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ABSTRACT

Graph coloring is a fundamental problem with wide reaching ap-
plications in various areas including data mining and databases,
e.g., in parallel query optimization. In recent years, there has been
a growing interest in solving various graph coloring problems in
the streaming model. The initial algorithms in this line of work
are all crucially randomized, raising natural questions about how
important a role randomization plays in streaming graph coloring.
A couple of very recent works prove that deterministic or even ad-
versarially robust coloring algorithms (that work on streams whose
updates may depend on the algorithm’s past outputs) are consid-
erably weaker than standard randomized ones. However, there is
still a significant gap between the upper and lower bounds for the
number of colors needed (as a function of the maximum degree
A) for robust coloring and multipass deterministic coloring. We
contribute to this line of work by proving the following results.

o In the deterministic semi-streaming (i.e., O(n-polylog n) space)
regime, we present an algorithm that achieves a combinatori-
ally optimal (A + 1)-coloring using O(log Aloglog A) passes.
This improves upon the prior O(A)-coloring algorithm of As-

sadi, Chen, and Sun (STOC 2022) at the cost of only an O(log log A)

factor in the number of passes.

o In the adversarially robust semi-streaming regime, we design
an O(A%/2)-coloring algorithm that improves upon the previ-
ously best O(A3)-coloring algorithm of Chakrabarti, Ghosh,
and Stoeckl (ITCS 2022). Further, we obtain a smooth col-
ors/space tradeoff that improves upon another algorithm of
the said work: whereas their algorithm uses O(A?) colors and
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O(nAl/z) space, ours, in particular, achieves (i) O(A?) colors
in O(nA1/3) space, and (ii) O(A7/4) colors in O(nAl/z) space.
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1 INTRODUCTION

In the graph coloring problem, we are given an undirected graph
and the goal is to assign colors to the nodes of the graph such
that adjacent nodes receive different colors. Graph coloring is a
fundamental problem in graph theory with numerous applications
in computer science, including in databases, data mining, register
allocation, and scheduling [17, 28, 29]; see, e.g., the application to
parallel query optimization by Hasan and Motwani [24] in VLDB’95.
The emergence of massive graphs in many of these application
domains has necessitated the study of graph coloring algorithms
that are capable of handling such graphs efficiently on modern
architecture. Of particular interest is the family of graph streaming
algorithms: such an algorithm computes its solution using only
a small number of sequential passes over the edges of the input
graph, while using a sublinear amount of memory.

Several graph coloring problems have been studied in the stream-
ing setting, typically with the goal of achieving a palette size (total
number of colors used) proportional to the graph’s chromatic num-
ber [1, 21], maximum vertex-degree [2-5, 12], arboricity [12], or
degeneracy [11]. Also studied is the closely-related problem of
(degree+1)-list-coloring [23] (see also [2]). Furthermore, graph col-
oring has been considered under different streaming paradigms
such as random stream order and the vertex-arrival model [13].
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Most of these works consider the semi-streaming regime, where
we are restricted to O(n - polylog n) space for processing an n-
vertex graph. Since even just storing the output coloring can require
Q(nlogn) space, this is close to optimal for the problem. We study
semi-streaming graph coloring, focusing on the most popular color
parameter in this line of work, namely the maximum degree A of
the graph: we call this “A-based coloring”

A trivial greedy algorithm achieves a (A + 1)-coloring in the
offline setting. However, obtaining this color bound in the streaming
model is fairly challenging. A breakthrough work by Assadi, Chen,
and Khanna [4] did achieve such a coloring in semi-streaming space.
An aspect of this algorithm, shared with almost all subsequent
streaming coloring algorithms, is that it is inherently randomized.
This raises the natural question: to what extent is randomization
necessary for A-based coloring? Indeed, a derandomized version
can be advantageous in multiple scenarios, e.g., having low or zero
error even when the algorithm is rerun a huge (maybe exponential)
number of times, or for robustness against input streams generated
based on the algorithm’s past outputs or internal states.

