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Introduction 

CAPP treatment is a highly effective method of protecting 
bio-tissue from diseases and infection. 

CAPP accelerates the imbibition and germination of seeds, 
plant growth, and nutrient absorption, activates enzymatic 
and ion channel activities [1-7], as well as promotes a 
signiϐicant increase in crop yields by up to 23% [2]. CAPP 
and plasma lamps can induce electroporation, corrugation, 
and morphological changes in the surfaces of seeds and 
biological tissues [4-6], as well as affect ion transport and 
bioelectrochemical characteristics of plant tissue [6,8-10]. 

There are also a few publications about side effects such 
as genotoxic effects, oxidation, and peroxidation of bio-

tissue induced by direct treatment of bio-tissue with cold 
atmospheric pressure plasma [8,10-17]. 

A plasma lamp (also called a plasma ball or Tesla ball) is a 
clear borosilicate glass ball ϐilled with a combination of noble 
gases at atmospheric pressure with an electrode in the center 
of the sphere. Plasma lamps were developed by Tesla [18] 
and their physical properties were investigated recently [19]. 
A plasma lamp was already used for the electrostimulation 
of seeds and plants [5,8,20]. Plasma lamps produce strong 
electromagnetic ϐields and oscillating visible light which can 
interact with a bio-tissue [19]. Plasma in plasma lamps is 
separated and covered by glass from a bio-tissue. It does not 
produce RONS outside of the glass. 

The effect of electric ϐields on vegetation has been the 
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subject of research since the eighteenth century [21-30]. Seed 
treatment with high-frequency electromagnetic ϐields using a 
plasma lamp can accelerate seed absorption, germination, and 
root growth without visible side effects [5,8,20]. Generated by 
plasma lamps or cold atmospheric pressure He-plasma jet 
(CAPPJ), high-frequency electromagnetic ϐields and photons 
can penetrate seed coats and modify their surface properties 
[5,8,20]. Treatment with a plasma lamp is not as effective 
for a harvest as treatment with a CAPPJ but usually does not 
generate side effects. Plasma lamps can be used in plasma 
agriculture to accelerate the germination of seeds, the growth 
of plant seedlings, and the corrugation of the surfaces of 
biological tissues without the side effects of reactive oxygen 
and nitrogen species (RONS) generated by plasma jets [5,8,20].

In this study, we tried to study possible side effects and 
electrical signaling in Aloe vera L., Brassica oleracea L., 
and Lycopersicon esculentum Mill. Plants caused by a cold 
atmospheric pressure He-plasma jet and a plasma ball. These 
plants are model objects for the study of electrical signaling 
and memory in plants [26,27,31-33]. 

In the present study, we tried to study possible side effects 
and electrical signaling in Aloe vera L., Brassica oleracea L., 
and Lycopersicon esculentum Mill. cv Cosmonaut Volkov plants 
caused These plants are model objects for the investigation of 
electrical signaling and memory in plants [26,27,31-33].

Materials and methods
Plants

Forty Aloe vera L. plants were grown in clay pots with 
sterilized potting soil. Plants were exposed to a 12:12 hr light/ 
dark photoperiod at 21 oC. Aloe vera L. plants had 20 - 35 cm 
leaves. The soil around the Aloe vera L. plants was treated 
with water every week. Aloe vera plants were obtained from 
Bioelectrochemistry LLC (Madison, Al., USA).

Seedlings of Bonnie Hybrid Bonnie’s Best Cabbage 
(Brassica oleracea L.) were purchased from Bonnie Plant Farm 
(Union Spring, Al., USA). The soil around the cabbage plants 
was treated with water 3 times a week.

Forty tomatoes (Lycopersicon esculentum Mill. cv 
Cosmonaut Volkov) plants were grown in plastic pots 
with sterilized potting soil in a plant growth chamber 
(Environmental Corporation, USA). The soil around the tomato 
plants was treated with water every day. All measurements 
were performed on 21-to 28-day-old tomato plants. The seeds 
were purchased from various sources in Ukraine and Russia.

Irradiance was 850 μmol - 1100 μmol photons m-2s-1 PAR 
at plant level. All experiments were performed on healthy 
specimens. The relative humidity in the laboratory was kept 
at 45% - 50%. 

Chemicals and test strips

Ozone test strips were purchased from Macherey-Nagel 

Company (Duren, Germany). These were used to determine 
the ozone concentration in the air near the surface of a plasma 
ball and under the plasma jet (Figure 2). Bottled ultra-high 
purity helium was purchased from Sexton Welding Supply 
(Huntsville, Al., USA). 

