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Peer-to-peer (P2P) energy trading is a decentralized energy market where local energy prosumers act as peers, trading energy
among each other. Existing works in this area largely overlook the importance of user behavioral modeling, assume users’
sustained active participation, and full compliance in the decision-making process. To overcome these unrealistic assumptions,
and their deleterious consequences, in this paper we propose an automated P2P energy trading framework that specifically
considers the users’ perception by exploiting prospect theory. We formalize an optimization problem that maximizes the
buyers’ perceived utility while matching energy production and demand. We prove that the problem is NP-hard and we
propose a Differential Evolution-based Algorithm for Trading Energy (DEbATE) heuristic. Additionally, we propose two
automated pricing solutions to improve the sellers’ profit based on reinforcement learning. The first solution, named Pricing
mechanism with Q-learning and Risk-sensitivity (PQR), is based on Q-learning. Additionally, the given scalability issues of
PQR, we propose a Deep Q-Network-based algorithm called ProDQN that exploits deep learning and a novel loss function
rooted in prospect theory. Results based on real traces of energy consumption and production, as well as realistic prospect
theory functions, show that our approaches achieve 26% higher perceived value for buyers and generate 7% more reward for
sellers, compared to recent state-of-the-art approaches.

Additional Key Words and Phrases: Peer-to-peer energy trading, differential evolution, dynamic pricing, non-linear optimiza-
tion, prospect theory, Q-learning, Deep Q-Network.

1 INTRODUCTION
1.1 Background and Motivation

The detrimental effects of the energy sector on the environment have raised the urgency to move towards
an environment-friendly, efficient, and sustainable energy landscape [9, 32]. As a result, Renewable Energy
Technologies (RETs), and more specifically Distributed Energy Resources (DER) such as rooftop solar and wind
turbine, have been driving a transformation of modern power systems [32, 42]. DER have seen widespread
proliferation among consumers in recent years [2], fueled by the Internet of Things (IoT)-enabled Smart Grid
(SG) [11, 12, 15, 27], that embraces the use of cutting edge technologies to make the grid smarter and an active
ecosystem for energy exchanges among all the stakeholders [52]. The advent of SG technologies, such as the
Advanced Metering Infrastructures (AMI) [8] and home energy management systems [28], have resulted in
additional flexibility for consumers to generate and consume energy. This, in turn, has allowed traditionally
passive consumers to become actively involved in energy trading by sharing the excess energy generated at
their premise to either the grid or other buyers [1, 35, 44, 45]. These active consumers with energy production
capabilities have been referred to as prosumers [35], as a portmanteau of “producers” and “consumers”.
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However, the potential of prosumers in energy markets has been only minimally exploited with the adoption of
incentive schemes like Feed-in-Tariff (FiT) mechanisms [47, 50]. Through these schemes, prosumers can sell the
generated excess energy to the grid, and buy from the grid in case of deficiency [24, 47]. FiT are generally adopted
in the form of net-metering, i.e., the grid only offers minimal, or even none, monetary incentives for the acquired
excess energy [3, 35, 47, 50]. Additionally, several grids throughout the world that employ net-metering have
placed capping in terms of the amount of energy that prosumers can sell to the grid. As a result, FiT strategies
are deemed economically inconvenient for the prosumers and have been discontinued altogether in several
locations [47, 50]. Nevertheless, the availability of IoT-enabled SG technologies have the potential to enable more
efficient and convenient energy trading mechanisms, as discussed below.

1.2 P2P Energy Trading

Peer-to-peer (P2P) energy trading is a recently proposed decentralized alternative to the traditional energy trading
modality. It provides flexibility for end-users to be involved in energy trading and has been gaining popularity in
recent years [35, 51]. Specifically, P2P energy trading provides a prosumer-centric platform that allows prosumers
to trade energy with each other at a negotiated price. The trading may or may not involve the grid [40, 50].
Typically, the operation range of trading price would be higher than FiT price offered by grid and lower than the
electricity tariff charged by utilities. Further, utility companies offering rates that change with the time-of-day
make the P2P paradigm even more convenient, particularly when the price of electricity charged by the grid is at
its peak [40]. Monetary incentives resulting from P2P energy trading, for both selling prosumers (producers) and
buying prosumers (consumers), are therefore far better compared to existing mechanisms. As a result, prosumers
are more incentivized to keep engaging with the trading for the long-term [40, 50].

P2P energy trading also aims at minimizing the dependency of prosumers from grid for energy [47], resulting
in an increased reliability of the overall system. Additionally, a higher amount of local energy generation and
consumption resulting from P2P trading leads to the minimization of the overall system energy loss, as well
as an effective way to achieve demand side management [55]. Benefits extend also to the grid operator, by
providing savings in investments that would have been otherwise required to develop/maintain transmission
infrastructure in a centralized power distribution architecture [35, 50]. Therefore, P2P energy trading offers a
prosumer-centric approach that has potential to benefit all stakeholders involved, as highlighted extensively in
recent studies [4, 33, 36, 44, 47, 49, 54].

Existing literature on P2P energy trading has predominantly focused on the technical and physical aspects of
P2P energy trading, such as voltage regulation and loss minimization [33, 36], while few others have examined
pricing mechanisms for P2P trading among prosumers [4, 47, 49]. Most of these works assume a constant active
participation of users in the trading scheme. There are very few existing literature that take into account the user
behavioral aspects in designing energy trading systems so far, like the works in [16, 44, 46-48, 53]. However,
these works too demand users’ active participation which, over the long run, may be overwhelming and could
result in irrational decisions, and even the abandonment of trading system [17, 21]. As studies [18] have shown,
users’ subjective perceptions of gain and loss can significantly influence their decision-making processes, and as a
result, their willingness to engage in P2P energy trading. To address these challenges, as established in [35, 44, 47],
new approaches that incorporate user perceptions and irrational decision-making into the design of P2P energy
trading systems are necessary for ensuring user’s long-term engagement and sustainability.

