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Abstract—The widespread adoption of distributed energy
resources, and the advent of smart grid technologies, have
allowed traditionally passive power system users to become
actively involved in energy trading. Recognizing the fact that the
traditional centralized grid-driven energy markets offer minimal
profitability to these users, recent research has shifted focus
towards decentralized peer-to-peer (P2P) energy markets. In these
markets, users trade energy with each other, with higher benefits
than buying or selling to the grid. However, most researches
in P2P energy trading largely overlook the user perception in
the trading process, assuming constant availability, participation,
and full compliance. As a result, these approaches may result in
negative attitudes and reduced engagement over time. In this
paper, we design an automated P2P energy market that takes
user perception into account. We employ prospect theory to model
the user perception and formulate an optimization framework to
maximize the buyer’s perception while matching demand and
production. Given the non-linear and non-convex nature of the
optimization problem, we propose Differential Evolution-based
Algorithm for Trading Energy called DEbATE. Additionally, we
introduce a risk-sensitive Q-learning algorithm, named Pricing
mechanism with Q-learning and Risk-sensitivity (PQR), which
learns the optimal price for sellers considering their perceived
utility. Results based on real traces of energy consumption and
production, as well as realistic prospect theory functions, show
that our approach achieves a 26% higher perceived value for
buyers and generates 7% more reward for sellers, compared to
a recent state of the art approach.

Index Terms—Peer-to-peer energy trading, differential evolu-
tion, dynamic pricing, prosumer, prospect theory, Q-learning.

I. INTRODUCTION

Distributed Energy Resources (DER), such as rooftop solar
and wind turbine, have seen widespread proliferation among
consumers in recent years [1]. In addition, the advent of Smart
Grid (SG) technologies, Advanced Metering Infrastructures
(AMI), and home energy management systems, have added
flexibility in energy generation/consumption for consumers.
This, in turn, has allowed traditionally passive consumers to
become actively involved in energy trading by sharing the
excess energy generated at their premise to either grid or
other buyers [2], [3]. These active consumers with energy
production capabilities have been referred to as prosumers [3],
as a portmanteau of “producers” and “consumers”. The role
of prosumers in energy market has been recognized to some

extent with the adoption of incentive schemes like Feed-in-
Tariff (FiT) mechanism [4], [5]. FiT allows prosumers to sell
excess energy to the grid and buy from grid when required
[5]. However, existing energy trading modalities offer limited
benefits to participating prosumers. This is due to the minimal
prices at which energy is purchased by grid, as well as the low
limits on the amount of energy that can be purchased [3]–[5].

A. Literature Review and Motivation

Peer-to-peer (P2P) energy trading is a recently proposed
decentralized modality for energy sharing aiming at solving
limitations of centralized techniques. This modality has been
gaining significant traction recently [4], [5]. Specifically, P2P
energy trading allows prosumers to trade energy among each
other at a negotiated price with or without the involvement of
the grid [4]. It generates better monetary incentives for pro-
sumers compared to existing mechanisms while also reducing
their grid dependency [5]. Additionally, increased local energy
generation/consumption resulting from P2P trading leads to
the minimization of overall system energy loss while providing
an effective way to achieve demand side management [6].
Benefits extend also to the grid operator, by providing savings
in investments that would have been otherwise required to
develop/maintain transmission infrastructure in a centralized
power distribution architecture [3], [4].

P2P energy trading has received attention from the research
community in recent years. The works in [7], [8] present game
theoretic approaches in a P2P setting, while a greedy rule-
based P2P mechanism to assign energy among prosumers is
proposed in [9] that includes mid-market pricing. Similarly,
the physical aspects of P2P energy trading, such as power
loss minimization and voltage regulation, have been explored
in [10], [11]. These works, however, largely overlook the
user behavior in designing their solutions. As established in
[2], [3], [5], accommodating the user behavioral modeling
in P2P energy trading ensures sustained participation from
prosumers while incentivizing their contribution. In fact, the
papers [7], [8] consider prosumers to be actively involved and
fully compliant with the system as rational decision-makers.
First concern with this assumption is that the continuous online
presence of participating prosumers with the system might
not always be possible in real-world application. Secondly,978-1-6654-3540-6/22/$31.00 © 2022 IEEE
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research on user behavioral models and decision making [12],
[13] have found users to have bounded rationality. Therefore,
requiring constant active participation overwhelms the users
and incentivizes non-rational decisions [14]. In the worst
case, it might even result in users opting to terminate their
participation altogether [2], [13]. In that light, the works in [2],
[15] incorporates bounded rationality and user preferences into
P2P energy trading. However, it requires continuous human
participation and assumes a simplistic linear model for user
perception. Conversely, the authors of [5] limit their focus
on coalition formation in game theoretic setting and do not
explicitly consider user behavioral modeling.

