which preserve the number of occupied states are unitary
transformations d̂0 ! d̂ = *̂ d̂0*̂

†, where *̂ is an (# ⇥ #) unitary matrix. *̂ can be thought of as
a “collective" variable describing excitations within the LLL. The action for *̂ is given by

(0 =
π

3C Tr
⇥
8 d̂0*̂

†
mC*̂ � d̂0*̂

†
+̂*̂

⇤
(1)

The equation of motion resulting from (1) is the expected evolution equation for d̂, namely

8

m d̂

mC

= [+̂ , d̂] (2)

It is worth emphasizing that (0 is a universal matrix action with no explicit dependence on properties
of space on which QHE is defined, the abelian or nonabelian nature of fermions, etc. One can bring
in the space-time features by writing (0 as a noncommutative field theory action, namely

(0 =
π

3C Tr
⇥
8 d̂0*̂

†
mC*̂ � d̂0*̂

†
+̂*̂

⇤
(3)

=
#

#
0

π
3` 3C CA

⇥
8(d0 ⇤*

†
⇤ mC*) � (d0 ⇤*

†
⇤+ ⇤*)

⇤
(4)

where 3` is the volume measure of the space where QHE has been defined and d0, *, + are
the symbols of the corresponding matrices on this space. Equation (4) is written for the case of
nonabelian fermions coupled to a background gauge field in some representation � 0 of dimension
#

0; the corresponding symbols are (#
0
⇥ #

0
) matrix valued functions. Our notation is such that

“Tr" indicates trace over the #-dimensional LLL Hilbert space while “tr" indicates trace over the
#

0-dimensional representation � 0. In the case of abelian fermions, # 0 = 1 and tr is trivial. In
general the symbol and star-product are given by

$ (ÆG, C) =
1
#

’
<,;

 <(ÆG)$<; (C) ⇤

;
(ÆG) (5)

�
$̂1$̂2

�
BH<1>;

= $1(ÆG, C) ⇤$2(ÆG, C) (6)

where <(ÆG),< = 1, · · · , # , represent the correctly normalized LLL single-particle wavefunctions.
This bosonization technique can be extended to include fluctuating gauge fields (in addition to

the uniform background magnetic field which defines the Landau problem) by gauging the matrix
action (1), namely

( =
π

3C Tr
⇥
8 d̂0*̂

†
(mC + 8Â)*̂ � d̂0*̂

†
+̂*̂

⇤
(7)

=
#

#
0

π
3C 3` tr

⇥
8d0 ⇤*

†
⇤ mC* � d0 ⇤*

†
⇤ (+ + A) ⇤*

⇤
(8)

An obvious question then is how A related to the gauge fields coupled to the original fermions?
The action (8) is invariant under the infinitesimal transformations

X* = �8_ ⇤*

XA(ÆG, C) = mC_(ÆG, C) � 8 (_ ⇤ (+ + A) � (+ + A) ⇤ _) (9)

3
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Since the action ( is supposed to describe gauge interactions of the original system it also has to be
invariant under the usual gauge transformation

X�` = m`⇤ + 8[ �̄` + �`, ⇤] (10)

X�̄` = 0

where ⇤ is the infinitesimal gauge parameter and �̄` is a possible uniform non-Abelian background
field. For abelian gauge fields the commutator term in (10) is zero. The fact that ( is invariant
under (9) and (10) implies that the transformation (9) can be thought of as a nonlinear realization
of the gauge transformation (10). This provides a clear way to construct (up to gauge invariant
terms) A as a function of �` and derive the bosonized action of the LLL fermionic system in
the presence of gauge interactions. Further, since A can be thought of as the time-component of
a noncommutative gauge field, the relation between A and the commutative gauge fields �` is
essentially a Seiberg-Witten transformation [7, 8].

