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Introduction: Various sequencing based approaches are used to identify and

characterize the activities of cis-regulatory elements in a genome-wide fashion.

Some of these techniques rely on indirect markers such as histone modifications

(ChIP-seq with histone antibodies) or chromatin accessibility (ATAC-seq, DNase-

seq, FAIRE-seq), while other techniques use direct measures such as episomal

assays measuring the enhancer properties of DNA sequences (STARR-seq) and

direct measurement of the binding of transcription factors (ChIP-seq with

transcription factor-specific antibodies). The activities of cis-regulatory

elements such as enhancers, promoters, and repressors are determined by

their sequence and secondary processes such as chromatin accessibility, DNA

methylation, and bound histone markers.

Methods:Here, machine learningmodels are employed to evaluate the accuracy

with which cis-regulatory elements identified by various commonly used

sequencing techniques can be predicted by their underlying sequence alone

to distinguish between cis-regulatory activity that is reflective of sequence

content versus secondary processes.

Results and discussion: Models trained and evaluated on D. melanogaster

sequences identified through DNase-seq and STARR-seq are significantly

more accurate than models trained on sequences identified by H3K4me1,

H3K4me3, and H3K27ac ChIP-seq, FAIRE-seq, and ATAC-seq. These results

suggest that the activity detected by DNase-seq and STARR-seq can be largely

explained by underlying DNA sequence, independent of secondary processes.

Experimentally, a subset of DNase-seq and H3K4me1 ChIP-seq sequences were

tested for enhancer activity using luciferase assays and compared with previous

tests performed on STARR-seq sequences. The experimental data indicated that

STARR-seq sequences are substantially enriched for enhancer-specific activity,

while the DNase-seq and H3K4me1 ChIP-seq sequences are not. Taken

together, these results indicate that the DNase-seq approach identifies a broad

class of regulatory elements of which enhancers are a subset and the associated

data are appropriate for training models for detecting regulatory activity from
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sequence alone, STARR-seq data are best for training enhancer-specific

sequence models, and H3K4me1 ChIP-seq data are not well suited for training

and evaluating sequence-based models for cis-regulatory element prediction.

KEYWORDS

enhancers, functional sequencing, machine learning, sequence models, DNase-seq,

STARR-seq, ChIP-seq

Introduction

Cis-regulatory elements (CREs) facilitate a variety of activities

that modulate gene expression. Promoters and enhancers activate

and increase gene expression, silencers decrease gene expression, and

insulators separate topologically associating domains (TADs) and

define regulatory boundaries. CREs contain transcription-factoring

binding sites (TFBS) and other sequence patterns specific to their

function that distinguish them from other parts of the non-coding

genome, but the mechanistic details of their function including

interactions between transcription factors are not well understood

(Panigrahi and O’Malley, 2021). An increased understanding of CRE

identity and function will increase our mechanistic understanding of

how gene expression is controlled and potentially allow experimental

or pharmacologic control of gene expression in the context of human

disease or vector borne disease. Evidence from genome wide

association studies has shown that genetic variation segregating

within in CREs is linked to phenotypic variation, including in the

context of human diseases such as prostate cancer, breast cancer,

systematic lupus, Crohn’s disease, and inflammatory bowel disease

(IBD) (Corradin and Scacheri, 2014; Williams et al., 2019; Nasser

et al., 2021). Greater understanding of the function of CREs and

impact of genetic variation coupled with greater efficiency of CRE

identification could have significant clinical impacts.

Given the lack of a highly regular amino acid-like code for

CREs, efforts to identify CREs are challenging. CREs are directly

identified or inferred using several next generation sequencing

(NGS) technologies that employ different indirect and direct

approaches (Shlyueva et al., 2014; Tsompana and Buck, 2014; Sun

et al., 2019). ATAC-seq, DNase-seq, and FAIRE-seq identify

regions of open chromatin, through use of a transposase that

inserts into open chromatin, an enzyme that digests DNA at open

chromatin, or using formaldehyde fixation to separate nucleosome

associated DNA from non-nucleosome depleted DNA, respectively

(Song and Crawford, 2010; McKay and Lieb, 2013; Buenrostro et al.,

2015). These regions of open chromatin represent chromosomal

locations with enriched numbers of active regulatory elements.

ChIP-seq uses antibodies to identify modified histones such as

H3K4me1 (a histone modification associated with poised

enhancers), H3K4me3 (a histone modification associated with

promoters), and H3K27ac (a histone modification associated with

active enhancers) that are associated with different regulatory

activities (Heintzman et al., 2009; Creyghton et al., 2010; Ernst

et al., 2011; Rada-Iglesias et al., 2018). Unlike the other methods,

STARR-seq and its variant UMI-STARR-seq are ectopic, plasmid

based assays that directly measure enhancer activity (Arnold et al.,

2013; Neumayr et al., 2019). These assays are removed from

chromatin context and facilitate the detection of any sequence

with enhancer potential though cellular enhancer activity will be

dynamic and vary by cell or tissue type, development time etc.

