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Abstract

Purpose: While teleretinal imaging has proved effective in increasing population-level
screening for diabetic retinopathy (DR), there is a lack of quantitative understanding on
how to incorporate teleretinal imaging into existing screening guidelines. We develop a
mathematical model to determine personalized DR screening recommendations that utilize

teleretinal imaging and evaluate the cost-effectiveness of the personalized screening policy.

Design: A partially observable Markov decision process is employed to determine
personalized screening recommendations based on patient compliance, willingness to pay,
and A1C level. Deterministic sensitivity analysis was conducted to evaluate the impact of
patient-specific factors on personalized screening policy. The cost-effectiveness of
identified screening policies was evaluated via hidden-Markov chain Monte Carlo

simulation on a data-based hypothetical cohort.

Participants: Screening policies were simulated for a hypothetical cohort of 500000
patients with parameters based on literature and electronic medical records (EMR) of 2457
patients who received teleretinal imaging in 2013-2020 from the Harris Health System

(Harris County, Texas).

Methods and Intervention: Population-based mathematical modeling study.
Interventions included dilated fundus examinations referred to as clinical screening,

teleretinal imaging, and wait-and-watch recommendations.

Main Outcome Measures: Personalized screening recommendations based on patient-

specific factors. Accumulated quality-adjusted life years (QALYs) and cost (USD) per
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patient under different screening policies. Incremental cost-effectiveness ratio (ICER) to

compare different policies.

Results: For the base cohort, on average, teleretinal imaging was recommended 86.69% of
the time over each patient’s lifetime. The model-based personalized policy dominated
other standardized policies, generating more QALY gains and cost savings for at least 57%
of the base cohort. Similar outcomes were observed in sensitivity analyses of the base

cohort and the Harris Health-specific cohort and rural population scenario analysis.

Conclusions: A mathematical model was developed as a decision support tool to identify a
personalized screening policy that incorporates both teleretinal imaging and clinical
screening and adapts to patient characteristics. Compared to current standardized policies,
the model-based policy significantly reduces costs while performing comparably, if not
better, in terms of QALY gain. A personalized approach to DR screening has significant

potential benefits that warrant further exploration.
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Introduction

Diabetic retinopathy (DR) is the leading cause of blindness in working-age US adults.12
Over 60% of patients with type II diabetes mellitus and almost all patients with type I
diabetes mellitus will develop DR within 20 years of diagnosis.! Among adults over the
age of 45 diagnosed with diabetes, 8.6% have DR while 4.1% have experienced vision loss
due to DR.3 Currently, over 37 million US adults have diabetes and over 96 million US
adults have prediabetes.? Given the epidemic of diabetes, there is a growing concern about
the associated increase in DR cases and potential vision loss.

Timely screening for DR is one of the most cost-effective tools for mitigating DR-
related vision loss*-%; studies show that up to 98% of DR-related vision loss cases can be
prevented by early detection and treatment.!” Currently, the American Diabetes
Association (ADA) and American Academy of Ophthalmology (AAO) recommend annual
comprehensive eye screening examinations for every diabetic patient,.78 based on the 7-
field stereoscopic color fundus photography.? However, only 50-65% of diabetic patients
are screened on a yearly basis in the US,10 with even lower compliance for patients with
limited access or low socioeconomic status.11-12

Recently, teleretinal imaging (TRI) has emerged as an effective alternative to
conventional DR screening. TRI involves images captured via single-field nonmydriatic
monochromatic digital photography typically obtained in a non-eye care setting and
remotely graded.? Studies have illustrated the potential of TRI to alleviate barriers to DR
screening due to its lower cost and improved accessibility.1314 The Centers for Medicare
and Medicaid Services recognizes TRI as an acceptable and reimbursable service.!> Large-

scale healthcare systems in the US, such as the Veterans Health Administration, have
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provided TRI services since the early 2000s.16 TRI is expected to be even more widely
used as its accuracy and convenience further improve with artificial intelligence (AI)-
based interpretation.1”

However, there is a lack of quantitative understanding on how often TRI screening
should be recommended to diabetic patients with different characteristics. Currently,
many TRI programs recommend annual TRI follow-ups, although optimal intervals of TRI
may vary based on the patient’s compliance, socioeconomic status, severity of DR, age,
duration of disease, and glycemic control. With the emergence of more accessible TRI-
based screening examinations, development of a personalized, patient-specific screening
approach may be advantageous for patients, providers, and society.