This approach provides a very general way to construct the bosonic action describing the
dynamics of the underlying LLL fermionic system in any space that admits a consistent formulation
of QHE. At the semiclassical limit, where # , are large and # �  , the action (8) splits into a
chiral edge action that has support on the boundary of the droplet and a purely �`-dependent Chern-
Simons type bulk action. Furthermore, although each of these actions is not gauge invariant there is
an exact anomaly cancellation between the two, since the original action (8) is by construction gauge
invariant. This is a generalization of a method used by Sakita [14] to derive the electromagnetic
interactions of LLL spinless electrons in the two-dimensional plane. We have implemented this
approach in a series of papers to construct e�ective actions for the higher dimensional integer QHE
on CP: , whose single-particle spectrum is described in the next section. We found that, in the
absence of fluctuating gauge fields, the edge dynamics of the higher dimensional chiral droplets is
described by a higher dimensional generalization of the Wess-Zumino-Witten action [4, 5]. In the
presence of fluctuating gauge fields the e�ective action splits into a bulk Chern-Simons type action
and a gauged, chiral WZW action in a way that the full action is gauge invariant [7, 8].

We further extended the derivation of e�ective actions for higher dimensional QHE systems
by including gravitational metric perturbations around background fields of a specified topological
class, thus moving away from the standard metric of CP: spaces [9]. The analysis was based on the
use of index theorems applicable for complex manifolds, in particular the Dolbeault index which
essentially measures the degeneracy of the lowest Landau level and therefore the charge of the
system if one assigns a unit charge to each nonrelativistic electron. Integrating the Dolbeault index
density with respect to the gauge field, with some input from the standard descent procedure for
anomalies, we were able to derive the bulk topological e�ective action for integer quantum Hall
systems including gauge and gravitational interactions on manifolds of arbitrary even dimension.
This extends previous two-dimensional results on e�ective actions and related transport coe�cients
[15, 16] to all even spatial dimensions.

3. Quantum Hall e�ect on CP:

In this section I will briefly describe the spectrum of QHE onCP: , following the group theoretic
analysis developed in [3]-[5]. CP: are 2:-dimensional manifolds that can be locally parametrized

4
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by : complex coordinates I8 . They can also be thought as coset manifolds, namely

CP: =
(* (: + 1)
* (:)

(11)

It turns out that a group theoretic approach provides a generic and straightforward way to extract the
single particle spectrum for each Landau level. It is immediately clear from (11) that since* (:) ⇠

* (1)⇥(* (:), one can have both* (1) and (* (:) background magnetic fields and further the Landau
wavefunctions can be obtained as functions of (* (: + 1) with specific transformation properties
under * (:). A basis for such functions is given by the so-called Wigner D-functions, which are
the matrices corresponding to the group elements in the unitary irreducible representations, i.e.,

 �

⇠ D
�

!,'
(6) = h�, ;�| 6 |�, A�i (12)

where � denotes the representation and ;�, A� stand for two sets of quantum numbers specifying
the states within the representation. On an element 6 2 (* (: + 1), we can define left and right
(* (: + 1) actions by

!̂� 6 = )� 6, '̂� 6 = 6 )� (13)

where )� are the (* (: + 1) generators in the representation to which 6 belongs. The left trans-
formations !̂� correspond to magnetic translations. There are 2: right generators of (* (: + 1)
which are not in * (:); these can be separated into )+8 , 8 = 1, 2 · · · , : , which are of the raising
type and )�8 which are of the lowering type. These generate translations on CP: , while the right
* (:) transformations generate rotations at a point and correspond to gauge transformations. The
covariant derivatives on CP: are given by

D±8 = 8
'̂±8

A

(14)

where A can be thought of as the radius of CP: . This is consistent with the fact that the commutator
of covariant derivatives is the magnetic field. The commutators of '̂+8 and '̂�8 are in the Lie
algebra of* (:); in the case of CP: these correspond to constant magnetic fields (the field strength
components are proportional to the Riemannian curvature which is constant, proportional to the
* (:) structure constants, in the tangent frame basis). In particular, we can choose uniform* (1) or
* (:) background magnetic fields,

* (1) : �̄ = 30̄ = = ⌦,

(* (:) : �̄
0

⇠ '̄
0

⇠ 5
0UV

4
U

4
V (15)

where ⌦ is the Kähler two-form. The choice of the background fields determines how the Landau
wavefunctions  transform under right* (:) transformations. In particular,

