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Abstract	1 

Purpose:	While	teleretinal	imaging	has	proved	effective	in	increasing	population-level	2 

screening	for	diabetic	retinopathy	(DR),	there	is	a	lack	of	quantitative	understanding	on	3 

how	to	incorporate	teleretinal	imaging	into	existing	screening	guidelines.	We	develop	a	4 

mathematical	model	to	determine	personalized	DR	screening	recommendations	that	utilize	5 

teleretinal	imaging	and	evaluate	the	cost-effectiveness	of	the	personalized	screening	policy.	6 

Design:	A	partially	observable	Markov	decision	process	is	employed	to	determine	7 

personalized	screening	recommendations	based	on	patient	compliance,	willingness	to	pay,	8 

and	A1C	level.	Deterministic	sensitivity	analysis	was	conducted	to	evaluate	the	impact	of	9 

patient-specific	factors	on	personalized	screening	policy.	The	cost-effectiveness	of	10 

identified	screening	policies	was	evaluated	via	hidden-Markov	chain	Monte	Carlo	11 

simulation	on	a	data-based	hypothetical	cohort.		12 

Participants:	Screening	policies	were	simulated	for	a	hypothetical	cohort	of	500000	13 

patients	with	parameters	based	on	literature	and	electronic	medical	records	(EMR)	of	2457	14 

patients	who	received	teleretinal	imaging	in	2013–2020	from	the	Harris	Health	System	15 

(Harris	County,	Texas).	16 

Methods	and	Intervention:	Population-based	mathematical	modeling	study.	17 

Interventions	included	dilated	fundus	examinations	referred	to	as	clinical	screening,	18 

teleretinal	imaging,	and	wait-and-watch	recommendations.	19 

Main	Outcome	Measures:	Personalized	screening	recommendations	based	on	patient-20 

specific	factors.	Accumulated	quality-adjusted	life	years	(QALYs)	and	cost	(USD)	per	21 
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patient	under	different	screening	policies.	Incremental	cost-effectiveness	ratio	(ICER)	to	22 

compare	different	policies.	23 

Results:	For	the	base	cohort,	on	average,	teleretinal	imaging	was	recommended	86.69%	of	24 

the	time	over	each	patient’s	lifetime.	The	model-based	personalized	policy	dominated	25 

other	standardized	policies,	generating	more	QALY	gains	and	cost	savings	for	at	least	57%	26 

of	the	base	cohort.	Similar	outcomes	were	observed	in	sensitivity	analyses	of	the	base	27 

cohort	and	the	Harris	Health-specific	cohort	and	rural	population	scenario	analysis.		28 

Conclusions:	A	mathematical	model	was	developed	as	a	decision	support	tool	to	identify	a	29 

personalized	screening	policy	that	incorporates	both	teleretinal	imaging	and	clinical	30 

screening	and	adapts	to	patient	characteristics.	Compared	to	current	standardized	policies,	31 

the	model-based	policy	significantly	reduces	costs	while	performing	comparably,	if	not	32 

better,	in	terms	of	QALY	gain.	A	personalized	approach	to	DR	screening	has	significant	33 

potential	benefits	that	warrant	further	exploration.		 	34 
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Introduction	35 

Diabetic	retinopathy	(DR)	is	the	leading	cause	of	blindness	in	working-age	US	adults.1,2	36 

Over	60%	of	patients	with	type	II	diabetes	mellitus	and	almost	all	patients	with	type	I	37 

diabetes	mellitus	will	develop	DR	within	20	years	of	diagnosis.1	Among	adults	over	the	38 

age	of	45	diagnosed	with	diabetes,	8.6%	have	DR	while	4.1%	have	experienced	vision	loss	39 

due	to	DR.3	Currently,	over	37	million	US	adults	have	diabetes	and	over	96	million	US	40 

adults	have	prediabetes.2	Given	the	epidemic	of	diabetes,	there	is	a	growing	concern	about	41 

the	associated	increase	in	DR	cases	and	potential	vision	loss.	42 

Timely	screening	for	DR	is	one	of	the	most	cost-effective	tools	for	mitigating	DR-43 

related	vision	loss4–6;	studies	show	that	up	to	98%	of	DR-related	vision	loss	cases	can	be	44 

prevented	by	early	detection	and	treatment.1,7	Currently,	the	American	Diabetes	45 

Association	(ADA)	and	American	Academy	of	Ophthalmology	(AAO)	recommend	annual	46 

comprehensive	eye	screening	examinations	for	every	diabetic	patient,1,7,8	based	on	the	7-47 

field	stereoscopic	color	fundus	photography.9	However,	only	50–65%	of	diabetic	patients	48 

are	screened	on	a	yearly	basis	in	the	US,10	with	even	lower	compliance	for	patients	with	49 

limited	access	or	low	socioeconomic	status.11–12	50 

Recently,	teleretinal	imaging	(TRI)	has	emerged	as	an	effective	alternative	to	51 

conventional	DR	screening.	TRI	involves	images	captured	via	single-field	nonmydriatic	52 

monochromatic	digital	photography	typically	obtained	in	a	non-eye	care	setting	and	53 

remotely	graded.9	Studies	have	illustrated	the	potential	of	TRI	to	alleviate	barriers	to	DR	54 

screening	due	to	its	lower	cost	and	improved	accessibility.13,14	The	Centers	for	Medicare	55 

and	Medicaid	Services	recognizes	TRI	as	an	acceptable	and	reimbursable	service.15	Large-56 

