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Abstract—Large, polymorphic inversions can contribute to
population structure and enable mutually-exclusive adaptations
to survive in the same population. Current methods for detecting
inversions from single-nucleotide polymorphisms (SNPs) called
from population genomics data require an experienced, human
user to prepare the data and interpret the results. Ideally, these
methods would be completely automated yet robust to allow
usage by inexperienced users. Towards this goal, automated
approaches for segmentation of inversions and inference of
sample genotypes are introduced and evaluated on chromosomes
from flies, mosquitoes, and prairie sunflowers.

Index Terms—population genomics, inversions, segmentation,
PCA, clustering

I. INTRODUCTION

An inversion is a reversal of a subsequence in a larger
sequence [1]. For example, the subsequence [6..4] of the
sequence [1, 2, 3, 6, 5, 4, 7, 8, 9] is inverted relative to the se-
quence [1..9]. Regions of chromosomes, the large molecules
of DNA in which genomes are physically organized, can
also undergo inversions during meiosis [2]. A polymorphic
inversion differs in orientations (standard or inverted) across
individuals in the same species or population. Organisms
may contain one (haploid), two (diploid), or more (polyploid)
copies of each chromosome. Each copy may have a different
orientation of the inversion. The inversion genotype refers to
the combinations of these inversion orientations (e.g., homozy-
gous inverted, homozygous standard, or heterozygous for a
diploid genome).

Detecting inversions is of great interest to the genomics
community. During meiosis, the parent’s chromosomes can
swap pieces (recombine), which is a way of sharing genetic
changes with offspring and disrupting correlations (linkage)
between adjacent nucleotides [2]. Inverted regions do not
recombine with non-inverted regions, however. This enables
each inversion orientation to accumulate and maintain private
mutations. As a result, through inversions, a species may carry
multiple, mutually-exclusive genetic mutations that are ad-
vantageous. For example, inversions in Anopheles mosquitoes
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have been associated with thermal tolerance [3], desiccation
resistance [4]–[6], and susceptibility to infection by the malaria
parasite [7]. The frequencies of inversions can vary geographi-
cally and by time of year in correlation with geospatial climate
and seasonal patterns [8].

Inversions can be detected from variants (most commonly
single-nucleotide polymorphisms or SNPs) called from pop-
ulation genomics sequencing data [9]–[11]. Most methods
depend on principal component analysis (PCA), in which
samples appear to cluster by inversion genotype [10], [12].
Population structure, selective sweeps, population bottlenecks,
and other processes can also produce similar cluster structures
in PCA that confound detection of inversions [13]–[18]. The
spatial pattern of variants contributing to the cluster structure
can be revealed through association testing and visualization
[19]–[23]. Inversions can be differentiated from other phenom-
ena by the presence of a square wave-like pattern in Manhattan
plots [18], [22], [23].

Despite the ability of these methods to detect and localize
inversions, the inversion analysis process is still largely manual
and requires an experienced human operator to interpret noisy
PCA and Manhattan plots. Subpopulations of data sets may
need to be selected to achieve a clear inversion signal [18]. The
presence of multiple, overlapping inversions can also result in
noisy signals that make both the PCA and Manhattan plots
difficult to interpret for a non-expert [18]. Ideally, the inversion
analysis process would be completely automated to enable
use by non-experts and in a high-throughput manner to the
increasing number of publicly-available variant data sets.

A previous method called the window test for automated
segmentation of inversion regions was introduced by [23]. The
primary downfall of this method is that it assumes that each
PC has a single, contiguous inversion region associated with
it. In this paper, we validate our inversion analysis tool Asaph
on three chromosomes from the prairie sunflower. We intro-
duce alternative visualizations and segmentation models and
evaluate them on nine chromosomes across three organisms
(fly, mosquito, and prairie sunflowers). Lastly, we describe
and evaluate an approach to automate inference of inversion
genotypes using the regions identified by the segmentation

153

978-1-6654-9376-5/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

le
ct

ro
 In

fo
rm

at
io

n 
Te

ch
no

lo
gy

 (e
IT

) |
 9

78
-1

-6
65

4-
93

76
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

EI
T5

73
21

.2
02

3.
10

18
73

31

Authorized licensed use limited to: Milwaukee School of Engineering. Downloaded on September 18,2023 at 17:50:20 UTC from IEEE Xplore.  Restrictions apply. 



models. These new methods are available in the latest release
of Asaph.