Two recent works have addressed this question. On the one
hand, Assadi, Chen, and Sun [3] ruled out non-trivial single-pass
deterministic algorithms for A-based coloring: any such algorithm
requires exp(AQ(l)) colors for semi-streaming space (and AQ(1/a)
colors for O(n'*%) space). They further showed that allowing mul-
tiple semi-streaming passes over the stream makes better tradeoffs
possible: one can get an O(A?)-coloring in two passes, and an O(A)-
coloring in O(log A) passes. On the other hand, Chakrabarti, Ghosh,
and Stoeckl [18], considered a “middle ground” between determin-
istic and randomized algorithms, namely the adversarially robust
algorithms introduced by [9], recipient of the PODS’20 best paper
award. These algorithms are required to work even when stream
updates are generated by an adaptive adversary, depending on the
algorithm’s previous outputs (and thus implicitly on its internal ran-
domness; observe that deterministic algorithms are always robust).
They showed that a (possibly randomized) robust semi-streaming
coloring algorithm requires Q(A?) colors, while an O(A)-coloring
admits no o(n?)-space robust algorithm. The same work also gave
a robust semi-streaming algorithm achieving O(A?) colors. Thus,
the results in [3, 18] establish a neat trichotomy for single-pass
semi-streaming graph coloring: (i) a (A + 1)-color palette suffices
for standard randomized streaming; (ii) poly(A) colors are neces-
sary and sufficient for robust streaming; and (iii) exp(A) colors are
needed for deterministic algorithms.

Many questions in this line of work, however, remain unresolved.
Here are two particular ones:

(i) For deterministic algorithms, how many passes are needed to
achieve a tight (A + 1)-coloring?

(i) For robust algorithms, where in the range [A?, A3] does the
above “poly(A)” number of colors lie?

This paper takes steps towards resolving both these questions.

1.1 Our Contributions

The Deterministic Setting. In this setting, our main result is a
multi-pass semi-streaming algorithm that achieves a (A+1)-coloring,
thus signicantly improving the O(A)-color bound of [3] to the
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combinatorially optimal A + 1, while paying only an additional
O(loglog A) factor in the number of passes.

THEOREM 1.1. There is a deterministic O(log Aloglog A)-pass
semi-streaming algorithm to (A + 1)-color a graph with maximum
degree A, where the graph edges arrive in any adversarial order.!

To fully appreciate this improvement, note that in streaming,
as well as several other computational models, it is known that
O(A)-coloring is an “algorithmically much easier” problem than
(A + 1)-coloring. For instance, there are quite simple single-pass
randomized algorithms known for O(A)-coloring [4, 12], whereas
the only known streaming (A + 1)-coloring algorithm, due to [4],
uses sophisticated tools and a combinatorially involved analysis.?

Our algorithm in Theorem 1.1 uses a variety of novel ideas and
techniques. It is inspired by a recent distributed algorithm of Ghaf-
fari and Kuhn [22] that solves (A + 1)-coloring in the CONGEST
model of distributed computation; which in turn was inspired by
earlier algorithms of [7] and [27]. In building on these works, we
must contend with the limitation that the semi-streaming model
does not allow enough space for a typical vertex to “know” much
of its neighborhood; this is in sharp contrast to distributed com-
puting models (including CONGEST). The algorithm of [22] asks
each vertex to progressively whittle down its space of candidate
colors by using full information about its neighborhood. Since
we cannot do this in a streaming setting, we make novel use of
pairwise-independent hashing to collect the necessary information
“approximately” Another innovation in our algorithm is the intro-
duction of a stream-computable quantity we call “slack” (inspired
by, but different from, a similar notion used in distributed coloring
algorithms [23]) that measures roughly how many free colors each
vertex has. The precise definition of slack is a key contribution of
this work, since it is crucial for the eventual analysis of our algo-
rithm. Moreover, our algorithm achieves roughly O(log A) passes,
whereas that of [22] uses O(log? Alogn) distributed rounds; this
quantitative difference stems, in part, from our delicate tuning of
parameters in an iterative process that colors vertices in batches.

As a by-product of the technology developed for establishing
Theorem 1.1, we also find an efficient streaming algorithm for the
more general problem of (degree + 1)-list-coloring. In this problem,
the input stream specifies a graph G as usual and, for each vertex
x, a list Ly of at least deg(x) + 1 allowed colors for x; the goal is to
properly color G subject to these lists. We get the following result.

THEOREM 1.2. Let C be a set of colors of size O(n®). There is a
deterministic semi-streaming algorithm for (degree + 1)-list-coloring
a graph G given arbitrarily interleaved stream of the graph edges and
(x, Lx) pairs specifying the list Ly of allowed colors for a vertex x,
where Ly C C with |Ly| > deg(x)+1. The algorithm uses O(nlog? n)
bits of space and runs in O(log Aloglog A) passes.

