
Streaming algorithms for the missing item finding problem

Manuel Stoeckl∗

Abstract

Many problems on data streams have been studied at two extremes of difficulty: either allowing randomized
algorithms, in the static setting (where they should err with bounded probability on the worst case stream);
or when only deterministic and infallible algorithms are required. Some recent works have considered the
adversarial setting, in which a randomized streaming algorithm must succeed even on data streams provided
by an adaptive adversary that can see the intermediate outputs of the algorithm.

In order to better understand the differences between these models, we study a streaming task called
“Missing Item Finding”. In this problem, for r < n, one is given a data stream a1, . . . , ar of elements in [n],
(possibly with repetitions), and must output some x ∈ [n] which does not equal any of the ai. We prove

that, for r = nΘ(1) and δ = 1/poly(n), the space required for randomized algorithms that solve this problem
in the static setting with error δ is Θ(polylog(n)); for algorithms in the adversarial setting with error δ,
Θ((1+ r2/n)polylog(n)); and for deterministic algorithms, Θ(r/polylog(n)). Because our adversarially robust
algorithm relies on free access to a string of O(r log n) random bits, we investigate a “random start” model of
streaming algorithms where all random bits used are included in the space cost. Here we find a conditional
lower bound on the space usage, which depends on the space that would be needed for a pseudo-deterministic
algorithm to solve the problem. We also prove an Ω(r/polylog(n)) lower bound for the space needed by a

streaming algorithm with < 1/2polylog(n) error against “white-box” adversaries that can see the internal state
of the algorithm, but not predict its future random decisions.

1 Introduction

A streaming algorithm is one which processes a long sequence of input data and performs a computation related
to it. In general, we would like such algorithms to use as little memory as possible – preferably far less than the
length of the input – while producing incorrect output with as low a probability as possible. For some problems,
there is a space-efficient deterministic algorithm, which works for all possible inputs; but many others require
randomized algorithms which, for any input, have a bounded probability of failure.

In the adversarial setting [4], one considers the case where a randomized algorithm is processing an input
stream that is produced in real time, and furthermore the algorithm continually produces outputs depending on
the partial stream that it has seen so far. It is possible that the outputs of the streaming algorithm will affect
the future contents of the input stream; whether by accident or malice, this feedback may yield an input stream
for which the randomized algorithm gives incorrect outputs. Thus, in the adversarial setting, we require that an
algorithm has a bounded probability of failure, even when the input stream is produced by an adversary that can
see all past outputs of the algorithm.

The extent to which an algorithm is vulnerable to adversaries depends critically on the use of randomness by
the algorithm. If, given a randomized algorithm that has nonzero failure probability on any fixed input stream,
an adversary somehow manages to determine all the past and future random choices made by an instance of
the the algorithm, then the adversary can determine a specific continuation of the input stream on which the
instance fails. Algorithms that are robust to adversaries often prevent the adversary from learning any of their
important random decisions, and ensure that the decisions which are revealed do not affect the future performance
of the algorithm. For example, [4] mentions a sketch-switching method in which a robust algorithm maintains
multiple independent copies of a non-robust algorithm; it emits output derived from one non-robust instance until
it reaches the point where an adversary might make the instance fail, at which point the algorithm switches to
another instance, none of whose random choices have been revealed to the adversary yet.

Recent research has introduced models with requirements stronger than adversarial robustness. In the white-
box streaming model[1], algorithms must avoid errors even when the adversary can see the current state of the

∗Department of Computer Science, Dartmouth College.
This work was supported in part by the National Science Foundation under award 2006589.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited793

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

algorithm (i.e, including past random decisions), but not future random decisions. In the pseudo-deterministic
model[9], streaming algorithms should with high probability always give the same output for a given input; such
algorithms are automatically robust against adversaries, because (assuming the algorithm has not failed) the
outputs of the algorithm reveal nothing about any random decisions made by the algorithm.

In order to better understand the differences between all these models, we study a streaming problem known
as Missing Item Finding (mif). This problem is perhaps the simplest search problem for data streams where the
space of possible answers shrinks as the stream progresses. For parameters r < n, given an data stream a1, . . . , ar
of length r, where each element ei is an integer in the range [n], the goal of the mif(n, r) problem is to identify
some integer x ∈ [n] for which, for all i ∈ [r], x ̸= ai.

This problem is of interest because it has significantly different space complexities for regular randomized
streaming algorithms, adversarially robust streaming algorithms, and deterministic streaming algorithms.
Surprisingly, our adversarially robust algorithm when r =

√
n needs oracle access to Õ(

√
n) random bits, but

only Õ(log n) random bits of mutable memory. One of the main open problems left by our work is whether this is
necessary. Our white-box model lower bound shows that the algorithm must make at least some random decisions
that remain hidden from the adversary, and a conditional lower bound shows that, if the pseudo-deterministic
space complexity of mif(n,

√
n) is Ω̃(

√
n), then the robust algorithm actually must use Ω̃(n1/4) bits of space,

including random bits.

1.1 Our results and contributions Our results – a series of upper and lower bounds for space complexities
of mif(n, r) in various different models are given in Table 1. For a more precise description of the models and of
what guarantee exactly δ is associated with in each case, see Section 3.

Table 1: Table summarizing the upper and lower bounds on the space complexity of algorithms for mif(n, r) in
various models. δ is the worst case error – see Section 3 for what this means in the different models. ⋆: Unlike
the other models, the complexity bounds for the zero error case are defined using of the expected algorithm space
usage, not the worst-case space usage.

Model Lower bound Upper bound Source

Classical Ω(
√

log(1/δ)
log(n) + log(1/δ)

(logn)(1+log(n/r)))

if δ ≥ 1/nr

min(r, log(1/δ)
log(n/r)) Thm 4.1, Thm 4.2

Adv. Robust Ω(r
2

n + log(1− δ)) O(min(r,
(
1 + r2

n + ln 1
δ

)
· log r)) Thm 5.1 , Thm 5.2

Zero error ⋆ Ω(r
2

n) O(min(r, (1 + r2

n) log r) Thm 6.1, Thm 6.2

Deterministic Ω(
√
r + r

1+log(n/r)) O(
√
r log r + r log r

logn) Thm 7.1, Thm 7.2,

White box Ω(r/(log n)4) if δ ≤ 1/nO(logn) (see deterministic) Thm 8.1

Random start Ω(
√
r/polylog n), assuming

Pseudo-deterministic algs
require Ω(r/polylog n) bits

(see deterministic) Thm 9.1

We shall highlight some of the more novel results in what follows:

• Our adversarially robust algorithm for mif(n, r) uses its oracle-type access to random bits to keep track of
a list L of outputs that it could give. At each point in time, Algorithm 5.1 outputs the first element of L
which is still available. An adversary can choose to make the algorithm move to the next list element, but
it cannot reliably provide an element from L that it has not yet seen. For the algorithm, switching to the
next list element is easy – it just increments a counter – but keeping track of future intersections between
the L and the stream requires that it record each intersecting element; fortunately, even with an adversary
there will not be too many such intersections.

• Our deterministic algorithm for mif(n, r) uses the (missing-) pigeonhole principle multiple times, and stays
within a factor log r of the space lower bound. Algorithm 7.1 proceeds in several stages; in each stage, it

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited794

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

considers a partition of the input space into a number of different parts, and maintains a bit vector keeping
track of which part contains an element from the stream that arrived in the current stage. When there is
exactly one part left, the algorithm remembers that part, discards the bit vector, and moves on to the next
stage and a new partition of the input space. With suitably chosen partitions, the intersection of all the
remembered parts from the different stages will be nonempty and disjoint from each element of the stream.
The algorithm then reports an element from this intersection.

• Our white-box lower bound proof establishes an adversary that samples its next batch of inputs using a
distribution ν over [n] which is chosen so that the algorithm will also produce outputs distributed according
to ν. This is done using recursive applications of Brouwer’s fixed point theorem: for example, at the
base level, we can use it because the map from the distribution on [n] out of which the remaining input
elements are sampled, to the distribution of the final algorithm output, is a continuous map from the
space of distributions on [n] to itself. Note that if ν picks some element with probability ≥ 2/3, then the
algorithm will also output that element with probability ≥ 2/3, leading to a ≥ 1/3 chance that the algorithm
incorrectly emits an output that it received in the stream. We then show that, if a white box algorithm
using less space than our lower bound exists, then said algorithm will fail with ≥ 1/2O((logn)2) probability.
This follows by an inductive argument which shows that, at any point in the stream, either the algorithm
will make a mistake with significant probability, or there is a large enough chance that the next distribution
which the adversary picks will be more ”concentrated” than before, as measured by an ℓp norm for a value
of p slightly larger than 1. As distributions cannot be infinitely ”concentrated”, it follows that the algorithm
will eventually make a mistake with some low probability.

• Our conditional lower bound proof for the ”random start” model, relies on the observation that at a given
point in the stream, either the adversary is able to provide an input where it learns a lot about the initial
random bits of the algorithm, or the algorithm, because it reveals very little about its internal randomness,
also must consistently produce the same output at some point, in response to the same input. We can use
this behavior to construct a pseudo-deterministic algorithm which works on a shorter input stream.

The rest of this paper is organized as follows. Related work is described in Section 2. Detailed descriptions
of the models for streaming algorithms are given in Section 3. Sections 4 through 9 contain the main results of
this paper, organized according to the rows of Table 1; they can be read in any order.