'̂
:

2+2:  
�

<;U (6) = �
=:p

2: (: + 1)
 �

<;U (6) (16)

'̂0  �

<;U (6) = ()
�̃

0
)UV �

<;V (6) (17)

where the index < = 1, · · · , dim� labels each state within the (* (: + 1) representation � and
therefore counts the degeneracy of the Landau level. Equation (17) shows that the wavefunctions

5
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 �

<;U transform, under right rotations, as a representation �̃ of (* (:) in the case of nonabelian
backgrounds. The index U = 1, · · · dim�̃ characterizes the nonabelian charge of the underlying
fermion fields.

In the absence of a confining potential, the Hamiltonian � for the Landau problem is propor-
tional to the covariant Laplacian on CP: , namely

� = �
1

4"
(D+8D�8 + D�8D+8) (18)

which apart from additive constants can be reduced to the form
Õ

8
'̂+8 '̂�8 . Thus the lowest Landau

level wavefunctions satisfy the holomorphicity condition

'̂�8  = 0 (19)

The conditions (16), (17) and (19) completely fix the representation � and therefore the degeneracy
of the lowest Landau level.

In the case of an abelian magnetic field one can easily write down the lowest Landau level
wavefunctions. They are essentially the coherent states for CP: , written explicitly in terms of the
holomorphic coordinates I8 = G8 + 8H8 as

 8182 · · ·8: =
p
#


=!

81!82!...8:!(= � B)!

� 1
2 I

81
1 I

82
2 · · · I

8:
:

(1 + Ī · I)
=
2
,

B = 81 + 82 + · · · + 8: , 0  88  = , 0  B  = (20)

They form a symmetric, rank = representation � of (* (: + 1) whose dimension is

# = dim� =
(= + :)!
=!:!

(21)

The volume element for CP: (normalized so that the total volume,
Ø
3`, is 1) is

3` =
:!
c
:

3
2
I1 · · · 3

2
I:

(1 + Ī · I):+1
(22)

In the case of a * (1) ⇥ (* (:) nonabelian gauge field, it is convenient to label the irreducible
representation of (* (: + 1)' by (? + ;, @ + ;

0
) corresponding to the tensor [5]

T
01...0@W1...W;0

11...1? X1...X;
⌘ T

@,;
0

?,;
(23)

where ?, @ indicate* (1) indices and ;, ; 0 indicate (* (:) indices, namely 0’s and 1’s take the value
(: + 1) and W’s and X’s take values 1, · · · , : .

The right hypercharge corresponding to (17) is
p

2: (: + 1)'
:

2+2: = �: (? � @) + ; � ;
0 = �=: (24)

The fact that = has to be integer implies that (; � ; 0)/: is an integer, thus constraining the possible
(* (:)' representations �̃.

Further, as explained in [5], the lowest Landau level states correspond to @ = 0, ; = 0 and are
described by the representations T ;

0

?
, where ? = = � ;

0

:
and ; 0 = 9 : , 9 = 1, 2, · · · .

6
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4. Entanglement Entropy for higher dimensional QHE

Entanglement entropy has been used to explore properties of quantum states in a variety of
condensed matter systems. Typically, a system is divided into two subsystems and the entanglement
entropy is calculated in terms of the von Neumann entropy of the reduced density matrix of one
of the subsystems. For gapped two-dimensional systems, such as QH systems, the leading order
contribution to the entanglement entropy is proportional to the perimeter of the boundary separating
the two subsystems, in particular ( = 0! + W + O(1/!), where ! is the length of the boundary, 0 is
a non-universal coe�cient and W is a universal quantity referred to as the topological entanglement
entropy [17]. The area-law entropy behavior for the two-dimensional fully-filled integer QHE was
studied in di�erent geometries analytically for a = 1 and numerically up to a = 5 in [18]; it was
found that W = 0 while the coe�cient 0 depends on the filling fraction a. A general mathematical
theorem on the entropy area-law for a = 1 QHE on Kähler manifolds is shown in [19].