scale	healthcare	systems	in	the	US,	such	as	the	Veterans	Health	Administration,	have	57 
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provided	TRI	services	since	the	early	2000s.16	TRI	is	expected	to	be	even	more	widely	58 

used	as	its	accuracy	and	convenience	further	improve	with	artificial	intelligence	(AI)-59 

based	interpretation.17	60 

However,	there	is	a	lack	of	quantitative	understanding	on	how	often	TRI	screening	61 

should	be	recommended	to	diabetic	patients	with	different	characteristics.	Currently,	62 

many	TRI	programs	recommend	annual	TRI	follow-ups,	although	optimal	intervals	of	TRI	63 

may	vary	based	on	the	patient’s	compliance,	socioeconomic	status,	severity	of	DR,	age,	64 

duration	of	disease,	and	glycemic	control.	With	the	emergence	of	more	accessible	TRI-65 

based	screening	examinations,	development	of	a	personalized,	patient-specific	screening	66 

approach	may	be	advantageous	for	patients,	providers,	and	society.	67 

In	this	study,	we	develop	a	proof-of-concept	mathematical	model	based	on	a	68 

previously	validated	Markov	model	to	generate	personalized	DR	screening	69 

recommendations.	Unlike	previous	studies	that	examined	standardized	screening	70 

guidelines	with	fixed	screening	modality	and	interval,16,18	we	examine	the	usefulness	of	71 

the	model-based,	personalized	policy	in	exploiting	dynamic	interaction	of	TRI	and	72 

traditional	screening	based	on	patient-specific	factors.	The	aim	of	this	study	is	to	evaluate	73 

the	cost-effectiveness	of	the	personalized	screening	policy	and	demonstrate	the	potential	74 

of	this	modeling	framework	as	a	clinical	decision	support	tool	that	can	be	used	in	both	75 

primary	and	eye	care	settings.	 	76 
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Methodology	77 

POMDP	model	78 

We	develop	a	partially	observable	Markov	decision	process	(POMDP)	model	to	identify	79 

personalized	DR	screening	policies.		The	POMDP	model	is	built	on	a	previously	validated	80 

Markov-based	DR	natural	history	model.6	Markov	models	have	been	widely	used	in	81 

ophthalmology	for	predicting	disease	progression	and	analyzing	cost-effectiveness	of	82 

various	screening	and	intervention	policies:	DR	screening	and	treatment,16	diabetic	83 

macular	edema	(DME)	treatment,19	and	glaucoma	screening.20	Other	simulation	models	84 

such	as	decision	trees	have	also	been	recently	used	for	cost-effectiveness	analyses	in	85 

ophthalmology,	including	those	of	injection	treatments	for	DR	and	DME21	and	AI-based	86 

screening	for	retinopathy	of	prematurity.22	87 

Figure	1	shows	the	Markov	model	with	DR-related	health	states	and	transitions.		The	88 

health	states	in	the	model	include	non-intervention-needed	DR	(NIN-DR),	intervention-89 

needed	DR	(IN-DR),	post-treatment	(PT),	blindness	(BL),	and	death	(DE).	The	NIN-DR	90 

state	is	defined	to	include	no	DR	and	non-proliferative	DR	(NPDR)	while	the	IN-DR	state	is	91 

defined	as	proliferative	DR	(PDR).	Note	that	unless	the	patient	is	in	the	PT,	BL,	or	DE	state,	92 

the	model	often	cannot	specify	exactly	which	health	state	the	patient	belongs	to.	Thus,	the	93 

POMDP	model	uses	the	notion	of	a	“belief”	state:	instead	of	assuming	a	specific,	fully	94 

observable	disease	state	as	in	traditional	Markov	models,	a	belief	state	probabilistically	95 

represents	a	patient’s	health	state.	For	example,	a	patient's	health	state	can	be	96 

represented	as	90%	in	NIN-DR	and	10%	in	IN-DR.	The	belief	state	structure	is	particularly	97 

relevant	in	our	study	because	asymptomatic	earlier	stages	of	DR,	potential	inaccuracy	of	98 

TRI	outcomes,	and	patient	non-compliance	can	make	the	patient’s	state	uncertain	or	only	99 
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partially	observable.23	The	belief	state	is	updated	semi-annually	via	Bayesian	inference	100 

based	on	the	patient’s	compliance,	recent	screening	outcomes	and	accuracy,	and	DR	101 

natural	progression.	More	details	about	the	update	mechanism	and	examples	can	be	102 

found	in	Appendix	S1	(available	online	at	www.ophthalmologyretina.org).	103 

For	each	6-month	time	period	and	for	each	belief	state,	the	model	recommends	one	of	104 

the	three	actions—wait	and	watch	(WW),	TRI,	or	traditional	screening	(referred	to	as	105 

clinical	screening	or	CS)—until	a	patient	progresses	to	PT,	BL,	or	DE	and	ceases	screening.	106 

Whenever	a	TRI	outcome	indicates	IN-DR,	the	patient	is	referred	for	follow-up	CS	107 

immediately.	Whenever	a	CS	outcome	identifies	IN-DR,	the	model	immediately	sends	the	108 

patient	for	treatment,	i.e.,	the	PT	state.	109 

The	POMDP	model	chooses	recommendations	such	that	the	total	accumulated	110 

discounted	reward	is	maximized,	where	the	reward	is	defined	as	the	quality-adjusted	life	111 

years	(QALYs)	multiplied	by	the	willingness	to	pay	(WTP)	factor	minus	out-of-pocket	112 

costs	(USD)	associated	with	each	state-recommendation	pair.	A	yearly	discount	factor	of	113 