1.3 Paper Contributions

To overcome the limitations of existing works, in this paper we specifically take into account and model the
prosumers’ decision-making behavior and their perceptions of loss and gain. We capture the perceived utility
through an optimization framework aimed at matching energy between sellers and buyers in an effective and
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Fig. 1. P2P Energy Trading System Overview.

efficient manner. This is a complex task, as it involves numerous individual prosumers with varying levels of
energy demand and production, as well as their differing perceptions of loss and gain. To this purpose, we
utilize the widely accepted notion in behavioral decision-making called Prospect Theory (PT) [25]. PT captures
the non-rational decision making of humans in the face of uncertainty, and it provides a mathematical tool to
quantify the subjective perception loss and gain. Specifically, we propose a PT-based optimization framework
for prosumer-centric P2P energy trading that incorporates perceived utility into the trading and automates the
price updating for sellers using reinforcement learning. This is more clearly depicted in Fig. 1. The proposed
framework aims at matching energy demand and production between buyers and sellers (step 1 in Fig. 1). The
objective is to maximize the perceived utility of individual buyers, by taking into account their intrinsic perception
and heterogeneity. We formalize this as a non-linear and non-convex optimization problem, and prove that it
is NP-hard. Given the non-linear and non-convex nature of the problem on top of being NP-hard, we further
propose a Differential Evolution-based Algorithm for Trading Energy (DEbATE) to find a solution to the problem
in polynomial time (energy allocation, step 2).

In order to require minimal participation of prosumers, we employ a Reinforcement Learning (RL) frame-
work, called Pricing mechanism with Q-learning and Risk-sensitivity (PQR), which is executed in tandem with
DEbATE, to automate the pricing mechanism for sellers (pricing mechanism, step 3). Sellers are not aware of
their competitiveness in the market. Therefore, POR adjusts the price dynamically based on the market demand
as well as seller’s competitiveness and perceived utility. POR learns the optimal selling price for each seller
using a PT-based risk-sensitive RL approach [39]. However, POR inherits the typical scalability and stability
limitations of a standard tabular approach for the Q-learning function. To avoid such limitations, we further
improve PQR by proposing a Deep Reinforcement Learning based alternative heuristic, called ProDQN, that
uses a PT-based loss function to include the sellers’ perceived utility. The output of the RL algorithms are then
published to the prosumers for the next matching of demand and production. Finally, the output of the matching
is then implemented by the P2P energy system to execute the physical energy transactions (step 4). The proposed
techniques address the limitations of previous works by modeling individual prosumers’ behavior, incorporating
perceived utility, and automating the price updating process for sellers through a unique and novel optimization
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problem in conjunction with a reinforcement learning framework. Employing a Differential Evolution-based
heuristic, paired with reinforcement learning based pricing mechanisms, allows to efficiently find a solution to
the non-linear and non-convex problem, which is especially critical for large systems with many prosumers.
Additionally, by incorporating PT-based approaches, the individual subjective perception loss and gain can be
quantified, which is an essential aspect of prosumer-centric P2P energy trading. Finally, through the use of
reinforcement learning, the system can learn from the prosumers’ behavior and adapt to changes in market
conditions, leading to a more efficient and effective P2P energy trading system. In summary, this paper makes
novel contributions in the domain of evolutionary computing by defining a novel demand/production matching
problem, and a differential evolution algorithm to solve it, that take into account the users’ perceptions through
prospect theory. Additionally, the paper makes contributions in the domain of reinforcement learning by defining
Q-learning based algorithms that learn competitive prices while taking into account the sellers’ perceived utility.

We validate the proposed approaches through extensive simulations using real datasets for energy production
and consumption, paired with recent survey data for PT perception modeling. Experimental results show that
DEbATE performed 26% better in terms of buyer’s perceived utility than a state-of-the-art approach. Additionally,
PQR is able to generate 7% higher sellers’ reward. The deep reinforcement learning solution ProDQN is able to
further improve the sellers’ reward by 8%, at the expense of a small reduction in buyers’ utility.

The rest of the paper is organized as follows. The system model and problem statement are described in
Section 2. Then, the proposed automated P2P energy trading framework is explained in detail in Sections 3.
Furthermore, the experimental results are elaborated in Section 4. Section 5 reviews the modeling of optimization
problems adopted for P2P energy trading in the literature. Finally, Section 6 concludes the paper.
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Fig. 2. Proposed Framework of P2P Energy Trading.

2 SYSTEM MODEL AND PROBLEM FORMULATION

The components of the proposed framework for P2P energy trading system are shown in Fig. 2. The systems
consists of three distinct components, namely (i) Prosumers, (ii) Energy allocation, and (iii) Pricing mechanism.
We describe the modeling of the three components in detail in following subsections.

2.1 Modeling Prosumers

The prosumers are users of the power system, equipped with an energy management system that allows to buy
and sell energy in the energy market through an existing distribution network. Some prosumers are equipped
with energy generation capabilities. The grid serves as backup for prosumers if the generated and traded energy
is insufficient to satisfy the demand. Let P be the set of all prosumers participating in the P2P energy market. We
refer to B; C P as the set of Buyers, i.e., the set of prosumers that have a higher self-consumption than generation

ACM Trans. Evol. Learn.



P2P Energy Trading through Prospect Theory, Differential Evolution, and Reinforcement Learning « 5

at a timeslot t. B; also include prosumers without energy generation capabilities. Similarly, S; C P is the set of
Sellers, i.e., prosumers that have excess generation at a timeslot . For simplicity of notation, we drop the subscript
t in the following.

2.2 Modeling Energy Allocation

In this subsection, we present the energy allocation mechanism which determines how to match the buyers’
demand with the sellers’ production, while maximizing their individual perception. We model the perceived
loss and gain of prosumers using the prospect theory (PT) value function to capture user perception of gains and
losses as shown in Fig. 2. Specifically, consider the excess energy generation of seller i € S be e; and demand of
buyer j € B be d;. Then, let x;; € [0, 1] be a variable representing the fraction of d; that buyer j buys from seller
i. Also, let pys, pg» be the energy selling and purchasing prices from the grid, respectively, p; be the selling price
of seller i, and p; is the reference price of buyer j. Prices are expressed as cost per kWh.