As a result, a prosumer-centric P2P energy trading model,
that effectively incorporates the prosumers’ decision-making
behavior and their perceived loss/gain value from trading, is
still lacking in the existing literature. Such a trading modality
is expected to require minimal active participation from users
while also ensuring their sustained involvement through the
adoption of user behavioral modeling. To this end, the frame-
work of Prospect Theory (PT) [16] can be used to model the
non-rational user behavior in the face of uncertain decision-
making. It is often regarded as fairly accurate mathematical
representation of human behavior [16]–[18].

Recently, there has been few efforts in integrating PT in
energy related applications as well to capture the irrationality
of users [18]–[21]. In relation to P2P energy trading, the
authors in [21] have proposed a PT-based distributed energy
trading model to optimize trading decisions for prosumers in
a competitive market. Although these papers model the user
behavior in some ways, they require active participation from
users and also assume that such behavior (e.g., the parameters
of PT) is homogeneous for all the users. Social science studies,
such as the one conducted in Italy [22] to investigate the social
acceptance of nuclear energy using an online survey, show that
users exhibit significant heterogeneity in their preferences for
the sources of energy. Neuroscience studies have also stressed
the heterogeneity of humans in reference to PT parameters
[23]. Not capturing such heterogeneity provides little benefits
in terms of user behavioral modeling.

B. Paper Contributions

In this paper, we design a PT-based optimization framework
for prosumer-centric P2P energy trading as shown in Fig. 1.
The framework aims at matching energy production and con-
sumption (step 1 in Fig. 1) to maximize the perceived utility of
individual buyers while taking into account the intrinsic het-
erogeneity of human perception. Given that the optimization
problem is non-linear and non-convex, we further devise a Dif-
ferential Evolution-based [24] metaheuristic algorithm called
DEbATE to solve the problem (energy allocation, step 2).
In order to ensure minimal active participation of prosumers,
we employ a Reinforcement Learning (RL) framework, called
PQR, in tandem with DEbATE to automate the pricing
mechanism for sellers (pricing mechanism, step 3). In doing
so, PQR learns the selling price for each sellers using a PT-
based risk-sensitive Q-learning algorithm [25]. The output of

the algorithms is then returned to the prosumers for executing
the physical energy transactions (step 4). Using real datasets
for energy production and consumption, paired with recent
survey data for PT perception modeling, results show that
DEbATE performs 25% higher in buyer’s perception and 7%
higher in seller’s reward compared to state-of-the-art approach.

The major contributions of the paper are the following:
• We develop a PT-inspired optimization framework for

P2P energy trading;
• We design a metaheuristic algorithm DEbATE to solve

the non-linear energy allocation problem;
• We design dynamic pricing mechanism with PQR algo-

rithm using risk-sensitive Q-learning approach;
• Experiments using real data show the superiority of

proposed approach compared to the state-of-the-art;

Fig. 1. P2P Energy Trading System Overview.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a P2P energy trading system as shown in Fig. 1.
The system consists of prosumers that can exchange energy
among each other through an existing distribution network.
The grid serves as backup for prosumers to either buy or
sell energy, if the local energy trading is insufficient or not
possible. Let P be the set of all prosumers participating in the
P2P energy market. We refer to Bt ⊂ P as the set of Buyers,
i.e. the set of prosumers that have higher self-consumption
than generation at a timeslot t, and consumers without energy
generation capabilities. Similarly, St ⊂ P is the set of Sellers,
i.e., prosumers that have excess generation at a timeslot t. For
simplicity of notation, we drop the subscript t in the following.