The genome-wide CRE maps generated by these -omics based

approaches enable a number of downstream analyses and

validation. Individual CREs can be PCR amplified, cloned and

screened for the ability to modulate gene expression levels using a

gold standard luciferase assay which queries enhancer activity in an

ectopic assay, in the absence of chromatin (Arnold et al., 2013).

Transcription factor binding sites (TFBSs) can be identified

computationally through searches for motif patterns, either those

conserved in related organisms and available through public

databases such as JASPAR (Castro-Mondragon et al., 2022) or

enriched in CREs compared with the remainder of the genome

(Bailey, 2021). Genetic variants that alter motif sequences,

particularly at conserved sites within TFBS motifs, can be

identified and their individual impact on activity characterized

(Jin et al., 2016; Yang et al., 2022). Lastly, examining CREs

through an evolutionary lens can allow losses and gains of CREs

associated with phenotypic differences between species to be

identified (Stark et al., 2007; He et al., 2011; Arnold et al., 2014).

While next generation sequencing approaches are now widely

employed, knowledge around the capabilities and limitations of using

sequencing based approaches to identify CREs are still evolving. For

example, H3K4me1 is associated with enhancers, and H3K4me3 is

associated with promoters (Heintzman et al., 2009; Ernst et al., 2011).

New evidence suggests, however, that the interpretation of these

methylation and acetylation patterns may not be as straight-forward

as initially thought. A recent study observed enrichment of H3K4me3

and depletion of H3K4me1 in highly active enhancers (Henriques

et al., 2018). While the categorization of CREs into discrete classes

provides analytical framework, this evidence suggests regulation of

gene expression by CRE is complex.

Machine learning techniques provide a complementary

approach to augment available experimental data addressing the

identification and functional characterization of CREs. Machine

learning efforts include in silico identification of CREs based solely

on nucleotide sequence (Kazemian et al., 2011; Lee et al., 2011;

Ghandi et al., 2014; Lee et al., 2016; Chen et al., 2018; Asma and

Halfon, 2019; Koo and Eddy, 2019; Ni and Su, 2021; Butt et al.,

2022; Ni et al., 2022), using latent factors to predict CRE activity
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across distinct cell types from sparse sampling (Schreiber et al,

2020a), predicting the impact of non-coding variants on regulatory

elements (Zhou and Troyanskaya, 2015; Kelley et al., 2016; He et al.,

2018), and predicting the impact on gene expression (Hafez et al.,

2017; Kelley, 2020; Avsec et al., 2021). Despite these widespread

efforts to computationally inform experimental work on CREs, the

strengths and weaknesses of data derived from alternate next

generation sequencing approaches and their impact on machine

learning models have not been systematically examined.

The differences in the type of data generated by the array of

sequencing methods used to identify and characterize CREs and

how these differences propagate into the resulting models have yet

to be sufficiently considered by the computational modeling

community. Here this knowledge gap is addressed by training

and evaluating machine learning models on chromatin

accessibility (ATAC-seq, DNase-seq, FAIRE-seq), histone

modification ChIP-seq (H3K4me1, H3K4me3, and H3K27ac),

and direct measures of enhancer activity (STARR-seq and UMI-

STARR-seq) assay data from D. melanogaster. Across this diverse

set of experimental methods, substantial differences in accuracy

were observed, indicating that the amount of signal variation

explainable by sequence pattern alone varies across the

sequencing methods. Randomly-sampled H3K4me1 and DNase

peak sequences were experimentally tested for enhancer activity

using luciferase assays and compared with similar published data

from STARR-seq. Combined with computational analyses, we

conclude that STARR-seq, UMI-STARR-seq, and DNase-seq

demonstrate substantial benefits for CRE modeling based solely

on nucleotide sequence. Observed differences in the specificity of

(UMI) STARR-seq and DNase-seq for enhancers and broader

regulatory elements, respectively, impact downstream models; the

appropriateness of each type of data for each machine learning

needs to be clearly communicated with end users.

Materials and methods

Data sets, preparation, and peak calling

Analyses were performed on chromatin accessibility (ATAC-

seq, DNase-seq, FAIRE-seq), histone modification ChIP-seq

(H3K4me1, H3K4me3, and H3K27ac), and direct enhancer

activity reporter via an ectopic plasmid based assay (STARR-seq)

data sets generated from experiments in D. melanogaster (see

Table 1 for references and accession numbers). The ATAC-seq

and FAIRE-seq data sets were generated using wandering third

instar larvae eye antennal imaginal disc tissue extracted from the

FRT82 stock (Davie et al., 2015), while all other data sets were

generated from Drosophila melanogaster S2 cells (Arnold et al.,

2013; Henriques et al., 2018; de Almeida et al., 2022).