2 Related work

The Missing Item Finding problem appears to have been first studied by [20]. While they primarily consider
the problem of finding a duplicate element in a stream of m > n elements chosen from [n], most of their results
also apply to mif(n, n − 1). For example, their multi-pass duplicate finding algorithms can easily be translated
to multiple pass algorithms to find a missing element. Their main results also hold: they find an deterministic
streaming algorithm for mif(n, n − 1) using O(log n) bits of space must make Ω(log n/ log log n) passes over the
stream, and claim that a single-pass deterministic algorithm for mif(n, n− 1) requires at least 2n − 1 states.1

A variation on the Missing Item Finding problem, that forbids repeated elements in the input stream, was
briefly studied in the first section of [18]. The paper mentions that for any k ≥ 1, on a stream encoding a subset
of [n] of size n− k, it is possible to recover the remaining k elements with a sketch of size O(k log n). The paper
[6] also briefly mentions a variant of Missing Item Finding to illustrate an exponential gap between space usage
for regular randomized and adversarially robust streaming algorithms. For the problem where the stream can list
any strict subset S of [n], and one must recover a single element not in S, they observe that there is a randomized
algorithm which uses an L0-sampling sketch to solve the problem in O((log n)2)) space; but any adversarially
robust algorithm that succeeds with high probability needs Ω(n) bits.

If we were to extend the Missing Item Finding problem to turnstile streams, then we would end up with
something opposite to the ”support-finding” streaming problem. In the support-finding problem, the algorithm
is given a turnstile stream of updates to a vector x ∈ Z

[n]; on querying the algorithm, it must return any index
i ∈ [n] where xi ̸= 0. [16] find that this problem – and the harder L0 sampling problem, where one must find a

1As Algorithm 3.1 uses exactly 2n−1 states for mif(n, n− 1), the value 2n − 1 may be a typo.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited795

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

uniformly random element of the support of x – have a space lower bound of Ω
(
min

(
n, log 1

δ (log
n

log(1/δ))
2
))

.

This is close to [14]’s L0 sampling algorithm which uses O(log 1
δ (log n)

2) bits of space.
The paper [17] studies a two player game that is similar to Missing Item Finding. Here there are two players,

a ”Dealer” and a ”Guesser”: for each of n turns, the players simultaneously do the following: the Dealer chooses
a number from [n] that it has not picked so far, and the Guesser guesses a number in [n]. The goal of the Guesser
is to maximize expected score, the number of times their number matches the Dealer’s choice; the Dealer tries to
minimize the score. The paper proves upper and lower bounds on the expected score, for a number of scenarios.
Notably, a Guesser that is limited to remember only m bits of information can do much better against a static
Dealer (that chooses a hard ordering of numbers at the start of the game) than against an adaptive Dealer (that
may choose the next number depending on the guesses made by the Guesser.) For example, m = O((log n)2)
suffices for an expected score of Ω(log n) against a static Dealer, but there exists an adaptive Dealer which limits
any Guesser’s expected score to (1+o(1)) lnm+O(log log n). The objectives of the Guesser and Dealer are similar
to those of the algorithm and adversary in Missing Item Finding: the Guesser tries to avoid, if possible, guessing
any value that the Dealer has revealed before; while the Dealer tries to ensure the Guesser chooses that the Dealer
had already sent before. However, unlike Missing Item Finding, the Dealer-Guesser game requires that numbers
dealt never be repeated and that all numbers be used, which makes it much easier to identify a number that will
be dealt in the future.

In the Mirror Game of [8], there are two players, Alice and Bob who alternately declare numbers from the set
[2n]. The players lose if they declare a number that has been declared before. Since Alice goes first, even if Bob
can only remember O(log n) bits about the history of the game, Bob still has a simple strategy that will not lose.
On the other hand, [8] prove that in order for Alice to guarantee a draw against Bob, they require Ω(n) bits of
memory. If a low probability of error is acceptable, [7] provide a randomized strategy for Alice with O((log n)3)
bits of memory that draws with high probability – but this requires oracle access to a large number of random
bits, or cryptographic assumptions. [7] and [17] ask whether there is a strategy using O(polylog n) bits of memory
and of randomness. (Again, the objective of Alice in this game is quite similar to that of the algorithm in Missing
Item Finding – but numbers are never repeated, and all numbers in [2n] are used by the end of the game.)

The problem of constructing an adversarially resilient Bloom filter is addressed by [19]. Here one seeks a an
”approximate set membership” data structure, which is initialized on a set S of size n, and thereafter answers
queries of the form ”is x ∈ S” with false positive error probability ϵ. An implementation of this structure is
adversarially resilient if the false positive probability of the last element in the sequence is still ≤ ϵ when the
adversary chooses the sets S, and adaptively chooses the sequence of t elements to query. In addition to lower and
upper bound results conditional on the existence of one-way functions, [19] find a construction for an adversarially
resilient bloom filter using O(n log 1/ϵ+ t) bits of memory.

There are many papers on the topic of adversarially robust streaming. Among them, we mention [11], who
prove that linear sketches on turnstile streams are not, in general, robust against adversaries. [5] find that
algorithms based on finding a representative random sample of the elements in a stream may need only slight
modification to work with adaptive adversaries; [4] establish general methods to convert streaming algorithms
with real valued output that are not robust against adversaries to ones which are, in exchange for an increase
in space usage. [12] improve on the space tradeoff of this result by using differential privacy. [21] improve the
space/approximation factor tradeoffs for adversarially robust algorithms on tasks like Fp estimation.

The thread of finding separations between the space needed for classical streaming and for adversarially
robust streaming has been pursued by [15], who construct a problem whose classical and adversarially robust
space complexities are exponentially separated. [6] mention that this also holds for the variant of Missing Item
Finding mentioned above, and prove a separation for the adversarially robust space complexity of graph coloring
on insertion streams.

Pseudo-deterministic streaming algorithms were first studied by [9]; the paper finds a separation between
the classical and pseudo-deterministic memory needed for the task of finding a nonzero entry of a vector given
by turnstile updates from a stream, among other problems. While it is not a streaming task, the Find1 query
problem – in which one is given a bit vector x with ≥ 1/2 density of ones, and must find an index i where xi = 1
by querying coordinates – has been found to require significantly more queries in the pseudo-deterministic case
than in the general randomized case [10].

Streaming algorithms robust against white box adversaries were considered by [1]; they rule out efficient
white-box adversarially robust algorithms for tasks like Fp moment estimation, while finding algorithms for heavy-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited796

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

hitters-type problems. They also show how to reduce white-box adversarially robust algorithms to deterministic
2-party communication protocols, where lower bounds may be easier to prove.2

The Missing Item Finding problem has connections to graph streaming problems. Just as the L0-sampling
problem has been used by streaming algorithms that find a structure in a graph, behaviors like those of the
Missing Item Finding problem appear in algorithms that look for a structure which is not in a graph. Specifically,
the graph coloring problem is equivalent to finding a small collection of cliques which cover all vertices but do
not include any edge in the graph. [3] proved that general randomized streaming algorithms can ∆ + 1 color a

graph in Õ(n) space, where n is the number of vertices. [6] showed that adversarially robust streaming algorithms

in Õ(n) space must use at least ∆2 colors for a graph of maximum degree ∆; and [2] proved that deterministic

streaming algorithms using Õ(n) space must use exp(∆Ω(1)) colors. The papers [6] and [2] are noteworthy in
particular because their lower bound proofs use essentially the same arguments as this paper’s lower bound proofs
for Missing Item Finding. (In fact, our proof of Theorem 5.1 was inspired by the [6]’s proof, while Theorem 7.1
was independently developed.) Because of this, we suspect that this paper’s white box lower bound will have an
analogue for graph coloring.

3 Preliminaries

Notation In this paper, following standard convention, [n] is the set {1, 2, . . . , n}, and
(
X
k

)
is shorthand for

the set of all subset of X of size k. For a finite set Y , we let △Y be the set of all probability distributions over
Y . For π a probability distribution over Y , we write α ∼ πk to mean that α ∈ Y k and each coordinate of α is
chosen independently at random according to π. For some x ∈ Y , the distribution 1y is value 1 on y and value 0
everywhere else; drawing a sample from this distribution will always result in y. The p-norm of a distribution ϕ

on Y is written as ∥ϕ∥p :=
(∑

i∈Y ϕ(i)p
)1/p

. The notation [t]⋆ gives the set of all sequences of elements from t, of
any length. The empty sequence is written ϵ; a sequence s ∈ [t]⋆ may be written as (s1, s2, . . . , sk), in which case

its length |s| = k. To concatenate two sequences a and b, we write “a.b”. Õ(x) means O(x polylog(x)), and Ω̃(x)
means Ω(x/ polylog(x)),

A simple algorithm While in most cases there are more efficient alternatives, this algorithm for mif(n, r)
is particularly simple:

Algorithm 3.1. A simple deterministic streaming algorithm for mif(n, r)

Initialization:

1: x← {0, . . . , 0}, a vector in {0, 1}[r]

Update(e ∈ [n]):
2: if e ≤ r then

3: xe ← 1
4: end if

Query:
5: if ∃j ∈ [r] : xj = 0 then

6: output: j
7: else

8: output: r + 1
9: end if

3.1 Models for streaming algorithms We now precisely define the models of streaming computation
considered in this paper. We classify the models by the type of randomness used, the measure of the cost of
the algorithm, the setting in which they are measured, and by any additional constraints.

Randomness A streaming algorithm for mif(n, r) has a set Σ of possible states; a possibly random initial
state sinit ∈ Σ, a possibly random transition function τ : Σ × [n] → Σ, and a possibly random output function

2Unfortunately, for Missing Item Finding, the natural 2-party communication game is avoid(n, r/2, r/2), whose deterministic

communication lower bound is almost the same as the randomized lower bound. See Section 3.2. In contrast, our deterministic and
white box lower bounds both use O(logn) players/adaptive steps.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited797

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

ω : Σ→ [n]. The models of this paper will use the following four variations:

1. Random oracle: The initial state, transition function, and output function may all be random and
correlated; i.e, there is a space Ω and random variable R on that space for which sinit is a function of
R, and τ(s, a) = f(s, a,R) for some deterministic function f : Σ× [n]×Ω→ Σ, and ω(s) = g(s,R) for some
deterministic function g : Σ×Ω→ [n]. We can view this as the algorithm having access to an oracle for all
of its operations, which provides the value of the variable R.