In this study, we develop a proof-of-concept mathematical model based on a
previously validated Markov model to generate personalized DR screening
recommendations. Unlike previous studies that examined standardized screening
guidelines with fixed screening modality and interval,1618 we examine the usefulness of
the model-based, personalized policy in exploiting dynamic interaction of TRI and
traditional screening based on patient-specific factors. The aim of this study is to evaluate
the cost-effectiveness of the personalized screening policy and demonstrate the potential
of this modeling framework as a clinical decision support tool that can be used in both

primary and eye care settings.
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Methodology

POMDP model

We develop a partially observable Markov decision process (POMDP) model to identify
personalized DR screening policies. The POMDP model is built on a previously validated
Markov-based DR natural history model.® Markov models have been widely used in
ophthalmology for predicting disease progression and analyzing cost-effectiveness of
various screening and intervention policies: DR screening and treatment,!¢ diabetic
macular edema (DME) treatment,!® and glaucoma screening.2? Other simulation models
such as decision trees have also been recently used for cost-effectiveness analyses in
ophthalmology, including those of injection treatments for DR and DME?! and Al-based

screening for retinopathy of prematurity.22

Figure 1 shows the Markov model with DR-related health states and transitions. The
health states in the model include non-intervention-needed DR (NIN-DR), intervention-
needed DR (IN-DR), post-treatment (PT), blindness (BL), and death (DE). The NIN-DR
state is defined to include no DR and non-proliferative DR (NPDR) while the IN-DR state is
defined as proliferative DR (PDR). Note that unless the patient is in the PT, BL, or DE state,
the model often cannot specify exactly which health state the patient belongs to. Thus, the
POMDP model uses the notion of a “belief” state: instead of assuming a specific, fully
observable disease state as in traditional Markov models, a belief state probabilistically
represents a patient’s health state. For example, a patient's health state can be
represented as 90% in NIN-DR and 10% in IN-DR. The belief state structure is particularly
relevant in our study because asymptomatic earlier stages of DR, potential inaccuracy of

TRI outcomes, and patient non-compliance can make the patient’s state uncertain or only
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partially observable.?3 The belief state is updated semi-annually via Bayesian inference
based on the patient’s compliance, recent screening outcomes and accuracy, and DR
natural progression. More details about the update mechanism and examples can be

found in Appendix S1 (available online at www.ophthalmologyretina.org).

For each 6-month time period and for each belief state, the model recommends one of
the three actions—wait and watch (WW), TRI, or traditional screening (referred to as
clinical screening or CS)—until a patient progresses to PT, BL, or DE and ceases screening.
Whenever a TRI outcome indicates IN-DR, the patient is referred for follow-up CS
immediately. Whenever a CS outcome identifies IN-DR, the model immediately sends the
patient for treatment, i.e., the PT state.

The POMDP model chooses recommendations such that the total accumulated
discounted reward is maximized, where the reward is defined as the quality-adjusted life
years (QALYs) multiplied by the willingness to pay (WTP) factor minus out-of-pocket
costs (USD) associated with each state-recommendation pair. A yearly discount factor of
3% was used as is traditionally recommended in healthcare modeling.?* The WTP value

was treated as a patient-specific parameter that changes based on socioeconomic status.

Data used

A summary of the parameters for the base case POMDP model can be found in Table 1.
Values for TRI accuracy, screening and treatment costs, and TRI and follow-up CS
compliance rates are based on the Harris Health System (HHS) TRI program data from the
time period of 2013-2020. Institutional Review Board (IRB) approval was obtained to
view and analyze patient medical records. HHS is the largest safety-net hospital system in

Harris County which encompasses the Houston metropolitan area and represents the
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third most populous county in the US. In total, 2457 patient profiles were collected from
the HHS electronic medical record (EMR) database, including race/ethnicity, age, zip-code
location, A1C-level, insurance status, TRI screening outcomes over time, and TRI
adherence rate. This patient population was composed of 59.23% Hispanic, 22.71%
African American, 5.63% Asian, 3.91% white and 8.52% other. The average age of this
cohort was 54.62 years at the time of first DR screening. The average A1C level was 7.91%
and initial prevalence of IN-DR was 2.32%. A classification decision tree identified a
patient’s race to be a significant factor for yearly TRI compliance rate, with the following
average race-specific compliance rates: 68% for Hispanic patients, 65% African American,
849% Asian, 68% White and 73% other.