Sequencing reads were downloaded from the NIH SRA, cleaned

and trimmed using Trimmomatic v0.39 (Bolger et al., 2014), and

aligned to the D. melanogaster r6.45 genome (Hoskins et al., 2015)

using BWA (bwa aln, default settings) v0.7.17-r1188 (Li and

Durbin, 2009). The D. melanogaster genome was downloaded

from Fly Base (Gramates et al., 2022). Aligned reads were filtered

for mapping quality (-q 10 -F 0x0200 -F 0x0100 -F 0x004) using

SAMTools v1.11 (using htslib v1.11-4) (Li et al., 2009). Peaks were

called using MACS2 v 2.2.7.1 (Zhang et al., 2008) with FDR

correction (-q 0.01) and the preset D. melanogaster genome size

(-g dm). The data sets varied in terms of read lengths, single-end or

paired-end, and the availability of control data, so parameters were

adjusted appropriately. MACS peak calling parameters for ATAC-

seq and FAIRE-seq data were taken from Davie et al. (2015). The

parameters used for each data set are given in Table 1. The called

peaks for each of the 8 data sets are available from Zenodo

(Nowling, et al. 2023).

Peak characterization

Genomic distributions of the peaks identified for each data set

were examined. Based on genome annotations, exon and intron

boundaries were written to BED files. Transcription start sites (TSSs)

were defined as regions extending 500 bp upstream of protein coding

sequence (corrected for strand orientation). Intergenic regions were

defined by subtracting the exon, intron, and TSS regions from the

overall chromosomes using BEDTools subtract (Quinlan and Hall,

2010; Quinlan, 2014). Coordinates of regions intersecting the peaks

and each type of genomic element were calculated using BEDTools

intersect. Coverage of each genomic element was normalized by

dividing the summed lengths of the intersection regions by the

summed lengths of the genomic element regions.

Sequencing depth profiles

Read-depth profiles for the ATAC-seq, ChIP-seq DNase-seq, and

FAIRE-seq data were generated around the STARR-seq peak centers

using deepTools2 v3.5.1 (Ramıŕez et al., 2016). The filtered BAM files

were combined into a single BAM file for each data set. BigWig files

were generated for each data set using the bamCoverage tool with the

parameters “–binSize 20 –normalizeUsing BPM –smoothLength 60 –

extendReads –centerReads –ignoreDuplicates -e 114”, except for

FAIRE-seq in the which the parameters “–binSize 20 –

normalizeUsing BPM –smoothLength 60 –extendReads 150 –

centerReads –ignoreDuplicates” were used. Matrices were generated

using computeMatrix referencePoint command with the parameters

“–referencePoint center -b 1000 -a 1000 –skipZeros”. Lastly, plots

were generated using the plotProfile command.

Sequence models

For each next generation assay, a sequence data set was

constructed. Fore CREs, 501-bp sequences centered at the peak

summits were extracted. A corresponding 501-bp control sample

was generated for each peak using BEDTools shuffle with exclusions

for coding sequences and any of the peaks from the corresponding

data set. Only peaks on the 2L, 2R, 3L, 3R, and X chromosomes

were used. Peak and control sequences were assigned positive and

negative labels, respectively.
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Logistic regression models were trained to distinguish between

peak and control sequences. For each sequence, all k-mers from 6 to

8 nucleotides were identified and counted using CountVectorizer

(ngram_range=(6, 8), analyzer=“char”) from Scikit-learn

(Pedregosa et al., 2011). Scikit-learn’s CountVectorizer identified

6-8-mers present in the training data. If a particular 6-, 7-, or 8-mer

was not present in the training data, it was not included in the

resulting vocabulary. K-mers present in the target (testing) but not

training data were ignored. Reverse complements of k-mers were

not explicitly calculated. Models were evaluated using a cross-fold

validation scheme in which the sequences were partitioned into

folds by chromosome (five folds total; Schreiber et al., 2020b). An

ensemble of 48 L2-regularized logistic regression models were

trained using SGDClassifier(loss=“log_loss”, penalty=“l2”,

alpha=0.01, max_iter=1000, shuffle=True) and BaggingClassifier

(bootstrap=False, bootstrap_features=False) from Scikit-learn.

Training for each logistic regression model was initialized with a

different random seed. The probability of being derived from a next

generation assay peak was estimated for each sequence. Predictions

were evaluated using Receiver Operator Characteristic (ROC) area

under the curve (AUC) calculated using the auc_roc_score()

function from Scikit-learn.

Validation by luciferase reporter assays

Amplification and cloning of test fragments
The peak sequences and controls were PCR-amplified from

genomic DNA isolated from Schneider 2 (S2) cells; a cell line

originally derived from late embryonic stage Drosophila

melanogaster embryos (Schneider, 1972). The PCR primers used

for each genomic region were designed with Kpn1 (5 ’