We adopt a modified PT value function to model realistic user perception in an energy market [25]. The
function quantifies the human perceived utility towards gain and loss based on the degree of deviation from a
reference point. In our problem, it captures the difference between the total actual buying cost for the buyer j
i.e., y; and their desired reference cost p;d; for buying d; amount of energy at their reference price. The utility
function is then formulated as

o(yy) = R (Prds = yp, Y < pid;
’ —k—j (Y = pid)Sy Yy = pid;

where ki, k_ ,{; , (- are the parameters that control the degree of loss-aversion and risk-sensitivity. Similarly
to [6, 20, 38], we assume that these parameters can be obtained by surveys completed by the prosumers when the
energy trading system is installed in their home, and potentially updated later on with sporadic feedback to the
energy management system. Recent studies have shown that these parameters are highly heterogeneous and
vary from person to person based on factors like gender and age group [6, 38]. In the equation above, y; is the
total actual cost of buying energy for buyer j that incorporates the total cost of buying energy from P2P setting
as well as the grid - in case the demands are not met locally. Therefore the term y; is given by

yj = Z pixijdj + pgs(1 - Z xij)d;

ieS i€S

Note that, similar to the PT value function in [25], the utility function in Eq. (1) is concave in the gain domain
(i.e,y; < p;jd;) while convex in loss domain (i.e., y; > p;d;).
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The problem of matching demand and production of heterogeneous prosumers is formalized as follows.

max f@): ) o) 2
JjEB

s.t. Z(l + t’ij)xijdj < e, Vi (23)
JjEB

PRIES! vj (2b)
ieS

xij = 0,if £;; > bmax, Vi, j (2¢)

Pgb = Pis Pj = Pygss Vi (2d)

HjZij < xijdj < djzij, Vl,] (26)

Zjj > Xijs Vl,] (Zf)

Xij € [0, 1], zZjj € {0, 1}, Vl,] (Zg)

The problem maximizes the sum of perceived utility for buyers in Eq. (2). There is an energy loss during the
physical energy transfer through wires [55], which depends on the wire-length between i and j and it is directly
proportional to the amount of energy exchanged. We model such loss as a fraction #; € [0, 1] of the energy
exchanged. As a result, the constraint in Eq. (2a) prevents the problem from exceeding the amount of energy
being sold by each sellers while incorporating the losses in electric lines. The constraint in Eq. (2b) ensures that
the energy demand for each buyer is not exceeded, while constraint (2c) limits the loss between sellers and
buyers to be within the loss threshold /,;,55. On the other hand, constraint (2d) limits the upper and lower bound
for energy price to the selling and buying price of the grid. Constraint (2e) sets the minimum amount y; of an
energy transaction for buyer j, using a binary decision variable z;;, that is equal to 1 if x;; > 0, and to 0 otherwise
(constraint (2f)). The value of y; is generally a system parameter to prevent impractical solutions containing
infinitesimal amounts [44]. Finally, the range of operation of the decision variables are defined in (2g).

THEOREM 2.1. The optimization problem in Eq. (2) is NP-hard.
Proor. Proof of NP-hardness is presented in the Appendix A ]

It is to be noted that, in addition to the NP-Hardness, the problem in Eq. (2) is also non-linear and non-convex.
There is not any general procedure to solve such optimization problems dealing with continuous solution sets [7].
Hence, in order to solve this combinatorial problem of matching demand and supply of energy, we propose a
heuristic based on Differential Evolution [41] which finds a feasible solution through iterative recombination
and improvement of the candidate solutions along with constraint handling. Adopting this heuristic approach
is particularly beneficial in large systems, where the complexity of the problem would make it impossible to
find the optimal solution in reasonable time. In the next section, we motivate the need for a dynamic pricing
mechanism mechanism, before presenting the Differential Evolution heuristic in Section 3.

2.3 Modeling Pricing Mechanism

In the proposed P2P energy trading model, the selling price is considered to be a fixed amount for a given
trading period, and it is used as the trading price for a transaction. However, the reference price p; of seller i
is a personal value which may under- or over-estimate the competitiveness of market. In order to improve the
sellers’ competitiveness, we implement a dynamic pricing model for sellers as exhibited in the Fig. 2. Note that,
to expect sellers to manually adjust the price based on the performance of the energy trading system (e.g., their
revenue) is impractical. Demanding such active participation could easily be overwhelming, and severely affect
their performance and level of engagement with the system. To avoid such active participation, we model the
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adjustment of the price as a Markov Decision Process, and exploit reinforcement learning to update the selling
price at each trading period.

To maximize the sellers’ perceived objectives through prospect theory, we resort to a risk-sensitive reinforce-
ment learning approaches that forms the basis of the automated pricing mechanism within our P2P energy
trading framework. In the following Section 3, we present two algorithms based on reinforcement learning
that incorporate the seller’s perceptions on loss and gains to update the prices while automating the process in
order to ensure sustained prosumer participation. First, in Subsection 3.2, we employ risk-sensitive Q-learning
algorithm [39] and then given its efficiency limitation due to the tabular representation of the Q-function, we
also present a Deep Q-network (DQN) [31] based algorithm in Subsection 3.3 that proposes a novel loss function
founded on prospect theory value function.

Algorithm 1: DEbATE
Input :set of buyers B, sellers S, fitness function f(.), max iterations G4, population size NP,
crossover probability CR, differential weight F
Output:best identified feasible solution x*
1 Update set of buyers B and sellers S, count = 0;
2 Generate initial population X = {xx| k =1,...,NP};
3 while count < G4, do

4 for each xi € X do
5 Choose 3 different vectors {xa, Xp, X¢} € X at random and R ~ U(1, |S| X |B|);
6 Create mutated solution Xj = xy;
/* Mutation and Crossover x/
7 for eachi € |S|, j € |B| do
8 Selectu ~ U(0,1) ;
9 if u < CR||(i X j) == R then
10 ii(;c) = xl.(ja) +FX (xl.(;]) - xl.(jc));
11 fi(f) = min(1, max(0, )El.(f)));
12 end
/* Check Constraints */
13 Vi, j, if tij = lnax then X;.=0;
14 Vi, if 3;(1+ 6;j)%;;d; > e; then X;; = W
15 \/], ifzi)_fij> 1 then fijZ%;
itij
/* Compare fitness */
16 if (%) > £(x) then X = (X \ {xi}) U {&);
17 end
18 count = count++;
19 end
/* Find the best solution and execute trading */

20 Let x* = arg max f(xx);
XkEX

21 Execute transactions for each prosumer to x* ;
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3 SOLUTION APPROACHES AND HEURISTICS

In this section, we describe the Differential Evolution-based Algorithm for Trading Energy (DEbATE) heuristic
(Alg. 1), designed for matching demand and production according to the problem presented in Section 2, the
Pricing mechanism with Q-learning and Risk-sensitivity (PQR), and the Prospect theory-based Deep Q-Network
(ProDON), designed to dynamically adjust the sellers’ prices. N

3.1 DEDbATE

DEDATE is executed at each trading period (e.g., 12 hours) to solve the non-linear optimization problem presented
in Section 2. It uses Differential Evolution to determine an optimal amount of energy to be traded between
prosumers that maximizes the perceived utility of buyers. DEDATE initially updates the list of buyers (B) and sellers
(S) based on the expected production and consumption for the current trading period. These can be predicted
accurately with recent approaches [10, 29]. The Differential Evolution-based optimization begins on line 2 where
an initial population X is generated with population size of NP. An element x € X, withk =1,2,...,NPisa
candidate solution vector of variables x;; representing the amount of energy to be traded between the i’" seller
and j*" buyer. These variables correspond to the decision variables of our optimization problem.

