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Abstract

Microplastics are ubiquitous contaminants in aquatic habitats globally, and wastewater
treatment plants (WWTPs) are point sources of microplastics. Within aquatic habitats micro-
plastics are colonized by microbial biofilms, which can include pathogenic taxa and taxa
associated with plastic breakdown. Microplastics enter WWTPs in sewage and exit in sludge
or effluent, but the role that WWTPs play in establishing or modifying microplastic bacterial
assemblages is unknown. We analyzed microplastics and associated biofilms in raw sew-
age, effluent water, and sludge from two WWTPs. Both plants retained >99% of influent
microplastics in sludge, and sludge microplastics showed higher bacterial species richness
and higher abundance of taxa associated with bioflocculation (e.g. Xanthomonas) than influ-
ent microplastics, suggesting that colonization of microplastics within the WWTP may play a
role in retention. Microplastics in WWTP effluent included significantly lower abundances of
some potentially pathogenic bacterial taxa (e.g. Campylobacteraceae) compared to influent
microplastics; however, other potentially pathogenic taxa (e.g. Acinetobacter) remained
abundant on effluent microplastics, and several taxa linked to plastic breakdown (e.g. Kleb-
siella, Pseudomonas, and Sphingomonas) were significantly more abundant on effluent
compared to influent microplastics. These results indicate that diverse bacterial assem-
blages colonize microplastics within sewage and that WWTPs can play a significant role in
modifying the microplastic-associated assemblages, which may affect the fate of microplas-
tics within the WWTPs and the environment.

Introduction

Microplastic particles are contaminants found in aquatic habitats throughout the world,
including marine [1-4] and freshwater ecosystems [5-9]. Aquatic organisms ranging from
invertebrates to fish can ingest microplastics [10-12], which can negatively affect their diges-
tive systems and cause exposure to toxic chemicals [13-20]. Consumer products, including
personal care products (e.g., soaps, lotions, and cleansers that contain microplastic abrasives)
and synthetic textiles (fabrics composed of polymers such as acrylic and polyester), are sources
of microplastics to the environment [21-23]. Microplastics from consumer products enter
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domestic wastewater (sewage) through normal use of these products (e.g. washing with soaps
and laundering of textiles) and can enter the environment directly if untreated sewage is
released through combined sewer overflows or leaking sewage infrastructure. Municipal
wastewater treatment plants (WWTPs) remove the majority of microplastics from sewage
[24-27], but microplastics are still present in WWTP effluent and the high flow rates of many
WWTPs can release large amounts of microplastics [28, 29]. Therefore WWTPs are point
sources of microplastics to aquatic environments [6, 8, 30, 31].

Microplastics in both freshwater [6, 8, 32] and marine environments [33-37] are colonized
by microbial biofilms, which are diverse assemblages of microorganisms attached to a surface
[38]. Many bacterial taxa are capable of biofilm formation, which is controlled by multiple
genetic pathways and often involves the expression of type IV pili and the production of extra-
cellular polysaccharides [39]. Biofilms offer microbes protection from a variety of stressors
[40] including antimicrobials [41] and can function as reservoirs of antibiotic resistance in the
environment [42]. The formation of biofilms on microplastic can influence particle buoyancy
[43-45] and transport [46], and may contribute to microplastic breakdown [33, 36]. Microbial
communities on microplastics can include potentially pathogenic bacterial taxa, including Vib-
rio, Campylobacter, and Arcobacter [6, 33, 47, 48], which may colonize microplastics during its
transport in sewers and in the wastewater treatment process. WWTPs are designed to remove
pathogens from sewage, but microbial communities on microplastics in rivers downstream of
WWTPs included bacterial taxa associated with human gastrointestinal infections [6, 8], sug-
gesting that microplastics may play a role in transporting pathogens through WWTPs by pro-
viding a buoyant surface for attachment. In addition, microplastics can enhance transport of
wastewater-associated taxa within rivers, with potentially negative implications for organisms
and ecosystem processes downstream [32]. Currently the composition of microbial assem-
blages colonizing microplastics within sewage and the potential effects of wastewater treatment
on pathogenic microbes associated with microplastics are unknown. Microplastic bacterial
assemblages can also include taxa linked to plastic decomposition [6, 8, 49], which could influ-
ence the persistence of microplastics in the environment. WWTPs are known to contain
microbes responsible for breakdown of a variety of anthropogenic organic compounds [50]
including plasticizers [51], but the role that WWTPs play in establishing or altering microplas-
tic bacterial assemblages is unknown. These knowledge gaps limit our ability to manage
WWTPs to limit the release of microplastics and microplastic-associated pathogens.

The goal of the current study was to quantify and characterize microplastics in three critical
stages of wastewater treatment, and to provide the first analysis of bacterial assemblages
attached to microplastics within WWTPs to determine if the composition of these assemblages
changes during transport through domestic WWTPs. We sampled two activated sludge
WWTPs in Illinois that are point sources of microplastics to their receiving streams [8]. For
each plant we characterized microplastics and associated bacterial assemblages in raw sewage,
effluent water, and sludge.