TAGAGGTACC) and Sac1 (5’ GCTAGAGCTC) restriction sites

at the 5’ end to allow for restriction enzyme cloning plus four

additional bases at the 5’ ends to increase digestion efficiency. All

primer sequences are available as Supplementary Table 1 in the

Supplementary Information. PCR amplification was performed in

reactions consisting of 1X Ultra Mix (PCR Biosystems), 250 nM

forward and reverse primers each (IDT), and 20 ng S2 genomic

DNA. Cycling conditions were initial denaturation at 98°C for 30

sec, followed by 30 cycles of 98°C for 10 sec, 60°C for 30 sec and 72°

C for 45 sec followed by final extension at 72°C for 45 sec. The PCR

amplicons were cleaned over columns (IBI Scientific). PCR

amplicons and 2.5 µg firefly luciferase reporter vector, pGL3-

Gateway-DSCP (AddGene 71506) (Arnold et al., 2013), were

double digested with 20 U Kpn1-HF and 20 U Sac1-HF (New

England Biolabs) in 1X rCutSmart Buffer (New England Biolabs) at

37°C for 1 hour. The linearized firefly luciferase reporter vector was

dephosphorylated by incubation with 1 U calf intestinal alkaline

phosphatase (CIAP)(Invitrogen) at 37°C for 5 min. The CIAP was

then inactivated with 4 mM EDTA and incubated at 65°C for 15

min. The digested PCR amplicons and luciferase reporter vector

were subjected to column cleanups (IBI Scientific). The digested

luciferase vector and PCR amplicons were combined at a mass ratio

of 1:5 and ligated using 5 U T4 DNA ligase (Thermo Scientific) in

1X T4 DNA ligase buffer (Thermo Scientific) at 22°C for 1 hour

followed by heat inactivation at 70°C for 5 min. The ligation

reaction was transformed into OneShot OmniMax 2T1

TABLE 1 Data sets and associated data processing parameters.

Data Set Source Tissue
Type

Read Length (bp);
Single (SE) or Paired (PE)
End

Trimmomatic
Settings

Control
Data

Additional
MACS
Settings

ATAC-seq

(FRT82

stock)

Davie

et al., 2015

eye antennal

imaginal

discs

51 bp; SE ILLUMINACLIP : TruSeq3-SE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36

-f BAM –

nomodel –

extsize 50

DNase-seq Arnold

et al., 2013

S2 cells 36 bp; SE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:20

-f BAM

FAIRE-seq

(FRT82

stock)

Davie

et al., 2015

eye antennal

imaginal

discs

50 bp; SE ILLUMINACLIP : TruSeq3-SE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36

-f BAM –

nomodel –

extsize 50

H3K27ac

ChIP-seq

Henriques

et al., 2018

S2 cells 51 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36

-f BAMPE

H3K4me1

ChIP-seq

Henriques

et al., 2018

S2 cells 51 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36

-f BAMPE

H3K4me3

ChIP-seq

Henriques

et al., 2018

S2 cells 51 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36

-f BAMPE

STARR-seq

(DSCP)

Arnold

et al., 2013

S2 cells 36 bp; PE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:20

Yes -f BAMPE

UMI-

STARR-seq

(DSCP)

de

Almeida

et al., 2022

S2 cells 36 bp; PE ILLUMINACLIP : TruSeq3-PE.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:20

Yes -f BAMPE
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chemically competent E. coli cells (Invitrogen) and plated on LB

agar with ampicillin. Individual colonies were picked into 10 µl

DNase/RNase-free distilled water (Invitrogen) and screened for

correct insert size by PCR reactions containing 1X Ultra Mix

(PCR Biosystems), 250 nM RVprimer3 forward primer (5’

CTAGCAAAATAGGCTGTCCC), 250 nM LucNrev reverse

primer (5’ CCTTATGCAGTTGCTCTCC) and 2 µl water culture.

Cycling conditions were initial denaturation at 95°C for 10 min,

followed by 30 cycles of 95°C for 15 sec, 55°C for 30 sec and 72°C for

45 sec and a final extension at 72°C for 7 min. For transformants

with the correct insert size, overnight cultures were prepared in LB

medium containing ampicillin and subjected to plasmid

purification (IBI Scientific). The clones were Sanger sequenced to

verify insert sequence and sequences are provided in the

Supplementary Materials.

Measurement of enhancer activity by
luciferase assay

S2 cells at 80% confluency were counted on a hemocytometer,

seeded in 96 well plates at 25,000 cells/well in 65 µl Schneider’s

medium and incubated for 24 h at 27°C. Transfections were

performed using Lipofectamine 3000 (Invitrogen) and 2 reporter

vectors: renilla luciferase control vector pRL-ubi-63E (AddGene

74280) and the firefly luciferase vector pGL3-Gateway-DSCP with

cloned candidate peak sequences/controls inserts at a ratio of 1:80

(1.125 ng renilla vector and 90 ng firefly vector). To monitor assay

consistency and performance, all test plates contained cells that

were transfected with a positive control fragment that was

previously tested and found to have enhancer activity (Gohl et al.,

2008) and a negative control fragment without enhancer activity.

Negative control fragments were size- and location-matched in

regions of the genome that did not overlap DNase or ChIP-seq

peaks. Following transfection, plates were agitated at 350 rpm for 30

s on a MixMate (Eppendorf) and incubated for 24 h at 27°C. To

determine the enhancer activity of cloned fragments, the Dual-Glo

Luciferase Assay System (Promega) was used following the supplier

protocol. Luminescence was measured on a GloMax Discover

instrument (Promega). Firefly luminescence was measured after

addition of the Dual-Glo reagent and a 20-minute incubation, and

renilla luminescence was measured subsequently after the addition

of Stop & Glo reagent and a second 20-minute incubation. All

samples were tested in 6-fold technical replication. To quantify

activity, firefly luciferase luminescence measurements were

normalized to the renilla luciferase measurements for the same

technical replicate/well. Peak fragment activity was expressed

relative to the normalized activity of the negative control. Activity

for the test fragments was compared to an activity of 1 (the

normalized activity level of the negative control fragment) using a

one sample T-test. A significance threshold of 0.05 with a

Bonferroni correction was used for hypothesis testing.