The while—loop (line 3 — 19) is the differential evolution loop that aims at finding a solution to the non-linear
optimization problem with Eq. (2) as the fitness function. The loop is executed for G, . iterations. At each iteration,
for each candidate solution x; € X, the algorithm creates a mutated solution Xy. Initially, Xx = xx. The mutated
solution is subsequently updated through mutation and crossover with 3 random candidates x,, x5, X, € X (line
5). A value R € [1, S| x |B|] is selected at random. R will be used in the following for—loop to ensure a minimum
mutation. The for loop in line 7 iterates over the components (dimensions in evolutionary terms) of Xi. During
each iteration, a value u € [0, 1] is sampled at random as mutation probability (line 8). Subsequently, a mutation
occurs for the component ij of X, with crossover probability CR (line 9). The mutation occurs irrespective of the
probability if (i X j) = R (to ensure at least one minimum mutation). A mutation is executed by combining the
corresponding component of X,, X, and x, with the differential weight parameter F € [0, 2] as in line 10. The
mutated component )‘(i(jk) is clipped to ensure that it falls within [0, 1] as minimum and maximum threshold to
satisfy constraint Eq. (2g) in line 11 of the algorithm.

After the mutated solution is finalized, it is checked, and adjusted if needed, to meet the constraints in Egs. (2a)-
(2¢) of the optimization problem. Specifically, line 13 ensures that no exchange occurs (i.e., Xi(jk) = 0) between
users having a loss higher than ;4. Lines 14 — 15 ensure that the production of a seller and the demand of each
buyer are not exceeded, respectively. Finally, in line 16, the fitness function f(.) of the mutated solution Xy is
compared against the original candidate solution xi. If f(Xx) > f(xx), then Xy replaces xy in the set of candidate
solutions X. At the end of the while loop, DEDATE selects the best solution x* in X (line 20) and executes the
transactions accordingly (line 21). In the following Lemma A.2, we show that DEbATE has polynomial time
complexity, and hence it is computationally efficient. The theorem focuses on the asymptotic complexity, a typical
mathematical formulation to characterize the upper-bound of the running-time for sufficiently large inputs [14].

LEMMA 3.1. The time complexity of the DEbATE algorithm is O(Gpax X NP X |S||B|).
Proor. Proof of the time complexity of DEbATE algorithm can be found in the Appendix A. O

3.2 PQR

After determining the solution to the energy allocation problem in DEbATE, the selling price for sellers is then
updated through the Pricing mechanism with Q-learning and Risk-sensitivity (PQR) algorithm as presented in
Alg. 2. In order to learn the optimal selling price dynamically over time, we model the sellers as independent
learning agents. Note that, to preserve the privacy and avoid the conflict between prosumers, these agents do not
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Algorithm 2: PQR
/* Pricing with Risk-sensitive Q-learning */
1 Collect transaction information for each prosumer from DEbATE (Alg. 1) for current timestep ¢;

2 for eachi € S do
3 Select an action, a € {+J, —J, 0} based on the e-greedy strategy ;

4 | S =PiiSnew =S+ ;€ = Snew 2, Xijd;;
jeB
5 Pi = Snews
6 Update Q(s, a) as in Eq. (3) and (4);
7 Send information on updated price p; to seller i;
8 end

have access to information about other sellers or buyers. The state space (s) of the Markov Decision Process, in
the Q-learning formulation, consists of the prices between the grid buying/selling py, and pgs, discretized by a
step size, J, i.e., p; € {pgb, Pgb + 6, pgp +20, ..., pgp + (pg%spgb - 1)5, Pys}-

The action space consists of a price increasing action, price decreasing action, and no change action, i.e.,
a € {+6, 0,0} where § is the amount by which price is increased or decreased. The agent goes to a new state
after taking action a which is referred as sye,. Seller i reward function is the total revenue generated at the
current trading period i.e., e; = (p; + a) 2. jep xi;d;. For updating Q-values, we modify the approach proposed
in [39] by considering the following Q-learning update rule that includes the PT-based perceived utility of sellers.

O(s,a) <= 0O(s,a) + av(y;) 3)
o(y;) = k+,i(yi)§+’i= Y >0 @)
¢ —k—i(—y:)*, Y <0

where, y; = e; + y max, Q(Spew, @) — Q(5,a) is the Temporal Difference (TD) error of i*? seller for current
iteration, and v(y;) is transformation of TD error to capture each seller’s personalized perceived utility on loss. «
refers to the learning rate for updating Q-values in Eq. (3).

PQR, as summarized in Alg. 2, initially collects the current trading information from DEbATE in line 1. The
subsequent for—loop (lines 2 — 8) updates the selling price for each seller. At each iteration, a seller i € S is
considered. For that seller, the action (whether to increase/decrease the price, or no change) is selected based on a
e-greedy exploration-exploitation strategy [43] (line 3). Specifically, € refers to the probability of exploration and
it is initially set to 1. It is then decreased over time using an e—decay factor, that is € = decay factor X €. This way,
exploitation gains more importance as the system learns the optimal policy. The algorithm returns an action a,
that is used to update the current state s into the new state sy, and to update the reward e; (line 4). Additionally,
the Q-value is updated accordingly (line 6) . The updated selling price is then sent to the respective seller i for
the next trading period in line 7.

As discussed in the experimental section, PQR is able to correctly learn the optimal policy (or sellers’ prices, in
our case). However, it needs to be noted that in a P2P energy trading model, like in most realistic scenarios, the
state spaces can be very large and multidimensional. In fact, since the Q-learning must maintain Q-values for
each state-action pair, even with just three actions, a finely discretized state space could lead to a huge number of
state-action pairs that needs to be stored and updated continually. This is worsened by increasing the number
of agents (sellers). As a result, PQR may suffer from severe scalability issues, due to its tabular approach of
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determining Q-values, as the system grows. Therefore, in the next subsection, we utilize a widely employed deep
neural network-based function approximator that can be used to predict the Q-values using a learned function
given state-action pairs.