II. METHODS

A. Preparation of Data Sets

We used SNP data from three organisms (the fly Drosophila
melanogaster, the closely-related malaria mosquitoes Anophe-
les gambiae and coluzzii, and the prairie sunflower Helianthus
petiolaris var. var. petiolaris, see Table I). VCF files were
retrieved from repositories reported in the original papers [24]–
[26]. The VCF files were filtered to select biallelic SNPs with
a minimum minor allele frequency of 5%. Sample inversion
genotypes and ranges were retrieved from [24], [27], [28]
(Anopheles), [25], [29] (Drosophila), and [26] (Helianthus).
Scripts and meta data files are available at https://github.com/
nowling-lab/inverson-test-set.

B. Feature Matrix Construction and Principal Component
Analysis (PCA)

The biallelic variant data were read from a variant call
format (VCF) file [30] provided by the user. VCF files store
the m × n (samples by variants) matrix column-wise (one
variant per line) in a text format. Subsampling was used to
reduce memory requirements. Each line was read and parsed
to produce two 1D Numpy arrays [31], [32] of reference and
alternative allele counts with missing values set to 0. Strings
of the form “chrom position allele” (e.g., “2L 5678 T” or
“2L 5678 A”) were created for each column. The strings were
hashed using murmurhash3 [33] as implemented by the mmh3
library [34] to 32-bit signed integers. Pairs of (abs(hash),
count_vector) for each allele were inserted into a k-sized
min heap implemented using Python’s heapq module. After
processing the file, the heap contained the k variants with
the smallest-magnitude hash values, also known as a bottom-
k sketch [35]–[37]. The parameter k was estimated from the
approximate inversion size and number of samples using the
heuristic described in [23]. This process resulted in an m× k
allele count matrix.

Principal component analysis (PCA) was performed using
scikit-learn’s PCA class [38]. The number of components to
calculate was set to ten, while the rest of the parameters were
left at their defaults. The samples’ coordinates along each
component were written to disk in a text file.

C. PC-SNP Association Testing

After performing PCA, the variant call format (VCF) file
was re-read and each variant was tested for association with
each of the principal components (PCs). The allele counts
of the samples were tested against the samples’ coordinates
along a single principal component using a one-way analysis
of variation (ANOVA) test as implemented by Scipy [39].
Samples’ PC coordinates were partitioned into groups by
the samples’ genotypes (homozygous reference, homozygous
alternative, and heterozygous). When the allele counts for a
sample were missing, the sample was excluded from the test.
The resulting p-values were written to a text file.

D. Spatial Visualizations of PC-SNP Associations
1) Manhattan Plots: In Fig. 1 and 2, Manhattan plots were

generated for each PC by creating a scatter plot from the
chromosome positions and − log10 transformed p-values. Each
SNP is categorized as significant or not using a Bonferroni-
corrected significance threshold of 0.01/n variants. Dots for
the significance SNPs were colored orange, while the insignif-
icant SNPs were colored blue. Expected inversion boundaries
were plotted as horizontal black lines.

2) Window Plots: In Fig. 1 and 2, an alternative visu-
alization approach was introduced that plots the fraction of
significant SNPs in non-overlapping windows. The chromo-
some was divided into non-overlapping windows (1 Mb for
the prairie sunflower samples and 250 Kb for the other data
sets). In each window, the fraction of significant SNPs to
total SNPs in the window was calculated. The significance
fractions were visualized by creating piecewise line plots (in
purple) with horizontal segments for each window. Expected
inversion boundaries were plotted as horizontal black lines.
When segmented regions were available, the corresponding
portions of the lines were plotted in orange.