2. Random tape: In this case, the initial state, transition function, and output function are all random, but
they are uncorrelated; each step i of the algorithm has associated random variables Ri,τ and Ri,ω, and all
of these variables are independent of each other and of the initial state sinit. The transition function of the
algorithm is τ(s, a) = f(s, a,Ri,τ) for some f , and the output function is ω(s) = g(s,Ri,ω) for some g. If the
algorithm visits a state twice, the transitions and outputs from that state will be independent. Intuitively,
with this type of access to randomness, the algorithm can always sample fresh random bits (i.e, reading
forward on a tape full of random bits), but cannot remember them for free.

3. Random seed: Here the initial state sinit may be chosen randomly, but the transition function and output
function are deterministic. The algorithm only has access to the randomness it had when it started.

4. Deterministic: The initial state is fixed, and the transition function and output function are deterministic.

These variations are listed in decreasing order of strength; the random oracle model can emulate the random
tape model, which is stronger than the random seed model, which is stronger than the deterministic model. Note
that the random oracle model, while inconvenient to implement exactly due to the need to store all the random
bits used, can be approximated in practice, since a cryptographically secure random number generator can be
used to generate all the random bits from a small random seed.3 Of course, if modern CSPRNGs based on
functions like AES are broken, or one-way functions are proven not to exist, then the random oracle model may
prove unreasonable.

Cost measure In this paper, the space cost of an algorithm is the worst case value, over all possible streams
or adversaries, of either the maximum number of bits used by the algorithm, or the expected number of bits used
by the algorithm. The number of bits required is determined by a prefix-free encoding of the set Σ of states as
strings in {0, 1}⋆; for most models, we measure the maximum number of bits used, which is ⌈log |Σ|⌉ for the best
encoding.

Setting The cost of an algorithm, and its probability of an error, are measured against the type of inputs
that it is given.

1. Static: In the static setting, the algorithm should give an incorrect output, on being queried at the end of
the stream, with probability ≤ δ, when it is given any fixed input stream.4

2. Adversarial: In the adversarial setting, we consider the algorithm as being part of a two player game
between it and an adversary; the algorithm receives a sequence of elements e1, . . . , er from the adversary,
and after each element ei, the algorithm shall produce an output oi corresponding to the sequence e1, . . . , ei.
The adversary chooses input ei based on the transcript o0, e1, o1, e2, . . . , oi−1 that has been seen so far. The
probability that the sequence of outputs produced by the algorithm has an error should be be ≤ δ, for any
adversary.

3. White box adversarial: This is similar to the adversarial setting, except that here the adversary chooses
the next input ei as a function of the current state si of the algorithm. Here, the probability that the
algorithm should make a mistake when producing an output at the end of the stream should be ≤ δ.

3As the space cost of this seed can be shared between all tasks performed by a computer, we do not account for it in the space
cost estimates for this paper.

4This is a weaker condition than requiring that the entire sequence of intermediate outputs of the algorithm is correct; however,
our lower bounds in static and white-box adversarial settings only require this weaker condition.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited798

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Extra constraints A streaming algorithm may be required to be pseudo-deterministic; in other words, for
any input stream σ = e1, . . . , er, there should be a corresponding output oσ of the algorithm for which the
algorithm is considered to have made a mistake if it does not output oσ. In other words, the algorithm should
(with probability ≥ 1− δ) behave as if it were deterministic.

A noteworthy constraint which we do not consider in the following set of models, is the requirement that
the algorithm detects when its next output is not certain to be correct, and if so, aborts instead of producing
the wrong value. Most of the algorithms presented in this paper already have this property – the one exception,
Algorithm 4.1, can be patched to do so at the cost of an extra bit of space.

Models The models of this paper are described by the following table:

Model Setting Randomness Cost Extra conditions
Classical Static Oracle Maximum space
Robust Adversarial Oracle Maximum space
Zero error Static Oracle Expected space δ = 0
Deterministic Static Deterministic Maximum space
White box robust White-box adv. Tape Maximum space
Pseudo-deterministic Static Oracle Maximum space Pseudo-deterministic
Random start Adversarial Seed Maximum space

A brief note on the ”Zero error” model; this is a special case where the algorithm may be randomized, but
is required to always give correct output for any input stream; unlike the deterministic model, the cost of the
algorithm is the expected number of bits of space used by the algorithm. We include this model because, in many
cases, a computer may run many independent instances of a streaming algorithm, and it is often more important
that the instances do not fail than that they hold to strict space limits. In this scenario, as long as the expected
space used by each algorithm is limited, and the worst case space usage is not too extreme, by the Chernoff bound
it is unlikely that the total space used by all the instances exceeds the expected space by a significant amount.
Unlike the case for time complexity, where a Las-Vegas algorithm can be obtained by repeating a Monte-Carlo
algorithm until the solution is verifiably correct, there is no simple way to construct a single-pass, zero-error
streaming algorithm from one with nonzero error.

We use the following notation for the space complexities of these models. The δ-error space complexity of
the classical model for a task T is Sδ(T); for the robust model, SAR

δ (T), for the zero error model, S0(T); for
the deterministic model, Sdet(T); for the white box robust model, SWB

δ (T); for the pseudo-deterministic model,
SPD
δ (T), and the random start model, SRS

δ (T). The following relationships follow from the definitions of the
models:

SAR
δ (T) ≤ SRS

δ (T) SRS
δ (T) ≤ Sdet(T)

Sδ(T) ≤ SAR
δ (T) SAR

δ (T) ≤ SWB
δ (T) SWB

δ (T) ≤ Sdet(T)

SAR
δ (T) ≤ SPD

δ (T) SPD
δ (T) ≤ Sdet(T)

S0(T) ≤ Sdet(T)

For problems in communication complexity, we write R→
δ (T) for the one-way randomized δ-error communi-

cation complexity of task T , and D→(T) for the deterministic communication complexity.

3.2 Lemmas

The avoid(t, a, b) communication task This one-way communication game was introduced by [6]. In it,
Alice is given S ⊆ [t] with |S| = a, and sends a message to Bob, who must produce T ⊆ [t] with |T | = b where T
is disjoint from S.

Lemma 3.1. (From [6], Lemma 6) The public-coin δ error one-way communication complexity of avoid(t, a, b)
is at least log(1− δ) + log(

(
t
a

)
/
(
t−b
a

)
). Because
(
t

a

)
/

(
t− b

a

)
=

t!(t− a− b)!

(t− a)!(t− b)!
≥ 2

ab
t ln 2

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited799

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

we have the weaker but more convenient lower bound R→
δ (avoid(t, a, b)) ≥ ab

t ln 2 + log(1− δ)

The above lower bound is mainly useful when ab ∈ [t, t2]. For smaller inputs:

Lemma 3.2. The public-coin δ-error one-way communication complexity of avoid(t, a, b) satisfies

R→
δ (avoid(t, a, b)) ≥ min

(
log(a+ 1), log

ln(1/δ)

ln(et/a)

)
.

For the deterministic case, we have D→(avoid(t, a, b)) ≥ log(a+ 1).

Proof. Say we have a public coin one-way randomized protocol Π for avoid(t, a, b) with error δ; by the averaging

argument, there exists a fixing of the randomness of the protocol, which is correct on ≥ 1− δ of the sets in
(
[t]
a

)
.

Let Ψ be this deterministic protocol, and let m̂ be the number of distinct messages sent by Ψ. Each message
i ∈ [m̂] corresponds to some set Bi that Bob outputs on receiving the message. Let E := {e1, . . . , em} be a hitting

set for {Bi}i∈[m̂] of size m ≤ m̂; i.e, for all Bi, there is some ej ∈ Bi. Let C ⊆
(
[t]
a

)
be the set of inputs for which

Ψ is correct; we note that no inputs in C can contain all of E, because if A ⊇ E, then every Bi intersects A,
making the protocol fail. Assuming m ≤ a, we have:

δ ≥ 1− |C|/
(
t

a

)
≥ |{A ∈

(
t

a

)
: A ⊇ E}|/

(
t

a

)

=

(
t−m

a−m

)
/

(
t

a

)
=

a · (a− 1) · · · (a−m+ 1)

t · (t− 1) · · · (t−m+ 1)
≥
(
a/e

t

)m

,

where the last step is derived from the well known inequality a! ≥ (a/e)a. Rearranging gives m ≥
ln(1/δ)/ ln(et/a)). In the case where m > a, this argument does not work, because then

(
t−m
a−m

)
= 0.

Combining the two cases gives: m̂ ≥ m ≥ min(a+ 1, ln(1/δ)/ ln(et/a))). Thus R→
δ (avoid(t, a, b)) ≥ log(min(a+

1, ln(1/δ)/ ln(et/a))).
For general deterministic protocols, we reuse the analysis of randomized protocols with δ = 0, concluding

that D→(avoid(t, a, b)) ≥ log(a+ 1).

The following lemma is a simple variation of Chernoff’s and Azuma’s inequalities; for completeness, we present
a proof in Appendix A.

Lemma 3.3. (Modified Azuma’s inequality) Let X1, . . . , Xn be {0, 1} random variables, with E[Xi | X1 =
x1, . . . , Xi−1 = xi−1] ≤ p for all i and all x1, . . . , xn ∈ {0, 1}n. Then

Pr

[
n∑

i=1

Xi ≥ np(1 + δ)

]
≤
(

eδ

(1 + δ)1+δ

)np

≤ e−
δ2

2+δ
np .

A number of versions of Brouwer’s fixed point theorem have been proven; in this paper, we will use the
following, which is equivalent to Corollary 2.15 of [13].

Lemma 3.4. (Brouwer’s fixed point theorem) Every continuous map from a space homeomorphic to an n
dimensional-ball to itself has a fixed point.