3%	was	used	as	is	traditionally	recommended	in	healthcare	modeling.24	The	WTP	value	114 

was	treated	as	a	patient-specific	parameter	that	changes	based	on	socioeconomic	status.	115 

Data	used		116 

A	summary	of	the	parameters	for	the	base	case	POMDP	model	can	be	found	in	Table	1.	117 

Values	for	TRI	accuracy,	screening	and	treatment	costs,	and	TRI	and	follow-up	CS	118 

compliance	rates	are	based	on	the	Harris	Health	System	(HHS)	TRI	program	data	from	the	119 

time	period	of	2013–2020.	Institutional	Review	Board	(IRB)	approval	was	obtained	to	120 

view	and	analyze	patient	medical	records.	HHS	is	the	largest	safety-net	hospital	system	in	121 

Harris	County	which	encompasses	the	Houston	metropolitan	area	and	represents	the	122 
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third	most	populous	county	in	the	US.	In	total,	2457	patient	profiles	were	collected	from	123 

the	HHS	electronic	medical	record	(EMR)	database,	including	race/ethnicity,	age,	zip-code	124 

location,	A1C-level,	insurance	status,	TRI	screening	outcomes	over	time,	and	TRI	125 

adherence	rate.	This	patient	population	was	composed	of	59.23%	Hispanic,	22.71%	126 

African	American,	5.63%	Asian,	3.91%	white	and	8.52%	other.	The	average	age	of	this	127 

cohort	was	54.62	years	at	the	time	of	first	DR	screening.	The	average	A1C	level	was	7.91%	128 

and	initial	prevalence	of	IN-DR	was	2.32%.	A	classification	decision	tree	identified	a	129 

patient’s	race	to	be	a	significant	factor	for	yearly	TRI	compliance	rate,	with	the	following	130 

average	race-specific	compliance	rates:	68%	for	Hispanic	patients,	65%	African	American,	131 

84%	Asian,	68%	White	and	73%	other.	132 

While	the	previous	Markov	models	for	DR	progression	assume	annual	transition	133 

probabilities,16,18	we	use	semi-annual	transition	probabilities	found	via	a	cycle-length	134 

conversion	technique28	to	allow	the	model	to	generate	more	frequent	recommendations,	if	135 

needed.	The	same	conversion	technique	was	used	to	produce	the	semi-annual	discount	136 

rate	and	age-dependent	mortality	rates.29	Annual	values	for	QALYs	and	direct	blindness	137 

costs26	were	divided	in	half	and	allocated	at	each	semi-annual	time	period	as	needed.	All	138 

screening	costs	were	per-visit	costs	while	treatment	costs	were	one-time	costs	estimated	139 

by	a	weighted	average	of	the	costs	of	different	types	of	DR	treatments	taken	by	the	HHS	140 

cohort.13	For	CS	and	follow-up	CS,	an	additional	$21.54	was	added	per	visit	to	account	for	141 

travel	costs	and	lost	wages.13	The	semi-annual	model	was	validated	via	simulation	where	142 

both	the	semi-annual	and	previously	validated	annual	Markov	models	generated	a	similar	143 

number	of	blindness	cases	and	patient	lifetimes	for	the	same	patient	cohort.	Finally,	a	144 
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baseline	WTP	value	of	$10000	per	QALY	was	determined	to	represent	patients	at	a	safety-145 

net	system	most	of	whom	are	medically	underserved	with	budgetary	restrictions.	146 

Base	case	simulation	and	sensitivity	analysis	147 

We	used	hidden-Markov	chain	Monte	Carlo	simulation	to	evaluate	the	cost-effectiveness	148 

of	the	POMDP-based	screening	policy	for	500000	hypothetical	patients	generated	from	149 

the	HHS	data,	set	to	start	first	DR	screening	at	age	40	within	the	simulation.	This	150 

hypothetical	patient	population	forms	the	base	case	simulation	cohort	to	represent	the	151 

maximum	number	of	potential	diabetic	patients	in	Harris	County	eligible	for	the	TRI	152 

service	at	HHS.	Each	patient	was	tracked	up	until	death	or	the	age	of	99	and	accumulated	153 

QALY	gains	and	out-of-pocket	costs	were	recorded.	The	initial	health	condition	of	the	154 

hypothetical	cohorts	was	probabilistically	assigned	based	on	DR	prevalence	in	the	155 

literature.18	156 

We	conducted	deterministic	one-way	sensitivity	analysis	on	the	POMDP-based	DR	157 

screening	policies.	The	scenarios	selected	included	(1)	increasing	A1C	level	to	13%,	(2)	158 

decreasing	WTP	to	$5000,	(3)	CS	compliance	rates	of	20%,	and	(4)	CS	compliance	rate	of	159 

50%,	which	were	chosen	to	represent	realistic	scenarios	where	the	model	can	be	useful	160 

for	making	personalizing	recommendations	for	(1)	patients	with	poor	glycemic	control,	161 

(2)	patients	with	severe	financial	barriers,	and	(3)-(4)	patients	with	significantly	different	162 

CS	compliance	behaviors.	For	each	scenario,	the	updated	POMDP	model	regenerated	a	163 

new	personalized	screening	policy,	which	was	then	evaluated	under	the	same	hidden-164 

