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Introduction: Various sequencing based approaches are used to identify and
characterize the activities of cis-regulatory elements in a genome-wide fashion.
Some of these techniques rely on indirect markers such as histone modifications
(ChlIP-seq with histone antibodies) or chromatin accessibility (ATAC-seq, DNase-
seq, FAIRE-seq), while other techniques use direct measures such as episomal
assays measuring the enhancer properties of DNA sequences (STARR-seq) and
direct measurement of the binding of transcription factors (ChlP-seq with
transcription factor-specific antibodies). The activities of cis-regulatory
elements such as enhancers, promoters, and repressors are determined by
their sequence and secondary processes such as chromatin accessibility, DNA
methylation, and bound histone markers.

Methods: Here, machine learning models are employed to evaluate the accuracy
with which cis-regulatory elements identified by various commonly used
sequencing techniques can be predicted by their underlying sequence alone
to distinguish between cis-regulatory activity that is reflective of sequence
content versus secondary processes.

Results and discussion: Models trained and evaluated on D. melanogaster
sequences identified through DNase-seq and STARR-seq are significantly
more accurate than models trained on sequences identified by H3K4mel,
H3K4me3, and H3K27ac ChlP-seq, FAIRE-seq, and ATAC-seq. These results
suggest that the activity detected by DNase-seq and STARR-seq can be largely
explained by underlying DNA sequence, independent of secondary processes.
Experimentally, a subset of DNase-seq and H3K4mel ChlP-seq sequences were
tested for enhancer activity using luciferase assays and compared with previous
tests performed on STARR-seq sequences. The experimental data indicated that
STARR-seq sequences are substantially enriched for enhancer-specific activity,
while the DNase-seq and H3K4mel ChIP-seq sequences are not. Taken
together, these results indicate that the DNase-seq approach identifies a broad
class of regulatory elements of which enhancers are a subset and the associated
data are appropriate for training models for detecting regulatory activity from
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sequence alone, STARR-seq data are best for training enhancer-specific
sequence models, and H3K4mel ChIP-seq data are not well suited for training
and evaluating sequence-based models for cis-regulatory element prediction.

KEYWORDS

enhancers, functional sequencing, machine learning, sequence models, DNase-seq,

STARR-seq, ChlIP-seq

Introduction

Cis-regulatory elements (CREs) facilitate a variety of activities
that modulate gene expression. Promoters and enhancers activate
and increase gene expression, silencers decrease gene expression, and
insulators separate topologically associating domains (TADs) and
define regulatory boundaries. CREs contain transcription-factoring
binding sites (TFBS) and other sequence patterns specific to their
function that distinguish them from other parts of the non-coding
genome, but the mechanistic details of their function including
interactions between transcription factors are not well understood
(Panigrahi and O’Malley, 2021). An increased understanding of CRE
identity and function will increase our mechanistic understanding of
how gene expression is controlled and potentially allow experimental
or pharmacologic control of gene expression in the context of human
disease or vector borne disease. Evidence from genome wide
association studies has shown that genetic variation segregating
within in CREs is linked to phenotypic variation, including in the
context of human diseases such as prostate cancer, breast cancer,
systematic lupus, Crohn’s disease, and inflammatory bowel disease
(IBD) (Corradin and Scacheri, 2014; Williams et al., 2019; Nasser
et al, 2021). Greater understanding of the function of CREs and
impact of genetic variation coupled with greater efficiency of CRE
identification could have significant clinical impacts.

Given the lack of a highly regular amino acid-like code for
CREs, efforts to identify CREs are challenging. CREs are directly
identified or inferred using several next generation sequencing
(NGS) technologies that employ different indirect and direct
approaches (Shlyueva et al., 2014; Tsompana and Buck, 2014; Sun
et al, 2019). ATAC-seq, DNase-seq, and FAIRE-seq identify
regions of open chromatin, through use of a transposase that
inserts into open chromatin, an enzyme that digests DNA at open
chromatin, or using formaldehyde fixation to separate nucleosome
associated DNA from non-nucleosome depleted DNA, respectively
(Song and Crawford, 2010; McKay and Lieb, 2013; Buenrostro et al.,
2015). These regions of open chromatin represent chromosomal
locations with enriched numbers of active regulatory elements.
ChIP-seq uses antibodies to identify modified histones such as
H3K4mel (a histone modification associated with poised
enhancers), H3K4me3 (a histone modification associated with
promoters), and H3K27ac (a histone modification associated with
active enhancers) that are associated with different regulatory
activities (Heintzman et al., 2009; Creyghton et al.,, 2010; Ernst
et al,, 2011; Rada-Iglesias et al., 2018). Unlike the other methods,

Frontiers in Cellular and Infection Microbiology

STARR-seq and its variant UMI-STARR-seq are ectopic, plasmid
based assays that directly measure enhancer activity (Arnold et al.,
2013; Neumayr et al, 2019). These assays are removed from
chromatin context and facilitate the detection of any sequence
with enhancer potential though cellular enhancer activity will be
dynamic and vary by cell or tissue type, development time etc.