4 Classical model

Theorem 4.1. For any δ ≤ 1/(2n), the space complexity for an algorithm solving mif(n, r) with error ≤ δ is

Sδ(mif(n, r)) ≥ Sdet(mif(
⌈
n
t

⌉
,
⌊
r
t

⌋
)), for t =

⌈
r logn
log 1

2δ

⌉
. If we apply the upcoming lower bound from Theorem 7.1

on the deterministic space complexity of mif, we get:

Sδ(mif(n, r)) ≥ Ω

(√
min

(
r,
log(1/δ)

log n

)
+min

(
r,
log(1/δ)

log n

)
1

1 + log(n/r)

)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited800

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Let t = min(r, ⌊log(1/δ)/ log(n/r)⌋)

Initialization:
1: Let L = {L1, . . . , Lt+1} be a fixed sequence of elements in [n]t+1 without repetitions, chosen uniformly at

random. (This can be stored explicitly using O((t + 1) log n) bits, or computed on demand as a function of
O((t+ 1) log n) oracle random bits.)

2: x← {0, . . . , 0}, a vector in {0, 1}t

Update(e ∈ [n]):
3: if ∃j ∈ [t] : Lj = e then

4: xj ← 1
5: end if

Query:
6: if ∃j ∈ [t] : xj = 0 then

7: output: Lj

8: else

9: output: Lt+1

10: end if

Proof. First, we observe that Algorithm 4.1 gives an incorrect output only when the input stream σ = (e1, . . . , er)
contains every element of L. Otherwise, either the first t elements of L are in σ, and Lt+1 isn’t – in which case
Line 9 returns Lt+1 – or there is some j ∈ [t] where Lj has not been seen in the stream so far, in which case Line
7 correctly returns Lj . Given a fixed input stream σ ∈ [n]r, the probability that Algorithm 4.1 fails is:

Pr[L ⊆ σ] =

(|σ|
t+ 1

)/(n

t+ 1

)
≤
(

r

t+ 1

)/(n

t+ 1

)
=

r(r − 1) · · · (r − t)

n(n− 1) · · · (n− t)
≤
(r
n

)t+1

Thus Pr[L ⊆ σ] is ≤ δ when t = ⌊log(1/δ)/ log(n/r)⌋, and is equal to 0 when t = r, because no set of size r can
contain a set of size r + 1.

5 Adversarially robust model

Theorem 5.1. Any algorithm which solves mif(n, r) against adaptive adversaries with total error δ requires

≥ log(
(

n
⌈r/2⌉

)
/
(
n−⌈r/2⌉
⌊r/2⌋+1

)
) + log(1− δ) bits of space; or less precisely, Ω(r2/n+ log(1− δ)).

Proof. We prove this by reducing the communication task avoid(n, ⌈r/2⌉, ⌊r/2⌋+1) (see Section 3) to mif(n, r).
Say Alice is given the set A ⊆ [n] of size ⌈r/2⌉. They instantiate an instance X of the given algorithm for

mif(n, r), and runs it on the partial stream of length ⌈r/2⌉ containing the elements of A in some arbitrary order.
Alice then sends the state of X to Bob; since this is a public coin protocol, all randomness can be shared for free.
Bob then runs the following adversary against X ; it queries X for an element b0, and then provides that element
back to X , repeating this process ⌊r/2⌋ + 1 times to recover elements b0, b1, . . . , b⌊r/2⌋. The instance will fail to
give correct answers to this adversary with total probability ≤ δ. If it succeeds, then by the definition of the
Missing Item Finding problem, b0 /∈ A, b1 /∈ {b1} ∪ A, and so on; thus Bob can report B := {b0, . . . , b⌊r/2⌋+1} as
a set of ⌊r/2⌋+ 1 elements which are disjoint from A.

This avoid protocol implementation uses the same number of bits of communication as X does of space. By
Lemma 3.1, it follows X needs:

≥ log

((
n

⌈r/2⌉

)
/

(
n− ⌊r/2⌋ − 1

⌈r/2⌉

))
+ log(1− δ)

≥ ⌈r/2⌉(⌊r/2⌋+ 1)

n ln 2
+ log(1− δ) ≥ r2

4n ln 2
+ log(1− δ) ,

bits of space.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited802

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We observe that after i−1 elements have been received (and up to i distinct elements emitted), the probability
that the ith element chosen by the adversary will be newly stored in J will be ≤ 2 r

n , no matter what the earlier
elements were or what the adversary picks. If r ≥ n/2, this is immediate. Otherwise, write Ei−1 for the set
containing the first i − 1 elements of the stream, ei for the ith element, and let ci be the value of the variable c
as of Line 7. Let Xi denote the indicator random variable for the event that ei was not in J before, but has been
added now.

Because the adversary has only been given outputs deriving from L≤ci := (L1, . . . , Lci), if we condition on
the random variable L≤ci , then the element ei and set Ei−1 are independent of L>ci := {Lci+1, . . . , Lr}. Given
Ei−1, the values X1, . . . , Xi−1 determine whether or not each element of Ei−1 is in L>ci . Then, conditioning on
L≤ci , ei, Ei−1, and X1, . . . , Xi−1, we have that L>ci \Ei−1 is a set of size r−ci−|L>ci ∩Ei−1| chosen uniformly at
random from [n] \L≤ci \Ei−1. Thus, if ei /∈ L≤ci ∪Ei−1, the probability that Xi = 1 is precisely the probability
that ei is contained in L>ci \ Ei−1, so:

Pr
[
Xi = 1 | (Xj)

i−1
j=1, ei, Ei−1, L≤ci , {ei /∈ L≤ci ∪ Ei−1}

]
=

r − ci − |L>ci ∩ Ei−1|
n− ci − |Ei−1 \ L≤ci |

≤ r − ci
n− ci − r

≤ r

n− r
≤ 2r

n
.

On the other hand, the event ei ∈ L≤ci ∪ Ei−1, implies Xi = 0 always. Together, these imply Pr[Xi = 1 |
(Xj)

i−1
j=1] ≤ 2r/n.
Then applying the (modified, see Lemma 3.3) Azuma’s inequality bound, we find that with z :=

max{1, 3n
2r2 ln

1
δ }:

Pr[
∑

i∈[r]

Xi ≤
2r2

n
(1 + z)] ≤ e−

z
2+z

z 2r2

n

≤ e−z 2r2

3n since z ≥ 1

≤ e− ln 1
δ = δ . since z ≥ 3n

2r2
ln

1

δ

This implies that the probability that |J | exceeds 2r2/n+3 ln(1/δ) will be ≤ δ. Consequently, our bound for the
total space usage of the algorithm is:

O(log r) +O(min(r,

(
r2

n
+ ln

1

δ

)
log r))

= O(min(r,

(
1 +

r2

n
+ ln

1

δ

)
· log r))

While it is possible to reduce the space usage of Algorithm 5.1 by removing all elements from the set J that
are less or equal than c, this only changes the constant factor.

6 Zero error model

Theorem 6.1. All algorithms solving mif(n, r) with zero error on any stream require Ω(r2/n) bits of space, in
expectation over the randomness of the algorithm.

Proof. First, we prove that if there is a zero-error algorithm Φ for mif(n, r) using exactly s bits, in expectation,
then there is a communication protocol for avoid(n, ⌈r/2⌉, ⌊r/2⌋ + 1) using prefix-encoded messages with an
expected length of s bits. The construction is the same as for Theorem 5.1. Alice, on being given a set A ⊆ [n]
of size ⌈r/2⌉, initializes an instance X of Φ, and runs it on an input stream α of length ⌈r/2⌉ containing each
element of A in some arbitrary order. Any random bits used by X are shared publicly with Bob. They send the
encoding of X’s state to Bob, who queries X to find an element b0 /∈ α, updates X with b0, queries it to find
b1 /∈ α ∪ {b0}, and so on until Bob has recovered B = {b0, . . . , b⌊r/2⌋}. Because the algorithm is guaranteed to

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited804

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

never fail on any input stream, it must in particular succeed on Bob’s adaptively chosen continuation of α. This
ensures that B ∩A = ∅ holds with probability 1.

Next, we prove that any zero error randomized communication protocol Π for avoid(t, a, b) requires
≥ ab/(t ln 2) bits in expectation. Following the argument from Lemma 6 of [6], we observe that there must
exist a fixing of the public randomness of Π for which the expected number of bits used when inputs A are drawn
uniformly at random from

(
[t]
a

)
, is at least as large as when Π is run unmodified. Let Υ be the deterministic

protocol with this property, and let M be the set of all messages sent by Υ. Each message m ∈ M has a length
|m|, probability (over the random choice of A) pm of being sent, and makes Bob output the set Bm. For all
m ∈M , we have:

pm = Pr[m is sent] ≤ Pr[Bm is a correct output] = Pr[A ∩Bm = ∅] ≤
(
t− a

b

)
/

(
t

a

)
≤ 2−

ab
t ln 2 .

Let Υ(A) ∈M be the message sent by Υ for a given value of A. Then the entropy

H(Υ(A)) =
∑

m∈M

pm log
1

pm
= E

A∈([t]a)
log

1

pΥ(A)
≥ E

A∈([t]a)
ab

t ln 2
=

ab

t ln 2
.

By the source coding theorem,

E
A∈([t]a)

E|Υ(A)| ≥ H(Υ(A)) ≥ ab

t ln 2
.

Applying the above lower bound to the task avoid(n, ⌈r/2⌉, ⌊r/2 + 1⌋), we conclude that Φ requires ≥ r2

4n ln 2
bits of space in expectation.

Theorem 6.2. There is an algorithm solving mif(n, r) with zero error against adaptive adversaries, which uses
O((1 + r2/n) log r) bits of space, in expectation over the randomness of the algorithm.