Markov	chain	Monte	Carlo	simulation	framework	for	the	same	cohort	of	500000	patients.	165 



 

10 

Cost-effectiveness	analysis	166 

The	personalized	policy	was	benchmarked	against	other	standardized	policies:	annual	CS,	167 

annual	TRI,	biennial	CS	and	WW.	All	standardized	policies	were	simulated	using	the	168 

hidden-Markov	chain	Monte	Carlo	simulation	framework	for	the	same	hypothetical	169 

patient	cohort	with	base	case	parameters.	Incremental	cost-effectiveness	ratio	(ICER)	170 

analysis	was	conducted	to	examine	the	cost-effectiveness	of	the	POMDP-based	policy	171 

against	each	of	the	standardized	policies.	Specifically,	we	examined	the	difference	in	172 

direct	patient	costs	between	the	model-based	policy	and	each	standardized	policy	divided	173 

by	the	difference	in	QALY	gains,	that	is,	the	average	incremental	cost	for	1	additional	174 

QALY.	To	visualize	the	cohort-level	policy	comparisons,	we	divided	each	cohort	of	500000	175 

patients	into	200	subgroups	of	2500	patients.	Sensitivity	analysis	was	conducted	by	176 

comparing	the	personalized	policy	to	the	standardized	policies	under	the	following	cohort	177 

cases:	13%	A1C	level	and	20%	and	50%	CS	compliance	rates.	178 

To	further	demonstrate	the	impact	of	the	personalized	policy	in	a	clinical	setting,	we	179 

created	a	new	cohort	of	500000	patients	that	mimics	the	composition	of	the	patient	180 

cohort	extracted	from	the	HHS	EMR	data	proportionally	in	terms	of	race,	TRI	compliance	181 

rate,	A1C	level	at	the	beginning	of	DR	screening,	and	age	at	the	beginning	of	DR	screening.	182 

Each	hypothetical	patient	retained	a	unique	disease	and	screening	trajectory.	The	183 

personalized	policy	was	compared	to	each	of	the	standardized	policies	for	this	HHS-184 

specific	cohort.	Cost	per	QALY	was	examined	for	each	policy	across	different	age	groups	of	185 

this	cohort.		186 

As	an	extension	to	the	cost-effectiveness	analysis,	a	hypothetical	rural	cohort	was	187 

constructed	to	examine	the	generalizability	of	the	model	to	populations	with	limited	188 
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geographic	access	to	eye	care.	Geographic	access	to	care	and	transportation	burdens	are	189 

typically	considered	factors	that	drive	poor	compliance	with	CS-based	screening.30,31	To	190 

model	this	cohort,	we	assumed	annual	CS	compliance	rate	to	be	randomly	generated	191 

between	12%	and	45%	based	on	previous	studies,32,33	and	CS-based	transportation	costs	192 

were	increased	to	$60.49	per	visit.34	For	a	rural	scenario	with	TRI	service	assumed	to	be	193 

available,	TRI	compliance	rate	was	set	to	either	40%,	60%,	or	80%.	IN-DR	prevalence	was	194 

set	to	2.3%	based	on	previous	studies.35	All	other	parameters	such	as	the	starting	age,	195 

A1C,	and	WTP	values	were	set	identical	to	those	of	the	base	case	cohort	analysis.	The	196 

POMDP	model	was	run	for	the	rural	cohort	to	generate	the	scenario-specific	screening	197 

policies	which	were	used	for	the	cost-effectiveness	analysis.	 	198 



 

12 

Results	199 

POMDP-based	recommendations	200 

The	POMDP	model	generated	threshold-based	screening	recommendations	based	on	the	201 

Bayesian-updated	probability	that	the	patient	is	in	the	IN-DR	state.	Table	2	displays	the	202 

threshold-based	recommendations	under	five	selected	age	levels.	Each	recommendation	203 

region	represents	the	range	of	probabilities	of	being	in	the	IN-DR	state	for	which	the	204 

model	identifies	either	WW,	TRI,	or	CS	to	be	optimal.	Once	the	model	was	run	over	each	205 

patient’s	lifetime,	the	number	of	each	recommendation	type	was	recorded;	on	average,	206 

TRI,	CS,	and	WW	were	recommended	86.7%,	9.6%,	and	3.7%	of	the	time,	respectively,	207 

over	the	lifetime	of	the	base	case	cohort.	The	mean	age	of	death	was	72.76	(95%	CI	72.74	208 

to	72.78).	For	the	base	case	cohort,	between	the	ages	of	40	to	73,	WW	was	never	209 

recommended.	As	patients	aged,	the	threshold	between	TRI	and	CS	(i.e.,	the	upper	210 

endpoint	for	the	TRI	recommendation	region)	increased,	which	in	turn	increased	the	211 

proportion	of	TRI	recommendations	(from	89.9%	at	age	50	to	98%	at	age	70;	see	Table	212 

2).	WW	became	included	as	a	potential	recommendation	once	a	patient	reached	74	years	213 

of	age	and	became	the	only	available	recommendation	at	ages	84	and	older.	214 

Sensitivity	analysis	215 

Sensitivity	analysis	considered	four	additional	hypothetical	cohorts;	Table	2	shows	the	216 

simulation	results.	First,	for	the	cohort	with	an	increased	A1C	level	of	13%,	the	TRI-to-CS	217 

thresholds	were	found	lower	than	those	in	the	base	case	(7%	A1C)	for	age	groups	of	50	218 

and	60.	As	a	result,	the	proportion	of	TRI	recommendations	decreased	by	22%	overall	219 

compared	to	the	base	case	patients,	while	CS	recommendations	increased	overall	by	220 
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25.5%.	Decreasing	WTP	from	$10000	to	$5000	led	to	small	increases	in	the	TRI-to-CS	221 

thresholds,	which	increased	the	proportion	of	TRI	recommendations	by	1.1%	overall.	222 