Shielded extracellular electrodes

Teϐlon-coated silver wires (A-M Systems, Inc., Sequim, WA, 
USA) with a diameter of 0.2 mm were used for the preparation 
of non-polarizable Ag/AgCl electrodes. Identical shielded 
electrodes (Ag/AgCl or Cu) were used as working and 
reference electrodes for measurements of electrical potential 
differences in the plants. 

Data acquisition

The experimental setup for tests using a plasma lamp is 
shown in Figure 1. High-speed data acquisition was performed 
using NI-PXI-1042Q microcomputers with simultaneous 
multifunction I/O plug-in data acquisition board NI-PXI-6115 
(National Instruments, Austin, TX, USA) interfaced through a 
NI-SCB-68 shielded connector block to Ag/AgCl electrodes. 
Data acquisition board NI-PXI-6115 (National Instruments, 
Austin, TX, USA) had a maximum sampling rate of 4,000,000 
samples/s. The data acquisition board was connected to 
shielded electrodes. 

Plasma ball and cold atmospheric pressure He-plasma 
jet

Common commercial plasma Nebula Plasma Ball (Figure 1) 
was used for electrostimulation of plants. The electromagnetic 
interference was measured with a CalTest CT2982B 10 kV high 
voltage divider probe (CalTest electronics, Yorba Linda, CA, 
USA) connected to a LeCroy wave runner LT322 oscilloscope 
(LeCroy, Chesnut Ridge, NY, USA).

The CAPPJ method was described earlier [6,7]. The 
system was operated with 8 kV pulse amplitude, 6 kHz pulse 
frequency, 1 μs pulse width, and a ~70 ns pulse rise and fall 
time. The entire system is placed in a metal enclosure to 
reduce electromagnetic interference. 

FTIR spectra

FTIR spectra were recorded using a Thermo Scientiϐic 
Nicolet ISS FT-IR spectrometer (ThermoFisher Scientiϐic, 
Waltham, Massachusetts, USA). Reϐlectance spectra were 
recorded on a spectrophotometer ISR-2000 Plus with an 
integrating sphere (Shimadzu, Japan).

Temperature control

Digital laser temperature gun Etekcity laser grip 800 
(Etekcity, Anaheim, CA, USA) was used to measure the 
temperature of the plasma jet, water, plants, and air. The 
temperature of the plasma jet, plants, and air during plasma 
treatment was 20 oC.



Cold Atmospheric Pressure Plasma Jet and Plasma Lamp Interaction with Plants: Electrostimulation, Reactive Oxygen and Nitrogen Species, 
and Side Eff ects

www.plantsciencejournal.com 083https://doi.org/10.29328/journal.jpsp.1001110

is a model for the study of plant electrophysiology with 
crassulacean acid metabolism. 

It is well known that DC and AC electrostimulation of 
plants can induce activation of ion channels and ion transport, 
gene expression, activation of enzymatic systems, electrical 
signaling, plant movements, enhanced wound healing, plant-
cell damage, and plant growth (see for a review [26,27]). 
Recently, we analyzed the anisotropy and nonlinear properties 
of electrochemical circuits in the leaves of Aloe vera [31-33]. 
Along the conductive bundles, the behavior of Aloe vera leaves 
is highly nonlinear. 

Electrostimulation by voltages with an amplitude higher 
than 2 V applied to the plant causes a drastic change in the leaf 
in the form of the initial input resistance drop. This change 
occurs in the conducting bundles and is probably related to 
the opening of voltage-gated ion channels in the Aloe vera leaf 
[31]. There is a strong electrical anisotropy of the Aloe vera leaf. 
In the direction across the conductive bundle, the behavior of 
the system is completely passive and linear like in a regular 
electric circuit with constant resistance. Conductance parallel 
to vascular bundles is two orders of magnitude higher than in 
the perpendicular direction.

The existence of electrical signaling in plants has been 
known for more than two centuries [21-25,28-30]. Direct 
measurements of plant electrical signaling induced by plasma 
jets turned out to be more complicated due to large electrical 
signals from plasma jets transmitted in plants.

Prolonged treatment of Aloe vera leaves with the plasma 
ball does not cause any visible changes in the leaves during 
plasma treatment or after treatment (Figure 3A). The 
treatment of Aloe vera leaves with a cold atmospheric pressure 
He-plasma jet induces strong damage to leaves (Figure 3B).