Proof. We use a slight variation of Algorithm 5.1, in which internal parameter t is instead set to r. This ensures
that the algorithm will never abort; the proof of Theorem 5.2 has established that Algorithm 5.1 will then always
give a correct output for the mif(n, r) task.

The counter c can be encoded in binary using at most ⌈log(r + 1)⌉ bits. We encode the set J by concatenating
the binary value of |J |, followed by the binary values of the indices i1, . . . , i|J| in [r] for which Lik is equal to
the kth smallest element of J . (As both the encodings of c and J are prefix codes, so too is the encoding of the
algorithm’s state formed by concatenating them.) The total space S used by the algorithm (excluding random
bits) is then:

S = ⌈log(r + 1)⌉+ ⌈log r⌉(1 + |J |) .

As in the proof of Theorem 5.2, let Xi be the indicator random variable for the event that the ith element that the
adversary chooses for the stream is stored in J ; we showed that for all i ∈ [r], Pr[Xi = 1 | Xi−1, . . . , X1] ≤ r−1

n ,
which implies E[Xi] ≤ r−1

n . By linearity of expectation,

ES = ⌈log(r + 1)⌉+ ⌈log r⌉


1 + E

∑

i∈[r]

Xi




≤ ⌈log(r + 1)⌉+ ⌈log r⌉
(
1 +

r(r − 1)

n

)
= O((1 +

r2

n
) log r) .

7 Deterministic model

7.1 Lower bound: an embedded instance of Avoid

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited805

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We now determine values of t and q satisfying Eq. 7.2. We can set

q = ⌈1 + log(m/r)⌉ and t =

⌊
1

q

(
r − m

2q

)⌋

We must have m ≥ r + 1, as otherwise |Fϵ| ≤ m ≤ r, in which case we could easily make the algorithm give an
incorrect output by running it on a stream γ ∈ [n]r which contains all elements of Fϵ. Thus log(m/r) ≥ 0, and
hence q ≥ 1, making t well defined. Since m = min(|Σ|, n), we are also guaranteed log |Σ| ≥ log(r+1). Combining
this with Eq. 7.3 gives:

log |Σ| ≥ max

(
log(r + 1),

1

2 ln 2

⌊
1

q

(
r − m

2q

)⌋)

≥ max

(
1,

1

2 ln 2

⌊
r

2q

⌋)
since 2q ≥ 2m/r and r ≥ 1

≥ 1

1 + 2 ln 2
· r
2q

since min(1, (z − 1)/y) ≥ z

1 + y

≥ r

10 + 5 log(m/r)
. since 1 + 2 ln 2 ≤ 5/2(7.4)

As m = min(|Σ|, n), we have m ≤ |Σ|, so

log |Σ| ≥ r/5

2 + log |Σ| − log r
=⇒ (log |Σ|)2 + (2− log r) log |Σ| − r/5 ≥ 0 .

Solving the quadratic inequality gives:

log |Σ| ≥
√

r

5
+

(
1− log(r)

2

)2

−
(
1− log(r)

2

)
≥
{√

r/5 if r ≥ 4

0 otherwise

As log |Σ| ≥ log(r+ 1) ≥
√

r/5 also holds for r ≤ 4, it follows that log |Σ| ≥
√
r/5 for all values of r. Combining

this result, Eq. 7.4, and the inequality m ≤ n, we conclude:

log |Σ| ≥ max

(√
r

5
,

r

10 + 5 log(n/r)

)
= Ω

(√
r +

r

1 + log(n/r)

)
.

Note: instead of associating ”forward” looking sets of outputs Fs with each state s ∈ Σ, we could instead use
”backward” looking states Bs defined (roughly) as [n] \ {i : ∃σ leading to s with i ∈ σ}.

7.2 Upper bound: the iterated pigeonhole algorithm

Theorem 7.2. Algorithm 7.1 is a deterministic algorithm that solves mif(n, r) using O(
√
r log r+ r log r

logn) bits of
space.

Algorithm 7.1. A deterministic algorithm for mif(n, r)

Let s, t be integers satisfying st ≤ n, and t(s− 1) ≥ r.

Initialization:
1: x← (0, . . . , 0) is a vector in {0, 1}s.
2: (ℓ, a)← (1, 0) is an element of

⋃
j∈[t]{j} × {0, . . . , sj − 1}

Update(e ∈ [n]):
3: Let i←

(⌊
(e− 1)/sℓ−1

⌋
mod s

)
+ 1

4: xi ← 1

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited807

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. Proof of Theorem 8.1.
We can safely assume that r ≥ log n+ 1, as for any r = O((log n)3) the claimed lower bound is trivial.
Let ℓ = ⌈log n+ 1⌉, t =

⌊
r
ℓ

⌋
, and let r̂ = tℓ. We can use a protocol for mif(n, r) to solve mif(n, r̂) instead,

by padding the start of the stream with a fixed sequence of r − r̂ arbitrary inputs. Let A be this new algorithm.
Let Σ be the set of all states of A, and let τ : Σ × [n] → Σ be the randomized transition function between

states. For each state s ∈ Σ, let ωs be the distribution over [n] from which the final output value is drawn when
the final state of the algorithm is s. (If s can never occur at the end of the stream, we let ωs be arbitrary.) To
each pair (s, i) ∈ Σ× {0, . . . , ℓ}, we will associate a distribution νs,i over [n]. These distributions are recursively
defined; if i = ℓ, we let νs,ℓ = ωs, i.e., the output distribution for state s. For i < ℓ, define fs,i : △[n]→△[n] as:

f(ϕ) = Ex∼ϕtEs′∼τ(s,x)νs′,i+1 =
∑

x∈[n]t



∏

i∈[t]

ϕ(xi)



∑

s′∈Σ

Pr[τ(s, x) = s′]νs′,i+1(8.6)

Because this function is continuous, and △[n] is homeomorphic to an (n − 1)-dimensional ball, we can apply
Brouwer’s fixed point theorem (Lemma 3.4) to find a distribution νs,i ∈ △[n] satisfying νs,i = fs,i(νs,i).

With the distributions νs,i as defined above, we can define an adversary which, we can prove, will trick A into
outputting an element that was present in the stream with probability ≥ 1

(16n)2 log n+7 . The adversary proceeds

in ℓ rounds: for each i ∈ {0, . . . , ℓ− 1}, they identify the current state si of the algorithm, sample α ∼ νsi,i, and
send α to A.

Let p = 1+1/ log n; the quantity ∥νs,i∥pp is a measure of the concentration of the output distribution associated

with s and i. Assume for sake of contradiction that log |Σ| ≤ t
29(logn)2 − 2 log n − 6. Then we shall prove by

induction, for all i ∈ {0, . . . , ℓ}, the statement P (i) that for all s ∈ Σ, if ∥νs,i∥pp ≥ 2i(p−1)/np−1, then the

probability that A will give an incorrect answer when the remaining (ℓ− i)t elements of the stream are provided
by the adversary is ≥ 1/(16n)2(ℓ−i)+3). The base case of the induction, at i = ℓ, holds vacuously, because
∥νs,i∥pp ≥ 2i(p−1)/np−1 ≥ 2(⌈logn⌉+1)(p−1)/np−1 ≥ 2p−1 > 1 is never true.

Now, for the induction step. Assume P (i+1) holds; we would like to prove P (i) is true. Assume the current
state s of the algorithm satisfies ∥νs,i∥pp ≥ 2i(p−1)/np−1. The adversary samples x ∼ νts,i and sends it to the

algorithm, which transitions to the state s′ ∼ τ(s, x). If it is the case that

Pr[ν too concentrated] := Pr[∥νs′,i+1∥pp ≥ 2(i+1)(p−1)/np−1] ≥ 1

27n2
,(8.7)

then, by applying P (i+ 1), it follows:

Pr[A fails] ≥ Pr[A fails | ν too concentrated] Pr [ν too concentrated]

≥ 1

(16n)2(ℓ−i−1)+3
· 1

27n2
≥ 1

(16n)2(ℓ−i)+3

It remains to prove P (i+ 1) assuming Eq. 8.7 does not hold. If that is the case, let M : [n]t × Ω→ △[n] be the
randomized map in which M(x,R) = νs′,i+1 where s

′ is randomly chosen according to τ(s, x); the random variable
R encapsulates the randomness of τ . Note that Ex∼νt

s,i,R
M(x,R) = νs,i, by the definition of νs,i. Applying Lemma

8.1 to M , νs,i, p, D = 2, and δ = 1/n3 we observe that since we have assumed that |Σ| ≥ log | range(M)| is smaller
than the Lemma guarantees, and Ex∼νt

s,i
EM(x) = νs,i holds, it must be that Eq. 8.5 is incorrect. Thus:

Pr
x∼νt

[
∥M(x,R)∥pp ≤ 2p−1∥νs,i∥pp ∧ (∀j ∈ [t] : M(x,R)(xj) ≤

1

n3
)

]
≤ 1− 1

26n2

and since Eq. 8.7 does not hold, we have

Pr
x∼νt

[
∥νs′,i+1∥pp ≤ 2p−1∥νs,i∥pp

]
≥ Pr

x∼νt

[
∥νs′,i+1∥pp ≤ 2(i+1)(p−1)/np−1

]
≥ 1− 1

27n2

which implies:

Pr
x∼νt,s′∼τ(s,x)

[
∃j ∈ [t] : νs′,i+1(xj) ≥

1

n3

]
≥ 1

27n2
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited810

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The definition of νs′,i+1 ensures that νs′,i+1 is precisely the distribution of output values if the algorithm and
adversary are run for t(ℓ − i − 1) steps starting from state s′. The probability that the algorithm fails because
the final output overlaps with x is then

Pr
x∼νt

s,i,s
′∼τ(s,x),y∼νs′,i+1

[∃j ∈ [t] : xj = y] = Ex∼νt
s,i,s

′∼τ(s,x) Pr
y∼νs′,i+1

[∃j ∈ [t] : xj = y]

= Ex∼νt
s,i,s

′∼τ(s,x)

∑

j∈[t]

νs′,i+1(xj)

≥ Ex∼νt
s,i,s

′∼τ(s,x) max
j∈[t]

νs′,i+1(xj)

≥ 1

n3
Pr

x∼νt
s,i,s

′∼τ(s,x)

[
max
j∈[t]

νs′,i+1(xj) ≥
1

n3

]

≥ 1

n3
· 1

27n2
=

1

27n5

Thus, the failure probability of the algorithm as of (s, i) is ≥ 1/(27n5) ≥ 1/(16n)5 ≥ 1/(16n)2(ℓ−i)+3; this
completes the proof of P (i).