The genome-wide CRE maps generated by these -omics based
approaches enable a number of downstream analyses and
validation. Individual CREs can be PCR amplified, cloned and
screened for the ability to modulate gene expression levels using a
gold standard luciferase assay which queries enhancer activity in an
ectopic assay, in the absence of chromatin (Arnold et al., 2013).
Transcription factor binding sites (TFBSs) can be identified
computationally through searches for motif patterns, either those
conserved in related organisms and available through public
databases such as JASPAR (Castro-Mondragon et al., 2022) or
enriched in CREs compared with the remainder of the genome
(Bailey, 2021). Genetic variants that alter motif sequences,
particularly at conserved sites within TFBS motifs, can be
identified and their individual impact on activity characterized
(Jin et al, 2016; Yang et al,, 2022). Lastly, examining CREs
through an evolutionary lens can allow losses and gains of CREs
associated with phenotypic differences between species to be
identified (Stark et al., 2007; He et al., 2011; Arnold et al., 2014).

While next generation sequencing approaches are now widely
employed, knowledge around the capabilities and limitations of using
sequencing based approaches to identify CREs are still evolving. For
example, H3K4mel is associated with enhancers, and H3K4me3 is
associated with promoters (Heintzman et al., 2009; Ernst et al.,, 2011).
New evidence suggests, however, that the interpretation of these
methylation and acetylation patterns may not be as straight-forward
as initially thought. A recent study observed enrichment of H3K4me3
and depletion of H3K4mel in highly active enhancers (Henriques
et al, 2018). While the categorization of CREs into discrete classes
provides analytical framework, this evidence suggests regulation of
gene expression by CRE is complex.

Machine learning techniques provide a complementary
approach to augment available experimental data addressing the
identification and functional characterization of CREs. Machine
learning efforts include in silico identification of CREs based solely
on nucleotide sequence (Kazemian et al., 2011; Lee et al,, 2011;
Ghandi et al.,, 2014; Lee et al., 2016; Chen et al., 2018; Asma and
Halfon, 2019; Koo and Eddy, 2019; Ni and Su, 2021; Butt et al.,
20225 Ni et al,, 2022), using latent factors to predict CRE activity
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across distinct cell types from sparse sampling (Schreiber et al,
2020a), predicting the impact of non-coding variants on regulatory
elements (Zhou and Troyanskaya, 2015; Kelley et al., 2016; He et al.,
2018), and predicting the impact on gene expression (Hafez et al,
2017; Kelley, 2020; Avsec et al., 2021). Despite these widespread
efforts to computationally inform experimental work on CREs, the
strengths and weaknesses of data derived from alternate next
generation sequencing approaches and their impact on machine
learning models have not been systematically examined.

The differences in the type of data generated by the array of
sequencing methods used to identify and characterize CREs and
how these differences propagate into the resulting models have yet
to be sufficiently considered by the computational modeling
community. Here this knowledge gap is addressed by training
and evaluating machine learning models on chromatin
accessibility (ATAC-seq, DNase-seq, FAIRE-seq), histone
modification ChIP-seq (H3K4mel, H3K4me3, and H3K27ac),
and direct measures of enhancer activity (STARR-seq and UMI-
STARR-seq) assay data from D. melanogaster. Across this diverse
set of experimental methods, substantial differences in accuracy
were observed, indicating that the amount of signal variation
explainable by sequence pattern alone varies across the
sequencing methods. Randomly-sampled H3K4mel and DNase
peak sequences were experimentally tested for enhancer activity
using luciferase assays and compared with similar published data
from STARR-seq. Combined with computational analyses, we
conclude that STARR-seq, UMI-STARR-seq, and DNase-seq
demonstrate substantial benefits for CRE modeling based solely
on nucleotide sequence. Observed differences in the specificity of
(UMI) STARR-seq and DNase-seq for enhancers and broader
regulatory elements, respectively, impact downstream models; the
appropriateness of each type of data for each machine learning
needs to be clearly communicated with end users.

Materials and methods
Data sets, preparation, and peak calling

Analyses were performed on chromatin accessibility (ATAC-
seq, DNase-seq, FAIRE-seq), histone modification ChIP-seq
(H3K4mel, H3K4me3, and H3K27ac), and direct enhancer
activity reporter via an ectopic plasmid based assay (STARR-seq)
data sets generated from experiments in D. melanogaster (see
Table 1 for references and accession numbers). The ATAC-seq
and FAIRE-seq data sets were generated using wandering third
instar larvae eye antennal imaginal disc tissue extracted from the
FRTS82 stock (Davie et al.,, 2015), while all other data sets were
generated from Drosophila melanogaster S2 cells (Arnold et al,
2013; Henriques et al., 2018; de Almeida et al., 2022).