While the previous Markov models for DR progression assume annual transition
probabilities,618 we use semi-annual transition probabilities found via a cycle-length
conversion technique?8 to allow the model to generate more frequent recommendations, if
needed. The same conversion technique was used to produce the semi-annual discount
rate and age-dependent mortality rates.2® Annual values for QALYs and direct blindness
costs?6 were divided in half and allocated at each semi-annual time period as needed. All
screening costs were per-visit costs while treatment costs were one-time costs estimated
by a weighted average of the costs of different types of DR treatments taken by the HHS
cohort.13 For CS and follow-up CS, an additional $21.54 was added per visit to account for
travel costs and lost wages.13 The semi-annual model was validated via simulation where
both the semi-annual and previously validated annual Markov models generated a similar

number of blindness cases and patient lifetimes for the same patient cohort. Finally, a
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baseline WTP value of $10000 per QALY was determined to represent patients at a safety-

net system most of whom are medically underserved with budgetary restrictions.

Base case simulation and sensitivity analysis
We used hidden-Markov chain Monte Carlo simulation to evaluate the cost-effectiveness
of the POMDP-based screening policy for 500000 hypothetical patients generated from
the HHS data, set to start first DR screening at age 40 within the simulation. This
hypothetical patient population forms the base case simulation cohort to represent the
maximum number of potential diabetic patients in Harris County eligible for the TRI
service at HHS. Each patient was tracked up until death or the age of 99 and accumulated
QALY gains and out-of-pocket costs were recorded. The initial health condition of the
hypothetical cohorts was probabilistically assigned based on DR prevalence in the
literature.1®

We conducted deterministic one-way sensitivity analysis on the POMDP-based DR
screening policies. The scenarios selected included (1) increasing A1C level to 13%, (2)
decreasing WTP to $5000, (3) CS compliance rates of 20%, and (4) CS compliance rate of
50%, which were chosen to represent realistic scenarios where the model can be useful
for making personalizing recommendations for (1) patients with poor glycemic control,
(2) patients with severe financial barriers, and (3)-(4) patients with significantly different
CS compliance behaviors. For each scenario, the updated POMDP model regenerated a
new personalized screening policy, which was then evaluated under the same hidden-

Markov chain Monte Carlo simulation framework for the same cohort of 500000 patients.
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Cost-effectiveness analysis

The personalized policy was benchmarked against other standardized policies: annual CS,
annual TRI, biennial CS and WW. All standardized policies were simulated using the
hidden-Markov chain Monte Carlo simulation framework for the same hypothetical
patient cohort with base case parameters. Incremental cost-effectiveness ratio (ICER)
analysis was conducted to examine the cost-effectiveness of the POMDP-based policy
against each of the standardized policies. Specifically, we examined the difference in
direct patient costs between the model-based policy and each standardized policy divided
by the difference in QALY gains, that is, the average incremental cost for 1 additional
QALY. To visualize the cohort-level policy comparisons, we divided each cohort of 500000
patients into 200 subgroups of 2500 patients. Sensitivity analysis was conducted by
comparing the personalized policy to the standardized policies under the following cohort
cases: 13% A1C level and 20% and 50% CS compliance rates.

To further demonstrate the impact of the personalized policy in a clinical setting, we
created a new cohort of 500000 patients that mimics the composition of the patient
cohort extracted from the HHS EMR data proportionally in terms of race, TRI compliance
rate, A1C level at the beginning of DR screening, and age at the beginning of DR screening.
Each hypothetical patient retained a unique disease and screening trajectory. The
personalized policy was compared to each of the standardized policies for this HHS-
specific cohort. Cost per QALY was examined for each policy across different age groups of
this cohort.