Materials and methods
Field sites

Samples were collected from two activated sludge WWTPs in DuPage County, IL, that treat
primarily domestic wastewater, the Greene Valley Wastewater Facility in Woodridge, IL and
the Bartlett Wastewater Treatment Plant in Bartlett, IL. The Greene Valley Wastewater Facility
and the Wastewater Treatment Plant of Bartlett both provided access to their facilities for sam-
ple collection. At the time of sampling the Woodridge facility filtered its effluent through a 76
cm sand filter while the Bartlett facility did not use a sand filter, and neither plant disinfected
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Table 1. Influent wastewater characteristics.

Flow Total Suspended Solids Biochemical Oxygen Demand Ammonium-N
Plant (m® day'l)1 (mg L2 (mg L2 (mg L2
Bartlett 7,314 | (£ 265) 190 | (+23) 177 | (£ 25) 20.1 | (£0.3)
Woodridge 30,413 | (+ 679) 257 | (= 10) 189 | (£ 8) 34.0 | (£3.0)
p value’ < 0.001 0.058 0.665 0.010

! Data represent mean values + standard error for daily measurements (n = 21) from the 3 week period immediately prior to sample collection.
% Data represent mean values + standard error for weekly measurements (n = 3) from the 3 week period immediately prior to sample collection.
* p value based on comparison of data for the two plants by one-way ANOVA.

https://doi.org/10.1371/journal.pone.0244443.t001

its effluent prior to release. Characteristics of the influent wastewater determined by standard
methods [52] were provided by both plants. There was a significant difference in flow for the
two plants, with the flow for Woodridge being more than 4 fold higher than Bartlett (Table 1).
The influent wastewater for the two plants did not differ significantly in total suspended solids
or biochemical oxygen demand, but ammonium-N was significantly higher for Woodridge
(Table 1).

Field sampling

We collected replicate samples (n = 4) of untreated wastewater (raw sewage, 15 L per replicate)
and unprocessed sludge (4 L per replicate) from each plant in sterile containers and trans-
ported them to the lab on ice. We also collected replicate samples (n = 4) of microplastic from
effluent water from each plant using 330 micron drift nets held in the flow for 10 min. Water
velocity was measured at the center of each net during each deployment with a flow meter
(Marsh-McBirney Flo-Mate model 2000 Portable Flowmeter, Loveland, CO). The volume of
water passed through the net for each sampling was calculated based on the measured velocity
and the area of the net opening. Effluent microplastic samples were stored in sterile glass bot-
tles and transported to the lab on ice. In the lab all samples were stored in the dark at 4°C. All
sampling was conducted between October 10 and November 21, 2014.

Sample processing

Sample processing began within one day of sample collection. Microplastics were isolated and
quantified according to adaptation of a common method [5, 6, 53]. Samples were first run
through 4.75 mm and 0.3 mm stacked sieves. Sieves were sterilized with ethanol between sam-
ples and sterile DI water was used to wash material through the sieves. For effluent samples, all
material from the net was sieved. For raw sewage, we sieved the entire 15 L sample, and for
sludge we sieved 150 ml homogenized subsamples. After sieving we removed some microplas-
tic particles for bacterial assemblage analysis. Sterile tweezers were used to collect approxi-
mately 0.25 ml of randomly selected microplastic pieces from the 0.3 mm sieve for each
sample. The microplastics from each sample were stored in a sterile 2ml microcentrifuge tube
at -20°C. We recorded the number and shape of each particle removed. Remaining material
retained by the 0.3 mm sieve was stored in glass beakers in a drying oven at 75°C for 48 h to
remove excess moisture. We digested samples with 30% hydrogen peroxide (H,0O,) and 0.05
M Fe (II) reagent at 75°C [53] to remove organic material. We added sodium chloride to a
final concentration of 6M and placed the solution in a glass funnel for salinity-based separation
of buoyant microplastic. Funnels were covered with parafilm and left overnight to allow set-
tling of non-buoyant material. We collected floating microplastics on glass fiber filters (0.7 um
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nominal pore size, Whatman, Inc. Piscataway, NJ, USA). Filters were placed in aluminum
pans, covered with aluminum foil, and dried at 60°C.

Microplastic quantification

For each filter every piece of plastic was counted manually using a dissecting microscope. Each
of the microplastic particles was categorized as fragment, pellet, foam, film, or fiber. Microplas-
tics that were removed for bacterial community analysis prior to digestion were included in
counts. Our analyses also included controls (n = 5) to account for procedural and reagent con-
tamination, which consisted of deionized water placed in sample containers and digested in
parallel with our samples. Contamination in controls was low (an average of 4.67 fibers per
sample, and no contamination by fragments, foam, pellets, or film) and was accounted by sub-
tracting this value from all samples [6, 8].