3.3 ProDQN

g -
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0 T
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Fig. 3. Overview of the ProDQN approach

In this subsection, we adopt a reinforcement learning approach based on Deep Q-Network (DQN) [31], for
learning the seller’s optimal price, in order to overcome the scalability limitations of PQR. DQN is a reinforcement
learning paradigm that exploits a deep neural network, called Q-network, as a non-linear function approximator.
Its parameters (or weights) are denoted by 6, thus the Q-value function Q(s, a) becomes Q(s, a; 0). Note that,
approximating the function through a neural network allows to not only represent the Q-values in a compressed
form compared to the tabular Q-learning algorithm, but also to generalize over similar states.

In this paper, we extend DQN to incorporate Prospect Theory elements, in order to devise a perceived utility-
based pricing mechanism. We refer to our heuristic as Prospect theory-based DON (ProDQN). An overview
of the heuristic is presented in Fig. 3. It is important to note that, using a single Q-network for reinforcement
learning may result in instability. This is due to the need of training the neural network itself while using it as a
Q-function approximator. This is known as the issue of moving target, where the target, i.e., the expected optimal
price in our application, is varying after each training period. DQN solves this problem by utilizing two different
networks. One network is used for learning, while the other one to determine the target respectively. The first
network is the learning network, denoted by Q(s, a; 8), which is used to take the best action given the current
state. Secondly, we have a target network, denoted by Q(s, a; 07), which is used to determine how close the output
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of the learning network is. The main difference between these network is that the learning network is updated
after every training period while the target network is updated less frequently. Thanks to these less frequent
updates, the target network is kept relatively stable, and thus the overall learning also becomes also stable.

An overview of ProDQN is shown in Fig. 3. ProDQN also employs two Q-networks — learning and target
networks. Similar to PQR, each seller is represented by an individual ProDQN agent, and these agents do not
share any information with each other to avoid conflicts and preserve privacy. Additionally the state spaces
and action spaces are also the same as considered in PQR. As shown in Fig. 3, the learning network Q is used
with parameters 6 to predict the current action g, given the current state s = p; as input. The action is either to
increase (+0), decrease (—9), or no change (item 1). Following this, the action is executed and the consequence of
action taken is observed (i.e., new state s,e,, and new price ppe., and the resulting reward (R) is observed (item
2). The transition tuple < s, @, R, Spew > is stored in a Replay Buffer D. A minibatch of transitions [z] of size z is
randomly sampled from D (item 4) and passed to the target network Q. The reason behind random sampling is
to avoid bias due to high correlation in subsequent tuples. The target network returns a target value for each
tuple (item 5), which is used to determine the error (or loss) in learning (item 6) and finally update the learning
network parameters 6.

Specifically, for each sample m = {s(™), a(™ R(™) s,(lzlv)v} in the minibatch [z], the target value Y™ is given by

Y™ = RU™ 4y max O™ a';07) (5)
1

The computation of term max, QA(S,SZE,, a’;07) is obtained from a single forward pass in the target network Q

for a given state s,(,zn,z, According to the original version of DQN [31], given the target values as in Eq. (5), the
parameters 0 of the learning network Q(s, a; 8) are updated through stochastic gradient descent by minimizing a
standard loss function, usually the square loss. Conversely, in our work we propose a novel loss function in Eq.
(6) based on PT-value function similar to the one proposed in Eqgs: (1) and (4). Specifically, given the target value

Y(m) of tuple m, the PT-based loss function LM is defined as:

L(m) _ {k_'_’(Y(m) _ Q(S, a; 9))§+’ Y(m) > Q(S, a 9)

—k_ (Q(s;a;0) — Y(™)é- Y™ < O(s,a;0) ©)

Recall that k; ,k_, (. ,{_ are the PT parameters that quantify the perceived utility. After calculating the loss for
each sample, the mean loss is determined by averaging the loss for all samples in the minibatchi.e., £ = % >Lm,
m

The learning network’s parameters are then updated by performing gradient descent step on network parameters
0, using the newly calculated loss £ as follows:

1
0 0+a— > [(Y'™ - Q(s,a0)|V6Q(s, a;0) ()
z me|z]

Finally, the parameters 6~ of the target network are updated through soft updates. Specifically, an exponential
moving average with parameter 7 is used as follows:

0; —7%0;+(1-1)*0; (8)
This process is then repeated for all the sellers to adjust their selling price in an automated manner similar to
POR algorithm (Alg. 2).

To the best of our knowledge, this is the first work using a PT value function-based loss calculation to update
the Q-network parameters. This loss function is specially suited in our application scenario as it provides a way
to capture the perceived utility of sellers based on the deviation from target values. It is to be noted that, with this
PT-based loss function, the prediction of the Q-network Q(s, a; 8) tends to the target value (Y) (and therefore, to
optimal Q-function i.e., Q*(s, a)), transformed by the perceived utility of sellers as we update the parameters 6.
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The system runs the algorithms DEVATE and PQR/ProDQN sequentially at every trading period. The input
of DEbATE is updated based on the prices calculated by PQR or ProDQN, while PQR/ProDQN take as input
the reward resulting from the energy transactions executed by DEbATE.

4 EXPERIMENTAL RESULTS

In this section, we discuss the experimental setup, the comparison approaches, and then provide a detailed
discussion on performance of both of the proposed solutions versus the comparisons. In the following, we refer to
DEDATE paired with PQR as DEbATE — PQR, and similarly to DEbATE paired with ProDQN as DEbDATE — DQN.

4.1 Experimental Setup

The experimental setup consists of a system with 40 prosumers, split evenly as buyers and sellers. This is
considered a representative number of prosumers in a microgrid or set of houses supplied by a single distribution
transformer. We use a realistic dataset for buyer’s energy consumption obtained from [23]. Similarly, we consider
sellers equipped with 4kW rooftop solar located in Lexington, Kentucky, USA. The energy generated is estimated
using NREL’s PVWatts Calculator [34] given the solar irradiance in Lexington and size of solar panels. Losses are
assigned uniformly at random (UAR) from set {1%, 2%, 3%, 4%} and maximum loss threshold L,,x = 2.5%, while
the minimum amount of energy to be exchanged (y;) is set to 50Wh for each buyer.