As an extension to the cost-effectiveness analysis, a hypothetical rural cohort was

constructed to examine the generalizability of the model to populations with limited

10
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geographic access to eye care. Geographic access to care and transportation burdens are
typically considered factors that drive poor compliance with CS-based screening.3%31 To
model this cohort, we assumed annual CS compliance rate to be randomly generated
between 12% and 45% based on previous studies,3233 and CS-based transportation costs
were increased to $60.49 per visit.3* For a rural scenario with TRI service assumed to be
available, TRI compliance rate was set to either 40%, 60%, or 80%. IN-DR prevalence was
set to 2.3% based on previous studies.3> All other parameters such as the starting age,
A1C, and WTP values were set identical to those of the base case cohort analysis. The
POMDP model was run for the rural cohort to generate the scenario-specific screening

policies which were used for the cost-effectiveness analysis.
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Results

POMDP-based recommendations

The POMDP model generated threshold-based screening recommendations based on the
Bayesian-updated probability that the patient is in the IN-DR state. Table 2 displays the
threshold-based recommendations under five selected age levels. Each recommendation
region represents the range of probabilities of being in the IN-DR state for which the
model identifies either WW, TR], or CS to be optimal. Once the model was run over each
patient’s lifetime, the number of each recommendation type was recorded; on average,
TRI, CS, and WW were recommended 86.7%, 9.6%, and 3.7% of the time, respectively,
over the lifetime of the base case cohort. The mean age of death was 72.76 (95% CI 72.74
to 72.78). For the base case cohort, between the ages of 40 to 73, WW was never
recommended. As patients aged, the threshold between TRI and CS (i.e., the upper
endpoint for the TRI recommendation region) increased, which in turn increased the
proportion of TRl recommendations (from 89.9% at age 50 to 98% at age 70; see Table
2). WW became included as a potential recommendation once a patient reached 74 years

of age and became the only available recommendation at ages 84 and older.

Sensitivity analysis

Sensitivity analysis considered four additional hypothetical cohorts; Table 2 shows the
simulation results. First, for the cohort with an increased A1C level of 13%, the TRI-to-CS
thresholds were found lower than those in the base case (7% A1C) for age groups of 50
and 60. As a result, the proportion of TRI recommendations decreased by 22% overall

compared to the base case patients, while CS recommendations increased overall by

12
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25.5%. Decreasing WTP from $10000 to $5000 led to small increases in the TRI-to-CS
thresholds, which increased the proportion of TRI recommendations by 1.1% overall.
Notably, decreasing CS compliance from the base value 35% to 20% removed CS as an
optimal recommendation altogether while greatly increasing the overall proportion of
TRI recommendations, from 86.7% to 96.5%. When CS compliance increased from 35% to
50%, the TRI-to-CS thresholds slightly decreased at ages 50, 60 and 70, resulting in a

slight increase in CS recommendations.

Cost-effectiveness analysis

We examined the cost-effectiveness of the POMDP-based personalized policy against
four alternative standardized policies: annual CS, annual TRI, biennial CS, and WW. Table
3 displays the cost-effectiveness of the personalized policy against each of the
standardized policies under the base case cohort as well as other sensitivity analysis
cases: 13% A1C level, and 20% and 50% CS compliance rates, along with the ICER values
when available. Each comparison reflects analysis based on the cohort of 500000 patients
divided into 200 subgroups of 2500 patients. For the base case comparison, the
personalized policy was found dominant for most patients (57% vs Annual CS, 66% vs
Annual TRI, 80% vs Biennial CS, and 100% vs WW). Similar outcomes were found across
sensitivity analysis, except for the 50% CS compliance case where POMDP policy was
dominant to ACS for 43% of the cohort. Overall, the personalized policy provided more
QALY gains compared to all other standardized policies for most of the simulated cohort.
Except for the comparison to annual CS in the 50% CS compliance case, the personalized
policy resulted in at least 92.5% of each simulated cohort experiencing cost savings. In 10

out of 16 test cases, the POMDP-based policy provided cost savings for the entire

13
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simulated cohort. Additionally, the ICER value, whenever applicable, was low for the
personalized policy with the maximum of $3074.87.