Notably,	decreasing	CS	compliance	from	the	base	value	35%	to	20%	removed	CS	as	an	223 

optimal	recommendation	altogether	while	greatly	increasing	the	overall	proportion	of	224 

TRI	recommendations,	from	86.7%	to	96.5%.	When	CS	compliance	increased	from	35%	to	225 

50%,	the	TRI-to-CS	thresholds	slightly	decreased	at	ages	50,	60	and	70,	resulting	in	a	226 

slight	increase	in	CS	recommendations.		227 

Cost-effectiveness	analysis	228 

We	examined	the	cost-effectiveness	of	the	POMDP-based	personalized	policy	against	229 

four	alternative	standardized	policies:	annual	CS,	annual	TRI,	biennial	CS,	and	WW.	Table	230 

3	displays	the	cost-effectiveness	of	the	personalized	policy	against	each	of	the	231 

standardized	policies	under	the	base	case	cohort	as	well	as	other	sensitivity	analysis	232 

cases:	13%	A1C	level,	and	20%	and	50%	CS	compliance	rates,	along	with	the	ICER	values	233 

when	available.	Each	comparison	reflects	analysis	based	on	the	cohort	of	500000	patients	234 

divided	into	200	subgroups	of	2500	patients.	For	the	base	case	comparison,	the	235 

personalized	policy	was	found	dominant	for	most	patients	(57%	vs	Annual	CS,	66%	vs	236 

Annual	TRI,	80%	vs	Biennial	CS,	and	100%	vs	WW).		Similar	outcomes	were	found	across	237 

sensitivity	analysis,	except	for	the	50%	CS	compliance	case	where	POMDP	policy	was	238 

dominant	to	ACS	for	43%	of	the	cohort.	Overall,	the	personalized	policy	provided	more	239 

QALY	gains	compared	to	all	other	standardized	policies	for	most	of	the	simulated	cohort.	240 

Except	for	the	comparison	to	annual	CS	in	the	50%	CS	compliance	case,	the	personalized	241 

policy	resulted	in	at	least	92.5%	of	each	simulated	cohort	experiencing	cost	savings.	In	10	242 

out	of	16	test	cases,	the	POMDP-based	policy	provided	cost	savings	for	the	entire	243 
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simulated	cohort.	Additionally,	the	ICER	value,	whenever	applicable,	was	low	for	the	244 

personalized	policy	with	the	maximum	of	$3074.87.	245 

		 Figure	2	displays	the	differences	in	accumulated	costs	and	QALYs	between	the	246 

personalized	policy	and	each	of	the	standardized	policies	for	the	HHS-specific	cohort.	247 

Each	data	point	in	Figure	2	represents	a	subgroup	of	2500	patients.	Most	data	points	were	248 

found	to	have	positive	x-axis	values	and	negative	y-axis	values	across	all	policy	249 

comparisons	(i.e.,	within	the	fourth	quadrant),	which	indicates	that	the	personalized	250 

policy	was	dominant	for	most	patients	in	terms	of	cost	savings	and	QALY	gains	for	each	251 

comparison.	The	personalized	policy	performed	best	against	WW,	followed	by	biennial	252 

CS,	annual	TRI	and	annual	CS.	The	contour	for	each	comparison	represents	the	95%	253 

confidence	region	for	each	set	of	200	data	points.	Figure	3	examines	the	out-of-pocket	254 

cost	paid	per	QALY	for	the	HHS-specific	cohort	separated	by	age	group	(40	to	50,	number	255 

of	patients	(n)	=	159009;	51	to	60,	n	=	191525;	61	to	70,	n	=	124431;	71	to	80,	n	=	22703;	256 

80+,	n	=	2332).	The	95%	confidence	intervals	were	within	0.9%	of	the	reported	means	for	257 

patients	within	ages	40-70,	2.6%	within	ages	71-80	and	10%	for	80+.	Across	all	age	258 

groups,	the	personalized	policy	produced	the	least	costs	paid	per	QALY	(40	to	50,	$847;	259 

51	to	60,	$576;	61	to	70,	$401;	71	to	80,	$241;	80+,	$106).	The	benefit	produced	by	the	260 

personalized	policy	was	more	pronounced	for	younger	patients.	The	maximum	cost	261 

differences	were	$652,	$364,	$188,	$41and	$59	for	the	40-to-50,	51-to-60,	61-to-70,	71-262 

to-80,	and	80+	age	groups,	respectively.		263 

Table	4	shows	the	cost-effectiveness	outcomes	for	the	rural	cohort.	The	POMDP-based,	264 

personalized	policy	was	found	dominant	in	terms	of	both	QALY	gain	and	cost	savings	for	265 

most	of	the	simulated	cohorts	(at	least	54%	vs	Annual	CS,	63%	vs	Annual	TRI,	82%	vs	266 
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Biennial	CS,	and	100%	vs	WW).	The	dominance	of	the	personalized	policy	against	the	267 

annual	CS	policy	increased	from	54%	to	70%	as	TRI	compliance	increased	from	40%	to	268 