E. Segmentation of Inversions
1) Window Test: The window test was introduced in

[23] and is summarized here. The SNP p-values from the
PC–SNP association tests (see above) were used as input
to the algorithm. Each SNP was categorized as significant
or not using a Bonferroni-corrected significance threshold
of 0.01/n variants. The chromosome was divided into non-
overlapping windows (default window size of 10 Kb). The
fraction of significant SNPs in each window was tested
using a binomial test with the alternative hypothesis that
the observed fraction of statistically significant SNPs was
greater than expected. The expected probability of success
(that a SNP is significant) was estimated as the fraction of
statistically significant SNPs across the entire chromosome. In
cases where a window had no SNPs or no significant SNPs,
the p-value was estimated as 1.0. Windows were tested for
significance using a Bonferroni-corrected significance thresh-
old of 0.0001/num windows. Lastly, the inversion ends were
estimated from the centers of the leftmost and rightmost sta-
tistically significant windows. Note that this method assumed
that there was only one contiguous inversion associated with
each PC.

2) Gaussian Hidden Markov Model: The SNP p-values
from the PC–SNP association tests (see above) were used
as input to the algorithm. Each SNP was categorized as
significant or not using a Bonferroni-corrected significance
threshold of 0.01/n variants. The chromosome was divided
into non-overlapping windows (1 Mb for the prairie sunflowers
and 250 Kb for the remaining samples). For each window,
the fraction of significant SNPs was calculated. The window
significance fractions were scaled to the range [0, 1] within
each chromosome by

scaled =
win sig frac − lower

upper − lower
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TABLE I
DETAILS OF DATA SETS USED IN THIS STUDY.

Species Chromosome Known Inversions (Ranges) Number of Samples Data Source
An. gambiae 2L 2La (20.5 - 42.2 Mb) 89 [24]
An. coluzzii 2R 2Rbc (19.0 Mb - 31.5 Mb); 2Rd (31.5 Mb - 42.4 Mb) 61 [24]
An. gambiae 2R 2Rb (19.0 - 26.8 Mb) 89 [24]
Drosophila 2L In(2L)t (2.2 - 13.2 Mb) 198 [25]
Drosophila 2R In(2R)ns (11.3 - 16.2 Mb) 198 [25]
Drosophila 3R In(3R)mo (17.2 Mb - 24.9 Mb) 198 [25]
Helianthus Pet05 Pet05.01 (154 - 186 Mb) 166 [26]
Helianthus Pet09 Pet09.01 (105 - 141 Mb) 166 [26]
Helianthus Pet11 Pet11.01 (3.0 - 65.0 Mb) 166 [26]

The windows were clustered into two clusters using the
Gaussian Mixture Model (GMM) implementation in Scikit-
Learn [38]. The GMM was trained with two components,
diagonal covariance, k-means++ for initializing cluster centers,
and ten initialization trials. All other parameters were left at
their default values.

The windows were segmented using a 2-component Gaus-
sian Hidden Markov Model (GHMM) with diagonal covari-
ances using hmm-learn [40]. The means and covariances of
the two GHMM components were initialized using the means
and covariance parameters inferred by the GMM model. The
transition matrix and starting probabilities were randomly
initialized (init_params=‘‘st’’). The remaining param-
eters were left at their defaults. The GHMM model was
fitted using the Baum-Welch algorithm. Hidden states for each
window were then inferred by applying the model using the
Viterbi algorithm. If the mean of state 0 was larger than that
of state 1, the state labels were switched so that state 1 always
indicated an inversion region.

3) Evaluation: The automated segmentation outputs were
evaluated by calculating balanced accuracy, recall, and preci-
sion on a per-nucleotide position basis.

F. Automated Genotyping

1) Method: A method to perform automated genotyping
was introduced. The VCF file was re-read for a third time.
If segmentation coordinates were provided, only SNPs in
the region were kept. A feature matrix was constructed and
PCA performed as described above. Samples were clustered
using the Gaussian Mixture Model (GMM) implementation
in Scikit-Learn [38] from their coordinates along the first
two PCs. Two cluster models, one with two components and
the other with three components were trained. The GMMs
were trained with two components, diagonal covariance, k-
means++ for initializing cluster centers, and ten initialization
trials. All other parameters were left at their default values.
The best-fitting GMM model was chosen using the Davies-
Bouldin index [41]. Cluster labels were evaluated against
known sample genotypes using the adjusted Rand index [42].

2) Visualization: In Fig. 3, dots were plotted for the sam-
ples using their projected PCA coordinates; the dots were
colored by their known genotypes. The GMM model was
displayed by evaluating the probabilities on a grid and creating
contour plots using Matplotlib’s contour function [43].