Results and discussion

Peak calling with a common
genome version

Peaks were called for each of eight data sets (see Table 2); three

chromatin accessibility data sets, H3K4me1, H3K4me3, and

H3K27ac histone modification ChIP-seq data sets, and two direct

assay activity data sets (Figure 1; Table 2). The number of called

peaks ranged from 2,926 (STARR-seq) to 30,956 (ATAC-seq,

Figure 1A and Table 2) with average peak widths from 185 bp

(FAIRE-seq) to 1,044 bp (H3K4me1, Figure 1B and Table 2) and

total genome coverage of 2.0% (multiple data sets) to 11.7%

(H3K4me1, Figure 1C and Table 2).

Sequence-activity association varies across
the sequencing methods

Machine learning models were evaluated on their ability to

distinguish experimentally identified peak sequences from non-

coding, non-peak, control sequences randomly sampled from

across the genome. One set of models was created for each

sequencing data set. Model prediction performance can be

interpreted as a measure of the association between sequence

patterns and the observed activity (e.g., as measured by a

TABLE 2 Peak characteristics.

Data Set Source Peak
Count

Peak
Width
(bp)

Genome
Coverage

ATAC-seq (eye antennal imaginal discs, FRT82 stock) Davie et al., 2015 30,956 199 ± 156 4.3%

DNase-seq (S2 cells) Arnold et al., 2013 8,314 343 ± 305 2.0%

FAIRE-seq (eye antennal imaginal discs, FRT82 stock) Davie et al., 2015 16,387 185 ± 127 2.2%

H3K27ac ChIP-seq (S2 cells) Henriques et al., 2018 11,272 722 ± 519 7.5%

H3K4me1 ChIP-seq (S2 cells) Henriques et al., 2018 14,922 1,044 ± 717 11.7%

H3K4me3 ChIP-seq (S2 cells) Henriques et al., 2018 16,098 968 ± 609 7.6%

STARR-seq (S2 cells, DSCP) Arnold et al., 2013 2,926 988 ± 490 2.0%

UMI-STARR-seq (S2 cells, DSCP) de Almeida et al., 2022 13,548 325 ± 157 3.1%
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particular sequencing method). High prediction accuracies indicate

that the sequence patterns completely or mostly explain differences

in observed activity, while low prediction accuracies may be due to

confounding factors (e.g., location of the peaks relative to the active

part of the sequence or secondary processes such as suppressed

activity due to methylation).Since the activity of regulatory elements

is partly a function of their sequence (e.g., transcription factor

binding sites), we hypothesized that the association between DNA

sequence and CRE activity would be high across all of the data sets.

Contrary to our expectations, model prediction performance

(measured by ROC AUC) differed substantially across the data sets,

varying from 77.8% for H3K4me1 data to 90.4% for DNase-seq and

STARR-seq data (Figure 2). Accuracy as measured by ROC AUC

was significantly negative correlated (p<0.001) with genome

coverage (Table 2); that is machine learning models derived from

CRE peak sequence data sets that covered a smaller portion of the

genome were significantly more accurate. Correlations with either

peak number (p=0.2637) or average peak width were non-

significant (p=0.2365). The sequencing methods separated into

roughly two categories. STARR-seq (90.4%), DNase-seq (90.4%),

and UMI-STARR-seq (88.3%) and FAIRE-seq (86.2%)

demonstrated the strongest sequence-activity association, while

ATAC-seq (83.2%) and ChIP-seq (H3K4me1 – 77.8%, H3K4me3

– 82.2%, and H3K27ac – 80.5%) demonstrated the weakest

associations. Our results suggest that STARR-seq and DNase-seq

data sets demonstrate the strongest sequence-activity relationships

of those evaluated here, and, consequently, are most appropriate for

training machine learning models.

Evaluation of sequencing data for
enhancer activity models

H3K4me1 and H3K27ac histone modification ChIP-seq (Chen

et al., 2018; Butt et al., 2022) and STARR-seq (Yáñez-Cuna et al.,

2014; Yáñez-Cuna et al., 2012; de Almeida et al., 2022) data sets

were used to train and evaluate sequence models for a binary

prediction of enhancer activity. Experimental measurements of

enhancer activity were used to determine if the observed disparity

in model accuracies was strictly computational or inherent to the

sequences themselves.

Of the 18 H3K4me1 ChIP-seq sequence fragments tested for

luciferase activity, 5 (28%) displayed activity significantly above 1

(Figure 3A). For these 5 active fragments, the relative luciferase

activity averaged 1.8 (range 1.43-2.81); thus, while active above

background, their relative activity is quite low. Substantially fewer

H3K4me1 ChIP fragments were active than compared with the 81%

(62 of 77) of STARR sequences reported in Arnold et al. (2013).