UIf A is not known in advance, it can be determined in O(n log n) space using a single
pass.

2Similar examples of this difference appear in the (randomized) LOCAL algorithms [19,
30], (deterministic) dynamic graph algorithms [14], or even provable separations
for the “palette sparsification” technique [2, 4]. Yet another example is the closely
related problem of O (degeneracy)-coloring versus (degeneracy + 1)-coloring studied
by [11] who proved that the former admits a (randomized) single-pass semi-streaming
algorithm while the latter does not.
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The Adversarially Robust Setting. In this setting, our algorithm
needs to be correct against an adversary who constructs the input
graph adaptively by inserting edges based on the past colorings
returned by the algorithm. This is inherently a single-pass setting.
However, we are now allowed to use randomness. Observe that
the stream elements might depend on past outputs, which in turn
depend on the random bits used by the algorithm. While [4] gave
a semi-streaming (A + 1)-coloring algorithm in the “non-robust”
setting where the stream is fixed in advance, [18] showed that a
robust semi-streaming algorithm must use Q(A?) colors. Our main
result in the robust setting is the following.

THEOREM 1.3. There is an adversarially robust semi-streaming
algorithm to O(A%/2)~color a graph, given oracle access to O(nA) bits
of randomness.

The above result improves a robust algorithm of [18], which
runs in a similar semi-streaming amount of space and accesses as
many random bits, but only gives an O(AS)—coloring. Further, our
robust algorithm admits a smooth tradeoff between the number of
colors and the memory used: we can get an O(A5/273B/ 2)-coloring
in 5(nAﬂ) space® for any f € [0,1]. While [18] gave a robust
algorithm giving an O(A?)-coloring using O(nAl/2) space, our
result implies robust O(A?)-coloring is possible with O(nA'/3)
space, and O(A7/4)-coloring with 5(nA1/2) space.

Our algorithm overcomes the challenges posed by the adaptive
adversary by crucially exploiting the graph structure and using
enhanced versions of some known techniques on subgraphs of the
input graph. These techniques include those in the adversarially
robust literature, such as sketch switching [9, 18], as well as those in
the coloring literature, such graph partitioning [12] and degeneracy-
based coloring [11].

One caveat of the above result is the need for a large number of
random bits. The same caveat applies to the aforementioned robust
O(A%)-coloring algorithm of [18]. We note three points in defense
of this “lenient” model, where random bits are “free” and do not
count towards space usage. First, the lower bound of Q(A?) colors
for robust semi-streaming algorithms does apply even in this lenient
model. Second, in practice, one might reduce the randomness usage
via a cryptographic pseudorandom generator. But perhaps the best
response is our next result, wherein we design a fresh algorithm that
removes this caveat while achieving the same color bound as [18].
Note that this is the first non-trivial robust coloring algorithm in
the strict semi-streaming model that accounts for all random bits
in space usage.

THEOREM 1.4. There is an adversarially robust O(A3)-coloring
algorithm that runs in semi-streaming space, even when one charges
for the random bits used by the algorithm.

1.2 Related work

Prior works most relevant to our paper are [3], [18], and [22]. We
have already discussed their results and comparisons with our work
in the sections above. Other important related work include the
growing literature on streaming graph coloring [1, 2, 4, 5, 11-13, 23].
However, all these works study the problem in the “static” streaming

3The O(-) notation suppresses polylogarithmic factors.
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model. Starting with [9], there has been a rapidly growing interest
in adversarially robust streaming, leading to a long line of papers on
the topic in the last couple of years [6, 8, 10, 15, 18, 20, 25, 26, 31, 32].
To the best of our knowledge, [18] is the only prior work to study
graph coloring in the robust model. For a detailed account on these
works, please see Appendix A.

2 PRELIMINARIES

Notation. Throughout the paper, “log” denotes the base-2 log-
arithm; [n] denotes the set {1,...,n}; Fp is the finite field with p
elements; 1 onqg is the indicator function for condition cond, i.e.,
it takes the value 1 when cond is true, and 0 otherwise; and the
notation a €g A means that a is drawn uniformly at random from
the finite set A.

