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Abstract

This Letter reports the first observational estimate of the heating rate in the slowly expanding solar corona. The
analysis exploits the simultaneous remote and local observations of the same coronal plasma volume, with the
Solar Orbiter/Metis and the Parker Solar Probe instruments, respectively, and relies on the basic solar wind
magnetohydrodynamic equations. As expected, energy losses are a minor fraction of the solar wind energy flux,
since most of the energy dissipation that feeds the heating and acceleration of the coronal flow occurs much closer
to the Sun than the heights probed in the present study, which range from 6.3 to 13.3 R.,. The energy deposited to
the supersonic wind is then used to explain the observed slight residual wind acceleration and to maintain the
plasma in a nonadiabatic state. As derived in the Wentzel-Kramers—Brillouin limit, the present energy transfer rate
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estimates provide a lower limit, which can be very useful in refining the turbulence-based modeling of coronal

heating and subsequent solar wind acceleration.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Magnetohydrodynamical simulations
(1966); Interplanetary turbulence (830); Solar corona (1483); Solar coronal heating (1989); Solar wind (1534);

Solar physics (1476); The Sun (1693)

1. Introduction

Central to the heating and subsequent acceleration of the
coronal plasma is the identification of the physical mechanisms
responsible for transporting the energy available in the
photospheric motions to the corona, where it is dissipated by
raising the temperature to a million degrees, sufficient for the
plasma to overcome the Sun’s gravity and thus expand into the
heliosphere, forming the solar wind (Parker 1958). It is worth
noting that this thermal driving can only account for the
acceleration of the slowest coronal flows, while for the higher-
speed streams to be accelerated, an additional source of energy
is required, whose dissipation results in further heating and thus
transition to a faster wind regime. The nonresonant dissipation
of low-frequency magnetohydrodynamic (MHD) turbulent
fluctuations is to date the most widely accepted heating
mechanism, whether for fast or slow wind.

However, a key element for any heating model—namely, an
estimate of the coronal energy transfer rate and its radial
dependence—is still missing. This is basically because coronal
measurements of the magnetic field and nonthermal plasma
motions (related to turbulence), i.e., the Alfvén wave energy,
are lacking (or at best inconclusive). In some fluid models (e.g.,
Holzer & Axford 1970; McKenzie et al. 1995), an ad hoc
heating function, which decays exponentially with height over
a prescribed dissipation length scale, is assumed to account for
the energy deposition per unit volume. Other approaches resort
to the use of numerical simulations in order to derive the
coronal heating rate profile (e.g., Dmitruk et al. 2002).

Local single-point measurements of the turbulent energy
cascade rate, which is directly related to the solar wind heating
rate, are widely available at various heliospheric heights.
Although a detailed discussion of turbulent heating rate
estimates in the solar wind is beyond the scope of this article
(the interested reader is referred to the comprehensive review
by Marino & Sorriso-Valvo 2023), the following works are
worth mentioning. Sorriso-Valvo et al. (2007) first applied the
generalized form of the Yaglom law for MHD turbulence (as
derived by Politano & Pouquet 1998) to Ulysses data (Wenzel
et al. 1992) to derive the energy flux of the turbulent cascade in
high-speed solar streams sampled at 3—4 au. Zhao et al. (2022)
extended this approach to the first sub-Alfvénic interval
observed with the Parker Solar Probe (PSP; Fox et al. 2016)
at 0.09 au, using both incompressible and compressible
formalisms for the equivalent Yaglom law (Andrés et al.
2019) and finding a higher average energy cascade rate than in
the surrounding super-Alfvénic regions. Adopting the turbu-
lence cascade model developed by Tu (1988) and exploiting
PSP measurements, Wu et al. (2020) derived a formula for
relating the radial scaling of the low-frequency spectral break to
the energy supply rate in the slow solar wind, from 0.17 to
0.7 au. These authors found that at distances greater than
0.25 au from the Sun, injected and dissipated energies are of the
same order, suggesting that the slow solar wind expands almost
adiabatically. Deriving straightforward expressions for the
turbulent heating rate, Adhikari et al. (2022) reported, from

both observational and theoretical perspectives, on the radial
evolution of the energy dissipation rate from 0.17 to 0.83 au,
using PSP and Solar Orbiter (SO; Miiller et al. 2020) data. It is
true that some authors have exploited remote observations of
the solar corona to probe the turbulent properties of coronal
flows and thus derive constraints or upper limits on the rate of
energy deposition in the corona (Chandran et al. 2009;
Cranmer 2020; Sasikumar Raja et al. 2021). Yet, all these
studies make extensive use of unknown parameter assumptions
and are either highly model-dependent or based on numerical
simulations. Although extremely important, these works do not
provide direct, empirical observations of the coronal heating
rate, as in the present study.