This 28% enhancer activity rate is consistent, however, with the

activity rate (26%) observed by Kwasnieski et al. (2014) when

testing 2,100 regions identified by ChIP-seq using cis-regulatory

element sequencing (CRE-seq).

Dogan et al. (2015) similarly observed high false-positive rates

from H3K4me1 and H3K27ac histone modifications and found that

occupancy by the TAL1, GATA1, SMAD1, and EP300 transcription

factors were more accurate indicators of enhancer activity. ChIP-

seq identified 4,915 DNA fragments bound by TAL1 in mouse G1E-

ER4 cells. Thirty-nine (59%) of seventy randomly-chosen TAL1-

B

C

A

FIGURE 1

Characterization of peaks from sequencing data sets generated in Drosophila melanogaster. (A) The number of peaks called for each data set. (B)

The widths (in bp) of peaks called for each data set. (C) Coverage (percentage of total bp) of the genome and its annotated exons, introns,

transcription start sites (TSSs), and intergenic (sequence in between annotated genes).
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occupied DNA fragments demonstrated enhancer activity in

human K562 cells when tested in luciferase reporter assays.

Comparisons across species (mouse to human) may have affected

detection of enhancer activity rates; in future work, it would be

interesting to repeat the analyses using Drosophila S2 cells to enable

direct comparison.

Histones mark the boundaries of enhancers in regions of open

chromatin (Shlyueva et al., 2014). ChIP-seq peaks are most

accurately interpreted as marking those bounding histones rather

than the enhancers sequences themselves which may be offset from

the ChIP-seq peak centers. This is made clearer when sequence read

depth is examined for H3K4me1, H3K4me3, and H3K27ac data

and shown alongside STARR-seq data (Figure 4A). By utilizing

windows centered on the ChIP-seq peaks, only part of the enhancer

most proximal to bound histones is captured and depending on the

enhancer length, the enhancer and TFBS within it may not be

captured at all. More sophisticated approaches such as those

proposed by Sethi et al. (2020) that match shapes of

corresponding pairs of peaks to accurately localize the enhancer

region from ChIP-seq data are needed to extract high-quality

enhancer sequences for machine learning. In the absence of these

more sophisticated analytical approaches, conclusions related to

enhancers based on histone modification ChIP-seq data should be

interpreted with caution since they may be capturing sequence

patterns associated with the histone binding rather than sequences

underlying enhancer function.

Evaluation of sequencing data for
regulatory activity models

Chromatin accessibility assays such as DNase-seq and FAIRE-

seq are used to identify a broad range of regulatory elements and

infer the specificity of their activity across experimental conditions

such as different tissues and developmental stages (Song et al., 2011;

Davie et al., 2015; Murtha et al., 2015; Pearson et al., 2016). Along

with STARR-seq, the DNase-seq model produced the most accurate

predictions, suggesting that DNase-seq is likely better suited than

FAIRE-seq or ATAC-seq for training models to predict regulatory

activity from sequence alone.

Of the 20 DNase-seq sequence fragments tested for luciferase

activity, 9 (45%) display activity significantly above 1 (see Figure 3B).

For these 9 active fragments, the relative luciferase activity averaged 4.2

(range 1.47-8.84). Luciferase activity for the 9 DNA-seq peak sequences

displaying activity significantly above one is significantly higher than

the luciferase activity for the 5 ChIP-seq peak sequences (Mann-

Whitney, p=0.04). A greater fraction of DNase fragments were active

than the H3K4me1 fragments tested (28%) and substantially lower

than the observed activity level of STARR sequences (81%, 62 of 77)

tested by Arnold et al. (2013). For fragments with enhancer activity,

that activity was higher for the DNase-associated enhancers than the

H3K4me1-associated enhancers, consistent with previous observations

of unexpected depletion of H3K4me1 in highly-active enhancers

(Henriques et al., 2018).

FIGURE 2

Evaluation of sequences models trained to distinguish peak from control sequences. Peak sequences from 2 each data set were divided by

chromosome arm, 2L, 2R, 3L, 3R, and X. An equal number of non-overlapping control sequences were randomly sampled. Ensembles of 48 logistic

regression models using counts of 6-mers to 9-mers were trained and evaluated and to distinguish peak sequences from control sequences.

Training and evaluation were performed using five-fold cross-fold validation (one fold per chromosome arm). Prediction accuracies were evaluated

by computing receiver operator characteristic (ROC) curves and the associated areas under the curves (AUC).
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The differences in the luciferase assay activities compared with

the similarly high prediction accuracies for the sequence models

confirm that the patterns found by the machine learning models are

specific to the sequencing assay used to generate the training data.

DNase-trained models are more appropriate for identifying the

larger set of regularity elements, while STARR-trained models

should be prioritized if predicting enhancer activity is the primary

goal. Given the differences in indirect and direct methods for

identifying enhancers, it is maybe not surprising that an assay

that directly queries the enhancing properties of underlying

nucleotide sequence would be best suited for training of machine

learning models. Yet, there are limitations to these direct methods

including the fact that they test DNA sequences in the absence of

chromatin context. For example, a sequence that displays high

enhancer activity but is rarely found in open chromatin may not

strongly influence gene expression in vivo. If the goal is to identify

enhancers that are active in a particular biological context, STARR-

trained models could be combined with tissue-, life stage-, and

environmental-specific DNase-trained models.