A graph G = (V,E) typically has n = |V| vertices. We may
identify G with its set E of edges, and write {u,v} € G to mean that
{u,v} € E.For B C E, degg(x) denotes the degree of x in the graph
formed by the edges in B. For X C V, G[X] denotes the subgraph
of G induced by X.

The Classical Streaming Model. In the static or classical stream-
ing setting, an algorithm operates on a long sequence (ey, ez, . . .)
of elements, fixed in advance. It may make multiple passes over
the stream. For a given parameter §, we typically aim to design a
streaming algorithm with parameter S as low as possible so that,
for all possible input streams, it uses < S bits of space and errs with
probability < §. If the algorithm is deterministic, then § = 0.

The Adversarially Robust Streaming Model. In the adversarial
setting, we view the algorithm as one party in a game it plays
with an adversary; the adversary produces a sequence (ej, €, . . .)
of elements, and can ask the algorithm to report an output o; after
each new element e;. Unlike the static setting, the next element e;11
produced by the adversary may depend (possibly randomly*) on
the transcript {eq, 01, . . ., €;, 0;) of the game. The algorithm is said
to err if at least one of its outputs is incorrect for the problem at
hand. In this setting, we typically aim to find streaming algorithms
minimizing S, §, where the algorithm (a) never exceeds S bits of
space and (b) errs with probability < § for all possible adversaries.

Colorings. A partial coloring of a graph G = (V, E) using a palette
C (any nonempty finite set) is a tuple (U, y) where U C V is the set
of uncolored vertices and y: V — C U {L} is a function such that
x(x) = L © x € U (we may also simply refer to y as the partial
coloring). The coloring is said to be proper if, for all {u, v} € E such
thatu ¢ U and v ¢ U, we have y(u) # y(v). A proper coloring of
G is a partial coloring where U = 0.

Given a graph-theoretic parameter i/, the y/-coloring (algorith-
mic) problem asks one to determine a proper coloring of an input
graph G using a palette of size |C| < . This paper focuses first on
(A+1)-coloring and later on poly (A)-coloring. We also consider the
list-coloring problem, wherein each x € V has an associated list (re-
ally aset) Ly C C and we are to find a coloring satisfying y(x) € Ly
for all x. Specifically, we study the problem of (deg +1)-list-coloring,
in which |Ly| = deg(x) + 1 for each x.

*However, by Yao’s lemma, there is always a deterministic adversary at least as effective
as any randomized one at making the algorithm fail.
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Hash Functions. We will use the following standard properties
of families of hash functions. A hash family H of functions A — B
is k-independent if, for all distinct a1, ...,a; € A, and arbitrary
b1,....bx € B, Prpe, [ /\é“:1 h(a;) = bi] = 1/|B|¥. The family is
2-universal if, for all a; # az € A, Prycqq [h(al) = h(az)] < 1/|B|.

Useful Lemmas. We use the following variations of standard
lemmas, proofs of which are given in the full version of the paper.

LEMMA 2.1 (CONSTRUCTIVE VARIANT OF TURAN’S THEOREM).
Given a graph with n vertices and m edges, one can find an indepen-
dent set of size > n?/(2m + n) in deterministic polynomial time. O

LEMMA 2.2 (M1x oF CHERNOFF BOUND AND AZUMA’S INEQUALITY).
Let Xy, ..., Xy beasequence of {0, 1} random variables, andc € [0, 1]
a real number for which, foralli € k, E[X; | X1,...,Xi-1] < c. Then
Pr [Zie[k] Xi>(1+ t)kc] < 27tke gssuming t > 3. O

3 A (MULTIPASS) DETERMINISTIC
ALGORITHM

This section presents our first main result, giving a multipass de-
terministic semi-streaming algorithm for (A + 1)-coloring, proving
Theorem 1.1. As usual, the input graph G = (V, E) has n = |V| ver-
tices and maximum degree A. Later, we shall extend our algorithm
to the (deg+1)-list-coloring problem, so it will be helpful to think
of each vertex x € V being associated with a set Ly of allowed
colors; for our main algorithm, Ly = [A + 1] foreach x € V.

3.1 High-Level Organization

The algorithm’s passes are organized as follows. The algorithm
proceeds in epochs, where each epoch starts with a partial coloring
x that has a certain subset U C V uncolored and ends with a new
partial coloring that extends y by coloring at least a third of the
vertices in U, thereby shrinking |U| to < %|U|. In the beginning,
U = V. After at most [logs, AT such epochs, we will have |U| <
n/A: at this point, the algorithm makes a final pass to collect all
edges incident to U and greedily extend y to a full coloring of G.