Electrostimulation of electrical networks in plants 
can induce electrotonic or action potentials propagating 
along their leaves and stems. Both action and electrotonic 
potentials play important roles in plant physiology and signal 
transduction between abiotic or biotic stress sensors and 

Statistics

All experimental results were reproduced at least 14 times 
using different plants of Aloe vera L., Brassica oleracea L. and 
Lycopersicon esculentum Mill. cv Cosmonaut Volkov.

Results
Plasma lamps interaction with plants: Electro-
stimulation

If a plant is placed on the outer surface of the ball or near 
the ball (Figure 1), the capacitive coupling can supply a high 
voltage load of up to several kV with a frequency of about 
22 kHz. The electrical signal generated by the plasma ball 
is not limited to the glass sphere and propagates into the 
surrounding air in the form of electromagnetic interference 
(EMI). The amplitude of the electrical signal from the probe 
at a distance of 1 cm from the plasma ball was 628 V. UV-
Vis radiation with a wavelength of more than 380 nm can 
penetrate through the glass wall of the plasma ball. While the 
plasma inside the ball is surrounded by the glass wall and 
does not produce a signiϐicant amount of RONS outside the 
lamp, high-frequency electromagnetic radiation propagates 
outside. The measurement of the ozone level on the surface of 
our plasma balls conducted with commercial ozone test strips 
exposed for 10 min did not show the formation of ozone in the 
air near the glass surface (Figure 2A,B). The ozone test strips, 
when placed under a cold He-plasma jet at a distance of 1 cm 
for 10 min, showed the production of ozone by the He-plasma 
jet at a concentration of more than 200 μg/m3 (Figure 2C).

A monocot Aloe vera (L.) belongs to the Asphodelaceae 
(Liliaceae) family with crassulacean acid metabolism (CAM) 
and has been used for thousands of years in medicine, 
cosmetics, and as an ornamental plant such as was described 
in the Bible. Aloe vera stomata are open at night and closed 
during the day. The CO2 acquired by Aloe vera at night is 
temporarily stored as malic and other organic acids and is 
decarboxylated the following day to provide CO2 for ϐixation 
in the Calvin-Benson cycle behind closed stomata. Aloe vera 

Figure 1: Diagram of the experimental setup for detection of electrical plant 
responses induced with a plasma ball. A similar experimental setup was used for 
experiments with the Venus fl ytrap [8].

 

Figure 2: (A, B): Testing ozone production during 10 minutes exposure of to 
the ozone test strip near the surface of the plasma lamp. (C): Test of the ozone 
concentration after 10 min exposure to CAPPJ.
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plant responses. It is well known that electrostimulation of 
plants can induce activation of ion channels, ion transport, 
plant-cell damage, enhanced wound healing, gene expression, 
enzymatic systems activation, electrical signaling, plant 
movements, and inϐluence plant growth. Electrostimulation 
is an important tool for the evaluation of mechanisms of 
phytoactuators’ responses in plants without stimulation of 
abiotic or biotic stress phytosensors.

The plasma ball and CAPPJ caused strong electrical 
signaling along the leaves. The amplitude of the electric signal 
induced by the plasma lamp decreased with the distance in 
the leaf, but the frequency of 22 kHz was constant (Figure 4A). 
The amplitude of the electrical signal in the leaves of Aloe vera 
could reach several volts (Figure 4A). The propagation of the 
electric wave along the Aloe vera leaf can be illustrated by the 
equivalent electric diagram in Figure 4B. The mathematical 
model and experimental analysis of the electrotonic potential 
transduction in Aloe vera were presented earlier by Volkov 
and Shtessel [33].

Electrical signals can propagate along the plasma 
membrane over long and short distances in vascular bundles, 
plasmodesmata, and protoxylems. Electrotonic potentials in 
plants were discovered recently [31-33]. Electrostimulation of 
electrical circuits in Aloe vera induced electrotonic potentials 
with amplitude exponentially decreasing along a leaf or a 
stem. 

The propagation of passive electrical signals in plant 
conductive bundles is usually interpreted in terms of the 
cable model [34]. The cable theory of the ϐlow of electricity 
in a leaky cable was created by Lord Kelvin, who derived the 
equations to study the transatlantic telegraph cable. Hodgkin 
and Rushton [35] and Rall [36] applied the cable theory to 
passive electrical ϐlow along membranes. Basic assumptions 
underlying the cable theory are as follows: (a) the electrotonic 
potential is due to the change in the membrane potential, 

which propagates in a cylinder with constant radius; (b) 
passive electrotonic current is ohmic in accord with the Ohm 
law; (c) electrotonic current divides between internal and 
membrane resistance; (d) membrane current is inversely 
proportional to membrane surface area; (e) axial current is 
inversely proportional to diameter. 