G. Software Implementation and Availability

Asaph is available on GitHub (https://github.com/
nowling-lab/asaph) under the open-source Apache Software
License v2.0. Asaph is implemented in Python 3 and
uses the Numpy [31], [32], Scipy [39], Matplotlib [43],
Scikit-Learn [38], hmm-learn [40], and mmh3 [34] libraries.
Documentation is provided in the form of tutorials available
in the repository.

III. RESULTS

A. A New Visualization Approach

Multiple factors (e.g., inversions, population structure, se-
lective sweeps, and population bottlenecks) can cause clus-
tering patterns in principal component analysis. Manhattan
plots are a useful tool for visualizing the spatial distribution of
SNP associations used in genome-wide association tests. When
used to visualize PC-SNP associations, inversions can be
distinguished from other processes by a square-wave pattern.

As implemented in Asaph, Manhattan plots were previ-
ously evaluated against PCA scatter plots for detecting inver-
sions on chromosomes with and without inversions from the
fly Drosophila melanogaster and the closely-related malaria
mosquitoes Anopheles gambiae and coluzzii [18], [22]. Here,
we extended the validation of Asaph to include three chromo-
somes from the prairie sunflower Helianthus petiolaris var.
var. petiolaris. Manhattan plots for three Drosophila, three
Anopheles, and three Helianthus chromosomes are shown in
Fig. 1 (first row). In all nine cases, the Manhattan plots display
the expected square-wave patterns indicative of inversions.

We also tried an alternative approach for visualizing the
signal along the chromosome. Chromosomes were divided
into non-overlapping, equally-sized windows (250 Kb for
Drosophila and Anopheles, 1 Mb for Helianthus). The fraction
of SNPs in each window with significant associations was
calculated. The window fractions across the chromosome were
plotted in purple (see Fig.1, second row).

The visualizations generated from plotting the windows’
significant SNP fractions were remarkably clear compared
to the Manhattan plots (Fig.1). The noisy background signal
in the Manhattan plots was nearly absent in the significance
fraction plots. As expected, the signals for the Anopheles and
Helianthus chromosomes aligned closely with the expected
inversions; significance fractions were enriched in and sharply
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declined at the borders to substantially lower levels outside of
the inversion region. Notably, the signals for the Helianthus
pet09 and pet11 chromosomes indicated small additional re-
gions of low significance within the expected chromosome
region which might impact segmentation. Both types of plots
indicated a break in the pet09.01 inversion region, while a
similar break in pet05.01 was only visible in the significance
fraction plots. For the Drosophila chromosomes, the signals
declined slowly rather than sharply at the boundaries. The
slow decline is indicative of recombination, expected since
these lines were heavily inbred, which can cause the inversion
boundaries to shift among samples.

B. Alternative Segmentation Approach with Gaussian Hidden
Markov Models (GHMMs)

The current “window test” segmentation demonstrated high
segmentation accuracies when previously evaluated on the
Anopheles gambiae 2L and 2R and Drosophila melanogaster
2L and 2R chromosomes [23]. The window test’s primary
limitation was that it assumed a single, contiguous inversion
per PC.

Here, we expanded the evaluation to the Anopheles coluzzii
2R, Drosophila 3R, and Helianthus pet05, pet09, and pet11
chromosomes (see Table II). The segmented regions for
the Anopheles gambiae 2L (99.8% balanced accuracy) and
2R (99.6%), Drosophila 2R (97.5%), and Helianthus Pet09
(98.3%) and Pet11 (99.3%) agreed remarkably well with the
expected inversion boundaries. SNPs on the right-hand end of
the 2Rbc inversion in Anopheles coluzzii show substantially
reduced associations which caused the segmentation algorithm
to miss 3 Mb of the total 12.5 Mb expected region. The
presence of significant SNPs outside the expected inversion
regions for Drosophila 2L and 3R led to segmentation of larger
regions than expected.