Quadratures between two spacecraft have already proved
useful in linking local turbulent properties with the fluid
parameters of remotely observed coronal flows (Telloni et al.
2021a, 2022a). However, the special orbital configuration
between the PSP and SO spacecraft that occurred on 2022
June 1 offers an almost unique opportunity. Indeed, during this
quadrature, PSP entered the portion of the plane of the sky
(POS) imaged by the Metis coronagraph (Antonucci et al. 2020;
Fineschi et al. 2020) on board SO. As described in the
following, this allows the first ever observational estimate of the
energy deposition rate in the solar corona, from 6.3 to 13.3 R,
without having to invoke any model or ad hoc parameter
assumptions. Indeed, the simultaneous remote and in situ
measurements of the same coronal flow, associated with solving
the basic equations for a steady-state, radial plasma flow, allow
an empirical low-speed solar wind model to be derived. In
addition, in the Wentzel-Kramers—Brillouin (WKB) theory
approximation, the energy of the outward Alfvén wave flux and,
in turn, the energy transfer rate, can be extended from the PSP
location to the whole range of coronal heights observed with
Metis. This is the aim of the present Letter, whose plan is as
follows: Metis/PSP data and equation description (Section 2),
then derivation of the empirical wind and turbulent model along
with relevant discussion (Section 3).

2. SO/Metis-PSP Data and MHD Equations

On 2022 June 1, at 22:40 UT, when SO was at 0.936 au, PSP
was in quadrature while orbiting at 13.3 R.. An SO spacecraft
roll of 45° along with an off-pointing of 1 R, toward the west
limb was performed for PSP to squeeze into the Metis POS,
which extended from about 6.3-13.3 R. Metis observations are
supported by a 3D MHD modeling of the solar corona developed
by Predictive Science Incorporated (PST; Mikic et al. 2018). This
is based on photospheric magnetic field measurements acquired
by the Helioseismic and Magnetic Imager (Scherrer et al. 2012)
on board the Solar Dynamics Observatory (Pesnell et al. 2012)
and driven by a heating mechanism fed by the dissipation of low-
frequency Alfvén waves.

Figure 1(a) shows the visible light observations of the
coronal polarized Brightness (pB) obtained with Metis during
the quadrature with PSP, marked with a blue dot and calibrated
according to De Leo et al. (2023). PSP, 3°6 below the
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Figure 1. (a) Metis pB image on 2022 June 1 at 22:40 UT with PSP marked in its POS as a blue dot; the PSP direction is indicated by a white dashed line. (b)
Projection of the PSP position (blue dot) onto the Carrington map of the squashing factor Q at 10 R,. (c) PSP magnetic field and plasma time series (from top to
bottom: wind bulk and Alfvén speed, magnetic field intensity and angle with the radial, and proton density and temperature) during the quadrature with SO. (d) Radial
profile of the Metis pB observations at the latitude corresponding to the PSP location (open squares), along with the van de Hulst (1950) power-law fit (red line); the
horizontal line at 1.2 x 10~'" B/B., represents the flattening level, probably due to the contamination by the F-corona and instrumental effects.

equatorial plane, was immersed in a diffuse coronal region
devoid of emission-enhanced (i.e., denser) structures. Indeed,
Figure 1(b), which displays the Carrington map of the
squashing factor Q (Titov et al. 2011) at 10 R, clearly
discloses that PSP sampled a low-latitude equatorial coronal
hole, which, in this case, is near the outer positive polarity of a
decaying active region from the previous rotation. Due to the
pseudostreamer lobes bracketing the open flux (Figure 1(b)),
however, the solar wind flow impinging on PSP was slow
(Wang 1994), as shown in the top panel of Figure 1(c), which
displays overall PSP plasma and magnetic field measurements
acquired on a 0.5 hr long interval around the quadrature with
SO/Metis (corresponding to +0.76° longitude with respect to
the Metis POS). Specifically, from top to bottom, the panel
presents the solar wind and Alfvén speed, the magnetic field
vector strength and inclination with respect to the radial
direction, and the proton density and temperature. This is a case
of highly field-aligned (fggr ~ 11°) and sub-Alfvénic slow
(U ~310 km s~ ' < U,) solar wind, which is additionally quite
homogenous and stationary.