Sequencing reads were downloaded from the NIH SRA, cleaned
and trimmed using Trimmomatic v0.39 (Bolger et al., 2014), and
aligned to the D. melanogaster 16.45 genome (Hoskins et al., 2015)
using BWA (bwa aln, default settings) v0.7.17-r1188 (Li and
Durbin, 2009). The D. melanogaster genome was downloaded
from Fly Base (Gramates et al., 2022). Aligned reads were filtered

Frontiers in Cellular and Infection Microbiology

10.3389/fcimb.2023.1182567

for mapping quality (-q 10 -F 0x0200 -F 0x0100 -F 0x004) using
SAMTools v1.11 (using htslib v1.11-4) (Li et al., 2009). Peaks were
called using MACS2 v 2.2.7.1 (Zhang et al, 2008) with FDR
correction (-q 0.01) and the preset D. melanogaster genome size
(-g dm). The data sets varied in terms of read lengths, single-end or
paired-end, and the availability of control data, so parameters were
adjusted appropriately. MACS peak calling parameters for ATAC-
seq and FAIRE-seq data were taken from Davie et al. (2015). The
parameters used for each data set are given in Table 1. The called
peaks for each of the 8 data sets are available from Zenodo
(Nowling, et al. 2023).

Peak characterization

Genomic distributions of the peaks identified for each data set
were examined. Based on genome annotations, exon and intron
boundaries were written to BED files. Transcription start sites (TSSs)
were defined as regions extending 500 bp upstream of protein coding
sequence (corrected for strand orientation). Intergenic regions were
defined by subtracting the exon, intron, and TSS regions from the
overall chromosomes using BEDTools subtract (Quinlan and Hall,
2010; Quinlan, 2014). Coordinates of regions intersecting the peaks
and each type of genomic element were calculated using BEDTools
intersect. Coverage of each genomic element was normalized by
dividing the summed lengths of the intersection regions by the
summed lengths of the genomic element regions.

Sequencing depth profiles

Read-depth profiles for the ATAC-seq, ChIP-seq DNase-seq, and
FAIRE-seq data were generated around the STARR-seq peak centers
using deepTools2 v3.5.1 (Ramirez et al., 2016). The filtered BAM files
were combined into a single BAM file for each data set. BigWig files
were generated for each data set using the bamCoverage tool with the
parameters “~binSize 20 —normalizeUsing BPM -smoothLength 60 -
extendReads —centerReads —ignoreDuplicates -e 1147, except for
FAIRE-seq in the which the parameters “-binSize 20 -
normalizeUsing BPM -smoothLength 60 -extendReads 150 -
centerReads —ignoreDuplicates” were used. Matrices were generated
using computeMatrix referencePoint command with the parameters
“~referencePoint center -b 1000 -a 1000 -skipZeros”. Lastly, plots
were generated using the plotProfile command.

Sequence models

For each next generation assay, a sequence data set was
constructed. Fore CREs, 501-bp sequences centered at the peak
summits were extracted. A corresponding 501-bp control sample
was generated for each peak using BEDTools shuffle with exclusions
for coding sequences and any of the peaks from the corresponding
data set. Only peaks on the 2L, 2R, 3L, 3R, and X chromosomes
were used. Peak and control sequences were assigned positive and
negative labels, respectively.

frontiersin.org



Nowling et al. 10.3389/fcimb.2023.1182567

TABLE 1 Data sets and associated data processing parameters.

Data Set Source Tissue Read Length (bp); Trimmomatic Control  Additional
Type Single (SE) or Paired (PE) = Settings Data MACS
End Settings
ATAC-seq Davie eye antennal 51 bp; SE ILLUMINACLIP : TruSeq3-SE.fa:2:30:10 -f BAM -
(FRT82 et al, 2015 imaginal LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 nomodel -
stock) discs MINLEN:36 extsize 50
DNase-seq Arnold S2 cells 36 bp; SE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 -f BAM
et al, 2013 MINLEN:20
FAIRE-seq Davie eye antennal 50 bp; SE ILLUMINACLIP : TruSeq3-SE.fa:2:30:10 -f BAM -
(FRT82 et al,, 2015 imaginal LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 nomodel -
stock) discs MINLEN:36 extsize 50
H3K27ac Henriques S2 cells 51 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10 -f BAMPE
ChIP-seq et al, 2018 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36
H3K4mel Henriques S2 cells 51 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10 -f BAMPE
ChIP-seq et al, 2018 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36
H3K4me3 Henriques S2 cells 51 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10 -f BAMPE
ChIP-seq et al,, 2018 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36
STARR-seq Arnold S2 cells 36 bp; PE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 Yes -f BAMPE
(DSCP) et al, 2013 MINLEN:20
UMI- de S2 cells 36 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10 Yes -f BAMPE
STARR-seq Almeida LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
(DSCP) et al, 2022 MINLEN:20