Application of enhancer sequence models
to other sequence methods

The STARR-seq sequence model was applied to peak sequences

from the other sequencing methods to estimate the fraction of

overall peaks with enhancer activity. For each sequencing

technique, 500-bp sequences centered at the peak summits were

extracted. The model was trained on the STARR-seq sequences and

an equal number of randomly-selected 500-bp control sequences.

The fraction of peak window sequences predicted as enhancers are

given in Table 3. From as few as 26.9% (H3K4me3 ChIP-seq) to as

many as 60.1% (DNase-seq) of peak window sequences were

predicted to have enhancer activity. The sequence activity counts

B

A

FIGURE 3

Assessment of enhancer activity detection using luciferase reporter assays. (A) Eighteen randomly-chosen H3K4me1 ChIP peaks were cloned and

their enhancer activity quantitively measured using dual glo luciferase assays (6 replicates per fragment). Each bar represents the average relative

luciferase activity for a given sequence fragment ± one standard deviation. Relative luciferase activity was computed as the normalized luciferase

activity for the tested sequence fragment (firefly/renilla) divided by the normalized luciferase activity for a negative control sequence fragment

(firefly/renilla). Statistical analysis to identify sequence fragments with enhancer activity significantly above 1 was performed using a one sample T-

test with a p-value threshold of 0.0028 (0.05/18 statistical tests). ChIP-seq sequence fragments with enhancer activity significantly above 1 are

shown in green and fragments with activity indistinguishable from 1 are depicted in gray. The horizontal dotted line represents relative luciferase

activity of 1, equal to that of the negative control. (B) Sequences from twenty randomly-chosen DNase peaks were cloned and their enhancer

activity quantitively measured using dual glo luciferase assays (6 replicates per fragment). Statistical analysis to identify sequence fragments with

enhancer activity significantly above 1 was performed using a one sample T-test with a p-value threshold of 0.0025 (0.05/20 statistical tests).
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from the DNase-seq and H3K4me1 ChIP-seq luciferase assays were

compared with the computational sequence predictions from the

STARR-seq sequence model using Binomial tests. No significance

differences in the fraction of active sequences were observed for

either H3K4me1 ChIP-seq (k=5, n=18, p=0.354, p-value=0.626) or

DNase-seq (k=9, n=20, p=0.601, p-value=0.178). These results

suggest that STARR-seq sequence models may be useful for

estimating the fraction of and even filtering peaks from other

sequencing methods for enhancer activity. To address this

question in greater depth, however, future work should perform a

similar analysis with larger sample sizes.

UMI-STARR-seq is a more sensitive method than STARR-seq,

identifying more enhancers under the same experimental

conditions. Predictions from the STARR-seq sequence models

were compared with overlaps with the UMI-STARR-seq peaks to

assess the potential to identify additional enhancers by applying the

STARR-seq sequence models to peaks from other sequencing

methods (see Table 3). DNase-seq (42.6%) had the highest

fraction of peaks with positive predictions that overlap UMI-

STARR-seq peaks. The other sequencing methods had fewer than

half as many overlapping peaks (9.8 – 18.9%). Applying STARR-seq

sequence models to other sequencing techniques appears to be a

promising approach for augmenting the enhancers found by

STARR-seq alone.

Conclusions

Available methods for computation identification of enhancers

and other CREs are increasing in number, reliability, and accuracy.

For example, support vector machines (SVMs) using k-mer counts

(Lee et al., 2011; Ghandi et al., 2014; Lee, 2016; Chen et al., 2018),

B

A

FIGURE 4

Normalized read-depth profiles around STARR-seq peak centers. Normalized read-depth profiles for the (A) H3K4me1, H3K4me3, and H3k27ac

ChIP-seq and (B) ATAC-seq, DNase-seq, and FAIRE-seq data sets calculated around the centers of the STARR-seq peaks. Notably, the summits of

the ATAC-seq, DNase-seq, and FAIRE-seq peaks were centered on the STARR-seq peaks, which was not true for the H3K4me1, H3K4me3, and

H3k27ac ChIP-seq peaks.

TABLE 3 STARR sequence model enhancer predictions and UMI-STARR-seq overlaps.

Data Set Predicted
Enhancers

(%)

Positive
Prediction

and Overlap*

Positive
Prediction

and No Overlap*

Negative
Prediction

and Overlap*

Negative Prediction
and No
Overlap*

ATAC-seq 39.3% 15.3% 24.0% 12.7% 47.9%

DNase-seq 60.1% 42.6% 17.5% 19.0% 20.8%

FAIRE-seq 40.6% 18.9% 21.7% 16.3% 43.0%

H3K27ac ChIP-seq 26.9% 10.8% 16.2% 12.9% 60.1%

H3K4me1 ChIP-seq 35.4% 12.2% 23.3% 5.9% 58.6%

H3K4me3 ChIP-seq 26.5% 9.8% 17.0% 10.8% 62.4%

* The STARR-seq sequence model was applied to other sequencing method to assess the potential for finding additional enhancers not captured by STARR-seq. UMI-STARR-seq is more a