If voltage-gated ion channels are closed and not involved 
in signal transduction along the plasma membrane, the 
transduction of electrotonic potentials can be described by 
the cable theory along a circuit consisting of capacitors C1 and 
resistors R1 and R2 (Figure 4B). 

Plasma ball induced high-frequency electrical signaling in 
a cabbage leaf with an amplitude of several volts (Figure 5).
The frequency of the electrical wave corresponds to the 
frequency of the electromagnetic ϐield in the plasma ball.

A

B

Figure 3: (A) A 45 min treatment of Aloe vera with a plasma lamp does not induce 
damage to leaves. (B) Damage of Aloe vera leaves induced by 45 min treatment 
with He-plasma jet.

Figure 4: (A): Potential diff erence between Ag/AgCl electrodes in the Aloe vera 
leaf induced by the plasma lamp. The frequency of data acquisition scanning was 
500,000 scan/s. Distances between the electrodes placed on the leaf were 4 cm. 
Distances between channels (pairs of Ag/AgCl electrodes) in the leaf and the 
plasma ball was 2 cm (1),  8 cm (2), and 14 cm (3). (B): The equivalent electrical 
scheme of passive electrical signal transmission along the Aloe vera leaf induced 
by the plasma lamp according to the theoretical model proposed by Volkov and 
Shtessel [33].

Figure 5: Electrical signals in the cabbage leaf induced by treatment with a plasma 
ball. The scanning frequency of data acquisition was 500,000 scan/s. The distance 
between the working and reference electrodes in the plant stem was 4 cm. The 
top leaf of the plant was in contact with the plasma ball. The amplitude of electrical 
signals was about 14 V (mean 13.91 V, median 14.30 V, std. dev. 0.85 V, std. err. 
0.27 V, n = 100).
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Electrical signals in tomato plants induced by the plasma 
ball are shown in Figure 6. These results of electrical waves 
in tomato plants (Figure 6) are very similar to the electrical 
waves in cabbage (Figure 5) and Aloe vera leaves (Figure 4).

Cold atmospheric pressure plasma He-jet interaction 
with plants

Direct treatment of plants with CAPPJ can damage their 
tissue (Figure 3B). It can be the effect of RONS, UV-Vis light, 
and electromagnetic ϐields produced by the plasma. A thin 
quartz plate was inserted between the plasma jet and a 
leaf of Aloe vera in control experiments. UV-Vis light and 
electromagnetic ϐields can penetrate through the quartz plate 
without visibly damaging the leaf (Figure 7). This means that 
RONS was responsible for damaging the plant tissue in Aloe 
vera (Figure 3B).

The treatment of cabbage leaves with a cold He-plasma 
jet caused visible damage around the place of contact of the 
plasma with the leaf (Figure 8A). The plasma ball treatment 
does not cause visible damage to the cabbage leaf (Figure 
8B,C).

The FTIR and optical diffusive reϐlectance spectra (Figure 
9) show the difference between untreated and treated 
cabbage leaves when the treatment was done with the He-
plasma jet for 10 min. The FTIR spectra have an absorption 
maximum of 1 (Figure 9A) at about 3200 cm−1 which can be 
attributed to the phenol O-H stretching groups [37]; peak 2 
is from the resonance groups of the C-H aliphatic (between 
2850 and 3000 cm−1) [37]; peak 3 at 1603 cm−1 is from the 
resonance groups of the aromatic C=C [37]; and peak 4 at 
1246 cm-1 refers to the C-O stretching from hemicellulose and 
lignin [37]. 

Reϐlectance spectra of Bonnie hybrid cabbage leaf before 
and after 10 min treatment with cold atmospheric pressure 
He-plasma jet have a very signiϐicant difference between 300 
nm and 550 nm (Figure 9B). This is most likely caused by the 
degradation of chlorophyll by reactive oxygen species in the 
brown spots of leaves treated with the cold He-plasma jet 
(Figure 8A).

Figure 6: Electrical signals in tomato plant (Lycopersicon esculentum Mill. Cv 
Cosmonaut Volkov) induced by treatment with the plasma lamp. The frequency of 
data acquisition scanning was 1000,000 scan/s. The distance between the working 
and reference electrodes was 3 cm. The amplitude of electrical signals was about 
7.87 V (mean 7.87 V, median 7.85 V, std. dev. 0.13 V, std. err. 0.03 V, n = 100).