Logistic regression models were trained to distinguish between  originally derived from late embryonic stage Drosophila
peak and control sequences. For each sequence, all k-mers from 6to  melanogaster embryos (Schneider, 1972). The PCR primers used
8 nucleotides were identified and counted using CountVectorizer =~ for each genomic region were designed with Kpnl (5’
(ngram_range=(6, 8), analyzer=“char”) from Scikit-learn = TAGAGGTACC) and Sacl (5 GCTAGAGCTC) restriction sites
(Pedregosa et al,, 2011). Scikit-learn’s CountVectorizer identified  at the 5 end to allow for restriction enzyme cloning plus four
6-8-mers present in the training data. If a particular 6-, 7-, or 8-mer  additional bases at the 5" ends to increase digestion efficiency. All
was not present in the training data, it was not included in the  primer sequences are available as Supplementary Table 1 in the
resulting vocabulary. K-mers present in the target (testing) but not ~ Supplementary Information. PCR amplification was performed in
training data were ignored. Reverse complements of k-mers were  reactions consisting of 1X Ultra Mix (PCR Biosystems), 250 nM
not explicitly calculated. Models were evaluated using a cross-fold ~ forward and reverse primers each (IDT), and 20 ng S2 genomic
validation scheme in which the sequences were partitioned into =~ DNA. Cycling conditions were initial denaturation at 98°C for 30
folds by chromosome (five folds total; Schreiber et al., 2020b). An  sec, followed by 30 cycles of 98°C for 10 sec, 60°C for 30 sec and 72°
ensemble of 48 L2-regularized logistic regression models were  C for 45 sec followed by final extension at 72°C for 45 sec. The PCR
trained using SGDClassifier(loss=“log_loss”, penalty=“12”,  amplicons were cleaned over columns (IBI Scientific). PCR
alpha=0.01, max_iter=1000, shuffle=True) and BaggingClassifier = amplicons and 2.5 ug firefly luciferase reporter vector, pGL3-
(bootstrap=False, bootstrap_features=False) from Scikit-learn. =~ Gateway-DSCP (AddGene 71506) (Arnold et al., 2013), were
Training for each logistic regression model was initialized with a  double digested with 20 U Kpnl-HF and 20 U Sacl-HF (New
different random seed. The probability of being derived from a next ~ England Biolabs) in 1X rCutSmart Buffer (New England Biolabs) at
generation assay peak was estimated for each sequence. Predictions ~ 37°C for 1 hour. The linearized firefly luciferase reporter vector was
were evaluated using Receiver Operator Characteristic (ROC) area  dephosphorylated by incubation with 1 U calf intestinal alkaline
under the curve (AUC) calculated using the auc_roc_score()  phosphatase (CIAP)(Invitrogen) at 37°C for 5 min. The CIAP was
function from Scikit-learn. then inactivated with 4 mM EDTA and incubated at 65°C for 15

min. The digested PCR amplicons and luciferase reporter vector
were subjected to column cleanups (IBI Scientific). The digested

Validation by luciferase reporter assays luciferase vector and PCR amplicons were combined at a mass ratio
of 1:5 and ligated using 5 U T4 DNA ligase (Thermo Scientific) in
Amplification and cloning of test fragments 1X T4 DNA ligase buffer (Thermo Scientific) at 22°C for 1 hour

The peak sequences and controls were PCR-amplified from  followed by heat inactivation at 70°C for 5 min. The ligation
genomic DNA isolated from Schneider 2 (S2) cells; a cell line  reaction was transformed into OneShot OmniMax 2T1
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chemically competent E. coli cells (Invitrogen) and plated on LB
agar with ampicillin. Individual colonies were picked into 10 pl
DNase/RNase-free distilled water (Invitrogen) and screened for
correct insert size by PCR reactions containing 1X Ultra Mix
(PCR Biosystems), 250 nM RVprimer3 forward primer (5
CTAGCAAAATAGGCTGTCCC), 250 nM LucNrev reverse
primer (5 CCTTATGCAGTTGCTCTCC) and 2 pl water culture.
Cycling conditions were initial denaturation at 95°C for 10 min,
followed by 30 cycles of 95°C for 15 sec, 55°C for 30 sec and 72°C for
45 sec and a final extension at 72°C for 7 min. For transformants
with the correct insert size, overnight cultures were prepared in LB
medium containing ampicillin and subjected to plasmid
purification (IBI Scientific). The clones were Sanger sequenced to
verify insert sequence and sequences are provided in the
Supplementary Materials.

Measurement of enhancer activity by
luciferase assay

S2 cells at 80% confluency were counted on a hemocytometer,
seeded in 96 well plates at 25,000 cells/well in 65 ul Schneider’s
medium and incubated for 24 h at 27°C. Transfections were
performed using Lipofectamine 3000 (Invitrogen) and 2 reporter
vectors: renilla luciferase control vector pRL-ubi-63E (AddGene
74280) and the firefly luciferase vector pGL3-Gateway-DSCP with
cloned candidate peak sequences/controls inserts at a ratio of 1:80
(1.125 ng renilla vector and 90 ng firefly vector). To monitor assay
consistency and performance, all test plates contained cells that
were transfected with a positive control fragment that was
previously tested and found to have enhancer activity (Gohl et al.,
2008) and a negative control fragment without enhancer activity.
Negative control fragments were size- and location-matched in
regions of the genome that did not overlap DNase or ChIP-seq
peaks. Following transfection, plates were agitated at 350 rpm for 30
s on a MixMate (Eppendorf) and incubated for 24 h at 27°C. To
determine the enhancer activity of cloned fragments, the Dual-Glo
Luciferase Assay System (Promega) was used following the supplier
protocol. Luminescence was measured on a GloMax Discover
instrument (Promega). Firefly luminescence was measured after
addition of the Dual-Glo reagent and a 20-minute incubation, and

TABLE 2 Peak characteristics.