Using the significant SNP fractions by window as input,
we developed an alternative segmentation approach using
clustering and Gaussian Hidden Markov Models (GHMMs). A
2-component Gaussian Mixture Model (GMM) with diagonal
covariances was used to partition the windows into 2 clusters
by their fraction of significant SNPs. The inferred means and
covariances from the GMM were used to initialize the means
and covariances of a 2-component Gaussian Hidden Markov
Model (GHMM) with diagonal covariances. The remaining
GHMM parameters (transition matrix and starting probabil-
ities) were inferred using the Baum-Welch algorithm. The
trained GHMM was applied to the signal data to determine
the most probable hidden state for each window using the
Viterbi algorithm and label each window as state 0 or 1. If
the average for state 0 was higher than state 1, the labels were
flipped so that state 1 indicates an inversion region and state
0 indicates no evidence of an inversion.

The significance fraction plots from Fig. 1 (bottom row)
were reproduced but with the windows inferred to be inver-
sions marked in orange (see Fig. 2, window test in the top
row, GHMM model in the bottom row). The two segmentation
methods give largely similar results except in a few cases. The

two segmentation models demonstrated high accuracies for the
Anopheles and Helianthus pet11 chromosomes and expectedly
lower accuracies for the Drosophila inversions.

The sunflowers had regions within pet05.01 and pet09.01
with zero or very few significant SNPs. These regions were
marked as not-inverted. Similarly, the original authors treated
the empty regions as a break in the inversion [26]. Biolog-
ically, it is not clear whether this was correct or not; more
investigation will be needed. The window test segmented these
inversions as large contiguous units, while the GHMM model
generated two segmented regions for each inversion. Similarly,
the window test did not capture the lower significance region
on the right-hand side of the Anopheles coluzzii 2Rbc inver-
sion, while the GHMM segmentation did.

The GHMM model identified several small regions of inter-
est outside of the inversions on pet05, pet11, and Anopheles
gambiae 2R. These regions are not likely to be inversions; the
regions are small and have sloped sides rather than square-
wave patterns. The regions may be caused by selective sweeps
or other processes and warrant further study.

C. Segmentation Enables Accurate Automated Genotyping

Here, we introduce an approach for automatically inferring
inversion genotypes using clustering. Love, et al. [44] demon-
strated that Anopheles inversion genotypes can be inferred
more accurately when PCA is performed on SNPs in the
known inversion region compared rather than the entire chro-
mosome, especially if there are multiple inversions present.
Clustering was compared using all SNPs on the chromosomes
versus those in the segmented regions identified by the two
segmentation methods.

First, PCA was performed on all of the SNPs or those
in the specified region(s). The samples were then clustered
using the coordinates along the first two PCs. Depending on
whether two or three genotypes are present among the samples,
there may be two or three clusters. Two Gaussian Mixture
Models (GMMs) with two and three components, respectively,
were fitted. The models were evaluated using the unsupervised
Davies-Bouldin score for cluster structure; the model with the
lowest score was used to infer genotypes and label the samples.

The cluster labels were compared with the known inversion
genotypes for the samples using the adjusted Rand index
(higher is better, see Table III). Clustering using the segmented
regions from the GHMMs and window tests either equaled (4)
or outperformed (5) clustering with the entire set of SNPs for
all nine data sets. Notably, clustering on all of the SNPs missed
one of the three genotypes in Anopheles coluzzii 2Rbc and the
Helianthus inversions (see Fig. 3, top row). Clustering using
SNPs from the segmented regions (either model) recovered all
three genotypes (see Fig. 3, middle and bottom rows). Love,
et al.’s observation was confirmed to apply to Drosophila and
Helianthus as well.

The two segmentation methods produced the same or simi-
lar results across all of the data sets (see Table III, Fig. 3). Both
methods accurately inferred the genotypes for the Anopheles,