80%.	The	dominance	against	the	annual	TRI	policy	increased	from	72%	to	73%	as	TRI	269 

compliance	increased	from	40%	to	60%,	but	decreased	from	73%	to	63%	when	TRI	270 

compliance	increased	to	80%	due	to	the	increased	similarity	between	the	personalized	271 

policy	and	annual	TRI.	Compared	to	the	base	case	cohort	representing	urban	safety-net	272 

system	patients,	the	personalized	policy	relied	more	on	TRI-based	screening	for	the	rural	273 

cohorts	with	60%	and	80%	TRI	compliance.	 	274 



 

16 

Discussion	275 

In	this	study,	we	developed	a	proof-of-concept	mathematical	model	via	POMDP	for	276 

personalized	DR	screening	recommendations	that	utilize	both	TRI	and	traditional	277 

screening	exams.	Personalization	of	screening	recommendations	that	include	TRI	is	278 

particularly	important	for	ethnic	minorities	who	are	known	to	be	generally	less	compliant	279 

with	traditional	screening	exams	as	well	as	patients	with	limited	access	to	ophthalmic	280 

care.10,11,14	The	POMDP	model	utilizes	the	DR	natural	history	model	to	periodically	update	281 

the	risk	of	intervention-needed	DR	which	helps	prevent	delayed	detection	through	timely	282 

TRI-based	screening	recommendations.	The	model-based	policy	was	shown	to	produce	283 

QALYs	higher	than	or	comparable	to	those	achieved	by	other	standardized	screening	284 

policies	at	substantially	lower	costs.	This	suggests	that	integration	of	TRI	into	existing	285 

screening	policies	in	a	personalized	manner	may	be	beneficial	and	a	model-based	policy	286 

may	have	utility	as	a	decision	support	tool.	287 

The	findings	of	this	study	are	consistent	with	previous	studies	on	the	cost-288 

effectiveness	of	TRI	screening	in	that	TRI-based	screening	policies	are	more	cost-effective	289 

than	standardized	screening	that	only	utilizes	traditional	eye	clinic-based	screening	290 

(Tables	3	and	4).16,18	Our	analysis	shows	diminishing	health	and	cost-saving	benefits	of	291 

DR	screening	as	a	patient	ages,	which	is	also	consistent	with	the	findings	in	the	cost-292 

effectiveness	study	for	DR	screening	at	the	Veterans	Health	Administration.16	Our	study	293 

shows	that	cost-effectiveness	can	further	improve	when	the	utilization	of	TRI	is	294 

personalized	based	on	patient-specific	factors	and	compliance	behavior,	compared	to	the	295 

standardized	TRI	policies	evaluated	in	the	literature.16,18	296 
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The	model-based	policy	shows	that	more	frequent	DR	screening	is	beneficial	for	297 

patients	at	higher	risk	of	sight-threatening	DR,	which	agrees	with	state-dependent	298 

screening	frequency	proposed	by	the	International	Council	of	Ophthalmology	299 

guidelines.36	In	our	analysis,	the	severity-based	screening	policy	is	further	refined	by	300 

enabling	TRI	recommendations,	where	TRI	screening	is	more	frequently	recommended	to	301 

patients	who	are	younger	or	less	compliant	with	clinical	screening.	Also,	the	modeling	302 

framework	offers	a	generalization	to	the	existing	state-based	guidelines	by	accounting	for	303 

DR	state	uncertainty	and	patients’	non-compliance	via	the	concept	of	belief	state.	304 

While	the	POMDP	model	identified	screening	recommendations	autonomously,	the	305 

model	always	provided	recommendations	in	the	order	of	WW,	TRI,	then	CS	as	the	306 

patient’s	probability	of	being	in	the	IN-DR	state	increased,	forming	threshold-based	307 

decisions.	This	suggests	that	the	model	considers	CS	for	the	most	at-risk	patients	while	308 

recommending	TRI	or	WW	for	those	less	at	risk.		309 

The	most	prominent	factor	affecting	personalized	recommendations	was	low	CS	310 

compliance.	For	example,	the	model	did	not	directly	recommend	CS	for	a	patient	group	311 

with	20%	CS	compliance	rate.	Instead,	CS	only	occurred	after	a	positive	TRI	screening	312 

outcome.	Another	factor	that	increased	TRI	recommendation	frequency	was	decreased	313 

WTP	(from	$10000	to	$5000).	In	this	case,	the	TRI-to-CS	threshold	value	increased	(Table	314 

2),	which	implies	the	model	will	wait	for	a	higher	risk	of	IN-DR	to	make	a	direct	CS	315 

recommendation.	These	observations	reinforce	the	importance	of	TRI	availability	in	316 

settings	where	patients	have	poor	screening	compliance	and	limited	access	to	care.	When	317 

A1C	was	increased	from	7%	to	13%,	the	number	of	CS	recommendations	increased	318 

substantially,	demonstrating	how	the	model	can	adapt	recommendations	to	increased	risk	319 
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of	developing	IN-DR.	Interestingly,	when	CS	compliance	increased	to	50%	the	model	made	320 

little	shift	in	recommendations.	We	believe	this	was	because	the	model	became	more	321 

“confident”	that	the	patient	would	attend	CS	appointments	and	thus	continued	to	rely	on	322 