In order to calculate the entanglement entropy we divide the system into two regions, ⇡ and
its complementary ⇡⇠ , and define the reduced density matrix

d⇡ = Tr
⇡

⇠ |⌧(ih⌧( | (25)

where |⌧(i is the many-body ground state of the system, |⌧(i =
Œ

<
2
†
<
|0i.

The entanglement entropy is defined as

( = �Trd⇡ log d⇡ (26)

We choose ⇡ to be the spherically symmetric region ofCP: satisfying I · Ī  '
2. ForCP1

⇠ (
2,

this region is a polar cap centered around the north pole and bounded by a latitude angle \, with
' = tan \/2 via stereographic projection.

The LLL fermion operator can be expanded as

k =
’
<

2< <(I) (27)

where  < is the single particle wavefunction. We now define the operators 0, 1 such that

0< =
1

p
_<

π
⇡

3`  ⇤

<
k, 1< =

1
p

1 � _<

π
⇡

⇠
3`  ⇤

<
k

_< =
π
⇡

 ⇤

<
 <

It is straightforward to check that the pairs {0<, 0
†
<
}, {1<, 1

†
<
} form two independent fermionic

algebras and further

2< =
p
_< 0< +

p
1 � _< 1< 2

†

<
=
p
_< 0

†

<
+

p
1 � _< 1

†

<
(28)

The operators 0†, 1† essentially generate the part of the wavefunction which is localized inside ⇡
and ⇡⇠ correspondingly. Tracing over 1’s one finds that the reduced matrix d⇡ takes the form of
a 2#

⇥ 2# block diagonal matrix, in particular

d⇡ = ⌦<diag(_<, 1 � _<) (29)

7
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The entanglement entropy is then given by

( = �Trd⇡ log d⇡ = �

#’
<=1

[_< log_< + (1 � _<) log(1 � _<)] (30)

_’s can also be thought as the eigenvalues of the two-point correlator, with I, I0 2 ⇡ [20],

⇠ (A, A
0
) =

#’
<=1

 ⇤

<
(I)  <(I

0
) (31)

We now proceed to calculate the eigenvalues _ and the entanglement entropy for the case of an
abelian and nonabelian magnetic field backgrounds.

4.1 a = 1 QHE on CP: and abelian magnetic field

The lowest Landau level wavefunctions for CP: in the case of an abelian background magnetic
field are given in (20). The corresponding eigenvalues _B =

Ø
⇡

 ⇤
B
 B are given by

_B =
(= + :)!

(B + : � 1)!(= � B)!

π
C0

0
3C C

B+:�1
(1 � C)

=�B (32)

where C0 = '2
/(1+'2

). For large =, this is amenable to a semiclassical calculation for all : ⌧ = [21].
For each value of B = 81+82+· · ·+8: , the eigenvalue_B has a degeneracy 3B = (B + : � 1)!/B!(: � 1)!.

The expression for the entanglement entropy is then

( =
=’
B=0

(B + : � 1)!
B!(: � 1)!

�B (33)

�B = �_B log_B � (1 � _B) log(1 � _B) (34)

For large = and for any spherical domain ⇡ of radius ' there is a sharp transition in the value of _
around B⇤ ⇠ =C0, where _B⇤ = 1/2. Smaller values of B correspond to _ = 1 ( B are localized within
⇡) while bigger values of B correspond to _ = 0 ( B are localized outside ⇡). This pattern is the
same for all : , when : ⌧ =. As a result only wavefunctions localized very near the boundary of ⇡
contribute to the entropy, and � defined in (34) is a narrowly peaked Gaussian distribution around
_ = 1/2. Figures 1 and 2 clearly illustrate these points. Extending the semiclassical analysis to the
entropy we find that

( ⇠ =
:�

1
2
c (log 2)3/2

2 :!
2:

'
2:�1

(1 + '2):
⇠ 2: Area (35)

where 2: '
2:�1

(1+'2):
is the geometric area of the boundary of spherical cap ⇡. This agrees with the