Finally, Figure 1(d) shows the pB radial profile at the latitude
in the PSP direction (indicated by a white dashed line in
Figure 1(a)). Relying on the approach initially advanced by van
de Hulst (1950) and largely used with Metis observations (e.g.,
Romoli et al. 2021; Antonucci et al. 2023), the coronal electron
density can be determined by inverting the coefficients of a
power-law fit performed on the observed pB values. The
combined effect of the contamination of the K-corona by the
F-corona for distances larger than 10 R, (e.g., Howard et al.
2019) and a possible instrumental contribution appearing as a
rise in pB values at the outer edge of the detector field of view
(FOV) can in principle be responsible for the flattening of the
pB radial profile at heights above 10 R. (around the value
indicated by the horizontal line). Accordingly, the power-law
fitting has been performed up to heights of 10 R and then
extrapolated beyond that (the red line in Figure 1(d)).
Anticipating the results presented in the next section, it is
already worth mentioning here that the electron density profile
thus derived was checked and validated with the different
technique from Hayes et al. (2001) and was verified to scale
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approximately as r > at large distances from the Sun, at the
outer edge of the Metis FOV (i.e., r > 10 Ry).

In order to derive an empirical coronal flow model from the
joint SO/Metis—PSP observations of the solar corona, the basic
equations of solar wind theory need to be solved. A steady,
radial flow of an ideal plasma is fully described by the
equations for mass, momentum, and energy conservation
below:

d
—(pUA) = 0; (D
dr
du dp  GM,
v—= = - _ °, 2
dr dr P r2 @
dp
— ==V U+ (v — Dpe, (3)

dr

where p is the mass density, U is the solar wind velocity,
A=f (r)r2 is the cross-sectional area of the flow tube
connecting the equatorial coronal hole to the heliosphere (with
f(r) being the expansion factor), p =nkgT is the thermal
pressure (with n, T, and kp being the number density,
temperature, and Boltzmann constant, respectively), G is the
gravitational constant, M, is the solar mass,  is the adiabatic
index, e is the heating per unit mass, and r is the radial
coordinate. Note that the empirical model assumes only a very
hot thermal plasma at the origin and that no distributed heating
occurs due to the dissipation of turbulence. The heating rate € is
primarily due to low-frequency nearly incompressible turbu-

lence and expressed as (Matthaeus et al. 1999a)

202 (1,2 2\ (1~ 122
= L PR )+ (P (P @

2 A

where « is the Karman-Taylor constant (usually around 0.125;
see Usmanov et al. 2014, and references therein), (1/2)(|z*|?)
are the energies associated with the outward/inward fluctua-

tions given in terms of Elsisser variables, zt = u & % (with

u and b being the velocity and magnetic field fluctuations
around the corresponding mean fields, (U) and (B), respec-
tively, and p the magnetic permeability), A is the turbulence
correlation length, and (...) indicates time averaging over the
data sample. Assuming that most of the turbulent energy comes
from Alfvénic fluctuations, the system will be characterized by
a balance between kinetic and magnetic energies, i.e.,
(ju|?) ~ (|b|?). Equation (4) can thus be conveniently rewritten
as (Adhikari et al. 2017)

E3/2
€= 2 , (5)

| 3/2
[Ck IOg (kini/\b) ] )\b

where Ej, = (|b|*)/(up) and ), are the energy and correlation
length associated with magnetic field fluctuations, respectively,
Cr=1.6 is the Kolmogorov constant, and k;,;=1.07 x
107° km ™' is the large-scale injection wavenumber corresp-
onding to the solar rotation frequency (related to each other by
the Sun’s rotational velocity). Equation (5) is derived on the
basis of a dimensional analysis of the power spectral density of
the turbulent magnetic energy E,, assuming that it scales with
the wavenumber k as Ak ™! and Cpe*/*k>/3 (with A being a
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constant) in the energy-containing and inertial ranges, respec-
tively, imposing equality of the spectrum branches at the
frequency break k;, and integrating from k;,; to k,. The only
assumptions underlying the expression in Equation (5) are thus
a Kolmogorov-like (Kolmogorov 1941) power law at fluid
scales and that the correlation length )\, corresponds to the
spectral break k;, separating the injection and inertial ranges.
Although customarily used (e.g., Telloni et al. 2022b), it is
worth noting that it is a rough estimate of the heating rate that
does not take into account, for example, the anisotropy in the
solar wind turbulence fluctuations. In addition, in the
Iroshnikov—Kraichnan picture of turbulence (Iroshnikov 1963;
Kraichnan 1965), with a shallower spectrum scaling as k32 as
usually observed closer to the Sun (e.g., Chen et al. 2020; Duan
et al. 2020; Telloni et al. 2021b), the value for € as provided by
Equation (5) would be a factor of )\;1/ # larger. Completing
Equations (1)-(3) is the conservation of magnetic flux,
%(BA) =0.