Figure 2 displays the differences in accumulated costs and QALYs between the
personalized policy and each of the standardized policies for the HHS-specific cohort.
Each data point in Figure 2 represents a subgroup of 2500 patients. Most data points were
found to have positive x-axis values and negative y-axis values across all policy
comparisons (i.e., within the fourth quadrant), which indicates that the personalized
policy was dominant for most patients in terms of cost savings and QALY gains for each
comparison. The personalized policy performed best against WW, followed by biennial
CS, annual TRI and annual CS. The contour for each comparison represents the 95%
confidence region for each set of 200 data points. Figure 3 examines the out-of-pocket
cost paid per QALY for the HHS-specific cohort separated by age group (40 to 50, number
of patients (n) = 159009; 51 to 60, n = 191525; 61 to 70, n = 124431; 71 to 80, n = 22703;
80+, n = 2332). The 95% confidence intervals were within 0.9% of the reported means for
patients within ages 40-70, 2.6% within ages 71-80 and 10% for 80+. Across all age
groups, the personalized policy produced the least costs paid per QALY (40 to 50, $847;
51 to 60, $576; 61 to 70, $401; 71 to 80, $241; 80+, $106). The benefit produced by the
personalized policy was more pronounced for younger patients. The maximum cost
differences were $652, $364, $188, $41and $59 for the 40-to-50, 51-to-60, 61-to-70, 71-
to-80, and 80+ age groups, respectively.

Table 4 shows the cost-effectiveness outcomes for the rural cohort. The POMDP-based,
personalized policy was found dominant in terms of both QALY gain and cost savings for

most of the simulated cohorts (at least 54% vs Annual CS, 63% vs Annual TRI, 82% vs

14
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Biennial CS, and 100% vs WW). The dominance of the personalized policy against the
annual CS policy increased from 54% to 70% as TRI compliance increased from 40% to
80%. The dominance against the annual TRI policy increased from 72% to 73% as TRI
compliance increased from 40% to 60%, but decreased from 73% to 63% when TRI
compliance increased to 80% due to the increased similarity between the personalized
policy and annual TRI. Compared to the base case cohort representing urban safety-net
system patients, the personalized policy relied more on TRI-based screening for the rural

cohorts with 60% and 80% TRI compliance.
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Discussion

In this study, we developed a proof-of-concept mathematical model via POMDP for
personalized DR screening recommendations that utilize both TRI and traditional
screening exams. Personalization of screening recommendations that include TRI is
particularly important for ethnic minorities who are known to be generally less compliant
with traditional screening exams as well as patients with limited access to ophthalmic
care.1011.14 The POMDP model utilizes the DR natural history model to periodically update
the risk of intervention-needed DR which helps prevent delayed detection through timely
TRI-based screening recommendations. The model-based policy was shown to produce
QALYs higher than or comparable to those achieved by other standardized screening
policies at substantially lower costs. This suggests that integration of TRI into existing
screening policies in a personalized manner may be beneficial and a model-based policy
may have utility as a decision support tool.

The findings of this study are consistent with previous studies on the cost-
effectiveness of TRI screening in that TRI-based screening policies are more cost-effective
than standardized screening that only utilizes traditional eye clinic-based screening
(Tables 3 and 4).1618 Qur analysis shows diminishing health and cost-saving benefits of
DR screening as a patient ages, which is also consistent with the findings in the cost-
effectiveness study for DR screening at the Veterans Health Administration.1® Our study
shows that cost-effectiveness can further improve when the utilization of TRI is
personalized based on patient-specific factors and compliance behavior, compared to the

standardized TRI policies evaluated in the literature.16.18
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The model-based policy shows that more frequent DR screening is beneficial for
patients at higher risk of sight-threatening DR, which agrees with state-dependent
screening frequency proposed by the International Council of Ophthalmology
guidelines.3¢ In our analysis, the severity-based screening policy is further refined by
enabling TRI recommendations, where TRI screening is more frequently recommended to
patients who are younger or less compliant with clinical screening. Also, the modeling
framework offers a generalization to the existing state-based guidelines by accounting for
DR state uncertainty and patients’ non-compliance via the concept of belief state.

While the POMDP model identified screening recommendations autonomously, the
model always provided recommendations in the order of WW, TRI, then CS as the
patient’s probability of being in the IN-DR state increased, forming threshold-based
decisions. This suggests that the model considers CS for the most at-risk patients while
recommending TRI or WW for those less at risk.