156

Authorized licensed use limited to: Milwaukee School of Engineering. Downloaded on September 18,2023 at 17:50:20 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. SNP Associations with Coordinates along the First Principal Component. Manhattan plots (first row) and window significance plots (second
row) for nine chromosomes from the fly Drosophila melanogaster, the closely-related malaria mosquitoes Anopheles gambiae and coluzzii, and the prairie
sunflower Helianthus petiolaris var. var. petiolaris are shown. For the Manhattan plots, each point represents a single SNP and was colored according to
statistical significance (orange for significant, blue if not). To generate the window plots, the chromosomes were divided into non-overlapping, equally-sized
windows (250 kb for Drosophila and Anopheles, 1 Mb for Helianthus). The fraction of SNPs with significant associations with coordinates along the first
principal component was calculated for each window and plotted in purple. The known inversion boundaries were indicated with black horizontal lines.
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Fig. 2. Segmentation Results. Window significance plots with segmented regions in orange for nine chromosomes from the fly Drosophila melanogaster,
the closely-related malaria mosquitoes Anopheles gambiae and coluzzii, and the prairie sunflower Helianthus petiolaris var. var. petiolaris are shown. The
first row shows segmentation results from the window test model, while the second row shows segmentation results from the GHMM model. To generate
the window plots, the chromosomes were divided into non-overlapping, equally-sized windows (250 kb for Drosophila and Anopheles, 1 Mb for Helianthus).
The fraction of SNPs with significant associations with coordinates along the first principal component was calculated for each window and plotted in purple.
Regions marked as inverted by the segmentation models are marked in orange. The known inversion boundaries were indicated with black horizontal lines.
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TABLE II
EVALUATION OF SEGMENTATION RESULTS. THE REGIONS SEGMENTED BY THE WINDOW TEST AND GHMM MODELS FOR NINE CHROMOSOMES FROM

THE FLY DROSOPHILA MELANOGASTER, THE CLOSELY-RELATED MALARIA MOSQUITOES ANOPHELES GAMBIAE AND COLUZZII, AND THE PRAIRIE
SUNFLOWER HELIANTHUS PETIOLARIS VAR. VAR. PETIOLARIS WERE EVALUATED. SEGMENTATION RESULTS WERE USED TO MARK INDIVIDUAL

NUCLEOTIDE POSITIONS AS PREDICTED TO BE INVERTED OR NOT. THE PREDICTIONS WERE COMPARED AGAINST THE KNOWN INVERSION BOUNDARIES
USING BALANCED ACCURACY, RECALL, AND PRECISION.

Inversion Expected
Region (Mb)

Method Predicted
Region (Mb)

Balanced Accuracy Recall Precision

An. gambiae 2La 20.50 - 42.20 Window Test 20.55 – 42.16 99.8% 99.6% 100%
GHMM 20.50 – 42.25 99.9% 100% 99.8%

An. coluzzii 2Rbc 19.00 - 31.50 Window Test 19.03 – 28.50 87.9% 75.8% 100%
GHMM 19.00 – 31.50 100% 100% 100%

An. gambiae 2Rb 19.00 - 26.80 Window Test 19.03 – 26.77 99.6% 99.2% 100%
GHMM 18.75 – 27.00;

45.75 – 46.00
99.3% 100% 91.8%

Drosophila In(2L)t 2.20 - 13.20 Window Test 0.47 – 14.30 88.2% 100% 79.5%
GHMM 0.00 - 16.25 78.1% 100% 67.7%

Drosophila In(2R)ns 11.30 - 16.20 Window Test 10.68 – 16.55 97.5% 100% 83.5%
GHMM 9.75 - 17.75 90.5% 100% 61.3%

Drosophila In(3R)mo 17.20 - 24.90 Window Test 11.74 – 27.76 79.4% 100% 48.1%
GHMM 14.00 - 28.00 84.7% 100% 55.4%

Helianthus Pet05.01 154.00 - 186.00 Window Test 157.00 – 185.70 94.8% 89.7% 100%
GHMM 69.00 - 71.00;

156.00 - 180.00;
182.00 - 186.00

93.1% 87.5% 93.3%

Helianthus Pet09.01 105.00 - 141.00 Window Test 105.38 – 140.15 98.3% 96.6% 100%
GHMM 105.00 - 124.00;

128.00 - 141.00
94.4% 88.9% 100%

Helianthus Pet11.01 3.00 - 65.00 Window Test 3.59 – 65.67 99.3% 99.0% 98.9%
GHMM 3.00 - 67.00;

114.00 - 118.00
97.8% 100% 91.2%

Helianthus, and Drosophila In(2L)t inversions but not for the
remaining two Drosophila inversions.