Integrating the equations for mass and magnetic flux
conservation, it follows that the large-scale trends of the solar
wind parameters (i.e., U, p, and B) can be estimated based on
the values at some reference point » = ry. Specifically, from (i)
the estimates of the coronal mass density p(r) = 0.95m,,n, (for a
fully ionized plasma with 2.5% helium—Moses et al. 2020;
and where m, is the proton mass) as a function of the
heliocentric distance derived from the pB Metis observations,
(i) the PSP plasma and magnetic field measurements at
ro = 13.3 R, and (iii) the expansion factor f(r) provided by the
PSI 3D MHD simulations (which results in only a weak
dependence on height, i.e., f(r) ~ 1, away from the strong
fields at the base of the corona, due to the rooting of the open
flux near a low-lying pseudostreamer-type configuration), it is
possible to empirically evaluate the solar wind speed and
magnetic field strength radial profiles, U(r) and B(r), from 6.3
to 13.3 R.. The Alfvén speed U,(r) and the solar wind energy
flux F,,(r) can then be immediately quantified in the Metis FOV
as Uy = B/ /up and F, = %pU3. In other words, in this joint
SO/Metis—PSP analysis, Metis provides the radial trends for all
the magnetofluid and turbulence parameters, while PSP, which
definitely entered the corona (indeed, the Alfvén mach number
M,y=U/U, ~0.59), sets the (absolute) value at r.

The energy of the magnetic field fluctuations E,, and, in turn,
the turbulent cascade (heating) rate e can be empirically
estimated deeper in the solar corona at the heights observed
with Metis, by propagating the measurements made locally by
PSP back to the Metis FOV. For simplicity, it is assumed the
propagation equation for Alfvén waves in an expanding flow
(Velli 1993), generalized to include a dissipation term
D({lz*P)*(lz7 1), (z**){]z"[*)*>, A) and possible in situ
sources of turbulence S (Zhou & Matthaeus 1990; Zank
et al. 1996; Wang et al. 2022):

o+ .
E‘i‘(Uﬂ:UA)VZ +Z:F‘V(U:FUA)
+%([ — OV -y F %U) =-D(—-)+ S (6)

If the further simplifying assumption of linearity and a
slowly varying background is made, Equation (6) can be solved
in the WKB approximation to retain an analytically tractable
solution. In the presence of a nonuniform but stationary flow,
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the wave action flux § = %p|z+|2 / w, namely the wave energy
flux per unit frequency w, is conserved (see, e.g., Velli 1993,
and references therein). Assuming an outwardly directed
magnetic field, the wave action conservation in the stationary
WKB limit translates into

V- U+ U)S=0. )

Considering that the wave frequency in the absolute
(stationary) frame, that is the wave eigenfrequency wy, is an
invariant, the frequency in the plasma frame w is given by

Uy
w = w
U+ Uy

Bearing furthermore in mind the mass flux conservation

pUr? = const and the divergence formula in spherical
coordinates for a purely radial vector V - F = ii(;’21!7,),

r2 or
Equation (7) simplifies to

2
(U + UA) |z+|2 — C,
vy,

0 (®)

©)

with C being a constant. Equation (9) represents, in the WKB
limit, a very useful expression for the radial dependence of the
Alfvén wave energy, once estimated at a reference point r = ry
(i.e., at PSP). It predicts that the outwardly propagating Alfvén
mode energy peaks (and, therefore, that the turbulence is
maximum) where U = Uy, i.e., at the Alfvén point. In the case
of pure Alfvén waves (i.e., 0. =+ 1 and o, =0, where o, and
o, are the normalized cross-helicity and residual energy, which
measure the imbalances between outward and inward modes
and between kinetic and magnetic energies, respectively, e.g.,
Tu & Marsch 1995), the above equation can also be used for
the energy of the magnetic fluctuations E,. Associating, to a
first approximation, the wavelength of turbulence with the
expansion of the flow tube, i.e., A\, JA ~ r, a complete set
of functional forms for estimating the energy transfer rate at the
coronal heights observed with Metis is provided.