Polymer analysis

Representative samples of each microplastic type from each treatment plant were analyzed by
pyrolysis gas chromatography mass spectrometry (py-GCMS; CDS Analytical 5200 pyroprobe
and Varian 3800 gas chromatograph). A sample was inserted into a quartz capillary tube with
quartz wool plugs, then loaded into the pyroprobe and heated to 750°C for 90 s. GC injection
port and transfer line were constant at 325°C (split ratio of 10:1). Restek Rtx-5MS capillary col-
umn (30 m x 0.25 mm x 0.25 pm df) with carrier gas helium (flow rate of 2.0 mL min™") was
used for separation. The oven increased from 40°C to 325°C (heating rate of 10°C min™') and
was held for 20 min at 325°C. GC was connected to Saturn 2000 ion trap mass spectrometer,
with heated transfer line (325°C) and ion trap (220°C), which collected all mass to charge ions
(m/z) from 35-550. We analyzed blanks between each sample to check for carry-over and
none occurred. Pyrograms were generated by averaging the mass spectra over the entire chro-
matogram, and then we searched the CDS Analytical 2013 pyrolysis library for the best match.

DNA extraction and sequencing

DNA was extracted from microplastic samples collected from raw sewage, sludge, and effluent
using MoBio Power Soil DNA kit. Partial 16S rRNA genes were amplified from DNA samples
using primers 515F and 806R, which amplify the V4 hypervariable region [54], and amplifica-
tion was confirmed by agarose gel electrophoresis. DNA extractions were also run without
samples as controls for kit contamination, and no amplification was observed for these kit con-
trols. Equimolar amounts of amplicons from each sample were sequenced in a 2 x 250 bp
paired-end format using an Illumina MiSeq [55] by DNA Services Facility, University of Illi-
nois at Chicago. Raw sequence data from this study can be downloaded from National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) with accession number
PRJNA638613.

Analysis of DNA sequence data

Sequences were processed using mothur v.1.42.3 [56] following the MiSeq Standard Operating
Procedure [57]. Briefly, paired reads were assembled and demultiplexed, and any sequences
with ambiguities or homopolymers > 8 bases were removed. Sequences were aligned using the
SILV A-compatible alignment database available within mothur. Chimeric sequences were
removed using VSEARCH [58]. Sequences were classified using the mothur-formatted version
of the RDP training set (v.9) and any unknown (i.e. not identified as bacterial), chloroplast,
mitochondrial, archaeal, and eukaryotic sequences were removed. Sequences were clustered
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into operational taxonomic units (OTUs) based on 97% sequence identity and were also
grouped into amplicon sequence variants (ASVs). OTUs were assigned to families and genera
by comparison to the RDP training set. In order to avoid biases associated with uneven num-
bers of sequences across samples, the entire dataset was randomly subsampled to 10,226
sequences per sample. For unidentified OTUs we selected a representative sequence, defined
as the sequence with minimum distance to other sequences within the OTU, and compared
these representative sequences to the NCBI 16S rRNA database using Megablast.

Statistical analyses

Microplastic concentrations and relative abundances of microplastic categories (fragment, pel-
let, foam, film, or fiber) were not normally distributed based on the Shapiro-Wilk test
(p<0.001). Therefore the effects of treatment plant (Bartlett and Woodridge) and sample type
(sewage, effluent, and sludge) on these data were analyzed by the non-parametric Kruskal-
Wallis Test followed by the Dwass-Steel-Chritchlow-Fligner Test for all pairwise comparisons
using Systat v13. For bacterial assemblage data, we quantified diversity for each sample based
on taxonomic richness (i.e. total number of OTUs observed) and the Shannon index [59].
Richness and diversity data were normally distributed based on the Shapiro-Wilk test
(p>0.05) so the effects of treatment plant and sample type on richness and diversity were ana-
lyzed by two-way ANOVA and Tukey’s HSD Test using Systat v13. Bacterial assemblages were
further compared by calculating dissimilarities for each pair of samples based on theta index
[60] for both OTUs and ASVs and visualizing the resulting dissimilarity matrices using non-
metric multidimensional scaling (nMDS). Statistical significance of differences in assemblages
between sample types based on theta index for both OTUs and ASV's was assessed by analysis
of molecular variance (AMOVA) [61], a nonparametric analog of traditional analysis of vari-
ance. Effect of sample type on relative abundance of the 25 most abundant bacterial families
was assessed by one-way ANOVA with Benjamini-Hochberg correction for false discovery
rate [62]. Metastats analysis [63] was used to identify OTUs that were differentially abundant
between sewage and effluent samples and between sewage and sludge samples, and ANOVA
with Benjamini-Hochberg correction for false discovery rate was used to assess significance of
differences in relative abundances of these OTUs between the sample types.

Results

Microplastics were present in all sample types (sewage, effluent, and sludge) from both plants
(Bartlett and Woodridge) (Table 2). The microplastics included fragments, pellets, foam, film,
and fibers (Fig 1), and were composed of several different polymers, including polyethylene,
polypropylene, and polystyrene (S1 Table). There was no significant effect of plant on micro-
plastic concentrations (p = 0.204) but there was a significant effect of sample type (p<0.001)
and there were significant differences in microplastic concentrations between each of the sam-
ple types (p<0.005 for all pairwise comparisons). When each sample type was compared indi-
vidually across plants, Bartlett had significantly higher microplastic concentrations than
Woodridge in sewage (p = 0.020) and effluent (p = 0.021), but the concentrations were not sig-
nificantly different between plants for sludge (p = 0.083; Table 2).