We model the perceived loss and gain of prosumers using
the prospect theory (PT) value function to capture user per-
ception on gains and losses. Specifically, consider the excess
energy generation of seller i ∈ S be ri and demand of buyer
j ∈ B be wj . Then, let xij ∈ [0, 1] represent the fraction of
wj that a buyer j is willing to buy from seller i at ρi price
per kWh amount of energy. There is an energy loss during
the physical energy transfer through wires [6], which depends
on the wire-length between i and j and directly proportional

2022 IEEE Global Communications Conference: Green Communication Systems and Networks

4837
Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on September 18,2023 at 17:10:12 UTC from IEEE Xplore.  Restrictions apply. 



to the amount of energy exchanged. The loss is modeled as a
fraction lij ∈ [0, 1] of the energy exchanged. Assume ρgs, ρgb
be the energy selling and purchasing prices from the grid. We
adopt a modified PT value function to model realistic user
perception in an energy market [16]. The function quantifies
perceived utility of humans towards gain and loss based on
degree of deviation from a reference point. Particularly, in our
problem, it captures the difference of total actual buying cost
yj from the buyer’s desired total reference cost ρjwj where ρj
is the reference price of buyer j for purchasing energy. This
utility function is formulated as

v(yj) =

{
k+,j(ρjwj − yj)ζ+,j , yj < ρjwj

−k−,j(yj − ρjwj)ζ−,j , yj ≥ ρjwj
(1)

where k+,., k−., ζ+,., ζ−,. are the parameters that control the
degree of loss-aversion and risk-sensitivity. These parameters
are found to be highly heterogeneous and vary from person to
person based on factors like gender and age group [26], [27].
yj is the total actual cost of buying energy for jth buyer s.t.

yj =
∑
i∈S

ρixijwj + ρgs(1−
∑
i

xij)wj

Note that, similar to the PT value function in [16], the utility
function in Eq. (1) is concave in the gain domain (i.e. case
yj < ρjwj) while convex in loss domain (i.e. case yj ≥ ρjwj).

The problem of matching demand and production of het-
erogeneous prosumers is formalized as follows.

maximize f(y) :
∑
j∈B

v(yj) (2)

s.t.
∑
j∈B

(1 + lij)xijwj ≤ ri, ∀i (2a)∑
i∈S

xij ≤ 1, ∀j (2b)

xij = 0, if lij ≥ lmax, ∀i (2c)
ρgb ≤ ρi, ρj ≤ ρgs, ∀i (2d)
xij ∈ [0, 1], ∀i, j (2e)

The problem maximizes the sum of perceived utility for
buyers in Eq. (2). Constraint in Eq. (2a) prevents the problem
from exceeding the amount of energy being sold by each
sellers while incorporating the losses in electric lines. The
constraint in Eq. (2b) ensures that the energy demand for each
buyers is not exceeded, while constraint (2c) limits the loss
between sellers and buyers to be within the loss threshold
lmax. Finally, the constraint (2d) limits upper and lower bound
for energy price to the selling and buying price of the grid.

It is to be noted that the problem in Eq. (2) is non-
linear, non-convex optimization problem. Hence, we propose
a heuristic based on Differential Evolution Algorithm (DEA)
[24] described in the following section. Additionally, in the
above problem, the selling price is considered as a fixed
amount for a trading period. However, the reference price ρj
of buyer j is a personal value which may under- or over-
estimate the competitiveness of market. In order to maximize

the sellers’ perceived objectives through prospect theory, we
resort to the risk-sensitive Q-learning algorithm [25].

Algorithm 1: DEbATE
Input : set of buyers B, sellers S, fitness function f(.), max

iterations Gmax, population size NP , crossover
probability CR, differential weight F

Output: best identified feasible solution x∗

1 Update set of buyers B and sellers S, count = 0;
2 Generate initial population X = {xk| k = 1, . . . , NP};
3 while count < Gmax do
4 for each xk ∈ X do
5 Choose 3 different vectors {xa,xb,xc} ∈ X at random

and R ∼ U(1, |S| × |B|);
6 Create mutated solution x̄k = xk;

/* Mutation and Crossover */
7 for each i ∈ |S|, j ∈ |B| do
8 Select u ∼ U(0, 1) ;
9 if u < CR||(i× j) == R then

10 x̄
(k)
ij = x

(a)
ij + F × (x

(b)
ij − x

(c)
ij );

11 x̄
(k)
ij = min(1,max(0, x̄

(k)
ij ))