We assume that prosumers complete a survey before joining the system to estimate their individual prospect
theory parameters, similar to [6, 20, 38]. For the purpose of experimentation, we use realistic prospect theory
parameters from [6, 20, 38]. Specifically, the risk-averting parameter for gains ({;) € [0.60, 0.88], the risk-seeking
parameter for losses ({_) € [0.52, 1.0], the loss-aversion parameters for gain and loss (k.), (k) € [2.10,2.61] for
each individual prosumer. The grid or utility company generally sells energy at a higher price compared to the
price it purchases energy. Therefore, we set the price at which the grid buys energy to pg, = $0.06 and the price
at which it sells energy to pys = $0.12, based on Kentucky’s average net-metering rate and energy selling price.
With the P2P energy trading paradigm, sellers and buyers can exploit this gap to sell/buy energy among each
other at a more convenient price than the grid. Therefore, we set grid’s energy selling price as upper bound for
reference price for energy sellers and grid’s buying price as lower bound for reference price for energy buyers,
respectively. Specifically, the reference price for each seller is initially randomly sampled from range [0.09, 0.12].
It is then updated using either PQR or ProDQN at each iteration. The reference price for each buyer is selected
in the range [0.06,0.10] and considered static for the duration of experiments, which is 365 days. The parameters
for PQR algorithm are set as follows: learning rate @ = 104, step size for discretizing state space § = $0.001, and
€—decay is set 0.965.

ProDQN uses two Q-networks, learning and target network. Each of these consists of an input and output
layer connected by two hidden layers with 64 nodes each. The input layer consists of a single node for state and
output layer consists of three nodes for three actions. Other hyperparamters are set as follows: learning rate
a = 0.0075, replay buffer size |D| = 1000, minibatch size z = 4, discount factor y = 0.8, soft update rate for target
network 7 = 0.01. These hyperparameters were chosen manually for best results. Hyperparameter optimization
techniques could also be adopted such as grid search, Bayesian search, and population-based evolutionary search
for further fine-tuning. We developed the P2P energy trading simulation environment and implemented the
algorithms in Python using SciPy and PyTorch libraries. !

4.2 Comparison Approaches

In order to highlight the efficacy of our proposed approaches DEbATE — PQR and DEbATE — DQN, we compare
their performance against two recently proposed state-of-the-art approaches. The first approach, referred to as

1Scripts for the simulation can be found at this Github link: https://github.com/ashutoshtmlsna/P2P_energy_trading
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Rule, is proposed in [4]. Rule allocates energy using a greedy heuristic that assigns cheapest sellers to buyers.
Buyers are selected based on their registration order to the system. A mid-market pricing strategy is employed,
i.e., the final price of a transaction is the mid value of seller’s and buyer’s asking price.

The second approach has been proposed in [55], to which we refer as Zhu from the name of the first author.
This approach has been proposed to minimize the loss of the energy transactions. It employs a greedy algorithm
to assign the energy among buyers and sellers. The algorithm considers buyers in decreasing order of demand.
At each iteration, a buyer is selected and assigned to the sellers with the smallest loss for that buyers, until the
demand of the buyer is satisfied. In this approach, the transaction price is given by the seller’s asking price.

It is worth nothing that, both approaches do not consider the perceived utility of the buyers and they do
not dynamically adjust the price of sellers. As discussed in the following, our approach matches demand and
production by generating a market in which both the needs and perceptions of buyers and sellers are taken into
account.

4.3 Results

We consider several experimental scenarios and performance metrics, as discussed in the following.

5388 = EIE _.‘"”*m-ﬁ-ﬁﬁﬁs‘t"’“"”"””“””
g .Il C | L U] -
v [ 'y ‘B
= 11 *a n -
T~ z'. ! pmmEEaEEmEEE
- =
) @ 10 ¢ 4
E E. Tl e Ak L
8 al Lk O
@ 81 = 2 : -++'+-+ At ok, e +-+-+'+-+‘+
o c::_ —a— sellerd .
[«}]
E — 8 sellerl "'.-.-.-.-.I.-.I.\"'k., ey
= 3 @ seller2 e
2188 / ‘S 71 --#- seller3
= - sellerd
= S
1381 e — 5 i : I I .\.. ..I.
T o .8 X
55 1010 1515 20-20 oM ‘-Lt)‘i“ 0-?_1,“: ,.p;;\e‘ :.T'L)
Network Size (sellers-buyers) ® o W e o
Time of the Year
Fig. 4. Normalized objective value vs. number of iterations
for varied population sizes. Fig. 5. Computation time vs. population sizes.

Experimental Scenario 1: We first run two experiments to study the evolutionary aspects and convergence of
DEDATE. Specifically, we want to know the impact of the number of generations (G,4x) and population size (NP)
on the quality of the solution, i.e., on the value of the objective function. We first study the impact of the population
size NP on the value of the objective function of the optimization problem in Eq. 2 and on the computational
time. Specifically, we vary NP from 5 to 25. In this experiments, we consider a system with 5 sellers and 5 buyers.
Fig. 4 shows the respective plot averaged over 10 runs. It can be seen that, as the population size is increased,
DEDATE is able to find a better solution. Additionally, with all the considered population sizes, DEDATE is able
to quickly converge towards a good solution with few iterations. We show in Fig. 5 the computational time versus
the population size along with error bars. The figure clearly shows that the computation time grows linearly
with the population size. This is in accordance with the complexity derived in Lemma A.2.

We now consider the impact of the number of generations (iterations) Gpnax on the quality of the solution and
execution time. We consider different network sizes by linearly scaling the number of sellers and buyers from
|S| = |B| =5 to |S| = |B| = 20, and setting NP = 20. Fig. 6 shows the normalized objective value as a function of
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for varied network sizes.

Gmax- The results show that by setting G4, = 10, 000 iterations is sufficient for the algorithm to converge in the
considered settings. We plot in Fig. 7 the computation time of DEbATE by increasing the system size along with
the error bars. According to Lemma A.2, the computation complexity is proportional to |S| X |B|. As a result, by
increasing both buyers and sellers linearly, we incur in a quadratic increase in the execution time.

Given the results of the aforementioned experiments, in the following, we select a trade-off between computation
time and quality of the solution. For the remaining of the experiments, we therefore set the population size
NP = 20, since it yields a solution with similar objective value while requiring 22% less execution time, and set
Gmax = 10,000. This helps to ensure that the algorithm will generate a quality solution.
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Fig. 8. Buyers’ perceived values. Fig. 9. Sellers’ cumulative reward.