Both WWTPs had significantly higher microplastics in the incoming sewage relative to the
effluent (p = 0.002), corresponding to a reduction in microplastic concentration of more than
99% for both WWTPs (Table 2). High microplastic retention rates for both WWTPs resulted
in an average sludge microplastic concentration > 140,000 pieces/m’ (Table 2). While reten-
tion of microplastics was high, effluent microplastic concentrations corresponded to releases
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Table 2. Microplastic concentrations by plant and sample type.

Plant Sewage' Effluent’ Sludge' Retention Rate (%)> Particles Released (#/day)?
Bartlett 1,987 | (+68) 1.295 | (+0.214) 335,533 | (+69,761) 99.93 9,471
Woodridge 1,161 | (+ 178) 0.009 | (+0.001) 140,533 | (+17,294) 99.99 273

! Data represent mean values (n = 4) + standard error in units of No. m™.
? Retention rate equals the percentage of particles in sewage that were retained by the plant.
* The number of particles released per day was estimated based on the concentration of microplastics in the effluent and the average daily flow of the treatment plant.

https://doi.org/10.1371/journal.pone.0244443.t002

of approximately 9,470 microplastic pieces per day for Bartlett, and 273 microplastic pieces per
day for Woodridge (Table 2).

There were some differences in microplastic particle types among the sample types within
the WWTPs. Fibers were the most common microplastic type in incoming sewage for both
Woodridge and Bartlett, accounting for > 50% of sewage microplastic for both plants (Fig 1).
Relative abundance of fibers showed no difference between plants (p = 0.954), but was differ-
ent among sample types (p<0.006), with effluent having significantly fewer fibers than sewage
and sludge (p = 0.024 and 0.013, respectively). These data indicate that WWTPs selectively
retained microplastic fibers in sludge. Pellets showed the opposite trend, with no significant
differences between WWTPs (p = 0.246), but the relative abundance of pellets was different
among sample types (p = 0.014): higher in effluent (>20%) than in sewage (<10%) and sludge
(< 5%), indicating that pellets were not retained by WWTPs as effectively as fibers. There were

®m Fragments Pellets  ®mFoam mFilm  mFibers
1.0 A
0.9 -
8 0.8 |
S
o 0.7 -
=
§ 06 -
2 0.5 1
;E,‘} 0.4 |
0.3 1
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0.0 -
Bartlett Woodridge| Bartlett Woodridge| Bartlett Woodridge
Sewage Effluent Sludge

Fig 1. Relative abundance of microplastic particle types within each sample type (sewage, effluent, and sludge) from each of
two WWTPs (Bartlett and Woodridge). Each data point represents the mean value (n = 4).

https://doi.org/10.1371/journal.pone.0244443.g001
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no significant differences between WWTPs or sample types in relative abundance of other
microplastic types (fragments, foam, or film).

Bacterial assemblages attached to microplastic samples were analyzed by high-throughput
amplicon sequencing of 16 rRNA genes. Bacterial assemblage taxonomic richness (i.e., the
number of OTUs observed), was significantly different among sample types (sewage, effluent,
and sludge) (2-way ANOVA, p = 0.001) but there was no difference between WWTPs
(p = 0.547) and no significant interaction (p = 0.933) (Fig 2). Microplastics in sludge had sig-
nificantly higher bacterial taxonomic richness than microplastics in sewage or effluent, which
were not different from one another. In contrast to taxonomic richness, Shannon diversity of
bacterial assemblages attached to microplastics showed no significant differences among sam-
ple types (2-way ANOVA, p = 0.641) or between WWTPs (p = 0.456), and no significant inter-
action (p = 0.701) (S2 Table).

Multivariate statistical analyses (nMDS ordination and AMOVA) based on OTUs (97%
sequence identity) indicated no significant difference in composition of microplastic-attached
bacterial assemblages from the two WW'TPs (p = 0.183), but there were significant differences
among the 3 sample types (p<0.001). Each sample type had a microplastic-attached bacterial
assemblage distinct from the others (sewage vs. effluent p = 0.003, sewage vs. sludge p = 0.007,
and effluent vs. sludge p = 0.011) (Fig 3). Pairwise comparisons of microplastic-attached bacte-
rial assemblages from each of the sample types (sewage, effluent, and sludge) across plants
showed a significant difference in bacterial assemblage between Bartlett effluent and Wood-
ridge effluent (p = 0.027) but no significant differences in bacterial assemblage by plant for
sewage (p = 0.189) or sludge (0.094). As expected, grouping of 16S rRNA gene sequences into
ASVs identified a higher total number of ASVs (30,946) compared to OTUs based on 97%
sequence identity (11,307), but beta diversity analyses based on ASVs produced results that
were equivalent to the analyses based on OTUs. Specifically, AMOVA of the ASV data showed
no significant difference in composition of microplastic-attached bacterial assemblages from
the two WWTPs (p = 0.183), but there were significant differences among the 3 sample types
(p<0.001) and significant pairwise differences between the sample types (sewage vs. effluent p
= <0.001, sewage vs. sludge p = 0.012, and effluent vs. sludge p = 0.009). In addition, nMDS
ordination based on the ASV data (S1 Fig) showed a highly similar pattern to that based on
OTUs (Fig 3).