The most prominent factor affecting personalized recommendations was low CS
compliance. For example, the model did not directly recommend CS for a patient group
with 20% CS compliance rate. Instead, CS only occurred after a positive TRI screening
outcome. Another factor that increased TRI recommendation frequency was decreased
WTP (from $10000 to $5000). In this case, the TRI-to-CS threshold value increased (Table
2), which implies the model will wait for a higher risk of IN-DR to make a direct CS
recommendation. These observations reinforce the importance of TRI availability in
settings where patients have poor screening compliance and limited access to care. When
A1C was increased from 7% to 13%, the number of CS recommendations increased

substantially, demonstrating how the model can adapt recommendations to increased risk
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of developing IN-DR. Interestingly, when CS compliance increased to 50% the model made
little shift in recommendations. We believe this was because the model became more
“confident” that the patient would attend CS appointments and thus continued to rely on

TRL

The POMDP model provides a flexible framework that can adapt to a patient’s unique
characteristics and behaviors. In practice, the modeling framework can be utilized by both
primary and eye care professionals with updated parameters to match the underlying
cohort; for example, historical compliance rates, recent screening results, and A1C levels
can be retrieved from the patient’s medical record or upon an initial screening of a patient
and updated as needed. Additionally, the modeling framework can accommodate different
DR state definitions without fundamental changes in the model. For example, more
specific states such as no DR, moderate, mild, and severe NPDR, and PDR can be used
instead of the two states in the current model and states associated with DME can be

added as well, with appropriate state transition probabilities.

While the base POMDP model was calibrated based on the data from a large urban
safety-net system, the modeling framework is generalizable to different cohorts in other
locations by inputting specific system-level information (e.g., TRI sensitivity and
specificity) and cohort-specific variables such as each patient’s age, DR status, A1C level,
and, importantly, factors that affect screening compliance. To demonstrate this
generalizability, scenario analysis was conducted on a hypothetical cohort of rural
diabetic patients with limited geographic access to DR screening. CS compliance rates in
the rural population were assumed to be lower than in the urban population based on

previously published literature demonstrating that rural patients generally experience
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greater transportation barriers such as increased transportation costs and driving

distance as well as financial burden compared to other subgroups.3031,37-39

For the rural cohort, the POMDP model identifies TRI as a preferred screening
recommendation for most patients and the TRI-based personalized screening policy was
found cost-effective, dominating other standardized screening policies in terms of health
benefit and cost savings (Table 4). As TRI became more accessible to rural patients, as
shown through the 60% and 80% TRI compliance scenarios, the cost-effectiveness
dominance of the personalized policy increased against annual CS (Table 4). This
observation reinforces the importance of a careful design and implementation of a TRI
program in a rural area to assure a high participation rate. The POMDP model can capture
differences in economic level and compliance between different rural cohorts by adjusting

the WTP factor and compliance parameters, respectively, as needed.

In general, model-based scenario analysis generates important insights for
policymakers. For example, once cost-effectiveness of TRI-based personalized screening
policy is shown via the POMDP model and scenario analysis, findings can also guide and
optimize subsequent decisions such as the number of additional facilities across the rural
area and specific locations of them. Additional, properly located TRI facilities could
minimize transportation burden and increase screening compliance,3%35 which in turn
further improves cost-effectiveness of the screening program.

Note that the POMDP modeling framework serves as an adjunctive clinical decision
support tool. A care provider is involved in the decision-making process, and final
recommendations will be based on the interaction between the provider and the model.

For example, if TRI is recommended by the model but CS is deemed more appropriate

19
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(e.g., if PDR was already found on a previous TRI exam), the provider can manually enter
the CS recommendation into the model to override the model recommendation, based on
which the model then updates the patient’s projected DR state and progression. A

workflow schematic of the model-based screening decision-making process can be found

in Figure S4 (available online at www.ophthalmologyretina.org).