: = 1 result in [18].
The entropy in (35) is proportional to the area of the entangling surface as expected, but

the overall coe�cient 2: depends on : . This dependence goes away though if one expresses the
entropy in terms of a "phase-space" area instead of a geometric one. The phase-space volume is

8
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R=1
t_0=0.5
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Figure 1: Plots of _B as a function
of B for : = 1 (red), : = 5 (blue
dashed) and = = 1000 and ' = 1

450 500 550 600

0.1
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Figure 2: Plots of �B exact (red)
and Gaussian approximation (blue
dashed) as a function of B for : = 1
and = = 1000 and ' = 1

proportional to the number of states, namely+phase�space = =
:

:!

Ø
⌦: = =

:

:!

Ø
3`. This then defines

a phase-space area for the entangling surface as

�phase�space =
=
:�

1
2

:!
�geom =

=
:�

1
2

:!
2:

'
2:�1

(1 + '2):
(36)

Expressing the entanglement entropy (35) in terms of this phase-space area we obtain a universal
expression valid for any : ,

( ⇠
c

2
(log 2)3/2

�phase�space (37)

4.2 a = 1 QHE on CP2
and nonabelian magnetic field

The derivation of the entanglement entropy in the case of a nonabelian background magnetic
field is more involved. As mentioned earlier the LLL states form irreducible representations of
(* (: + 1) of the form T

;
0

?
, where ? = = �

;
0

:
and ; 0 = 9 : , 9 = 1, 2, · · · . We will illustrate the

calculation of the entanglement entropy for the simplest case of CP2 with a nonabelian magnetic
field* (1) ⇥ (* (2) for the lowest value of ; 0 , namely ; 0 = : = 2 and ? = = � 1. The derivation for
other values of : and ; 0 follows similar ideas. The degeneracy of the corresponding LLL is [5]

# =
3=(= + 3)

2
(38)

There are now three distinct types of wavefunctions [10]. Here I will only write down the corre-
sponding expressions for _’s for each of the three (* (2) multiplets,

_
(1)
B,:=2 = _

(Ab)
B+1,:=3

_
(2)
B,:=2 =

= + 3
= + 1

_
(Ab)
B+1,:=2 �

2
= + 1

_
(Ab)
B+1,:=3 (39)

_
(3)
B,:=2 =

= + 3
= + 1

_
(Ab)
B+1,:=1 �

2(= + 3)
(= + 1) (= + 2)

_
(Ab)
B+1,:=2 +

2
(= + 1) (= + 2)

_
(Ab)
B+1,:=3

where _ (Ab)
B,:

are the eigenvalues (32) we found for the abelian magnetic field. Each _ (8) in (40) has
a corresponding degeneracy B + 8, 1=1,2,3.

9
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The expression for the entanglement entropy for the nonabelian lowest Landau level states for
CP2 can now be written as

( =
?’

B=0

h
(B + 1)� (1)

B
+ (B + 2)� (2)

B
+ (B + 3)� (3)

B

i

;0A64 =

������!

?’
B=0

h
(B + 1)� (Ab)

B+1,:=3 + (B + 2)� (Ab)
B+1,:=2 + (B + 3)� (Ab)

B+1,:=1

i

! 3 =3/2
c (log 2)3/2 '

3

(1 + '2)2
= 3 ( (Ab) (40)

The overall factor of 3 relating the nonabelian entanglement entropy to the abelian one above has
to do with the fact that each lowest Landau state is an (* (2) triplet, dim�̃ = 3. Although the
calculation of the entropy in the case of a nonabelian background was explicitly done for CP2 and
the triplet representation, one expects a more general statement to hold. In the large = limit the
degeneracy of the LLL in the case of a nonabelian background is [5]

# ⇠ dim�̃
=
:

:!
(41)

The corresponding phase-space volume in this case is +phase�space = dim�̃ =
:

:!

Ø
3` and the corre-

sponding phase-space area is

�phase�space = =
2:�1

2
dim�̃
:!

�geom = =:�
1
2

2 dim�̃
(: � 1)!