Microplastic-attached bacterial assemblages included several families that contain patho-
genic bacterial taxa or taxa associated with the human gut microbiome (Fig 4), and sequences
from some of these families varied in relative abundance in different stages of wastewater treat-
ment. For example, Campylobacteraceae sequence abundance varied significantly with sample
type (p = 0.001), representing ~11% of bacterial sequences on sewage microplastic, but less
than 1% on effluent microplastic (p = 0.002) and approximately 1% on sludge microplastic
(p = 0.004). Within the family Campylobacteraceae 94% of the sequences were assigned to the
genus Arcobacter. Sequences from several other families, including Bacteroidaceae, Aeromona-
daceae, and Lachnospiraceae, showed similar trends, being most abundant on sewage micro-
plastics and less abundant on effluent and sludge microplastics, but the effects of sample type
on relative abundances of these families were not significant (p = 0.188, 0.150, 0.079, respec-
tively). Abundance of Moraxellaceae sequences did not differ between sewage and effluent
microplastics (~12% and 11%, respectively), but was much lower on sludge microplastic
(<0.5%), although this difference was not statistically significant (p = 0.143). The genus Acine-
tobacter accounted for 96% of sequences identified to the Moraxellaceae family, and Acineto-
bacter sequences were similarly abundant on both sewage and effluent microplastics
(p = 0.909) but significantly less abundant on sludge microplastics (p = 0.009). Finally, the rela-
tive abundance of the family Sphingomonadaceae varied significantly with sample type
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Fig 2. Number of operational taxonomic units (based on 97% identity in 16S rRNA amplicons) observed within bacterial
communities attached to microplastic particles collected from three sample types (sewage, effluent, and sludge) from two
WWTPs (Bartlett and Woodridge). Each data point represents the mean value (n = 4) with error bars representing standard error.

https://doi.org/10.1371/journal.pone.0244443.9002

(p<0.001) and was ~10 fold more abundant on effluent microplastics than sewage or sludge
microplastics. Within the family Sphingomonadaceae 69% of the sequences were assigned to
the genus Sphingomonas.

Several bacterial OTUs had significant differences in relative abundance between sewage
and effluent microplastics (Table 3). Relative abundance of an unclassified Enterobacteriaceae
genus accounted for more than 11% of bacterial sequences on effluent microplastics but only
~1% on sewage microplastics. BLAST analysis indicated that the representative sequence from
this unclassified genus showed highest percent identity (>98%) to several species within the
genus Klebsiella, including Klebsiella pneumoniae and Klebsiella aerogenes. Similarly,
sequences from the genus Sphingomonas were greater than 10-fold more abundant and
sequences from the genus Pseudomonas were twice as abundant on effluent microplastics com-
pared to sewage microplastic. In contrast, several OTUs were significantly less abundant on
effluent microplastics, including Arcobacter, which decreased by a factor of 20, and an unclas-
sified Gammaproteobacteria genus, which decreased by a factor of 10. The representative
sequence from this unclassified Gammaproteobacteria genus fell within the family Aeromona-
daceae and had a percent identity >96% for multiple species within the genus Aeromonas.

Several bacterial OTUs also had significant differences in relative abundance between sew-
age and sludge microplastics samples (Table 4). There were significantly lower relative abun-
dances of Acinetobacter (36-fold), Arcobacter (17-fold), Aeromonas (27-fold), an unclassified
Comamonadaceae genus (37-fold), and an unclassified Gammaproteobacteria genus (9-fold)
on sludge microplastics compared to sewage microplastics. The representative sequence from
the unclassified Comamonadaceae genus had a percent identity >98% for multiple species
within the genus Acidovorax, and the unclassified Gammaproteobacteria genus was the same
OTU discussed above that matched with the genus Aeromonas. Sludge microplastics also had
significantly higher relative abundances of another unclassified Comamonadaceae genus
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Fig 3. nMDS ordination of bacterial assemblage composition for biofilms attached to microplastic particles
collected from three sample types (sewage, effluent, and sludge) from two WWTPs (Bartlett and Woodridge).
Each point represents the bacterial assemblage from one individual sample. Bacterial assemblage analysis was based on
high-throughput amplicon sequencing of partial 16 rRNA genes, clustering sequences into OTUs (97% sequence
identity) and comparison of assemblages based on the theta index. Stress value of ordination = 0.2997.
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(30-fold) and an unclassified Xanthomonadaceae genus (100-fold). The representative
sequence from this unclassified Comamonadaceae genus had a 99.6% identity to a strain from
the genus Ideonella.