Experimental Scenario 2: In the second experimental scenario we study the performance of the considered
approaches over time. Two performance metrics are considered, namely the buyers’ objective value and the
sellers’ cumulative reward. These are represented in Figs. 8 and 9, respectively, with a moving average of 10
days. In these experiments, we consider 15 buyers and 15 sellers. Note that, the buyers’ objective values are
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Table 1. Statistical Analysis of experimental result in Figs. 8 and 9

Metric | Approach DEbATE-PQR | DEbATE-DQN | Rule Zhu

Obj. Val | Mean -83.182 -97.818 -128.599 | -155.312
Std. Deviation | 34.738 37.800 60.288 61.983

Reward | Mean 197.9 202.3 191.8 215.8
Std. Deviation | 79.778 82.963 79.916 90.198

negative because they are paying higher prices than their reference purchase price. Therefore; transactions are
seen as loss from a prospect theory perspective. Clearly, DEDATE — PQR and DEbATE — DQN perform better
than Rule in both metrics. The greedy nature of Rule penalizes the quality of the resulting matching, significantly
reducing the buyers’ perceived value while both our approaches optimize the energy assignments to maximize
the buyers perceived utility. Additionally, our approaches are able to generate higher rewards than Rule by
dynamically learning the prices for sellers. Zhu however performs the worst in terms of the buyers’ objective
values, but performs the best in terms of cumulative reward. This is because the energy assignment is driven by
loss minimization, not taking into consideration the buyers’ reference price. This, paired with the trading price
set as the sellers’ asking price, results in a market heavily biased towards sellers, achieving a very low perceived
utility for buyers. We present a statistical analysis of experimental results in Figs. 8 and 9 with respect to both
mean and standard deviation in table 1. As the table shows, the mean objective value is significantly higher for
DEbATE — PQR and DEbATE — DQN, with respect to the comparison approaches. This is also paired with a
lower standard deviation, which implies more stable system performance. DEPATE — DQN produces a slightly
higher mean reward and a higher standard deviation. This is due to higher randomness engraved in deep learning
frameworks. In line with our observation from Fig. 9, Zhu highly favors sellers with respect to buyers.

It is worth noting that, the benefits of DEbATE — PQR and DEbATE — DQN over Rule and Zhu are more
prominent from April through October, when the energy demand and production are higher. Note that, the energy
consumption is higher during summer months due to the higher use of air conditioning equipment. Similarly, the
energy production is higher due to the increased solar radiation in these months. Comparing DEbATE — PQR
and DEbATE — DQN we notice that ProDQN slightly penalizes buyers (lower utility) in favor of sellers (higher
rewards). This slight imbalance is however compensated by the better scalability of ProDQN. In general, the
sellers’ reward decreases after mid-September for all four approaches, due to the reduced energy production
during winter.

Experimental Scenario 3: We further study the performance over time by considering the evolution of
individual sellers’ prices. We consider a smaller system of 5 sellers and 5 buyers for ease of representation of the
results. Fig. 10 shows the individual prices set by ProDQN algorithm while Fig. 11 shows the individual prices
by POR. Both approaches proposed in our system are able to learn and adjust the price over time to improve
the buyers’ perceived value while considering the sellers’ competitiveness. The competitiveness of a seller is a
function of buyers’ reference prices, the seller production, and their location in the system (e.g., loss w.r.t. buyers).
Note that, although both algorithms adjust prices based on the output of the transactions, which indirectly reflects
the sellers’ competitiveness, the evolution of prices under ProDQN and PQR may differ. When taken collectively,
both algorithms are able to find a balance between buyers perceived utility and sellers reward. To support this
statement, we show in Fig. 12 the average sellers’ prices, after a year of execution of the algorithms, with different
system sizes. Both approaches converge towards similar prices, with negligible differences as the system grows.

Experimental Scenario 4: In this scenario we test the scalability of the proposed approaches with respect to
the system size through a year-long aggregated analysis. Specifically, we increase the system proportionately
from |S| = 5 sellers and |B| = 5 buyers to |S| = 20 sellers and |B| = 20 buyers. Figs. (13)-(14) show the buyers’ total
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perceived value and the sellers’ reward, respectively, over a year. By considering the loss-averse and risk-seeking
PT-value functions, DEbATE — PQR and DEbATE — DQN achieve an increasing advantage as the system size
increases compared to Rule, for both sellers and buyers. Zhu, as previously discussed, creates a heavily biased
market that penalizes buyers and favors sellers. As a numerical example, DEbATE — PQR achieves as much as
26% increase in buyers’ perceived value while ensuring 7% profit improvement for sellers compared to Rule.
Similarly, DEBATE — DQN achieves 8% more profit for sellers with almost 23% more in buyer’s perceived utility.

5 LITERATURE REVIEW

In the recent years, P2P energy trading has attracted significant attention from the research community [26, 37].
In this section we review the main modeling techniques, from an optimization perspective, adopted in the domain
of P2P energy trading. The authors of [30] study a P2P energy sharing model with price-based demand response.
The approach introduces an energy sharing provider that coordinates the sharing activities, including a dynamical
pricing model. The paper formulates a bi-level optimization problem. The upper level finds a fixed price point

for each prosumer. The lower level is a minimization problem, solved individually by each prosumer, with the
objective of minimizing the cost.
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More recent works, adopt game-theory to optimize the system operation [47, 49, 51]. Specifically, an auction
theory based approach is proposed in [51]. Each participant submits a bid price to the auctioneer, and an optimal
allocation is produced. Based on the allocation, each user determines the optimal bid price. In [47], a canonical
coalition game is devised to share energy among groups of peers through social coalition for ensuring users’
sustainable participation in the market. The approach defines a value function to evaluate the worth of a coalition.
The objective is to incentive the formation of stable coalitions with appropriate pricing depending on energy
demand and production. The authors of [49] introduce a cooperative Stackelberg game, where the grid is the
leader that sets the prices and prosumers are the followers. Logarithm functions are used to model the utility of
prosumers, while simple derivates are adopted to maximize such utility. The grid sets the price to incentivize P2P
trading during peak hours.

In [5] a P2P trading scheme for a voltage-constrained network is proposed. Prosumers can form coalitions to
negotiate and decide the energy trading parameters. Then, the Myerson value rule is used to allocate energy and
price among prosumers. The distribution network is modeled through a graph where nodes are characterized by
voltage parameters that should not be exceeded. Thus, the optimization objective is to minimize the total local
power exported to the prosumers, under a linearization of the voltage constraints. Other works adopt a similar
modeling of the physical aspects of P2P energy trading, such as power loss minimization, voltage regulation, and
network constraints [5, 22, 33, 36].