'
2:�1

(1 + '2):
(42)

Expressed in terms of the phase-space area the overall coe�cient in the expression for the entan-
glement entropy is the same for any abelian or nonabelian background at large =

( ⇠
c

2
(log 2)3/2

�phase�space (43)

5. Entanglement entropy for higher Landau levels

In this section we will consider the entropy for higher Landau levels focusing in particular on
some of the di�erences in the behavior of the eigenvalues _ between the lowest Landau level @ = 0,
the first excited Landau level @ = 1 and the case of a = 2 where both levels are filled. We will only
consider the : = 1 case, QHE on the sphere. Similar features apply for higher : .

The wavefunctions for the @-th Landau level are of the form

 �

<
(6) =

p
# h�,< |6 |�, =i (44)

where � = =/2 + @ and dim� = = + 2@ + 1. The state |�, =i is not the lowest weight state of the �
representation. It can be generated by the action of '̂+ on the LLL state. In particular, the correctly
normalized wavefunctions of the @ = 1 Landau level are

 @=1
B

=
p
= + 3

s
(= + 1)!

B!(= + 2 � B)!

h
�(= + 2) ĪIBp
(1 + IĪ)=+2

+
BI

B�1p
(1 + IĪ)=

i
(45)
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and the corresponding eigenvalues of the two-point correlator are of the form

_
(@=1)
B

=
(= + 3)!(= + 2)
B!(= + 2 � B)!

π
C0

0
3C C

B�1
(1 � C)

=�B+1
[C �

B

= + 2
]
2 (46)

The eigenvalue _ (@=1)
B

as a function of B is similar to _ (@=0)
B

away from the transition region, but
it displays a distinct step-like pattern around the value B⇤ = C0 (= + 2), as shown in Figure 3.
The reason for this has to do with the fact that the wavefunctions (45) have a node. Since they
are generated by the action of '+ on the LLL wavefunctions of monopole charge = + 2 they are
necessarily orthogonal to them. Since the LLL wavefunctions are nonzero and have no node,
orthogonality requires that the first level Landau wavefunctions must have a node. Higher Landau
level wavefunctions acquire more nodes and one expects more steps around the transition region
for the corresponding eigenvalues _. In fact the @-th Landau level states will have @ nodes and the
profile of the corresponding _ will display @ distinct steps.

450 500 550 600

0.2

0.4

0.6

0.8

1.0

Figure 3: Plot of _ (@=1)
B

as a func-
tion of B for : = 1, = = 1000 and
' = 1

450 500 550 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Plot of � (@=1)
B

as a func-
tion of B for = = 1000 and ' = 1

The step-like plateau of _ causes the broadening of the entropy per mode �B around _ = 1/2
which cannot be approximated with a simple narrow Gaussian distribution anymore. Figure 4
displays the plot of� (@=1)

B
around_ = 1/2 based on the numerical evaluation of the exact expressions

in (34) and (46). This clearly shows a deviation from the Gaussian distribution (see also Figure 7).
As a result, the entropy for the first Landau level is larger than the entropy for the LLL even

though the number of states are approximately the same at large = (=+1 states for @ = 0 versus =+3
states for @ = 1). A numerical evaluation of the entropy shows that it obeys an area law and it gives

(
(@=1) = 1.65 ( (@=0) (47)

When both @ = 0 and @ = 1 levels are filled, namely a = 2, the situation is more involved as
there are overlaps between the wavefunctions of di�erent Landau levels. The two-point correlator
is now given by

⇠ (A, A
0
) =

=’
B=0

 ⇤0
B
(A) 0

B
(A

0
) +

=+2’
B=0

 ⇤1
B
(A) 1

B
(A

0
) (48)

There are 2= + 4 eigenvalues : _1
0 , _̃

±
B
, _

1
=+2, where B = 0, · · · , = and

_̃
±

B
=
_

0
B
+ _

1
B+1 ±

q
(_

0
B
� _1

B+1)
2 + 4(X_)2

B,B+1

2
(49)
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450 500 550 600

0.2

0.4

0.6

0.8

1.0

Figure 5: Plots of _̃+ (red to the
right), _̃� (blue to the left) as func-
tions of B for = = 1000 and ' = 1,
compared to _0 (dashed, center)