Discussion

Microplastics were identified in untreated sewage, effluent water, and sludge from two
WWTPs treating primarily domestic wastewater. Patterns of particle abundance throughout
the WWTPs were consistent with previous assessments. Microplastic concentrations in
untreated sewage ranged from 800-2,000 particles/m>, which is comparable to published data
which ranged from 1,000 to > 50,000 particles/m’ [24-26]. Both WWTPs in this study
retained > 99% of influent microplastic, which is similar to [24, 25, 27] or higher than [26, 64]
values reported in prior studies, which ranged from 72% to 99%. The slight difference in reten-
tion between the two WW'TPs suggests that sand filtration of effluent enhanced microplastic
retention, which has been reported previously [8, 65]. Effluent microplastic concentrations <1
particle/m>, which is on the low end of published values (for review see [66]), support the con-
clusion that both WWTPs were effective at removal of microplastics. Despite high retention
both WWTPs released microplastic in their effluent on the order of hundreds to thousands of
pieces per day. This finding agrees with a previous study which reported that both of these
WWTPs were point sources of microplastics to their receiving streams [8] and with studies
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Fig 4. Average relative abundance of the 25 most abundant bacterial families within microplastic-attached bacterial
assemblages from three sample types (sewage, effluent, and sludge). Each bar represents the mean (n = 8). Bacterial
families were identified based on high-throughput amplicon sequencing of partial 16 rRNA genes.

https://doi.org/10.1371/journal.pone.0244443.9004

that have detected microplastics in effluent from a range of WWTPs [28, 29]. However, the
very low concentration of microplastic in the effluent from both plants suggests the possibility
that daily microplastic discharge could be highly variable, so future studies should examine
temporal variability in effluent microplastic concentrations.

Changes in the relative abundance of microplastic particle types between sewage and efflu-
ent suggest selective retention. Microfibers were the most common type of microplastics in
influent sewage (>50%) and showed higher relative abundance in the sludge relative to the
effluent, suggesting net fiber retention. While similar selective retention of fibers was reported
in previous studies [25, 67], fibers are one of the most common forms of microplastics detected
in aquatic habitats [8, 23, 31]. One possible explanation for this discrepancy is that fibers may
be entering aquatic ecosystems through additional routes, including surface runoff, airborne
deposition, or direct release of untreated wastewater via combined sewer overflows or leaking
sewage infrastructure [31, 68]. In contrast to fibers, pellets were less well retained by WWTPs
and increased in relative abundance in effluent water. Previous studies have also reported that
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Table 3. Relative abundances of bacterial OTUs with the largest differences in relative abundance between sewage microplastic and effluent microplastic.

Genus Sewage' Effluent’ p-value®
Enterobacteriaceae_unclassified 1.15 (£0.33)% 11.03 (£ 4.54)% 0.007 *
Arcobacter 7.38 (£ 2.05) 0.34 (£ 0.16) 0.000 *
Pseudomonas 3.72 (£1.67) 7.68 (+£1.42) 0.022 *
Gammaproteobacteria_unclassified 2.35 (£ 0.61) 0.29 (£0.11) 0.000 *
Uliginosibacterium 0.84 (£ 0.46) 0.00 (£ 0.00) 0.021 *
Aurantimonas 0.10 (£0.04) 0.92 (£ 0.53) 0.046

Propionivibrio 1.02 (£ 0.23) 0.21 (£0.12) 0.000 *
Sphingomonas 0.06 (£ 0.04) 0.86 (+0.30) 0.001 *
Pantoea 0.17 (£ 0.08) 0.96 (£0.29) 0.001 *
Zoogloea 0.94 (£0.27) 0.16 (£ 0.07) 0.001 *
Rhizobium 0.05 (£0.02) 0.81 (£0.34) 0.006 *
Faecalibacterium 0.67 (£ 0.30) 0.02 (£0.01) 0.007 *
Roseburia 0.70 (£0.29) 0.08 (£0.04) 0.008
Formivibrio 0.65 (£0.37) 0.07 (£ 0.05) 0.047

! Data represent mean values (n = 8) + standard error.

% Asterisks (*) indicate significant effects of sample type (sewage v. effluent) based on Benjamini-Hochberg correction.

https://doi.org/10.1371/journal.pone.0244443.t003

pellets are less well retained by WWTPs compared to other microplastic types [26]. The con-
trasting retention of fibers and pellets may reflect differences in their physical properties, such
as density, shape, buoyancy, or hydrophobicity, that might influence the tendency of these par-
ticles to settle or become trapped within flocs. Determination of properties that influence
microplastic retention in WWTPs would be a good topic for future controlled, manipulative
experiments.

Table 4. Relative abundances of bacterial OTUs with the largest differences in relative abundance between sewage microplastic and sludge microplastic.

Genus Sewage" Sludge’ p-value®
Acinetobacter 9.94 (+4.45)% 0.28 (£0.23)% 0.009 *
Arcobacter 7.38 (£2.05) 0.43 (+0.40) 0.000 *
Comamonadaceae_unclassified 0.15 (+0.04) 5.44 (£2.94) 0.030 *
Aeromonas 5.02 (+£2.45) 0.18 (£0.11) 0.017 *
Comamonadaceae_unclassified 3.21 (+1.66) 0.35 (£ 0.09) 0.037 *
Gammaproteobacteria_unclassified 2.35 (£ 0.61) 0.26 (£ 0.25) 0.001 *
Flavobacterium 1.72 (£0.88) 0.14 (£0.13) 0.033 *
Arcobacter 1.94 (£ 0.40) 0.57 (£0.41) 0.004 *
Xanthomonadaceae_unclassified 0.01 (£0.01) 1.00 (£0.49) 0.015 *
Zoogloea 0.94 (+£0.27) 0.14 (£0.10) 0.002 *
Propionivibrio 1.02 (£0.23) 0.28 (£0.24) 0.008 *
Trichococcus 0.64 (£0.29) 0.05 (£ 0.03) 0.015 *
Cloacibacterium 0.67 (£0.16) 0.13 (£ 0.08) 0.001 *
Bacteroides 0.52 (£0.29) 0.06 (£ 0.05) 0.021 *
Sulfurospirillum 0.57 (£0.19) 0.10 (£ 0.06) 0.005 *

! Data represent mean values (n = 8) + standard error.