Each epoch of the algorithm is divided into stages, where each
stage whittles down a set of proposed colors for each uncolored
vertex. The following definition is crucial to the logic of an epoch
and is an important conceptual contribution of this work.

Definition 3.1 (Partial commitment, slack, potential). A partially
committed coloring (PCC) of G is an assignment of colors and lists
to the vertices satisfying the following conditions.

e Every vertex outside a subset U C V of uncolored vertices
is assigned a specific color y(x) € Ly; the resulting y is a
proper partial coloring.
e Each x € U has an associated set Py of proposed colors,
defining a collection P = {Px}xeru-
e For all vertices x,y € U, either Px = P, or Px N Py = 0.
We shall denote such a PCC by the tuple (U, y, ). Given such a
PCC, define the slack of a vertex with respect to a set T of colors by

slack(x | T) = max{0, |T N Ly| — [{y e N(x) \ U : x(y) € T}|},
(1)
and further define s, = slack(x | Px); that is, s is the number of
colors in Py that are available to x in L, minus the number of times
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the colors in Py have appeared in the already colored neighbors of
x. Define the potential of the PCC to be

1 1

O=0U, 1, P) = Y. lrevnyev - lp=p, - (—+—]| (
Sx Sy

{x.y}eE

which sums the quantity (1/sx +1/sy) over all edges {x, y} inside
U with Py = Py, ]

Intuitively, the slack defined here is a lower bound on the number
of unused colors available to a vertex. Our definition differs from
the “slack” defined by [23], where the number of colors used by the
neighbors is known exactly. It turns out that such a lower bound
on the number of unused colors is sufficient for our algorithm to
progressively refine a PCC. The advantage of this lower bound—
equivalently, of the upper bound |{y € N(x) \U : y(y) € T}| on
the number of used colors, instead of the exact quantity [T N {y(y) :
y € N(x) \ U}|—is that the former is a linear function of the data
stream, and can be easily computed in O(log n) space by storing a
single counter which is incremented each time an edge {x, y} with
y ¢ U and y(y) € T is encountered. Meanwhile, as a consequence
of the set disjointness lower bound in communication complexity,
determining the latter can require up to Q(A) space. In the LOCAL
and CONGEST models, each vertex can easily store and maintain
a list of all its available colors (equivalently, colors used by its
neighborhood), so the algorithms of [7, 22, 23] do not need such a
modified notion of “slack”

The set Free(T, x) := TNLy N\ {x(y) : y € N(x)\U} is the set of
all colors in T that are available for x, in light of the local constraints
imposed by Ly and y. Notice that | Free(T, x)| > slack(x | T), since
a color in T might be used more than once in the neighborhood of
x, thus reducing the LHS only once, but the RHS more than once.
Hence, if we extend y to a full coloring by choosing, independently
for each x € U, a uniformly random color in Free(Py, x), the only
monochromatic edges we might create are within U and the number,
Mmono (U, x, P), of such edges satisfies

| Free(Py, x) N Free(Py, y)|
| Free(Px, x)| - | Free(Py, y)|

E Mmono (U’ X> SD)

{x.y}eE(G[U])
Px=Py
1 1
< (— + —) =o. (3)
{x,y}€E(G[U]) Sx Sy

Px=Py

3.2 The Logic of an Epoch: Extending a Partial
Coloring

Returning to the algorithm outline, at the start of an epoch, the
current partial coloring y and its corresponding set U of uncolored
vertices define a trivial PCC where Py = Ly = [A + 1] for each
x. We shall eventually show that the resulting potential ® < |U]|.
Each stage in the epoch shrinks these sets Py in such a way that
the potential ® does not increase much. After several stages, each
Py in the PCC becomes a singleton and the bound on @, together
with eq. (3), ensures that assigning each x € U the sole surviving
color in Py would not create too many monochromatic edges. Now,
Lemma 2.1 allows us to commit to these proposed colors for at least
%|U| of the uncolored vertices; this defines a new partial coloring
and ends the epoch.
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We now describe how to shrink the sets Py. For this, view each
color as a b-bit vector where b = [log(A + 1)] according to some
canonical mapping, e.g., a € {0, 11+ Zf.’zl a;2'~1. Each set Py
will correspond to a subcube of {0, l}b where the first several bits
have been fixed to particular values.® Each stage of the rth epoch
(except perhaps the last, due to divisibility issues) will shrink each
Py by fixing an additional k bits of its subcube, thus reducing the
dimension of the subcube. We choose k := 1+ |[log(n/|U|)], so that
|U|2k < 2n; this bound will be important when we analyze the
space complexity. The epoch ends when all bits of each Py have
been fixed, making each Py a singleton; clearly, this happens after
[b/k] stages.