10.3389/fcimb.2023.1182567

renilla luminescence was measured subsequently after the addition
of Stop & Glo reagent and a second 20-minute incubation. All
samples were tested in 6-fold technical replication. To quantify
activity, firefly luciferase luminescence measurements were
normalized to the renilla luciferase measurements for the same
technical replicate/well. Peak fragment activity was expressed
relative to the normalized activity of the negative control. Activity
for the test fragments was compared to an activity of 1 (the
normalized activity level of the negative control fragment) using a
one sample T-test. A significance threshold of 0.05 with a
Bonferroni correction was used for hypothesis testing.

Results and discussion

Peak calling with a common
genome version

Peaks were called for each of eight data sets (see Table 2); three
chromatin accessibility data sets, H3K4mel, H3K4me3, and
H3K27ac histone modification ChIP-seq data sets, and two direct
assay activity data sets (Figure 1; Table 2). The number of called
peaks ranged from 2,926 (STARR-seq) to 30,956 (ATAC-seq,
Figure 1A and Table 2) with average peak widths from 185 bp
(FAIRE-seq) to 1,044 bp (H3K4mel, Figure 1B and Table 2) and
total genome coverage of 2.0% (multiple data sets) to 11.7%
(H3K4mel, Figure 1C and Table 2).

Sequence-activity association varies across
the sequencing methods

Machine learning models were evaluated on their ability to
distinguish experimentally identified peak sequences from non-
coding, non-peak, control sequences randomly sampled from
across the genome. One set of models was created for each
sequencing data set. Model prediction performance can be
interpreted as a measure of the association between sequence
patterns and the observed activity (e.g., as measured by a

Data Set Source Genome
Coverage

ATAC-seq (eye antennal imaginal discs, FRT82 stock) Davie et al., 2015 30,956 199 + 156 4.3%
DNase-seq (S2 cells) Arnold et al., 2013 8,314 343 + 305 2.0%
FAIRE-seq (eye antennal imaginal discs, FRT82 stock) Davie et al,, 2015 16,387 185 + 127 2.2%
H3K27ac ChIP-seq (S2 cells) Henriques et al., 2018 11,272 722 + 519 7.5%
H3K4mel ChIP-seq (S2 cells) Henriques et al., 2018 14,922 1,044 + 717 11.7%
H3K4me3 ChIP-seq (S2 cells) Henriques et al., 2018 16,098 968 + 609 7.6%
STARR-seq (S2 cells, DSCP) Arnold et al., 2013 2,926 988 + 490 2.0%
UMI-STARR-seq (S2 cells, DSCP) de Almeida et al.,, 2022 13,548 325 + 157 3.1%
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Characterization of peaks from sequencing data sets generated in Drosophila melanogaster. (A) The number of peaks called for each data set. (B)
The widths (in bp) of peaks called for each data set. (C) Coverage (percentage of total bp) of the genome and its annotated exons, introns,
transcription start sites (TSSs), and intergenic (sequence in between annotated genes).

particular sequencing method). High prediction accuracies indicate
that the sequence patterns completely or mostly explain differences
in observed activity, while low prediction accuracies may be due to
confounding factors (e.g., location of the peaks relative to the active
part of the sequence or secondary processes such as suppressed
activity due to methylation).Since the activity of regulatory elements
is partly a function of their sequence (e.g., transcription factor
binding sites), we hypothesized that the association between DNA
sequence and CRE activity would be high across all of the data sets.

Contrary to our expectations, model prediction performance
(measured by ROC AUC) differed substantially across the data sets,
varying from 77.8% for H3K4mel data to 90.4% for DNase-seq and
STARR-seq data (Figure 2). Accuracy as measured by ROC AUC
was significantly negative correlated (p<0.001) with genome
coverage (Table 2); that is machine learning models derived from
CRE peak sequence data sets that covered a smaller portion of the
genome were significantly more accurate. Correlations with either
peak number (p=0.2637) or average peak width were non-
significant (p=0.2365). The sequencing methods separated into
roughly two categories. STARR-seq (90.4%), DNase-seq (90.4%),
and UMI-STARR-seq (88.3%) and FAIRE-seq (86.2%)
demonstrated the strongest sequence-activity association, while
ATAC-seq (83.2%) and ChIP-seq (H3K4mel - 77.8%, H3K4me3
- 82.2%, and H3K27ac - 80.5%) demonstrated the weakest
associations. Our results suggest that STARR-seq and DNase-seq
data sets demonstrate the strongest sequence-activity relationships
of those evaluated here, and, consequently, are most appropriate for
training machine learning models.

Frontiers in Cellular and Infection Microbiology

Evaluation of sequencing data for
enhancer activity models

H3K4mel and H3K27ac histone modification ChIP-seq (Chen
et al., 2018; Butt et al., 2022) and STARR-seq (Yanez-Cuna et al.,
2014; Yanez-Cuna et al., 2012; de Almeida et al., 2022) data sets
were used to train and evaluate sequence models for a binary
prediction of enhancer activity. Experimental measurements of
enhancer activity were used to determine if the observed disparity
in model accuracies was strictly computational or inherent to the
sequences themselves.