With the proof by induction complete, the statement P (0) implies that for any s ∈ Σ, because ∥νs,0∥pp ≥ 1
np−1

always holds, the probability that A gives an incorrect answer when run against the adversary on a stream of
length tℓ = r̂ is ≥ 1/(16n)2ℓ+3 ≥ 1

(16n)2 log n+7 . This contradicts the given fact that A’s error is less than this, so

the assumption that log |Σ| ≤ t
29(logn)2 − 2 log n− 6 must be incorrect; and instead we must have

log |Σ| ≥ t

29(log n)2
− 2 log n− 6 ≥ ⌊r/⌈log n+ 1⌉⌋

29(log n)2
− 2 log n− 6

= Ω(r/(log n)3 − log n) .(8.8)

To handle the case of small r, we note that a white-box algorithm B for mif(n, r) with error δ ≤
1/ (16n)

2 logn+7
can be used to solve the avoid(n, r, 1) communication task. Here, Alice, on being given a set

A ⊆
(
[n]
r

)
, runs an instance of B on a sequence containing the elements of A in some order; she then sends the

state of the instance to Bob, who queries the instance for an output, and reports that value. This communication
protocol has the same error probability as B; by Lemma 3.2, it requires

≥ min

(
log(r + 1), log

log 1/δ

log en/r

)
≥ log(min(r + 1, 2 log n+ 7)) ≥ 1

bits of communication; thus B requires at least one bit of state. Since max(1, z/a− b) ≥ z/(a(1 + b)), this lets us
find a more convenient corollary for Eq. 8.8; that log |Σ| = Ω(r/(log n)4).

We will now prove Lemma 8.1. It relies on the following technical claim about probability distributions;
which roughly implies that when a distribution is split into a small number of regions on which it is approximately
uniform, a specific sum of powers of the weight and density of each region has a lower bound.

Lemma 8.2. Define mϕ(K) to be the minimum value of distribution ϕ on the set K, so mϕ(K) := mini∈K ϕ(i).
Let p > 1, β ∈ (0, 1], and n ≥ 2. For any distribution ν on [n], there exists a collection of disjoint sets

{Hi}i∈J for some |J | ≤ 3
β log n where:

∑

i∈J

(mν(Hi))
p−1 (ν(Hi))

p

∥ν∥pp
≥ (1− 1

n)
p

2β(2p−1)|J |(p−1)p/(2p−1)n(p−1)2/(2p−1)
(8.9)

≥ (1− 1
n)

p

2β(2p−1)|J |(p−1)n(p−1)2
.(8.10)

Furthermore, we have maxi∈J mν(Hi) ≥ 1/(n2β), and mini∈J mν(Hi) ≥ 1/n2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited811

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. (Of Lemma 8.1.) In order to avoid awkward expressions like M(x,R)(i), we define µ̃x := M(x,R). We
also use the notation a+ := max(0, a). Throughout the proof we shall assume n ≥ 2, as in the case n = 1 it is
easy to prove that no such map M exists.

This proof has two main stages. The first establishes that, for a small fraction of vectors x drawn from
νt, the distribution µ̃x will probably have significant mass in the same area as νt, while not being much more
concentrated (according to ∥·∥pp) than µ̃x, and avoids x. The second part will show that such distributions can

avoid only small fraction of vectors sampled from νt; together, these stages imply the range of M must be large.
Given a real random variable W , with EW ≥ y, and 0 ≤W ≤ ηy, we have

Pr[W ≥ αy] = 1− Pr[W ≤ αy] ≥ 1− Pr[(ηy −W) ≥ (η − α)y] ≥ 1− ηy − y

(η − α)y
≥ 1− α

η
.(8.11)

Let β ∈ (0, 1] be a parameter chosen later. Apply Lemma 8.2 to ν with this β and the given p, producing disjoint
sets {Hi}i∈J . For any i ∈ J , we have EX∼νt,Rµ̃X = ν(Hi). Now applying Jensen’s inequality to convex functions
of the form f(a) = ((a− b)+)p gives:

EX∼νt,R((µ̃X(Hi)− δ|Hi|)+)p ≥ ((ν(Hi)− δ|Hi|)+)p which implies

EX∼νt,R[
∑

i∈J

mν(Hi)
p−1((µ̃X(Hi)− δ|Hi|)+)p] ≥

∑

i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p .

Next, for any x ∈ [n]t,
∑

i∈J

mν(Hi)
p−1((µ̃x(Hi)− δ|Hi|)+)p) ≤ max

i∈J
mν(Hi)

p−1 ≤ (4n)p
∑

i∈J

mν(Hi)
p−1(ν(Hi)− δ|Hi|)p) ,

because as noted in Lemma 8.2, for the i maximizing mν(Hi), we have ν(Hi) ≥ |Hi| 1
n2β
≥ |Hi|

2n , so ν(Hi)−δ|Hi| ≥
|Hi|(1

2n − 1
n3) ≥ 1/4n. Note that (4n)p ≤ 42(n1+1/ logn) = 25n. Applying Eq. 8.11 thus yields:

Pr
X∼νt,R




∑

i∈J

mν(Hi)
p−1((µ̃X(Hi)− δ|Hi|)+)p ≥

(
1− 1

n

)∑

i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p


 ≥

1

n
· 1

(4n)p
≥ 1

25n2
.

Intersecting this event with that of Eq. 8.5 implies the probability that all three of the following conditions hold
is ≥ 1

26n2 :

(a) : ∥µ̃X∥pp ≤ Dp−1∥ν∥pp
(b) : ∀j ∈ [t] : µ̃X(Xj) ≤ δ

(c) :
∑

i∈J

mν(Hi)
p−1((µ̃X(Hi)− δ|Hi|)+)p ≥ (1− 1

n
)
∑

i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p .

By the averaging argument, there must exist a value R′ ∈ Ω for which, when R = R′, the above three
conditions hold with at least the same probability. In other words, when replacing µ̃X with µX := M(x,R′),
the conditions still holds with probability ≥ 1/26n2. Now let G := {µx : x ∈ [n]t satisfies (a),(c)} and define
Lπ := {i ∈ [n] : π(i) ≤ δ}. Therefore,

1

26n2
≤ Pr

X∼νt
[µX ∈ G ∧ (∀j ∈ [t] : µX(Xj) ≤ δ)]

=
∑

y∈G

Pr
X∼νt

[µX = µy ∧ (∀j ∈ [t] : µX(Xj) ≤ δ)]

≤
∑

y∈G

Pr
X∼νt

[(∀j ∈ [t] : µy(Xj) ≤ δ)]

=
∑

y∈G

∏

j∈[t]

Pr
Xj∼ν

[µy(Xj) ≤ δ] =
∑

y∈G

(ν(Lµy
))t(8.12)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited812

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We will now prove an upper bound on ν(Lµy
) for any given y ∈ G. Observe that for any sequence a1, . . . , aℓ of

nonnegative real numbers,
∑ℓ

i=1 a
p
i ≥ (

∑ℓ
i=1 ai)

p/ℓp−1; this follows from Hölder’s inequality. As the sets Hi \Lµy

are disjoint,

∥µy∥pp =
∑

i∈[n]

µy(i)
p ≥

∑

i∈J

µy(Hi \ Lµy
)p

|Hi \ Lµy
|p−1

.

The definition of Lµy
implies µy(Hi \ Lµy

) ≥ max(0, µy(Hi) − δ|Hi|). Also, because the minimum value of ν on
Hi \ Lµy

is at least mν(Hi), we have

|Hi \ Lµy
| ≤ ν(Hi \ Lµy

)

mν(Hi)
≤ 1− ν(Lµy

)

mν(Hi)

Therefore,

∥µy∥pp ≥
∑

i∈J

((µy(Hi)− δ|Hi|)+)p
(1− ν(Lµy

))p−1/mν(Hi)p−1

=
1

(1− ν(Lµy
))p−1

∑

i∈J

mν(Hi)
p−1((µy(Hi)− δ|Hi|)+)p

≥ 1− 1/n

(1− ν(Lµy
))p−1

∑

i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p by condition (c)

≥ 1− 1/n

(1− ν(Lµy
))p−1

∑

i∈J

mν(Hi)
p−1

((
1− 1

n

)
ν(Hi)

)p

The last step uses the fact that for all i ∈ J , δ|Hi| ≤ 1
2n3 |Hi| ≤ 1

n |Hi|minj∈
⋃

Hi
ν(j) ≤ 1

nν(Hi). We now apply
condition (a), and divide both sides by ∥ν∥pp:

Dp−1 ≥
∥µy∥pp
∥ν∥pp

≥ (1− 1/n)p+1

(1− ν(Lµy
))p−1

∑

i∈J

mν(Hi)
p−1 (ν(Hi))

p

∥ν∥pp

≥ (1− 1/n)p+1

(1− ν(Lµy
))p−1

(1− 1/n)p

2β(2p−1)(2β log n)(p−1)n(p−1)2
. by Lemma 8.2

Rearranging this inequality to isolate ν(Lµy
) reveals:

ν(Lµy
) ≤ 1− 1

D

(
(1− 1/n)(2p−1)/(p−1)

2β(2p−1)/(p−1)(2β log n)n(p−1)

)
(8.13)

The right hand side is close to its minimum when β = p− 1 = 1/ log n: Thus:

ν(Lµy
) ≤ 1− 1

D

(
(1− 1/n)2+logn

2(2+logn)/ logn(2(log n)2)2logn/ logn

)

≤ 1− 1

D

(
(1− 1/n)2+logn

16 · 22/ logn

)
1

(log n)2

≤ 1− 1

29D(log n)2

since (1 − 1/n)2+logn/(16 · 22/ logn) is increasing in n, and when evaluated at n = 2 gives 2−9. Now we are in a
position to simplify Eq. 8.12; with this upper bound.