This brings us to the heart of the algorithm: we need to describe,
for each x € U and the particular value of k for the current epoch,
how to fix the next k bits for Py. Let Py,j be the subset of P, where
the k lowest-indexed free bits are set to j € {0, 1}*: this partitions
Py into 2k subcubes. Define

slack(x | Px,j)
Yie{o,1yk slack(x | Pyj) -
An easy calculation shows that if, for each x, we choose j at random
according to the distribution given by (wx.j)je (o,1}# to obtain a new

©

Wyj =

random collection # of proposed color sets for each vertex, then
EQU, 1, P) = (U, x, P). ()

Therefore, there exists a particular realization £’ of # such that
(U, x,P’) < ®(U, x,P). However, it is not clear how to identify
such a P’ deterministically and space-efficiently in a stream.

A key idea that enables a space-efficient derandomization is
to choose the j values for the vertices x € U in a pseudorandom
fashion, using a 2-independent family H of hash functions V + [p]
for a value p which is Q(nlogn). By using a map gw: U X [p] —
{0,1}*, as specified in the following lemma (proved in the full
version), we can use a uniform random value in [p] to sample from
a distribution close enough to the (wyj) distribution.

LEMMA 3.2. There is a function gy : U X [p] — {0, 1}k satisfying

-1 .
e
P
Then, for each x, we shrink Px to Py j(x) where j(x) = gw (x, h(x))
and h eg H. Let Py, denote the resulting collection of proposed
color sets.

By choosing (e.g.) the Carter-Wegman family of affine functions
on F,, for prime p, we can take |H| = O(n?log? n). This lets us
identify a specific function h € H for which ®(U, y, ) is not
much larger than the average over all h € H, using two streaming
passes and O(n) space. We then show that the new potential is
at most 1+ O(1/logn) times the old. Repeating this argument for
each of the O(log n) stages in the epoch shows that at the end of
the epoch, the potential will have increased by at most a constant
factor, which allows us to shrink U by a factor 2/3.

The above outline suggests O(log n) epochs, each using O(log n)
stages, each of which uses O(1) passes. A more careful analysis
bounds the number of passes by O(log Aloglog A).

Vije{o1}*.
Slogn)’ jefo1} 0

STf A + 1 is not a power of 2, Py might contain elements not in Ly, but this doesn’t
matter because Free(T,x) C Ly always.

145

PODS 23, June 18-23, 2023, Seattle, WA, USA

3.3 Detailed Algorithm and Analysis

We now describe the algorithm more formally, by fleshing out the
precise logic of an epoch. Let (Q(_i) denote the partition of the color
space {0, 1}? into subcubes Qj(l) defined by setting the ith k-bit
block to each of the 2K possible patterns j; i.e.,

Qj(i) ={a€ {0, P (aiokes- - ax) =i}
Q(i) = {Qj(i) }je{O,l}k' ©

If k does not divide b, we must make an exception for the [b/k]th
partition, for which the relevant bit patterns j would be shorter;
for clarity of presentation, we shall ignore this edge case in what
follows. The full logic of the algorithm is given in Algorithm 1.