% Asterisks (*) indicate significant effects of sample type (sewage v. sludge) based on Benjamini-Hochberg correction.

https://doi.org/10.1371/journal.pone.0244443 1004

PLOS ONE | https://doi.org/10.1371/journal.pone.0244443  January 6, 2021 11/19


https://doi.org/10.1371/journal.pone.0244443.t003
https://doi.org/10.1371/journal.pone.0244443.t004
https://doi.org/10.1371/journal.pone.0244443

PLOS ONE

Wastewater treatment alters microbial colonization of microplastics

High retention of microplastic particles by both WWTPs resulted in high concentrations of
microplastics in sludge, similar to previous reports [67]. Concentrations measured in this
study for untreated sludge were on the order of hundreds of thousands of particles/m>, which
is approximately ten times lower than reported in a previous study of digested sludge [25],
with this discrepancy likely due to the reduction in sludge volume resulting from digestion
which would lead to increased microplastic concentration. Sewage sludge is commonly applied
to land in the U.S. [69], and there is no regulatory framework to assess or limit sludge micro-
plastics [70]. Thus, microplastics in sludge may be a concern for soil ecosystems [71]. In addi-
tion, surface runoff from applied biosolids could transport land-applied microplastic to
surface waters (i.e., agricultural streams), but this has not yet been assessed.

Microplastics in the environment encompass a wide diversity of sizes and materials [72],
some of which were not captured with our methods. Microplastics smaller than 300 microns
(including particles in the nanometer size range) were not included in the sampling techniques
used in our study, suggesting that our numbers may be an underestimate of the total micro-
plastics in wastewater. Furthermore, microplastics with a density > 1.3 g cm™ (e.g. polyvinyl
chloride) were less likely to be captured with the salinity-based separation we used. This would
be especially relevant for the sludge, since high density particles would be most likely to have
settled into the sludge. Additional work is needed to consolidate an array of sampling methods
that could capture a broader range of the total microplastic particle assemblage in wastewater.

Microplastic particles from all samples were colonized by diverse microbial assemblages,
which were attached to the plastic surfaces as they were not washed off during microplastic
collection. Several of the most abundant taxa within these microplastic-attached bacterial
assemblages are known biofilm formers, including Pseudomonadaceae [73], Moraxellaceae
[74], Enterobacteriaceae [75], and Comamonadaceae [76]. Our study represents the first analy-
sis of microplastic-attached bacterial assemblages within WWTPs and our results suggest that
the wastewater treatment process has strong effects on these assemblages. Species richness and
taxonomic composition differed across stages of wastewater treatment, and trends were con-
sistent for the two WWTPs included in this study. Specifically, there was no difference in spe-
cies richness of bacterial assemblages attached to microplastic in influent sewage versus
effluent water, but there was a significant difference in taxonomic composition of these
assemblages.

Several potentially pathogenic bacterial taxa were lower in abundance on effluent micro-
plastics than on influent sewage microplastics, suggesting that these taxa were negatively
affected by passage of microplastic through WWTPs. For example, sequences identified to the
genus Arcobacter and to its family Campylobacteraceae were significantly more abundant on
microplastics in influent sewage and less on effluent and sludge microplastic. The family Cam-
pylobacteraceae and the genus Arcobacter include multiple taxa associated with human gastro-
intestinal infections such as gastroenteritis [77, 78]. The same pattern was observed for the
genus Aeromonas, which includes multiple species associated with human disease [79]. The
decreases in relative abundances of Campylobacteraceae, Arcobacter, and Aeromonas on efflu-
ent microplastics suggests that wastewater treatment could help to limit release of these poten-
tially pathogenic taxa to the environment. However, previous studies have identified these taxa
on microplastics in rivers receiving wastewater inputs [6, 32], including the rivers receiving
effluent from these specific WWTPs [8], so wastewater treatment may not completely remove
these taxa from microplastics.

Other bacterial taxa associated with human infections were abundant on microplastics in
both influent sewage and effluent water, suggesting that abundance of these taxa was not
altered by wastewater treatment. For example, the genus Acinetobacter and its family Moraxel-
laceae were abundant on both sewage and effluent microplastics. Members of the genus
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Acinetobacter are involved in a wide range of human infectious diseases and are a common
cause of nosocomial infections [80]. Failure of wastewater treatment to reduce the abundance
of these taxa on microplastics could result in their release to the environment, and indeed
these taxa were identified previously on microplastics in rivers receiving wastewater inputs [6,
32], including the rivers receiving effluent from the specific WWTPs analyzed in this study [8].
Moreover, prior work demonstrated that Moraxellaceae sequences were still detected on
microplastics up to 2km downstream of a WWTP [32], suggesting that microplastics could be
a vector for transport of this potentially pathogenic taxon within rivers.