1

26n2
≤
∑

y∈G

(
1− 1

29D(log n)2

)t

= |G|
(
1− 1

29D(log n)2

)t

≤ |G| exp
(
− t

29D(log n)2

)
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited813

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Since G is a subset of range(M), we have log | range(M)| ≥ log |G|; rearranging the above to isolate |G| gives:

log | range(M)| ≥ log |G| ≥ t

29(ln 2)D(log n)2
− log(26n2)

≥ t

29D(log n)2
− 2 log(n)− 6 .

Finally, we prove Lemma 8.2:

Proof. For all i ∈ Z≥0, let wi := 2iβ/n2, and letHi := {j ∈ [n] : ν(j) ∈ [wi, wi+1). Define J := {i ∈ Z≥0 : Hi ̸= ∅}.
We first prove some basic properties of J and the Hi.

• If i ≥
⌊
3
β log n

⌋
, then wi ≥ 2⌊ 3

β
logn⌋β/n2 > 2

2
β
(logn)β/n2 ≥ 1; since maxj∈[n] ν(j) ≤ 1, it follows such Hi

must be empty. Thus J ⊆ {0, . . . ,
⌊
3
β log n

⌋
− 1}, and hence |J | ≤ 3

β log n.

• Because minj∈[n] ν(j) ≥ 1/n, we are guaranteed that for some i with wi ≥ 1/(n2β), Hi ̸= ∅. Thus

maxi∈J mν(Hi) ≥ 1/(n2β). Similarly, mini∈J mν(Hi) ≥ mini∈J wi ≥ 1/n2.

Now, to prove the main part of the result, Eq. 8.10. Let K = [n] \⋃i∈J Hi = {j ∈ [n] : ν(j) < 1/n2}. First,
we observe that the contribution of the j ∈ K to ∥ν∥pp is small and can be easily be accounted for:

n
1

np
≤
∑

j∈[n]

ν(j)p =
∑

j∈
⋃

i∈J Hi

ν(j)p +
∑

j∈K

ν(j)p ≤
∑

j∈
⋃

i∈J Hi

ν(j)p + n

(
1

n2

)p

≤
∑

j∈
⋃

i∈J Hi

ν(j)p +
1

np

∑

j∈[n]

ν(j)p .

This implies ∥ν∥pp ≤ (1− 1/np)−1
∑

j∈
⋃

i∈J Hi
ν(j)p ≤ (1− 1/n)−1

∑
j∈

⋃
i∈J Hi

ν(j)p.

Now, writing ni = |Hi|, we have niwi ≤ ν(Hi) ≥ 2βniwi, and so:

∑

i∈J

(mν(Hi))
p−1 (ν(Hi))

p

∥ν∥pp
≥ (1− 1/n)

∑
i∈J wp−1

i (wini)
p

∑
i∈J ni(2βwi)p

=
1− 1/n

2βp

∑
i∈J w2p−1

i np
i∑

i∈J wp
i ni

.(8.14)

We shall later need the following inequality:

∑

i∈J

niwi ≥ 2−β
∑

j∈
⋃

i∈J Hi

ν(j) ≥ 2−β(
∑

j∈[n]

ν(j)−
∑

j∈K

ν(j)) ≥ 2−β

(
1− 1

n

)
.(8.15)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited814

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

With this and properties of the ni, we can lower bound Eq. 8.14 by using Hölder’s inequality several times:

∑

i∈J

wp
i ni =

∑

i∈J

(
w2p−1

i np
i

) p
2p−1

(
n
−(p−1)
i

) p−1
2p−1

≤
(
∑

i∈J

w2p−1
i np

i

) p
2p−1

(
∑

i∈J

n
−(p−1)
i

) p−1
2p−1

by Hölder

≤
(
∑

i∈J

w2p−1
i np

i

) p
2p−1

|J | p−1
2p−1 since ni ≥ 1(8.16)

∑

i∈J

wini =
∑

i∈J

(
w2p−1

i np
i

) 1
2p−1

(
n
1/2
i

) 2p−2
2p−1

≤
(
∑

i∈J

w2p−1
i np

i

) 1
2p−1

(
∑

i∈J

n
1/2
i

) 2p−2
2p−1

by Hölder

≤
(
∑

i∈J

w2p−1
i np

i

) 1
2p−1



(
∑

i∈J

ni

)1/2

|J |1/2



2p−2
2p−1

by Cauchy-Schwarz

≤
(
∑

i∈J

w2p−1
i np

i

) 1
2p−1

n
p−1
2p−1 |J | p−1

2p−1 since
∑

i∈J

ni ≤ n.(8.17)

Multiplying Eq. 8.16 by Eq. 8.17 raised to the (p− 1)st power gives:

(
∑

i∈J

wp
i ni

)(
∑

i∈J

wini

)p−1

≤
(
∑

i∈J

w2p−1
i np

i

)
|J | p−1

2p−1 (n
p−1
2p−1)p−1(|J | p−1

2p−1)p−1 ,

which implies

∑
i∈J w2p−1

i np
i∑

i∈J wp
i ni

≥
(∑

i∈J wini

)p−1

|J |
(p−1)p
2p−1 n

(p−1)2

2p−1

≥ (1− 1
n)

p−1

2β(p−1)|J |
(p−1)p
2p−1 n

(p−1)2

2p−1

.

Substituting this into Eq. 8.14 gives:

∑

i∈J

(mν(Hi))
p−1 (ν(Hi))

p

∥ν∥pp
≥ (1− 1

n)
p

2β(2p−1)|J |
(p−1)p
2p−1 n

(p−1)2

2p−1

.

9 Random start and pseudo-deterministic models

Theorem 9.1. The space needed for an algorithm in the random-start model to solve mif(n, r) against adaptive
adversaries, with error ≤ δ ≤ 1

6 , satisfies s ≥ SPD
1/3 (n, ⌊r/(2s+ 2)⌋).

This theorem implies that if it is the case that SPD
1/3 (mif(n, r)) = Ω(rc/ polylog(n)) for some constant c > 0,

then it follows that SRS
1/6(mif(n, r)) = Ω(rc/(1+c)/ polylog n). Specifically, if s = SRS

1/6(mif(n, r)), then Theorem

9.1 would imply s ≥ SPD
1/3 (n, ⌊r/(2s+ 2)⌋) = Ω((r/s)c/ polylog(n)); multiplying both sides by sc and raising them

to the 1/(c+ 1)st power gives s ≥ Ω(rc/(1+c)/ polylog(n)).

Proof. Let Σ be the set of all states of the random-start algorithm A, and let D be the distribution of the initial
states of the algorithm. Write B ∼ A to indicate that B is an instance of A, i.e., with initial state drawn from

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited815

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

distribution D. Let ℓ = 2⌈log(|Σ|)⌉+ 2, and let t = ⌊r/ℓ⌋. For any partial stream σ of elements, and instance B
of A, we let B(σ) be the sequence of |σ| outputs made by B after it processes each element in σ.

Consider an adversary E which does the following. Given σ the stream it has already passed to the algorithm,
and ω the sequence of outputs that A produced in response to σ, the adversary checks if there exists any x ∈ [n]t

for which

∀y ∈ [n]t : Pr
B∼A

[B(σ.x) = ω.y | B(σ) = ω] ≤ 2

3
.(9.18)

If so, it sends x to A, appends x to σ and the returned t elements to ω, and repeats the process. If no such x
exists, then the adversary identifies the z ∈ [n]t which maximizes:

Pr
B∼A

[B(σ.z) is incorrect | B(σ) = ω] .(9.19)

and sends it to the algorithm. (The adversary gives up if either the algorithm manages to give a valid output
after z, or after it has sent ℓ sets of t elements to the algorithm.)

We claim that if log |Σ| < SPD
1/3 (mif(n, t)), then E makes the algorithm fail with probability ≥ 1/6. There

are two ways that E can be forced to give up: if it tries more than ℓ− 1 times to find a point where there is no
x ∈ [n]t satisfying Eq. 9.18, or if the z it sends fails to produce an error.

Assume that the adversary finds a value of x satisfying Eq. 9.18, for each of the ℓ tries it makes. Let
x1, . . . , xℓ ∈ [n]t be these values, and let y1, . . . , yℓ ∈ [n]t be the outputs of the algorithm. By applying Eq. 9.18
repeatedly, we have:

Pr
B∼A

[B(x1.xℓ) = y1.yℓ] = Pr
B∼A

[B(x1.xℓ) = y1.yℓ | B(x1.xℓ−1) = y1.yℓ−1]

· Pr
B∼A

[B(x1.xℓ−1) = y1.yℓ−1 | B(x1.xℓ−2) = y1.yℓ−2]

· Pr
B∼A

[B(x1) = y1]

≤ (2/3)ℓ .