A

B

C

D

Figure 7: Treatment of Aloe vera leaf with a cold He-plasma jet separated by a thin 
quartz plate. (A) Cold atmospheric pressure He-plasma jet above a quartz plate; 
(B) Aloe vera plant; (C) Treatment of Aloe vera leaf with cold He-plasma jet covered 
by a thin quartz plate from an optical cuvette; (D) Aloe vera leaf after 100 minutes 
of treatment in the setup shown on the panel (C).

A

B

C

Figure 8: (A): Bonnie hybrid cabbage leaves after 10 min treatment with cold 
atmospheric pressure He-plasma jet. (B) and (C): Bonnie hybrid cabbage leaves 
during (B) and after (C) 75 min treatment with a plasma ball. Results were 
reproduced 16 times using diff erent plants.

A

B

Figure 9: (A): FTIR spectra of Bonnie hybrid cabbage leaf before and after 10 
min treatment with cold atmospheric pressure He-plasma jet. (B): Optical diff usion 
refl ectance spectra of Bonnie hybrid cabbage leaf before and after 10 min treatment 
with CAPPJ. Results were reproduced 14 times using diff erent plants.
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Discussion
Most publications and patents about the effect of cold 

plasma on plants focus on a signiϐicant increase in crop yield 
and plant sustainability [2,3,37]. The new terms “plasma 
seeds” and “plasma agriculture” have been widely used 
in the last 25 years. Cold plasma can protect surfaces of a 
bio-tissue against bacteria, viruses, fungi, and mold [38-
40]. Here we found for the ϐirst time that cold atmospheric 
pressure He-plasma jet (CAPPJ) can also cause side effects 
and damage to plants. UV-Vis radiation, high frequency 
strong electromagnetic ϐield, RONS, ions, and free electrons 
from plasma can also generate side effects (Figures 3-8) and 
changes in the composition of plants and fruits [14,41,42]. 
Reactive oxygen species can induce plant cell death [43-45]. 
Ozone can induce necrosis and increase peroxidase activity 
[46]. The development of side effects depends on the duration 
of plasma treatment. Plasma disinfects many bacteria in half 
a minute [39], so the optimal time for processing seeds and 
plants with cold atmospheric pressure He-plasma jet is in the 
range of 10 to 60 seconds, although this time also depends 
on the composition of the gas phase used to produce plasma. 
We found that the  electrostimulation of plants by plasma 
lamps can help to avoid side processes in biological tissues 
associated with the generation of RONS.

Conclusion 
This article gives a new insight into the possible side 

effects of cold plasma interactions with plants. Scheme 
1 shows mechanisms of interaction of cold atmosphere 
pressure He-plasma jet and/or plasma lamps with seeds 
and plants. It is known that CAPP in the air produces RONS 
at room temperature. Reactive oxygen and nitrogen species 
play important roles in plant physiology and agriculture. 
They can be very toxic to biological tissue and can selectively 
kill bacteria, fungi, and viruses. At the same time, RONS are 
useful companions of plant developmental processes and 
the activation of ion channels. RONS are involved in signal 
transduction, interactions with ion channels, and cell death. 
The speciϐic biological response of a plant to RONS depends 

on the chemical identity of the RONS, the intensity of the 
signal, sites of production, the plant developmental stage, 
and interactions with other signaling molecules such as nitric 
oxides, hydrogen peroxide, ozone, and nitic acid. Cold plasma 
can affect ion transport and bioelectrochemical characteristics 
of plant tissue. Generated by the cold atmospheric pressure 
He-plasma jet reactive oxygen and nitrogen species, UV-Vis 
photons, and high-frequency strong electromagnetic ϐields 
with amplitudes of a few kV can interact with plants. Here we 
found that RONS produced by CAPPJ can also cause side effects 
and damage to plants if the plasma exposure is long enough. The 
plasma lamp has no visible side effects on Aloe vera, cabbage, 
and tomato plants, but induces electrical waves with very high 
amplitude in plants. The plasma ball creates high-frequency 
electromagnetic ϐields that can be used for electroporation 
and corrugation of biological tissues. Understanding the 
mechanisms of plasma interactions with seeds and plants can 
contribute to the development of plasma-based technology to 
control plant developmental, increase yield and growth rates, 
and protect from pathogens. Low-temperature atmospheric 
pressure plasma can play an important role in agriculture, 
medicine, food processing, disinfection and sterilization, and 
biophysical and biochemical applications. 
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