12 end
/* Check Constraints */

13 ∀i, j, if lij ≥ lmax then x̄ij = 0;
14 ∀i, if

∑
j(1 + lij)x̄ijwj > ri then

x̄ij =
x̄ijri∑

ĵ
(̄1+l

iĵ
)x̄

iĵ
w

ĵ

;

15 ∀j, if
∑

i x̄ij > 1 then x̄ij =
x̄ij∑
î
x̄
îj

;

/* Compare fitness */
16 if f(x̄k) > f(xk) then X = (X \ {xk}) ∪ {x̄k};
17 end
18 count = count++;
19 end

/* Find the best solution to execute trading */
20 Let x∗ = arg max

xk∈X
f(xk);

21 Execute transactions for each prosumers to x∗ ;

III. THE DEBATE AND PQR HEURISTICS

In this section, we describe the Differential Evolution-based
Algorithm for Trading Energy (DEbATE) (Alg. 1), designed for
the problem presented in Section II, and the Pricing mecha-
nism with Q-learning and Risk-sensitivity (PQR), designed to
dynamically adjust the sellers’ prices.

A. DEbATE

DEbATE is executed at each trading period (e.g., 12 hours)
to solve the non-linear optimization problem in Eq. (2). It
uses differential evolution to determine an optimal amount
of energy to be traded between prosumers that maximizes
the perceived utility of buyers. DEbATE initially updates the
list of buyers (B) and sellers (S) based on the expected
production and consumption for current trading period. These
can be predicted accurately with recent approaches [28], [29].
The differential evolution-based optimization begins on line 2
where an initial population X is generated with population
size of NP . An element xk ∈ X , with k = 1, 2, . . . , NP is
a candidate solution vector of variables xij representing the
amount of energy to be traded between each seller i and buyer
j . These variables correspond to the decision variables of our
optimization problem.
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The while−loop (line 3 − 19) is the differential evolution
loop that aims at finding solution to the non-linear optimization
problem with Eq. (2) as the fitness function. The loop is
executed for Gmax iterations. At each iteration, for each
candidate solution xk ∈ X , the algorithm creates a mutated
solution x̄k. Initially, x̄k = xk. The mutated solution is
subsequently updated through mutation and crossover with
3 random candidates xa,xb,xc ∈ X (line 5). A value
R ∈ [1, |S| × |B|] is selected at random. R will be used in
the following for−loop to ensure a minimum mutation. The
for loop in line 7 iterates over the components (dimensions
in evolutionary terms) of x̄k. During each iteration, a value
u ∈ [0, 1] is sampled at random as mutation probability (line
8). Subsequently, a mutation occurs for the component ij
of x̄k with crossover probability CR (line 9). The mutation
occurs irrespective of the probability if (i× j) = R (to ensure
at least one minimum mutation). A mutation is executed by
combining the corresponding component of xa, xb, and xc

with the differential weight parameter F ∈ [0, 2] as in line 10.
The mutated component x̄

(k)
ij is clipped to ensure that it falls

within [0, 1] as minimum and maximum threshold to satisfy
constraint Eq. (2e) in line 11 of the algorithm.

After the mutated solution is finalized, it is checked, and
adjusted if needed, to meet the constraints in Eqs. (2a)-(2c) of
the optimization problem. Specifically, line 13 ensures that no
exchange occurs (i.e., x̄

(k)
ij = 0) between users having a loss

higher than lmax. Lines 14 − 15 ensure that the production
of a seller and the demand of each buyer are not exceeded,
respectively. Finally, in line 16, the fitness function f(.) of
the mutated solution x̄k is compared against the original
candidate solution xk. If f(x̄k) > f(xk), then x̄k replaces
xk in the set of candidate solutions X . At the end of the
while loop, DEbATE selects the best solution x∗ in X (line
20) and executes the transactions accordingly (line 21). In
the following theorem 1, we show that the DEbATE has
polynomial complexity and hence, computationally efficient.

Theorem 1. The complexity of the DEbATE algorithm is
O(Gmax ×NP × |S||B|).