Of the 18 H3K4mel ChIP-seq sequence fragments tested for
luciferase activity, 5 (28%) displayed activity significantly above 1
(Figure 3A). For these 5 active fragments, the relative luciferase
activity averaged 1.8 (range 1.43-2.81); thus, while active above
background, their relative activity is quite low. Substantially fewer
H3K4mel ChIP fragments were active than compared with the 81%
(62 of 77) of STARR sequences reported in Arnold et al. (2013).
This 28% enhancer activity rate is consistent, however, with the
activity rate (26%) observed by Kwasnieski et al. (2014) when
testing 2,100 regions identified by ChIP-seq using cis-regulatory
element sequencing (CRE-seq).

Dogan et al. (2015) similarly observed high false-positive rates
from H3K4mel and H3K27ac histone modifications and found that
occupancy by the TAL1, GATA1, SMAD1, and EP300 transcription
factors were more accurate indicators of enhancer activity. ChIP-
seq identified 4,915 DNA fragments bound by TAL1 in mouse G1E-
ER4 cells. Thirty-nine (59%) of seventy randomly-chosen TALI-
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Evaluation of sequences models trained to distinguish peak from control sequences. Peak sequences from 2 each data set were divided by
chromosome arm, 2L, 2R, 3L, 3R, and X. An equal number of non-overlapping control sequences were randomly sampled. Ensembles of 48 logistic
regression models using counts of 6-mers to 9-mers were trained and evaluated and to distinguish peak sequences from control sequences.
Training and evaluation were performed using five-fold cross-fold validation (one fold per chromosome arm). Prediction accuracies were evaluated
by computing receiver operator characteristic (ROC) curves and the associated areas under the curves (AUC).

occupied DNA fragments demonstrated enhancer activity in
human K562 cells when tested in luciferase reporter assays.
Comparisons across species (mouse to human) may have affected
detection of enhancer activity rates; in future work, it would be
interesting to repeat the analyses using Drosophila S2 cells to enable
direct comparison.

Histones mark the boundaries of enhancers in regions of open
chromatin (Shlyueva et al, 2014). ChIP-seq peaks are most
accurately interpreted as marking those bounding histones rather
than the enhancers sequences themselves which may be offset from
the ChIP-seq peak centers. This is made clearer when sequence read
depth is examined for H3K4mel, H3K4me3, and H3K27ac data
and shown alongside STARR-seq data (Figure 4A). By utilizing
windows centered on the ChIP-seq peaks, only part of the enhancer
most proximal to bound histones is captured and depending on the
enhancer length, the enhancer and TFBS within it may not be
captured at all. More sophisticated approaches such as those
proposed by Sethi et al. (2020) that match shapes of
corresponding pairs of peaks to accurately localize the enhancer
region from ChIP-seq data are needed to extract high-quality
enhancer sequences for machine learning. In the absence of these
more sophisticated analytical approaches, conclusions related to
enhancers based on histone modification ChIP-seq data should be
interpreted with caution since they may be capturing sequence
patterns associated with the histone binding rather than sequences
underlying enhancer function.
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Evaluation of sequencing data for
regulatory activity models

Chromatin accessibility assays such as DNase-seq and FAIRE-
seq are used to identify a broad range of regulatory elements and
infer the specificity of their activity across experimental conditions
such as different tissues and developmental stages (Song et al., 2011;
Davie et al., 2015; Murtha et al., 2015; Pearson et al., 2016). Along
with STARR-seq, the DNase-seq model produced the most accurate
predictions, suggesting that DNase-seq is likely better suited than
FAIRE-seq or ATAC-seq for training models to predict regulatory
activity from sequence alone.

Of the 20 DNase-seq sequence fragments tested for luciferase
activity, 9 (45%) display activity significantly above 1 (see Figure 3B).
For these 9 active fragments, the relative luciferase activity averaged 4.2
(range 1.47-8.84). Luciferase activity for the 9 DNA-seq peak sequences
displaying activity significantly above one is significantly higher than
the luciferase activity for the 5 ChIP-seq peak sequences (Mann-
Whitney, p=0.04). A greater fraction of DNase fragments were active
than the H3K4mel fragments tested (28%) and substantially lower
than the observed activity level of STARR sequences (81%, 62 of 77)
tested by Arnold et al. (2013). For fragments with enhancer activity,
that activity was higher for the DNase-associated enhancers than the
H3K4mel-associated enhancers, consistent with previous observations
of unexpected depletion of H3K4mel in highly-active enhancers
(Henriques et al., 2018).
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Assessment of enhancer activity detection using luciferase reporter assays. (A) Eighteen randomly-chosen H3K4mel ChlIP peaks were cloned and
their enhancer activity quantitively measured using dual glo luciferase assays (6 replicates per fragment). Each bar represents the average relative
luciferase activity for a given sequence fragment + one standard deviation. Relative luciferase activity was computed as the normalized luciferase
activity for the tested sequence fragment (firefly/renilla) divided by the normalized luciferase activity for a negative control sequence fragment
(firefly/renilla). Statistical analysis to identify sequence fragments with enhancer activity significantly above 1 was performed using a one sample T-
test with a p-value threshold of 0.0028 (0.05/18 statistical tests). ChIP-seq sequence fragments with enhancer activity significantly above 1 are
shown in green and fragments with activity indistinguishable from 1 are depicted in gray. The horizontal dotted line represents relative luciferase

activity of 1, equal to that of the negative control. (B) Sequences from twenty randomly-chosen DNase peaks were cloned and their enhancer
activity quantitively measured using dual glo luciferase assays (6 replicates per fragment). Statistical analysis to identify sequence fragments with
enhancer activity significantly above 1 was performed using a one sample T-test with a p-value threshold of 0.0025 (0.05/20 statistical tests).