Algorithm 1 Deterministic Semi-Streaming (A + 1)-Coloring

1: procedure DETERMINISTIC-COLORING(streamed n-vertex
graph G = (V, E) with max degree A)
UV, y(x) < Lforallx eV
repeat
CororING-EPocH(G, U, y) » shrinks |U]| to at most §|U|
until |U| < n/A
In one pass, collect every edge incident to a vertex in U
Use these edges to greedily complete y to a proper coloring
of G

> all vertices uncolored

8: procedure CoLoRING-ErocH(graph G, partial coloring (U, y))
9: b« [log(A+1)] > each color is a b-bit vector
10: k — 1+ |log (n/|U|)] » number of bits fixed in each stage
11: for each x € U do Py « {0,1}¥ » the initial, trivial PCC

12: for each stage i, from 1 through [b/k] do

13: P « ReFINE-PCC((U, y,P), i, b, k)

14: end-of-epoch pass: > each Py is now a singleton

15: Collect F « {{u,0} € E: u€e U,v € U,and P, = P,}
> (We will prove that |F| = O(|U|))

16: In the graph (V, F), find an independent set I with |I| >

%|U|, using Lemma 2.1

17: for each x € I do > extend y by coloring x

18: U« U\ {x}

19: x(x) « the sole element in Py

The most important aspect of the analysis is to quantify the
progress made in each epoch and establish that the colors proposed
at the end of each stage do not produce too many monochromatic
edges (i.e., those in F.) This analysis will demonstrate the utility of
the potential defined in eq. (2).

Given a PCC (U, y, P) where P = {Px }xcu, define the “conflict
degree” of each x € U by

deonf(x) = deonf(x; U, v, P) = [{y e N(x) N U : Py =Py}, (7)
which counts the neighbors of x that could potentially form monochro-
matic edges with x, were we to assign colors from # to the un-

colored vertices. Recall the quantities sy = slack(x | Py) from
Definition 3.1.

LEmMA 3.3. For every PCC, ®(U, x,P) = Y xecr deonf(X)/Sx-
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Algorithm 2 Refining a Partially Committed Coloring

1: procedure REFINE-PCC(streamed n-vertex graph G = (V, E) with max degree A; PCC (U, y, P); stage number i; parameters b, k)

2: pass 1:

3 foreachx e Uand Q € Q" do compute slack(x | Px N Q) by using eq. (1)

Let p « a prime in [8nlogn, 16nlogn]

8 Define P}, := (Py p)xeu Where Py := Px N Q;jv)(x,h(x))

Let H := {z+> az+b: a,b € Fp} be a family of hash functions U + [p]
Implicitly construct gy : U X [p] — {0, 1}* as per Lemma 3.2

Determine all wyj values using eq. (4), noting that Pyxj = Px N Qj(i)

> Carter-Wegman hashing

> Identify a specific h* € H for which ®(U, y, Pp+) is not much larger than average, as follows:

9: pass 2:

10: Split H into \/W parts of equal size

11 Estimate ), ®(U, x, Py,) for each part, up to (1 + 1/(8logn)) relative error

12: Pick the part minimizing the estimated sum

13: pass 3:

14: Estimate ®(U, y, Pp,) for each h within the chosen part, up to (1 + 1/(8logn)) relative error

15: Choose h* as the (approximate) minimizer

16: P — Pp* > constrain the PCC more tightly

Proor. From the definitions in egs. (1) and (2), using some
straightforward algebra,
11 )
p— + f—

(w0} EGIU]) (S” $o

Pu=Py

U, x.P)

{y €U: {xy) €EAP =Py}

xeU $x
— Z deonf(x) o
xeU Sx

LEMMA 3.4. For all x and disjoint sets T1, Tp: slack(x | T U T) <
slack(x | Ty) + slack(x | T2).

Proor. This follows from eq. (1) and the fact that max{0, a; +
az} < max{0, a1} + max{0, az}. O

The following major lemma addresses the core of the algorithm;
it is proven in Appendix B.

LEMMA 3.5 (RESTATED As LEMMA B.1). Suppose we start a particu-
lar epoch with the partial coloring (U, x) and the initial, trivial PCC
(U, x,Po). Suppose there are £ stages in this epoch and the ith stage
begins with the PCC P;. Let ®; := ®(U, y, P;) be the corresponding
potential, for0 < i < £. Then &y < |U| and &, < 2|U].

The crucial combinatorial property of the (A + 1)-coloring prob-
lem is that given any proper partial coloring, every uncolored vertex
is guaranteed to have a free color not in use by its colored neigh-
bors. The next lemma argues that even as we gradually tighten
constraints in our PCC during the stages of an epoch, a similar
guarantee is maintained.

LEMMA 3.6. In each epoch, for all x € U, the stages maintain the
invariant that sy > 1 and after the last stage we have sy = 1.