Proof. The complexity is dominated by the while loop (lines
3 − 19), which is executed Gmax times. Within this loop,
the for−loop (lines 4− 17) does |X | = NP total iterations.
In each iteration, the inner for−loop (lines 7 − 12) iterates
over the sets S and B, and only contains constant operations.
Similarly, checking the constraints (lines 13− 15) requires to
iterate over the same sets. Finally, calculating the function f(.)
(line 16) has cost |B|. Overall, the complexity is O(Gmax ×
NP×(|S||B|+3|S||B|+|B|)) = O(Gmax×NP×|S||B|)

B. PQR

After determining the solution to the energy allocation
problem in DEbATE, the selling price for sellers is then
updated through the PQR algorithm. In order to learn the
optimal selling price dynamically over time, we model the
sellers as independent learning agents. Note that, to preserve
the privacy and avoid the conflict between prosumers, these

agents do not have access to information about other sellers or
buyers. The state space in the Q-learning formulation consists
of the prices between the grid buying (ρgb) and selling (ρgs),
discretized by a step size, δ, i.e., ρi ∈ {ρgb, ρgb + δ, ρgb +
2δ, ..., ρgb +

(ρgs−ρgb
δ − 1

)
δ, ρgs}.

The action space consists of a price increasing action, price
decreasing action, and no change action, i.e. a ∈ {+δ,−δ, 0},
where δ is the amount by which price is increased or de-
creased. Seller i reward function is the total revenue generated
at the current trading period i.e. Ri = (ρi + a)

∑
j∈B xijwj .

For updating Q-values, we modify the approach proposed in
[25] by considering the following Q-learning update rule that
includes the PT-based perceived utility of sellers.

Q(new)(s, a) = Q(old)(s, a) + αv(yi) (3)

v(yi) =

{
k+,i(yi)

ζ+,i , yi > 0

−k−,i(−yi)ζ−,i , yi ≤ 0
(4)

where, yi = Ri+ γmaxaQ(snew, a)−Q(s, a) is the Tem-
poral Difference (TD) error of ith seller for current iteration,
and v(yi) is transformation of TD error to capture each seller’s
personalized perceived utility on loss and gain. α refers to the
learning rate for updating Q-values in Eq. (3). The action is
selected based on an ε-greedy exploration-exploitation strategy
[30]. Specifically, ε refers to the probability of exploration and
it is initially set to 1. It is then decreased over time using an
ε−decay value, as the system learns the optimal policy. Based
on the selected action, the new selling price, reward, and Q-
value are updated as per Eqs. (3) and (4). Updated selling price
is then sent to the respective seller i for next trading period.

The system runs both DEbATE and PQR sequentially at
every trading period. Input of DEbATE is updated based on
the prices computed by PQR. PQR then takes as input the
reward from executing energy transactions by DEbATE.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Fig. 2. Normalized objective value vs. number of iterations.

In this section, we evaluate the performance of DEbATE
and PQR, hereafter jointly referred as DEbATE − PQR,
against a recent state-of-the-art approach referred to as Rule
[9]. Rule allocates energy using a greedy heuristic that assigns
cheapest sellers to buyers based on their registration order in
the system, while final price of each transaction follows mid-
market pricing, i.e., mid value of seller’s and buyer’s asking
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Fig. 3. Buyers’ perceived values. Fig. 4. Sellers’ cumulative reward. Fig. 5. Average price. Fig. 6. Individual prices.

price. We consider a system with 40 prosumers, split evenly as
buyers and sellers. This is considered a representative number
of prosumers in a microgrid or set of houses supplied by a
single distribution transformer. We use a realistic dataset for
buyers’ energy consumption obtained from [31]. Similarly,
we consider sellers equipped with 4kW rooftop solar located
in Lexington, Kentucky, USA. The energy generated is esti-
mated using NREL’s PVWatts Calculator [32] given the solar
irradiance in Lexington and size of solar panels. Losses are
assigned uniformly at random from set {1%, 2%, 3%, 4%} and
maximum loss threshold Lmax = 2.5%.

We assume that prosumers complete a survey before joining
the system to estimate their individual prospect theory parame-
ters, similar to [23], [26], [27], and use realistic prospect theory
parameters determined by them. Specifically, we sample the
risk-averting parameter for gains (ζ+) ∈ [0.60, 0.88], the risk-
seeking parameter for losses (ζ−) ∈ [0.52, 1.0], the loss-
aversion parameters for gain and loss (k+), (k−) ∈ [2.10, 2.61]
for each individual prosumers. The grid energy buying price
is set to ρgb = $0.06 and the selling price to ρgs = $0.12. The
reference price for each sellers is initially randomly sampled
from range [0.09, 0.12]. It is then updated using PQR at each
iteration. The reference price for each buyer is selected in
the range [0.06, 0.10] and considered static for the duration
of experiments, which is 365 days. The parameters for PQR
algorithm are set as follows: learning rate α = 10−4, step size
for discretizing state space δ = $0.001, and ε−decay = 0.965.