450 500 550 600

0.2

0.4

0.6

Figure 6: Plot of �̃+
+ �̃

� as func-
tion of B for = = 1000 and ' = 1

where _0
, _

1 are the eigenvalues we derived earlier for the lowest and first Landau level and X_ is
the overlap

X_B,B0 =
π
⇡

 ⇤(@=0)
B

(A)  (@=1)
B
0 (A)3` (50)

The interesting feature here is that once both Landau levels are included the step like pattern in the
profile of _1 disappears. The profile of the new _̃

± resembles that of _0 but shifted with respect to
_

0, see Figure 5. As a result, the corresponding entropies per mode �̃±
B
, where

�̃
±

B
= �_̃

±

B
log _̃±

B
� (1 � _̃

±

B
) log(1 � _̃

±

B
) (51)

are Gaussian distributions centered around the value of s for which _̃± = 1/2 as shown in Figure 6.

450 500 550 600

0.2

0.4

0.6

Figure 7: Plots of � (a=1) (black, dashed), � (@=1) (red, dotted) and � (a=2) (blue, solid) as functions of B for
= = 1000 and ' = 1

Figure 7 shows a comparison between� (@=0)
,�

(@=1) and� (a=2) which explains the di�erences
in the values of the corresponding entropies, namely

(
(a=2)

> (
(@=1)

> (
(a=1) (52)

A numerical evaluation of the entropy for the a = 2 case gives

(
(a=2) = 1.76 ( (a=1) (53)

This agrees with the result in [18].
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6. Summary, Comments

I have presented various aspects of higher dimensional integer quantum Hall e�ect defined
on CP: with a particular emphasis on the issue of entanglement entropy. The connections to
noncommutativity, bosonization and e�ective actions of such systems are quite general and apply for
any Kähler manifold. In fact the bosonization approach outlined in section 2 and the corresponding
edge e�ective actions are also relevant for bosonization of fermionic systems around a fermi surface
(phase-space droplets) [22].

Regarding entanglement entropy, we found, based on a semiclassical analysis, that for a = 1
the entropy is proportional to the area of the entangling surface as in the lower dimensional case.
Furthermore, we found an interesting universality relation, namely, if the area law for the entropy
is expressed in terms of the phase-space area of the entangling surface, the overall proportionality
constant remains the same for any dimension and for any background, abelian or nonabelian. The
semiclassical analytical calculation breaks down for higher Landau levels.

In the presence of edge degrees of freedom the entanglement entropy for two-dimensional
systems develops subleading logarithmic contributions (edge ⇠

2

6 log ;, where 2 is the central charge
of the gapless edge modes and ; is the segment of the entangling boundary intersecting the chiral
droplet. This was indeed confirmed in the case of the two-dimensional a = 1 QHE droplets whose
edge dynamics is characterized by a chiral scalar of central charge 2 = 1 [23] and was recently
extended to the case of a four-dimensional QHE analog with abelian magnetic field [24]. We have
previously analyzed in detail higher dimensional QHE droplets, their corresponding edge e�ective
actions and their spectrum [4, 5]. In the case of the abelian chiral droplets the e�ective action is
essentially that of a collection of one-dimensional chiral scalars, whose direction of propagation
along the surface of the droplet is uniquely determined by the gradient of the confining potential
and the Kähler form of the manifold [4]. Because of that, the theory, although higher dimensional,
is similar to a collection of (1+1) dimensional conformal field theories, and therefore one expects
the edge entanglement entropy to exhibit a logarithmic behavior and a dependence on the central
charge similar to the case in two dimensions. The analysis of the same question for nonabelian
chiral droplets is more challenging and interesting, since the conformal properties of the nonabelian
edge action are not obvious.

Another interesting question is how the entanglement entropy changes in the presence of gauge
and gravitational fluctuations [21]. This is the subject of the next talk by Nair [25].
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