The differences in the luciferase assay activities compared with
the similarly high prediction accuracies for the sequence models
confirm that the patterns found by the machine learning models are
specific to the sequencing assay used to generate the training data.
DNase-trained models are more appropriate for identifying the
larger set of regularity elements, while STARR-trained models
should be prioritized if predicting enhancer activity is the primary
goal. Given the differences in indirect and direct methods for
identifying enhancers, it is maybe not surprising that an assay
that directly queries the enhancing properties of underlying
nucleotide sequence would be best suited for training of machine
learning models. Yet, there are limitations to these direct methods
including the fact that they test DNA sequences in the absence of
chromatin context. For example, a sequence that displays high
enhancer activity but is rarely found in open chromatin may not
strongly influence gene expression in vivo. If the goal is to identify
enhancers that are active in a particular biological context, STARR-

Frontiers in Cellular and Infection Microbiology

trained models could be combined with tissue-, life stage-, and
environmental-specific DNase-trained models.

Application of enhancer sequence models
to other sequence methods

The STARR-seq sequence model was applied to peak sequences
from the other sequencing methods to estimate the fraction of
overall peaks with enhancer activity. For each sequencing
technique, 500-bp sequences centered at the peak summits were
extracted. The model was trained on the STARR-seq sequences and
an equal number of randomly-selected 500-bp control sequences.
The fraction of peak window sequences predicted as enhancers are
given in Table 3. From as few as 26.9% (H3K4me3 ChIP-seq) to as
many as 60.1% (DNase-seq) of peak window sequences were
predicted to have enhancer activity. The sequence activity counts
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FIGURE 4
Normalized read-depth profiles around STARR-seq peak centers. Normalized read-depth profiles for the (A) H3K4mel, H3K4me3, and H3k27ac
ChlIP-seq and (B) ATAC-seq, DNase-seq, and FAIRE-seq data sets calculated around the centers of the STARR-seq peaks. Notably, the summits of
the ATAC-seq, DNase-seq, and FAIRE-seq peaks were centered on the STARR-seq peaks, which was not true for the H3K4mel, H3K4me3, and
H3k27ac ChlP-seq peaks.

from the DNase-seq and H3K4mel ChIP-seq luciferase assays were
compared with the computational sequence predictions from the
STARR-seq sequence model using Binomial tests. No significance
differences in the fraction of active sequences were observed for
either H3K4mel ChIP-seq (k=5, n=18, p=0.354, p-value=0.626) or
DNase-seq (k=9, n=20, p=0.601, p-value=0.178). These results
suggest that STARR-seq sequence models may be useful for
estimating the fraction of and even filtering peaks from other
sequencing methods for enhancer activity. To address this
question in greater depth, however, future work should perform a
similar analysis with larger sample sizes.

UMI-STARR-seq is a more sensitive method than STARR-seq,
identifying more enhancers under the same experimental
conditions. Predictions from the STARR-seq sequence models
were compared with overlaps with the UMI-STARR-seq peaks to
assess the potential to identify additional enhancers by applying the

STARR-seq sequence models to peaks from other sequencing
methods (see Table 3). DNase-seq (42.6%) had the highest
fraction of peaks with positive predictions that overlap UMI-
STARR-seq peaks. The other sequencing methods had fewer than
half as many overlapping peaks (9.8 — 18.9%). Applying STARR-seq
sequence models to other sequencing techniques appears to be a
promising approach for augmenting the enhancers found by
STARR-seq alone.

Conclusions

Available methods for computation identification of enhancers
and other CREs are increasing in number, reliability, and accuracy.
For example, support vector machines (SVMs) using k-mer counts
(Lee et al., 2011; Ghandi et al., 2014; Lee, 2016; Chen et al., 2018),

TABLE 3 STARR sequence model enhancer predictions and UMI-STARR-seq overlaps.

Data Set Predicted Positive Positive Negative Negative Prediction

Enhancers Prediction Prediction Prediction and No

(%) and Overlap* and No Overlap* and Overlap* Overlap*
ATAC-seq 39.3% 15.3% 24.0% 12.7% 47.9%
DNase-seq 60.1% 42.6% 17.5% 19.0% 20.8%
FAIRE-seq 40.6% 18.9% 21.7% 16.3% 43.0%
H3K27ac ChIP-seq 26.9% 10.8% 16.2% 12.9% 60.1%
H3K4mel ChIP-seq 35.4% 12.2% 23.3% 5.9% 58.6%
H3K4me3 ChIP-seq 26.5% 9.8% 17.0% 10.8% 62.4%