In the PSP 0.5 hr interval considered in the present analysis
(Figure 1(c)), 0.=0.97 and o,=—0.10, suggesting the
overwhelming presence of Alfvén waves in the downwind
direction. Furthermore, the power spectrum of the magnetic
field fluctuations may be compatible with the 5/3 Kolmogorov
turbulence (the power-law fit performed at fluid scales to E,, in
fact returns a spectral index of 1.61 £ 0.04). It follows that
Equation (5) can be safely back-projected from the PSP
location, which is below the Alfvén point (U < U,; see
Figure 1(c)), into the Metis FOV and thus the coronal heating
rate directly derived in the solar corona.

3. Empirical Slow Solar Wind and WKB-like Turbulence
Model

Figure 2 shows the solar wind (left panels) and turbulence
(right panels) models empirically derived according to the
methodological approach described in the previous section
(PSP measurements-based estimates are indicated by blue
dots). Specifically, Figures 2(a)—(d) display the modeled
coronal plasma flow speed, mass density and energy flux,
and coronal magnetic field, respectively, compared with the
corresponding quantities obtained from the PSI 3D MHD
simulations (red lines). In Figure 2(a), also depicted are the
Alfvén speed (thin lines) and, for comparison, the spherically
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symmetric expansion of an isothermal 7= 1.5 x 10 K-corona
(Parker 1958; green line).

Immediately evident is the good agreement, both in radial
trends and absolute values, between the empirical model and
the outcome of the MHD simulations. This allows a first,
prompt consideration. In fact, the two models, in addition to
being independently derived, are also the result of somewhat
opposite approaches. The MHD simulation is based on a
forward modeling driven by (remote) photospheric measure-
ments and the dissipation of Alfvénic turbulence as the
mechanism for heating the coronal plasma. The empirical
model obtained in this work, on the other hand, is a backward
extrapolation based on PSP in situ measurements and the
solution of the Euler equations in the WKB limit. Thus, the
good agreement between the two models (for both fluid and
magnetic parameters) indicates, on the one hand, the accuracy
of the present analysis and especially of the Metis observations
and, on the other hand, that the aforementioned assumed
physical mechanism underlying the heating and subsequent
acceleration of the coronal wind complies with observations,
again identifying it as the most likely mechanism of coronal
heating (in contrast to the alternative high-frequency resonant
dissipative processes). More quantitatively, the empirically
derived and simulation-based models differ (on average) by
16% for the flow speed, 12% for the plasma density and
magnetic field, and 37% for the wind energy flux (for which, as
a derived quantity, the discrepancies associated with the
fundamental parameters U and p obviously widen). In
discussing in greater detail the expansion rate of the wind,
Figure 2(a) clearly shows that although at the distances
observed with Metis the coronal plasma is already largely
accelerated, some residual acceleration still persists: in fact, the
wind speed increases from ~250 to ~310 km s~ over a range
of 7 R.. Nevertheless, as evidenced by the basically good
agreement with Parker’s model, this acceleration may just be
thermally driven, which indicates that collisionless field—
particle interaction mechanisms for heating (and thereby
boosting) the wind are most effective lower than the distances
observed with Metis (as, for instance, shown in Telloni et al.
2023). Rough estimates of the power-law radial dependences of
the physical quantities displayed in Figures 2(a)—(d), which
follow from the continuity equations above and the exper-
imental finding that p ~ r~**', can be given. It turns out that
Unr?? Fo~r 2 and B~ r "8 for 6.3 R, <r < 13.3 R...