TRI.	323 

The	POMDP	model	provides	a	flexible	framework	that	can	adapt	to	a	patient’s	unique	324 

characteristics	and	behaviors.	In	practice,	the	modeling	framework	can	be	utilized	by	both	325 

primary	and	eye	care	professionals	with	updated	parameters	to	match	the	underlying	326 

cohort;	for	example,	historical	compliance	rates,	recent	screening	results,	and	A1C	levels	327 

can	be	retrieved	from	the	patient’s	medical	record	or	upon	an	initial	screening	of	a	patient	328 

and	updated	as	needed.	Additionally,	the	modeling	framework	can	accommodate	different	329 

DR	state	definitions	without	fundamental	changes	in	the	model.	For	example,	more	330 

specific	states	such	as	no	DR,	moderate,	mild,	and	severe	NPDR,	and	PDR	can	be	used	331 

instead	of	the	two	states	in	the	current	model	and	states	associated	with	DME	can	be	332 

added	as	well,	with	appropriate	state	transition	probabilities.	333 

While	the	base	POMDP	model	was	calibrated	based	on	the	data	from	a	large	urban	334 

safety-net	system,	the	modeling	framework	is	generalizable	to	different	cohorts	in	other	335 

locations	by	inputting	specific	system-level	information	(e.g.,	TRI	sensitivity	and	336 

specificity)	and	cohort-specific	variables	such	as	each	patient’s	age,	DR	status,	A1C	level,	337 

and,	importantly,	factors	that	affect	screening	compliance.	To	demonstrate	this	338 

generalizability,	scenario	analysis	was	conducted	on	a	hypothetical	cohort	of	rural	339 

diabetic	patients	with	limited	geographic	access	to	DR	screening.	CS	compliance	rates	in	340 

the	rural	population	were	assumed	to	be	lower	than	in	the	urban	population	based	on	341 

previously	published	literature	demonstrating	that	rural	patients	generally	experience	342 
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greater	transportation	barriers	such	as	increased	transportation	costs	and	driving	343 

distance	as	well	as	financial	burden	compared	to	other	subgroups.30,31,37-39	344 

For	the	rural	cohort,	the	POMDP	model	identifies	TRI	as	a	preferred	screening	345 

recommendation	for	most	patients	and	the	TRI-based	personalized	screening	policy	was	346 

found	cost-effective,	dominating	other	standardized	screening	policies	in	terms	of	health	347 

benefit	and	cost	savings	(Table	4).	As	TRI	became	more	accessible	to	rural	patients,	as	348 

shown	through	the	60%	and	80%	TRI	compliance	scenarios,	the	cost-effectiveness	349 

dominance	of	the	personalized	policy	increased	against	annual	CS	(Table	4).	This	350 

observation	reinforces	the	importance	of	a	careful	design	and	implementation	of	a	TRI	351 

program	in	a	rural	area	to	assure	a	high	participation	rate.	The	POMDP	model	can	capture	352 

differences	in	economic	level	and	compliance	between	different	rural	cohorts	by	adjusting	353 

the	WTP	factor	and	compliance	parameters,	respectively,	as	needed.	354 

In	general,	model-based	scenario	analysis	generates	important	insights	for	355 

policymakers.	For	example,	once	cost-effectiveness	of	TRI-based	personalized	screening	356 

policy	is	shown	via	the	POMDP	model	and	scenario	analysis,	findings	can	also	guide	and	357 

optimize	subsequent	decisions	such	as	the	number	of	additional	facilities	across	the	rural	358 

area	and	specific	locations	of	them.	Additional,	properly	located	TRI	facilities	could	359 

minimize	transportation	burden	and	increase	screening	compliance,30,35	which	in	turn	360 

further	improves	cost-effectiveness	of	the	screening	program.		361 

Note	that	the	POMDP	modeling	framework	serves	as	an	adjunctive	clinical	decision	362 

support	tool.	A	care	provider	is	involved	in	the	decision-making	process,	and	final	363 

recommendations	will	be	based	on	the	interaction	between	the	provider	and	the	model.	364 

For	example,	if	TRI	is	recommended	by	the	model	but	CS	is	deemed	more	appropriate	365 
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(e.g.,	if	PDR	was	already	found	on	a	previous	TRI	exam),	the	provider	can	manually	enter	366 

the	CS	recommendation	into	the	model	to	override	the	model	recommendation,	based	on	367 

which	the	model	then	updates	the	patient’s	projected	DR	state	and	progression.	A	368 

workflow	schematic	of	the	model-based	screening	decision-making	process	can	be	found	369 

in	Figure	S4	(available	online	at	www.ophthalmologyretina.org).	370 

There	are	a	few	limitations	to	this	study.	First,	we	assume	a	single-eye	model,	as	is	371 

commonly	found	in	ophthalmology	literature24	to	reduce	model	complexity.	Second,	the	372 

parameters	within	our	simulation	analysis	such	as	patient	compliance	rates	and	A1C	level	373 

were	assumed	to	be	constant	over	time	for	each	patient.	To	address	this	in	practice,	the	374 

model	can	be	run	periodically	in	an	adaptive	manner	whenever	such	parameters	need	to	375 

be	updated.	Third,	the	model	used	a	simplified	grading	system	consisting	of	two	states:	376 