* The STARR-seq sequence model was applied to other sequencing method to assess the potential for finding additional enhancers not captured by STARR-seq. UMI-STARR-seq is more a
sensitive method than STARR-seq so validation was performed by comparing overlaps of positive predictions with the UMI-STARR-seq peaks. Positive prediction means that the sequence
fragment was predicted to be an enhancer by the STARR-seq sequence model. Overlap means the peak was overlapped by a UMI-STARR-seq peak.
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Hidden Markov Models (HMMs, Schember and Halfon, 2021), and
convolutional neural networks (CNNs) (Chen et al., 2018; Koo and
Eddy, 2019; de Almeida et al, 2022; Rada-Iglesias, 2018) have
demonstrated success in distinguishing enhancers from randomly-
sampled sequences, even across species (Chen et al., 2018; Kelley,
20205 Schember and Halfon, 2021). In a few cases, sequence models
have applied to de novo genome-wide computational prediction of
enhancers (Kazemian et al., 2011; Lai et al., 2018; Schember and
Halfon, 2021; de Almeida et al., 2022).

Establishing machine learning models as reliable methods for
CRE prediction based on DNA sequence alone will require careful
planning and extensive experimental validation. Critically, as
demonstrated here, the choice of next generation sequencing assay
data used to generate training data determines the capabilities of the
resulting model. A range of ChIP-seq (histone modification and
transcription factor binding), chromatin accessibility, and STARR-
seq data sets have been used in computational modeling of enhancers
and other regulatory elements. The choice of data is due, at least in
part, to availability. ChIP-seq was one of the first widely-available,
genome-wide methods for the identification of CREs. Using histone
modification antibodies requires fewer experiments necessary
compared with using a separate antibody for the binding of each
transcription factor, resulting in lower costs and labor. More recently,
ATAC-seq is favored over other chromatin accessibility assays since it
requires less raw DNA as input material (as compared to DNase-seq)
and offers a superior signal-to-noise ratio (as compared to FAIRE-
seq). Yet, despite the experimental convenience of these sequencing
methods, their strengths and limitations for training machine
learning models are not yet widely appreciated.

Multiple factors that impact model accuracy must be
considered. Enhancers and other regulatory elements constitute
less than 5% the D. melanogaster genome according to the STARR-
seq and chromatin accessibility data used in this study. False
positive rates will be amplified by the imbalance of the noncoding
to the rest of the genome and need to be tightly controlled to avoid
overwhelming true positive predictions. Model performance
depends substantially on the choice of input data; the (UMI)
STARR-seq and DNase-seq data sets produced the most accurate
models and should likely be preferred as training data for models of
enhancer activity. All three of these next generation sequencing
based methods show CREs covering in a small fraction of the D.
melanogaster genome and have moderate peak sizes (>300bp). As
observed above, sequencing methods with similar genome coverage,
but smaller average peak width or with greater genome coverage
result in less accurate models.

Mutagenesis assays have demonstrated that deletion of sequence
at the ends of enhancers can substantially impact activity (Nardini
et al., 2019). Modified histones bind at the boundaries of enhancers,
which is observed in the location of the ChIP-seq peaks relative to the
STARR-seq peak centers (Figure 3). Sequence analyses such as TF
binding site motifs and reverse engineering the regulatory grammar
that depend on ChIP-seq data need to appropriately account for the
discrepancies in locations.
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The differences in the type of data generated by the array of
sequencing methods used to identify and characterize CREs and
how these differences propagate into resulting machine learning
models have yet to be sufficiently considered by the computational
modeling community. Here, the sequence-activity relationships
from ATAC-seq, DNase-seq, FAIRE-seq, H3K4mel, H3K4me3,
and H3K27ac ChIP-seq, STARR-seq, and UMI-STARR-seq assay
data from D. melanogaster were evaluated using machine learning
models. DNase-seq and STARR-seq demonstrated the strong
associations. Experimental validation with luciferase assays
indicated a high false-positive rates for detection of enhancers by
H3K4mel ChIP-seq and DNase-seq data. We conclude that
STARR-seq data are best suited for training models to identify
enhancer activity from sequences, while DNase-seq data are well
suited for training models on the broader class of regulatory
elements, including their context-specific behavior. Our results
complement previous work from Kwasnieski et al. (2014) and
Dogan et al. (2015) evaluating histone modification and TF-
binding ChIP sequencing. For consistency with prior work, the
ATAC-seq, DNase-seq, and FAIRE-seq data presented here were
processed using parameters for MACS from the original papers
(Arnold et al, 2013; Davie et al,, 2015). The ENCODE project
(ENCODE Project Consortium, 2012) has since curated a newer set
of best practices for processing these data as implemented by the
ENCODE Uniform Data Processing Pipeline (Lee et al., 2016).
According to the read-depth profiles in Figure 4B, the ATAC-seq,
DNase-seq, and FAIRE-seq peak summits align well with the
STARR-seq summits. Since we use the 500 bp windows centered
on the peak summits, we do not believe our analyses are negatively
impacted. Nonetheless, future work should validate the impact of
processing the ATAC-seq, DNase-seq, and FAIRE-seq data using
the ENCODE-recommended best practices on the analyses
performed here.
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