B. Results

We consider several experimental scenarios and perfor-
mance metrics, as discussed in the following.

Experimental Scenario 1: We first run experiments to
study the convergence of DEbATE. We considered different
system size by scaling the number of sellers and buyers.
Fig. 2 shows the normalized objective value as a function of
the number of iterations using a population size NP = 20.
The plot averaged over 10 runs shows that 10, 000 iterations
are sufficient for the algorithm to converge in the consid-
ered settings. As a result, in the following scenarios we set
Gmax = 10, 000 and the population size NP = 20.

Experimental Scenario 2: In the second experimental sce-
nario we study the performance of the considered approaches
over time. Two performance metrics are considered, namely
the buyers’ objective value and the sellers’ cumulative reward.
These are represented in Figs. 3 and 4, respectively, with a

moving average of 10 days. In this experiments we consider
15 buyers and 15 sellers. The benefits of DEbATE − PQR
over Rule are more prominent from April through October,
when the energy demand and production is higher. The
greedy nature of Rule penalizes the quality of the resulting
matching, significantly reducing the buyers’ perceived value.
Note that, the buyers’ objective values are negative because
they are paying higher prices than their reference purchase
price. Therefore, transactions are seen as loss from a prospect
theory perspective. Nevertheless, our approach optimizes the
energy assignment to maximize the buyers perceived value.
Additionally, our approach is able to generate higher rewards
than Rule by dynamically learning the prices for sellers
through the PQR algorithm. The the sellers’ reward decreases
after mid-september for both the approaches due to the reduced
energy production during winter.

We further study the performance over time by considering
the evolution of average and individual sellers’ prices. We
consider a smaller system of 5 sellers and 5 buyers for ease
of representation of the results. Fig. 5 shows the average price
while Fig. 6 shows the individual prices. DEbATE − PQR
is able to learn and adjust the price over time to improve
the buyers’ perceived value considering their competitiveness.
The competitiveness is a function of a buyer’s reference price,
their production, and their location in the system (e.g., loss
w.r.t. sellers). As a result, our approach is able to improve
the perception of both buyers and sellers while ensuring the
competitiveness of the market.

Experimental Scenario 3: In this scenario we test the
scalability with respect to the system size. Specifically, we
increase the system proportionately from 5 sellers and 5 buyers
to 20 sellers and 20 buyers. Figs. 7-8 show the buyers’ total
perceived value and the sellers’ reward, respectively, over a
year. By considering the loss-averse and risk-seeking PT-value
functions, DEbATE−PQR achieves an increasing advantage
as the system size increases compared to Rule, for both
sellers and buyers. As a numerical example, DEbATE−PQR
achieves as much as 26% increase in buyers’ perceived value
while ensuring 7% profit improvement for sellers.

Experimental Scenario 4: In the final scenario we study the
learning trends of prices for DEbATE − PQR. Specifically,
we observe the average price at 90, 300, and 365 days, for
different system sizes. Fig. 9 shows the results. DEbATE −
PQR learns more profitable prices over time under all system
sizes. It is to be noted that prices are lower for larger systems,
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Fig. 7. Obj. values for buyer vs. network size. Fig. 8. Total rewards for sellers vs. network size. Fig. 9. Avgerage price vs. network size.

due to the increased competitiveness.

V. CONCLUDING REMARKS

In this paper, we bring together the concept of perceived
utility from behavioral economics and reinforcement learning
into the P2P energy trading scene. Unlike existing literature,
we propose an automated and dynamic P2P energy trading
problem that maximizes the perceived value for buyers while
simultaneously learning the optimal selling price. Given the
non-linear and non-convex nature of the problem, we propose
a novel differential evolution-based metaheuristic algorithm,
called DEbATE. DEbATE is paired with a prospect theory
enhanced Q-learning algorithm, called PQR, to adjust the
selling price over time. Results show the advantages of the
proposed approaches with respect to a state of the art solution
using real energy consumption and production data.
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