Let C ⊆ Σ be the set of initial states of the algorithm for which the adversary finds a sequence satisfying Eq. 9.18,
ℓ times. Because the algorithm is deterministic after the initial state is chosen, each s ∈ C has a corresponding
transcript (σs, ωs) ∈ [n]tℓ × [n]tℓ that occurs when E is run against an instance of A started from s. Therefore,

Pr
s∼D

[s ∈ C] =
∑

s∈C

Pr
s′∼cD

[s = s′] ≤
∑

s∈C

Pr
B∼A

[B(σs) = ωs]

≤ |Σ|
(
2

3

)ℓ

≤ 2log |Σ|

(
2

3

)2 log(|Σ|)+2

≤
(
2

3

)2

≤ 1

2

Thus, the chance that E fails to find a point where no x satisfying Eq. 9.18 exists is ≤ 1
2 .

To bound the second way in which E can fail, we let (σ, ω) be a partial transcript of the algorithm for which
no x ∈ [n]t satisfies Eq. 9.18. Assume the probability that z produces an error is < 1/3. Then we have:

∀z ∈ [n]t, ∃yz ∈ [n]t : Pr
B∼A

[B(σ.z) = ω.yz | B(σ) = ω] ≥ 2

3
(9.20)

∀z ∈ [n]t : Pr
B∼A

[B(σ.z) is correct | B(σ) = ω] ≥ 2

3
.(9.21)

These conditions together imply that ω.yz is a correct mif(n, r) output sequence for σ.z. As a result, we can
use A’s behavior after (σ, ω) to construct a pseudo-deterministic algorithm Ψ for MIF (n, t). To initialize Ψ, we
sample an initial state B ∼ A conditioned on the event that B(σ) = ω, and then send the elements of σ to B.
After this, when Ψ receives an element e, we send e to B, and report the element B outputs as the output of
Ψ. By Eqs. 9.20 and 9.21, the sequence of outputs produced by Ψ on any input x in [n]t will, with probability
≥ 2/3, be the (valid) output yz. Thus, Ψ solves MIF (n, t) with ≤ 1/3 error – which, under the assumption
that log |Σ| < SPD

1/3 (mif(n, t)), is impossible. Thus the z chosen by the adversary makes the algorithm err with

probability ≥ 1/3, conditional on it having found (σ, ω) with no x ∈ [n]t satisfying Eq. 9.18. The probability
that the the adversary succeeds is then ≥ 1/3 · 1/2 = 1/6; this contradicts the assumption that A has error ≤ 1/6
against any adversary, which implies that we must instead have log |Σ| ≥ SPD

1/3 (mif(n, t)).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited816

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Acknowledgements

We thank Amit Chakrabarti and Prantar Ghosh for many helpful discussions.

References

[1] M. Ajtai, , V. Braverman, T. Jayram, S. Silwal, A. Sun, D. P. Woodruff, and S. Zhou, The white-box
adversarial data stream model, in Proc. 41st ACM Symposium on Principles of Database Systems, 2022, p. 15–27,
https://doi.org/10.1145/3517804.3526228.

[2] S. Assadi, A. Chen, and G. Sun, Deterministic graph coloring in the streaming model, in Proc. 54th Annual ACM
Symposium on the Theory of Computing, 2022, pp. 261—-274, https://doi.org/10.1145/3519935.3520016.

[3] S. Assadi, Y. Chen, and S. Khanna, Sublinear algorithms for (∆+ 1) vertex coloring, in Proc. 30th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2019, pp. 767–786, https://doi.org/10.1137/1.9781611975482.48.

[4] O. Ben-Eliezer, R. Jayaram, D. P. Woodruff, and E. Yogev, A framework for adversarially robust streaming
algorithms, in Proc. 39th ACM Symposium on Principles of Database Systems, 2020, p. 63–80, https://doi.org/
10.1145/3375395.3387658.

[5] O. Ben-Eliezer and E. Yogev, The adversarial robustness of sampling, in Proc. 39th ACM Symposium on
Principles of Database Systems, ACM, 2020, pp. 49–62, https://doi.org/10.1145/3375395.3387643.

[6] A. Chakrabarti, P. Ghosh, and M. Stoeckl, Adversarially robust coloring for graph streams, in Proc. 13th
Conference on Innovations in Theoretical Computer Science, 2022, pp. 37:1–37:23, https://doi.org/10.4230/

LIPIcs.ITCS.2022.37.
[7] U. Feige, A randomized strategy in the mirror game, (2019), https://arxiv.org/abs/1901.07809.
[8] S. Garg and J. Schneider, The Space Complexity of Mirror Games, in Proc. 10th Conference on Innovations in

Theoretical Computer Science, 2018, pp. 36:1–36:14, https://doi.org/10.4230/LIPIcs.ITCS.2019.36.
[9] S. Goldwasser, O. Grossman, S. Mohanty, and D. P. Woodruff, Pseudo-Deterministic Streaming, in

Proc. 20th Conference on Innovations in Theoretical Computer Science, vol. 151, 2020, pp. 79:1–79:25, https:

//doi.org/10.4230/LIPIcs.ITCS.2020.79.
[10] S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam, On the pseudo-deterministic query complexity

of NP search problems, in Proc. 36th Annual IEEE Conference on Computational Complexity, 2021, pp. 36:1–36:22,
https://doi.org/10.4230/LIPIcs.CCC.2021.36.

[11] M. Hardt and D. P. Woodruff, How robust are linear sketches to adaptive inputs?, in Proc. 45th Annual ACM
Symposium on the Theory of Computing, 2013, pp. 121–130, https://doi.org/10.1145/2488608.2488624.

[12] A. Hassidim, H. Kaplan, Y. Mansour, Y. Matias, and U. Stemmer, Adversarially robust streaming algorithms
via differential privacy, in Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020, https://proceedings.
neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html.

[13] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. Available online at https://pi.math.cornell.
edu/~hatcher/AT/ATpage.html. Accessed 2022-07-14.

[14] H. Jowhari, M. Saglam, and G. Tardos, Tight bounds for lp samplers, finding duplicates in streams, and
related problems, in Proc. 30th ACM Symposium on Principles of Database Systems, 2011, pp. 49–58, https:

//doi.org/10.1145/1989284.1989289.
[15] H. Kaplan, Y. Mansour, K. Nissim, and U. Stemmer, Separating adaptive streaming from oblivious streaming

using the bounded storage model, in Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, vol. 12827 of Lecture Notes in
Computer Science, Springer, 2021, pp. 94–121, https://doi.org/10.1007/978-3-030-84252-9_4.

[16] M. Kapralov, J. Nelson, J. Pachocki, Z. Wang, D. P. Woodruff, and M. Yahyazadeh, Optimal lower bounds
for universal relation, and for samplers and finding duplicates in streams, in Proc. 58th Annual IEEE Symposium on
Foundations of Computer Science, 2017, pp. 475–486, https://doi.org/10.1109/FOCS.2017.50.

[17] B. Menuhin and M. Naor, Keep that card in mind: Card guessing with limited memory, in Proc. 13th Conference
on Innovations in Theoretical Computer Science, 2022, pp. 107:1–107:28, https://doi.org/10.4230/LIPIcs.ITCS.
2022.107.

[18] S. Muthukrishnan, Data streams: Algorithms and applications, Found. Trends Theor. Comput. Sci., 1 (2005),
pp. 117–236, http://dx.doi.org/10.1561/0400000002.

[19] M. Naor and E. Yogev, Bloom filters in adversarial environments, ACM Trans. Alg., 15 (2019), pp. 35:1–35:30,
https://doi.org/10.1145/3306193.

[20] J. Tarui, Finding a duplicate and a missing item in a stream, in Proc. 4th International Conference on Theory and
Applications of Models of Computation, 2007, pp. 128–135, https://doi.org/10.1007/978-3-540-72504-6_11.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited817

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[21] D. P. Woodruff and S. Zhou, Tight bounds for adversarially robust streams and sliding windows via difference
estimators, in Proc. 62nd Annual IEEE Symposium on Foundations of Computer Science, 2022, pp. 1183–1196,
https://doi.org/10.1109/FOCS52979.2021.00116.

A Appendix

Proof. In this proof of Lemma 3.3, we essentially repeat the proof of the Chernoff bound, with slight modifications
to account for the dependence of Xi on its predecessors. Here t is a positive real number chosen later.

Pr

[
n∑

i=1

Xi ≥ np(1 + δ)

]

= Pr
[
et

∑n
i=1 Xi ≥ etnp(1+δ)

]

≤ E[et
∑n

i=1 Xi]/etnp(1+δ)

= e−tnp(1+δ)
E[etX1E[etX2 · · ·E[etXn | X1 = X1, . . . , Xn−1 = Xn−1] | X1 = X1]

≤ e−tnp(1+δ)
E[etX1E[etX2 · · ·E[etXn−1(pet + (1− p)) | X1 = X1, . . . , Xn−2 = Xn−2] | X1 = X1]

≤ e−tnp(1+δ)
E[etX1E[etX2 · · ·E[etXn−2(pet + (1− p))2 | X1 = X1, . . . , Xn−3 = Xn−3] | X1 = X1]

≤ e−tnp(1+δ)(pet + (1− p))n =

(
pet + (1− p)

etp(1+δ)

)n

≤
(
ep(e

t−1)

etp(1+δ)

)n

=

(
ee

t−1

et(1+δ)

)np

since 1 + x ≤ ex

=

(
eδ

(1 + δ)1+δ

)np

picking t = ln(1 + δ)

≤ exp

(
− δ2np

2 + δ

)
. since x− (1 + x) ln(1 + x) ≤ −x2/(2 + x)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited818

D
o

w
n
lo

ad
ed

 0
9
/1

8
/2

3
 t

o
 1

2
9
.1

7
0
.1

9
5
.2

0
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Our results and contributions

	Related work
	Preliminaries
	Models for streaming algorithms
	Lemmas

	Classical model
	Upper bound: a sampling algorithm

	Adversarially robust model
	Upper bound: the hidden list algorithm

	Zero error model
	Deterministic model
	Lower bound: an embedded instance of Avoid
	Upper bound: the iterated pigeonhole algorithm

	White box model
	Random start and pseudo-deterministic models
	Appendix