Figures 2(e)—(g) show the empirically modeled turbulence
energy, correlation length, and cascade rate, respectively. As a
consequence of Equation (9) and having assumed that
My o ~/A, the fluctuating magnetic energy and the corresp-
onding correlation length decrease from the PSP position
toward the Sun (according to Ej,~ 2% and N\, ~ "%,
respectively). The resulting heating rate in the slow coronal
plasma jointly observed with SO/Metis—PSP keeps a relatively
constant value throughout the considered heliocentric distances
(e~ rfo'lg), in agreement with earlier studies of wind equations
and turbulence models (e.g., Dmitruk et al. 2002), which show
that the energy per unit mass does not fall off rapidly with
altitude. In this regard, it is worth noting that the slight peak in
€ observed at about 7-8 R, is merely due to the combination of
the E;, and ), radial trends and, hence, does not indicate any
particular underlying physical process. In fact, the heating rate
is expected to peak much closer in, at the temperature
maximum and the sonic point (around around 2-4 R.), i.e.,
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Empirical solar wind model
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Empirical turbulence model
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Figure 2. Data-based (black) and physics-based (red) modeling of the radial evolution of the solar wind U (thick lines) and Alfvén U, (thin lines) speed (a), plasma
mass density p (b), solar wind flux energy F,, (c), magnetic field B (d), turbulent energy E; (e) and correlation length ), (f), and heating rate € (g) in the slow coronal
flow, jointly observed with SO/Metis and PSP during their quadrature on 2022 June 1. The blue dot in each panel refers to the values obtained with PSP
measurements. The Parker classical model for an expanding isothermal 1.5 MK corona is shown as a green line in (a).

where plasma heating and acceleration are most effective.
The average (turbulent) heating rate per unit volume
?=>55%x10"J m> s is somewhat lower that the
estimates of 107°—10""" J m> s ' recently reported by
Chandran et al. (2009) and Sasikumar Raja et al. (2021) in
approximately the same altitude region (545 R.). This is not
surprising, since these authors provided upper limits for e,
whereas those presented here are lower estimates. In fact, the
WKB approximation does not take into account the undoubted
dissipation of z" modes. As a result, the rate at which their
energy increases with distance has to be lower than the WKB
prediction. Hence, from the PSP position down into the solar
corona, this means that their energy E, would fall off less
rapidly, resulting in an energy transfer rate higher than
estimated here in the WKB limit. Moreover, under the likely
scenario that deeper into the corona the spectrum of the
magnetic field fluctuations more closely resembles the
turbulence a la Iroshnikov—Kraichnan, for the above, the
energy transfer rate would be larger by a factor of )\,jl/ 4
resulting in an average rate per unit volume of 5.2 x 10~ ' J
m > s !, thus at the lower bound of the range of values
previously reported in the literature.

The coronal energy loss H, expressed as a flux, can be

estimated by integrating the heating rate in the Metis FOV, i.e.,

from 6.3 to 13.3 R,

H= fe(r)p(r)dr =27x102Jm2s L, (10)

It turns out that H is 33% of the total energy flux of the solar
wind (F,,=8.1 x 1072 J m 2 s~ !). This is expected, since, as
mentioned just above, most of the acceleration has already
taken place at the heights observed with Metis. This energy
deposition feeds the observed residual acceleration of the slow
solar wind and heats the nonadiabatic coronal plasma. Indeed,
in a collisionless plasma with no additional heating, based on
the conservation of the Chew—Goldberger—Low (Chew et al.
1956) invariants, the total temperature should scale as r43
with distance. This is not observed either in the corona or in
interplanetary space (where a radial scaling greater than that
predicted by the adiabatic theory of plasma thermal dynamics is
found; e.g., Zhao et al. 2019), implying that plasma heating
(via turbulence dissipation) occurs, although less significantly,
even at distances far beyond where the heating and acceleration
processes are most at work (around the sonic point). It is well
known that the deficit in internal energy implied by an
adiabatic expansion persists at least to 1 au, and in fact well
beyond (Richardson et al. 1995; Matthaeus et al. 1999b).

As a final remark, although the present WKB-like analysis is
important, as it provides a model-independent and empirical
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lower limit of the coronal heating rate (thanks to the
coordinated Metis/SO-PSP observations), it should be recalled
that it is well known that the radial evolution of the turbulent
solar wind can resemble WKB theory even when driven by
waves (Roberts 1989) or when turbulent dissipation and shear
driving is included (Zank et al. 1996). It is also worth noting
that the WKB approximation does not hold in the expanding
solar corona. In fact, the wave-only WKB theory predicts no
dissipation, whereas turbulence has largely been dissipated far
below to accelerate the wind to supersonic speeds. It is
therefore evident that a more realistic description of the
turbulence evolution from the subsonic wind to the PSP
location is needed to compare directly with the Metis
observations and thus accurately estimate the (turbulent)
heating rate in the solar corona. A variety of turbulence models
(e.g., Verdini et al. 2010; Oughton et al. 2011) may be useful as
extensions of the present simplified WKB-like model in order
to explain observations when linked self-consistently with
large-scale MHD equations.
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