IV. DISCUSSION AND CONCLUSION

PCA has been a successful foundation for the development
of several approaches for identifying and characterizing large,
polymorphic inversions. PCA can capture a wide variety of
phenomena that cause correlation between variants, however,
such as populations prevented from intermating by geographic
barriers, selective sweeps, and population bottlenecks. Using
current methods, an experienced human observer is needed to
prepare data to reveal a clean signal and needed to interpret
the results of outputs such as Manhattan plots.

Our goal is to develop a completely automated yet reliable
approach to identify and characterize inversion patterns. An
automated approach would enable scaling the detection of
inversions to the large number of population genetics data
sets generated by the genomics community on a regular
basis. Automation would also remove human bias in the
interpretation, leading to more consistent results.

As a step towards this goal, we evaluated our existing
visualization and segmentation methods on three additional
chromosomes from the prairie sunflower Helianthus petiolaris
var. var. petiolaris. The pet05.01, pet09.01, and pet11.01
inversions were correctly represented both in the Manhattan
plots and identified by the window test segmentation model.

We also described and evaluated alternative visualization
and segmentation methods on nine total chromosomes from
the Drosophila fly, Anopheles mosquitoes, and Helianthus. The

new visualization approach displays the fraction of significant
SNPs in non-overlapping windows along the chromosome.
This approach substantially reduces the amount of noise,
making it easier to detect inversions from the square-wave
pattern. The GHMM segmentation approach accurately iden-
tified the inversion boundaries in Anopheles and Helianthus
with some reduced accuracy for the Drosophila samples due
to recombination, which was expected.

When compared, the GHMM and window test segmenta-
tions produced similar results. The main advantage of the
GHMM approach is that it does not assume a single, con-
tiguous inversion region. The advantage of being able to
detect multiple regions was observed when identifying the
breaks in pet05.01 and pet09.01 and additional regions of
potential interest on pet05, pet09, and the Anopheles coluzzii
2R chromosomes.

The automated segmentation approaches output coordinates
rather than requiring the user to infer the coordinates from
plots. We used the coordinates as the basis of a new automated
genotyping method. Our method tests several GMM models
to determine the number of genotypes and then labels each
sample. Clustering only on SNPs in segmentation regions
produced substantially better agreement with known sample
genotypes than using all of the SNPs along the chromosome
for multiple data sets. Through the combination of automated
segmentation and clustering, the inversion regions and sample
genotypes can be inferred accurately and robustly without user
input.

Our work here represents a step towards achieving our
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Fig. 3. Genotype Inference Gaussian Mixture Models (GMMs). Samples (one per dot) are plotted along the first two PC coordinates and colored by
known inversion genotype. The predicted probabilities of the GMM models were evaluated along a grid and used to create contour plots.
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TABLE III
EVALUATION OF THE GENOTYPE INFERENCE WITH GAUSSIAN MIXTURE MODELS (GMMS). CLUSTERING WAS PERFORMED USING SNPS FROM

THE ENTIRE CHROMOSOME AND THOSE LOCATED WITHIN SEGMENTED REGIONS FROM THE GHMM AND WINDOW TEST MODELS. THE ADJUSTED RAND
INDEX WAS USED TO EVALUATE THE CLUSTER STRUCTURE VERSUS THE KNOWN INVERSION GENOTYPES.

Inversion Entire Chromosome GHMM Window Test
An. gambiae 2La 1.00 1.00 1.00
An. coluzzii 2Rbc 1.00 1.00 0.97
An. gambiae 2Rb 0.63 1.00 1.00

Drosophila In(2L)t 0.97 0.97 0.97
Drosophila In(2R)ns 0.76 0.76 0.81
Drosophila In(3R)mo 0.41 0.40 0.33
Helianthus Pet05.01 0.40 1.00 1.00
Helianthus Pet09.01 0.33 1.00 0.98
Helianthus Pet11.01 0.73 1.00 1.00

ultimate goal of a completely automated and reliable workflow.
That said, further work is needed. Our method assumes that
the chromosome has at least one inversion region that must
be separated from the non-inversion regions. Our method does
not have the ability to determine when no inversion is present.
Secondly, our method tests each PC independently – the user
must choose which PCs to evaluate based on analysis of
the SNP significance plots. We intend to tackle these two
challenges in future work.
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