Finally, sequences from several bacterial genera were significantly more abundant on efflu-
ent microplastics compared to sewage microplastic, suggesting that these taxa increased in
abundance during wastewater treatment. Sequences from the family Enterobacteriaceae that
had a high percentage identity to Klebsiella pneumoniae and Klebsiella aerogenes increased by
a factor of 10. Both of these Klebsiella species are part of the normal human microbiome, but
they are also common causes of opportunistic and nosocomial infections [81]. Klebsiella pneu-
moniae has also been shown to be capable of biodegrading polyethylene [82]. We are not
aware of previous studies reporting the presence of Klebsiella on microplastics, but it’s high
abundance on effluent microplastics is noteworthy due to its connections to humans and to
plastic breakdown. Sequences from the Pseudomonas genus were also significantly more abun-
dant on effluent microplastics compared to sewage microplastics. Species from the genus Pseu-
domonas are common biofilm formers [83] and have been linked to breakdown of a wide
range of plastic polymers [84-89] as well as production of enzymes that contribute to plastic
biodegradation [90]. The abundance of Pseudomonas sequences on microplastics within
WWTP effluent agrees with previous detection of this genus on microplastic collected from
urban rivers, including the rivers receiving effluent from the WWTPs analyzed in this study
[6, 8, 32]. Moreover, prior work demonstrated that Pseudomonas increased in abundance on
microplastics in an urban river with distance from a WWTP [32]. Finally, sequences from the
genus Sphingomonas and its family Sphingomonadaceae were 10-fold more abundant on efflu-
ent microplastic compared to sewage microplastic. Bacteria from the genus Sphingomonas are
able to degrade various complex organic compounds, including polycyclic aromatic hydrocar-
bons [91], the plasticizer bisphenol A [92] and plastic monomers [93, 94], and they produce a
polysaccharide that enhances biofilm formation on plastic surfaces [95]. The observed
increases in Klebsiella, Pseudomonas, and Sphingomonas on microplastics in effluent suggests
some specific selection for these organisms on plastic within WWTPs, perhaps related to the
surface as a growth substrate and their capacity to break down plastic polymers.

The observed shifts in the composition of microplastic bacterial assemblages during passage
through the WWTPs could be driven by several factors, including interactions with microbes
within the plants and changes in environmental conditions at different stages of treatment.
For example, oxygen concentration can affect biofilm development [96] and the active pump-
ing of air into the aeration tank increases oxygen availability. Experimental investigations of
the effects of oxygen on microplastic biofilm development could provide insights into the
mechanisms underlying the observed shifts in microplastic bacterial assemblages during
wastewater treatment.

Bacterial assemblages attached to microplastics in sludge were also different than influent
sewage, suggesting that microplastic-attached bacterial assemblages changed during transfer of
microplastics from sewage to sludge. Bacterial assemblages on sludge microplastics showed
higher species richness, indicating that additional bacterial taxa colonized microplastics during
wastewater treatment. This colonization may enhance plastic retention, perhaps by increasing
sedimentation rates within the settling tank. Previous work has demonstrated that microbial
colonization of microplastics can increase settling of microplastic particles [43, 44] and
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microplastic retention in streams [46]. Bacterial colonization of microplastics during wastewa-
ter treatment could also enhance retention by incorporating microplastics into flocs. In our
study, sequences from the family Xanthomonadaceae and one unclassified Xanthomonadaceae
genus were dramatically more abundant on sludge microplastics than sewage microplastics. A
Xanthomonas strain was previously isolated from sewage sludge and was shown to have high
surface hydrophobicity and ability to co-aggregate with other wastewater bacteria, suggesting
that it might play a role in bioflocculation within WWTPs [97]. Microplastic surfaces are also
hydrophobic, which might enhance interaction with Xanthomonas and contribute to incorpo-
ration of microplastics into flocs. Sequences from an unclassified Comamonadaceae genus that
matched to the genus Ideonella were also dramatically more abundant on sludge microplastic
than sewage microplastic. An Ideonella species was recently reported to be capable of degrad-
ing and assimilating carbon from polyethylene [98], so the increase in this taxa in sludge may
be linked to plastic breakdown. The potential for WWTP bacteria to biodegrade microplastics
would be a good topic for future controlled, manipulative experiments. In addition, the com-
position of microbial communities within WWTPs can vary seasonally [99, 100] and by geo-
graphic location [101, 102], so analyzing microplastic microbiomes within WWTPs across
seasons and in more spatially separated locations would be valuable.

Supporting information

S1 Fig. nMDS ordination of bacterial assemblage composition for biofilms attached to
microplastic particles collected from three sample types (sewage, effluent, and sludge)
from two WWTPs (Bartlett and Woodridge). Each point represents the bacterial assemblage
from one individual sample. Bacterial assemblage analysis was based on high-throughput
amplicon sequencing of partial 16 rRNA genes, grouping sequences into ASVs, and compari-
son of assemblages based on the theta index. Stress value of ordination = 0.2997.

(PDF)

§1 Table. Identification of microplastic polymer types by PyGCMS.
(PDF)

$2 Table. Shannon diversity of microplastic attached bacterial assemblages.
(PDF)
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