sensitive method than STARR-seq so validation was performed by comparing overlaps of positive predictions with the UMI-STARR-seq peaks. Positive prediction means that the sequence

fragment was predicted to be an enhancer by the STARR-seq sequence model. Overlap means the peak was overlapped by a UMI-STARR-seq peak.
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Hidden Markov Models (HMMs, Schember and Halfon, 2021), and

convolutional neural networks (CNNs) (Chen et al., 2018; Koo and

Eddy, 2019; de Almeida et al., 2022; Rada-Iglesias, 2018) have

demonstrated success in distinguishing enhancers from randomly-

sampled sequences, even across species (Chen et al., 2018; Kelley,

2020; Schember and Halfon, 2021). In a few cases, sequence models

have applied to de novo genome-wide computational prediction of

enhancers (Kazemian et al., 2011; Lai et al., 2018; Schember and

Halfon, 2021; de Almeida et al., 2022).

Establishing machine learning models as reliable methods for

CRE prediction based on DNA sequence alone will require careful

planning and extensive experimental validation. Critically, as

demonstrated here, the choice of next generation sequencing assay

data used to generate training data determines the capabilities of the

resulting model. A range of ChIP-seq (histone modification and

transcription factor binding), chromatin accessibility, and STARR-

seq data sets have been used in computational modeling of enhancers

and other regulatory elements. The choice of data is due, at least in

part, to availability. ChIP-seq was one of the first widely-available,

genome-wide methods for the identification of CREs. Using histone

modification antibodies requires fewer experiments necessary

compared with using a separate antibody for the binding of each

transcription factor, resulting in lower costs and labor. More recently,

ATAC-seq is favored over other chromatin accessibility assays since it

requires less raw DNA as input material (as compared to DNase-seq)

and offers a superior signal-to-noise ratio (as compared to FAIRE-

seq). Yet, despite the experimental convenience of these sequencing

methods, their strengths and limitations for training machine

learning models are not yet widely appreciated.

Multiple factors that impact model accuracy must be

considered. Enhancers and other regulatory elements constitute

less than 5% the D. melanogaster genome according to the STARR-

seq and chromatin accessibility data used in this study. False

positive rates will be amplified by the imbalance of the noncoding

to the rest of the genome and need to be tightly controlled to avoid

overwhelming true positive predictions. Model performance

depends substantially on the choice of input data; the (UMI)

STARR-seq and DNase-seq data sets produced the most accurate

models and should likely be preferred as training data for models of

enhancer activity. All three of these next generation sequencing

based methods show CREs covering in a small fraction of the D.

melanogaster genome and have moderate peak sizes (>300bp). As

observed above, sequencing methods with similar genome coverage,

but smaller average peak width or with greater genome coverage

result in less accurate models.

Mutagenesis assays have demonstrated that deletion of sequence

at the ends of enhancers can substantially impact activity (Nardini

et al., 2019). Modified histones bind at the boundaries of enhancers,

which is observed in the location of the ChIP-seq peaks relative to the

STARR-seq peak centers (Figure 3). Sequence analyses such as TF

binding site motifs and reverse engineering the regulatory grammar

that depend on ChIP-seq data need to appropriately account for the

discrepancies in locations.

The differences in the type of data generated by the array of

sequencing methods used to identify and characterize CREs and

how these differences propagate into resulting machine learning

models have yet to be sufficiently considered by the computational

modeling community. Here, the sequence-activity relationships

from ATAC-seq, DNase-seq, FAIRE-seq, H3K4me1, H3K4me3,

and H3K27ac ChIP-seq, STARR-seq, and UMI-STARR-seq assay

data from D. melanogaster were evaluated using machine learning

models. DNase-seq and STARR-seq demonstrated the strong

associations. Experimental validation with luciferase assays

indicated a high false-positive rates for detection of enhancers by

H3K4me1 ChIP-seq and DNase-seq data. We conclude that

STARR-seq data are best suited for training models to identify

enhancer activity from sequences, while DNase-seq data are well

suited for training models on the broader class of regulatory

elements, including their context-specific behavior. Our results

complement previous work from Kwasnieski et al. (2014) and

Dogan et al. (2015) evaluating histone modification and TF-

binding ChIP sequencing. For consistency with prior work, the

ATAC-seq, DNase-seq, and FAIRE-seq data presented here were

processed using parameters for MACS from the original papers

(Arnold et al., 2013; Davie et al., 2015). The ENCODE project

(ENCODE Project Consortium, 2012) has since curated a newer set

of best practices for processing these data as implemented by the

ENCODE Uniform Data Processing Pipeline (Lee et al., 2016).

According to the read-depth profiles in Figure 4B, the ATAC-seq,

DNase-seq, and FAIRE-seq peak summits align well with the

STARR-seq summits. Since we use the 500 bp windows centered

on the peak summits, we do not believe our analyses are negatively

impacted. Nonetheless, future work should validate the impact of

processing the ATAC-seq, DNase-seq, and FAIRE-seq data using

the ENCODE-recommended best practices on the analyses

performed here.
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