NIN-DR	and	IN-DR,	where	IN-DR	corresponds	to	PDR	and	NIN-DR	includes	all	other	DR	377 

states.	While	the	two-state	system	was	defined	based	on	the	current	referral	point	used	at	378 

the	HHS	TRI	program	(referral	to	CS	occurs	when	PDR	is	found	on	TRI)	and	the	model	was	379 

validated,	the	model	could	be	modified	to	have	a	more	specific	state	system	that	includes	380 

no	DR,	mild,	moderate,	and	severe	NPDR,	and	PDR.	DME-related	states	were	not	381 

considered	because	the	current	HHS	TRI	program	does	not	support	DME	screening.	382 

Lastly,	this	model	focuses	on	a	patient-level	perspective	as	opposed	to	a	societal	383 

perspective	that	might	account	for	capital	and	overhead	costs	associated	with	screening	384 

infrastructure.	385 

Important	future	studies	are	warranted	to	implement	and	evaluate	this	modeling	386 

framework	in	a	clinical	setting.	The	current	model	utilizes	patient	information	including	387 

age,	past	DR	state	trajectory,	TRI	image	readings,	A1C,	WTP,	and	socio-demographic	388 
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factors	that	affect	compliance	behavior.	In	the	future,	the	model	will	be	further	refined	to	389 

benefit	from	more	specific	patient	information,	which	will	lead	to	even	more	personalized	390 

recommendations.	For	example,	as	AI-based	TRI	interpretation	and	its	interaction	with	391 

the	EMR	system	improve,	the	model	could	be	modified	to	directly	incorporate	digital	392 

fundus	photograph	data	into	the	automated	risk	update	and	screening	decision-making	393 

process.	Development	of	a	new	natural	history	model	that	includes	more	risk	factors	will	394 

also	enable	the	model	to	accommodate	more	specific	patient	information.	As	our	rural	395 

scenario	analysis	shows	the	potential	cost-effectiveness	of	a	personalized	screening	policy	396 

utilizing	TRI,	important	operational	and	logistics	decisions	need	to	be	examined	such	as	397 

the	locations	of	TRI	facilities40	and	design	of	an	effective	mobile	TRI-based	screening	398 

problem	to	increase	TRI	screening	uptake	in	rural	areas.		399 

In	conclusion,	the	POMDP	model	was	developed	to	evaluate	personalized	screening	400 

recommendations	incorporating	TRI	for	patients	with	limited	access	to	eye	care.	The	401 

model	was	first	tested	for	cohorts	generated	based	on	the	data	from	a	large	urban	safety-402 

net	system.	We	also	studied	the	applicability	of	the	model	to	rural	patients	with	poor	403 

compliance	with	DR	screening	and	the	cost-effectiveness	of	TRI-based	personalized	404 

screening.	We	envision	two	potential	applications	of	the	proposed	modeling	framework:	it	405 

can	serve	as	a	clinical	decision	support	tool	for	care	providers	to	promote	personalized,	406 

patient-centered	decisions;	it	can	also	provide	evidence-based	support	for	the	integration	407 

of	TRI	into	traditional	DR	screening	guidelines.	Based	on	our	analysis,	the	model-based	408 

screening	policy	not	only	significantly	reduces	the	average	per-patient	screening	cost	409 

compared	to	other	standardized	policies,	but	also	performs	similarly	if	not	superiorly	in	410 

terms	of	QALY	gains.	While	validation	studies	are	needed	to	assess	the	effectiveness	and	411 



 

22 

feasibility	of	our	proposed	model	in	a	clinical	setting,	the	potential	benefits	of	an	412 

individualized	approach	to	DR	screening	are	significant	and	warrant	future	exploration.	 	413 
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Figure	captions	

	
Figure	1.	Markov	model	defining	the	5	diabetic	retinopathy	(DR)	health	states:	non-

intervention-needed	DR	(NIN-DR),	intervention-needed	DR	(IN-DR),	Post-Treatment,	

Blindness,	and	Death.	The	transition	from	IN-DR	to	Post-Treatment	only	occurs	when	a	

patient	receives	a	positive	clinical	screening	(CS)	outcome.	
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Figure	2.	Each	of	the	200	data	points	represents	a	subgroup	of	2500	patients	where	the	

personalized	screening	policy	is	compared	to	selected	standardized	screening	policies: 

annual	clinical	screening	(ACS),	annual	teleretinal	imaging	(ATRI),	biennial	clinical	

screening	(BCS),	and	wait	and	watch	(WW).	Incremental	cost-effectiveness	is	represented	

by	the	average	difference	in	total	quality-adjusted	life	years	(QALYs)	gained	and	the	

average	costs	spent	in	each	data	point.	Data	points	to	the	right	of	the	y-axis	represent	

instances	where	the	personalized	policy	provides	more	QALYs.	Data	points	below	the	x-

axis	values	represent	instances	where	the	personalized	policy	is	less	costly.	The	contour	for	

each	comparison	encompasses	the	95%	confidence	region	for	the	set	of	200	data	points.	
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Figure	3.	The	out-of-pocket	cost	paid	per	QALY	for	each	screening	policy	for	different	age	

groups	(40	to	50,	number	of	patients	(n)	=	159009;	51	to	60,	n	=	191525;	61	to	70,	n	=	

124431;	71	to	80,	n	=	22703;	80+,	n	=	2332).	Values	are	shown	for	the	personalized	policy,	

annual	clinical	screening	(ACS),	annual	teleretinal	imaging	(ATRI),	biennial	clinical	

screening	(BCS),	and	wait	and	watch	(WW).	The	95%	confidence	interval	of	the	cost	paid	

per	QALY	for	each	policy	within	each	age	group	is	represented	by	the	vertical	line	at	the	top	

of	each	bar	shown.	