There are a few limitations to this study. First, we assume a single-eye model, as is
commonly found in ophthalmology literature?# to reduce model complexity. Second, the
parameters within our simulation analysis such as patient compliance rates and A1C level
were assumed to be constant over time for each patient. To address this in practice, the
model can be run periodically in an adaptive manner whenever such parameters need to
be updated. Third, the model used a simplified grading system consisting of two states:
NIN-DR and IN-DR, where IN-DR corresponds to PDR and NIN-DR includes all other DR
states. While the two-state system was defined based on the current referral point used at
the HHS TRI program (referral to CS occurs when PDR is found on TRI) and the model was
validated, the model could be modified to have a more specific state system that includes
no DR, mild, moderate, and severe NPDR, and PDR. DME-related states were not
considered because the current HHS TRI program does not support DME screening.
Lastly, this model focuses on a patient-level perspective as opposed to a societal
perspective that might account for capital and overhead costs associated with screening

infrastructure.

Important future studies are warranted to implement and evaluate this modeling
framework in a clinical setting. The current model utilizes patient information including

age, past DR state trajectory, TRI image readings, A1C, WTP, and socio-demographic
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factors that affect compliance behavior. In the future, the model will be further refined to
benefit from more specific patient information, which will lead to even more personalized
recommendations. For example, as Al-based TRI interpretation and its interaction with
the EMR system improve, the model could be modified to directly incorporate digital
fundus photograph data into the automated risk update and screening decision-making
process. Development of a new natural history model that includes more risk factors will
also enable the model to accommodate more specific patient information. As our rural
scenario analysis shows the potential cost-effectiveness of a personalized screening policy
utilizing TRI, important operational and logistics decisions need to be examined such as
the locations of TRI facilities*® and design of an effective mobile TRI-based screening

problem to increase TRI screening uptake in rural areas.

In conclusion, the POMDP model was developed to evaluate personalized screening
recommendations incorporating TRI for patients with limited access to eye care. The
model was first tested for cohorts generated based on the data from a large urban safety-
net system. We also studied the applicability of the model to rural patients with poor
compliance with DR screening and the cost-effectiveness of TRI-based personalized
screening. We envision two potential applications of the proposed modeling framework: it
can serve as a clinical decision support tool for care providers to promote personalized,
patient-centered decisions; it can also provide evidence-based support for the integration
of TRI into traditional DR screening guidelines. Based on our analysis, the model-based
screening policy not only significantly reduces the average per-patient screening cost
compared to other standardized policies, but also performs similarly if not superiorly in

terms of QALY gains. While validation studies are needed to assess the effectiveness and
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412  feasibility of our proposed model in a clinical setting, the potential benefits of an

413  individualized approach to DR screening are significant and warrant future exploration.
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Figure captions

Markov Model

Post -
Treatment

Blindness

Death

Figure 1. Markov model defining the 5 diabetic retinopathy (DR) health states: non-
intervention-needed DR (NIN-DR), intervention-needed DR (IN-DR), Post-Treatment,
Blindness, and Death. The transition from IN-DR to Post-Treatment only occurs when a

patient receives a positive clinical screening (CS) outcome.
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Cost and QALYs Difference between
Personalized vs Standardized Policies for Harris Health-Specific Cohort
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Figure 2. Each of the 200 data points represents a subgroup of 2500 patients where the
personalized screening policy is compared to selected standardized screening policies:
annual clinical screening (ACS), annual teleretinal imaging (ATRI), biennial clinical
screening (BCS), and wait and watch (WW). Incremental cost-effectiveness is represented
by the average difference in total quality-adjusted life years (QALYs) gained and the
average costs spent in each data point. Data points to the right of the y-axis represent
instances where the personalized policy provides more QALYs. Data points below the x-
axis values represent instances where the personalized policy is less costly. The contour for

each comparison encompasses the 95% confidence region for the set of 200 data points.
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Cost Paid per QALY per Policy for Harris Health-Specific Cohort Age Groups
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Figure 3. The out-of-pocket cost paid per QALY for each screening policy for different age
groups (40 to 50, number of patients (n) = 159009; 51 to 60, n = 191525; 61 to 70, n =
124431; 71 to 80, n =22703; 80+, n = 2332). Values are shown for the personalized policy,
annual clinical screening (ACS), annual teleretinal imaging (ATRI), biennial clinical
screening (BCS), and wait and watch (WW). The 95% confidence interval of the cost paid
per QALY for each policy within each age group is represented by the vertical line at the top

of each bar shown.
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