The works mentioned above, however, largely overlook the user behavioral aspects in designing their solutions.
The optimization problems assume that users are rational and constantly interacting with the system. A few recent
works take into account users’ preferences and limited capabilities [1, 44]. In these papers, the energy allocation
problem is modeled as a matching problem, and specifically as an extension of the general assignment problem.
Users have preferences which are learned using reinforcement learning. Following the bounded rationality
principle, only a limited number of potential exchanges are given to the users, based on the learned preferences.
Conversely, an automated approach is proposed in [4] to allocate energy and price between prosumers. Here,
the objective is to match demand and production with a low computational complexity solution. Therefore,
the authors propose a greedy algorithm that sorts sellers buy selling price, and matches buyers in the order of
registration. We use this approach as a comparison in the experimental results.

Recently, there have been a few efforts in integrating Prospect Theory (PT) [25] in energy trading, with the
objective to better modeling users’ behavior and perception. The study in [16] formulates an optimization problem
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that maximizes the sum of the users’ prospect theory utilities under techno-economic constraints. Although the
problem is a mixed-integer-linear programming (MILP) problem, and thus could have a high complexity, the
authors adopt a MILP solver to find the optimal solution. The authors of [53] develop a nested market clearing
algorithm for inter- and intra-microgrid energy trading. The prospect theory utility function is divided into
subjective and objective uncertainty, and modeled accordingly. The optimization problem is formulated as a
distributionally robust model which aims at minimizing the sum of the expected value of the costs and the
prospect theory functions for users, under various system’s and users’ constraints. The problem is solved using
linearization and an iterative algorithm that exploits Lagrangian functions.

Although these papers address the user behavioral modeling in some ways, they require active participation
from users and also assume that such behavior (e.g., the prospect theory parameters) is homogeneous for all
the users. Social science studies, have shown that such assumptions do not hold in practice [13]. In this paper,
in light of the above mentioned limitations, we propose a novel demand/production matching problem, and a
differential evolution algorithm to solve it, that take into account the users’ individual perceptions through the
perceived utility, modeled through prospect theory. Additionally, we define a Q-learning based algorithms that
learn competitive prices while taking into account the sellers’ perceived utility.

6 CONCLUDING REMARKS

In this paper, we bring together the concept of perceived utility from behavioral economics and reinforcement
learning into P2P energy trading. Unlike existing literature, we propose an automated and dynamic P2P energy
trading problem that maximizes the perceived value for buyers while simultaneously learning the optimal selling
price for sellers. Given the non-linear and non-convex nature of the problem, we propose a novel Differential
Evolution-based metaheuristic algorithm, called DEbATE. DEbATE is paired with a prospect theory enhanced
Q-learning algorithm, called PQR, to adjust the selling price over time. Given the limitations of the tabular
Q — learning approach of PQR, we propose a Deep Q-Network-based algorithm called ProDQN that proposes a
novel loss function based on PT value function to model the seller’s perceived utility. Results show the advantages
of the proposed approaches with respect to a state of the art solution using real energy consumption and
production data.

This work shows that integrating concepts from behavioral economics and reinforcement learning can lead to
more efficient and effective energy exchange in peer-to-peer (P2P) energy trading systems. It is also supported
by the results showing how the proposed algorithms, i.e., DEDATE, PQR, and ProDQN, outperform existing
solutions in maximizing perceived value for buyers as well as learning the optimal selling prices for sellers. In
our future work we will extend the proposed approaches. Specifically, we will consider reward signals that allow
agents to converge faster towards the optimal policy. Additionally, we will consider privacy concerns through
the use of blockchain technology. This will provide a secure trading platform for participating prosumers.
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APPENDIX
THEOREM A.1. The optimization problem in Eq. (2) is NP-hard.

Proor. We present a reduction from the Generalized Assignment Problem (GAP) [19] as a proof of NP-hardness
our optimization problem in Egs. (2)- (2f). In a general instance of GAP, there are n tasks and m processors.

Each processor i has a resource budget given by e;. By assigning task j to processor i, we obtain a profit p;; while
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consuming g;; amount of resources. A task can only be assigned to a single process, and therefore, the goal is to
find the assignment that provides maximum profit given the resource budget of the processors. The GAP can be
formulated as an integer linear programming problem:

max zm: zn:pijxij (9)

i=1 j=1

n

s.t. Zg,—jxij < e, Vi (%a)
=

Dxy=1, Vj (9b)
i=1

Xij € {0, 1} Vl,j (90)

From a general GAP instance, we can create a reduced instance of our problem as follows. We create a buyer
for each task and a seller for each processor. We set (1 + ¢;;)d; = g;; and set the energy production of a seller i
to e;. We also set [,4x = o0 so that all exchanges are possible (i.e., a task can be assigned to-any processor). An
important difference between our reduced problem and the GAP is that the decision variables x;; are continuous
instead of discrete. However, infinitesimal exchanges are not allowed in our system, as they need to be greater
than or equal to y;. By setting y; = d;, the constraint in Eq. (2e) forces the decision variable x;; to be either 0 or 1,
same as binary decision variable z;;. Additionally, it also forces the system to assign a buyer (i.e., a task in the
GAP problem) to a single seller.

We set all the loss-aversion parameters (k. , k_)) to 1 and the risk-sensitive parameters (s , {- ) to 1. We also
set p; = 0 for all sellers in S. In summary, the objective function becomes linear, i.e.,

Z Z(pgs T Pi)djxij - Z Z pgsdj

Jj€EB i€S Jj€EB i€S
The term — 3} ;cp 2lies Pgs@; is just a constant, and can thus be ignored for the purpose of the maximization
problem. Now, by setting (pys — pi)d; = p;ij, we have successfully reduced the objective function to

Z Z DijXij

jeB i€S
As a result, the solution of our reduced problem provides the assignment that maximizes the profit within the
constrained processors’ resources. Therefore, our problem is at least as hard as GAP, and thus it is NP-Hard. O

LEMMA A.2. The time complexity of the DEbATE algorithm is O(Gpax X NP X |S||B|).

Proor. The complexity is dominated by the while loop (lines 3 — 19), which is executed Gqx times. Within
this loop, the for—loop (lines 4 — 17) does |X| = NP total iterations. In each iteration, the inner for—loop (lines
7 — 12) iterates over the sets S and B, and only contains constant operations. Similarly, checking the constraints
(lines 13 — 15) requires to iterate over the same sets. Finally, calculating the function f(.) (line 16) has cost |B|.
Overall, the complexity is O(Gpax X NP X (|S||B| + 3|S||B| + |B|)) = O(Gpnax X NP X |S||B|)

O
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