PRrROOF. At the start of the epoch, sy > |Lx| — |N(x)| = (A+1) —
deg(x) > 1.
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Consider a particular stage, which begins with a PCC (U, y, ),
where P = {Px }xcy. Fix a vertex x € U. In the next PCC formed

at the end of the stage, Px shrinks down to Pyj = Px N Qj(i) for

a pattern j € {0,1}¥ satisfying wyj > 0: the way gw is defined
(Lemma 3.2) ensures this. By Lemma 3.4,

Z slack(x | Pyi) > slack(x | Px) =sx > 1,
ie{0,1}%

so there exists j € {0, 1}* for which slack(x | Pyj) 2 1. One such j
must be picked as the chosen pattern for x, because wy ; > 0 implies
slack(x | Pxj) > 0. Consequently, the new value of Px chosen at
the end of the stage will satisfy the invariant s, > 1.

After the last stage in the epoch, every set Py is a singleton
because, in the corresponding subcube of {0, l}b , all bits have been
fixed. Px cannot be empty, because |Px N Ly| > sy > 1. Thus

[Py N Ly| = s = 1. O
LEMMA 3.7. The set F collected at the end of an epoch satisfies
|F| < |UI.
Proor. At the end of an epoch, we have
lemma 3.5 emma 3. d X
Ul > q)[l ma 3.3 Z &()

S
xeU x

Hy e N(x) N U : Py = Py}|

lemma 3.6 Z
1

xeU

= 2|F|. o

LeEMMA 3.8. Each epoch maintains the invariant that (U, y) is a
proper partial coloring and shrinks the set of uncolored vertices U to
a smaller U’ with |U’| < %|U|.

Proor. Atthe end of the epoch, each set Py is a singleton and the
sole color ¢y € Py is not used in N(x) because sy # 0 (Lemma 3.6).
Therefore, the set F collected at the end is precisely the set of edges
that would be monochromatic if we colored each x € U with
cx. It follows that the end-of-epoch logic in the algorithm, which
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commits to these colors only on an independent set in the graph
(V, F), maintains the invariant of a proper partial coloring.
By Lemma 2.1, (V, F) contains an independent set I of size

lemma 3.7 |U|

[UJ?
> —2 %
21F + U] 3

and one can compute I in polynomial time. Therefore, |[U’| = |U| —
I < 3jul. o

The full version of the paper addresses the space and pass com-
plexity of the algorithm in greater detail. The conclusions are given
in the following lemmas.

LEMMA 3.9. Algorithm 1 runs in O(nlog? n) bits of space. ]

LEMMA 3.10. Algorithm 1 runs in O(log A - loglog A) streaming
passes.

Proor SKETCH. The number of passes used is dominated by the
number of times the subroutine REFINE-PCC is called; for the ith
epoch, this is O(b/k) = O(logA/i). Summing over all O(logn)
epochs gives a total of O(log AloglogA) passes. See following
lemma. ]

This concludes the proof of our first major algorithmic result.

THEOREM 3.11 (FORMAL VERSION OF THEOREM 1.1). There is a
deterministic O(log Aloglog A)-pass semi-streaming algorithm to
(A + 1)-color an n-vertex graph using O(nlog? n) bits of space. O

We can extend Algorithm 1 to obtain a deterministic (degree+1)-
list coloring using essentially the same memory and number of
passes, thus establishing Theorem 1.2 (see Appendix C for proof).
Further, see the full version of the paper for implications of our
result in communication complexity.

4 COLORING ROBUSTLY AGAINST AN
ADAPTIVE ADVERSARY

We now turn to the adversarially robust streaming setting. See
Section 2 to recall the definition of this model.
We require the following graph-theoretic concept.

Definition 4.1 (degeneracy). The degeneracy of a graph G is the
least integer value x for which every induced subgraph of G has a
vertex of degree < «.

Equivalently, it is the least value k for which there is an acyclic
orientation of the graph where the maximum out-degree of any
vertex is < k. By greedily assigning colors to the vertices of this
orientation of G in reverse topological order, one obtains a proper
(x + 1)-coloring of G; we call this a (degeneracy + 1)-coloring.

We set up some terminology to help us outline our algorithm.

o Buffer. As the stream arrives, we explicitly store a buffer B
of at most n edges. When the buffer is full (i.e., has reached
its capacity of n edges), we empty it completely, and move
on to storing the next batch of n edges.

e Epoch. We say we are in the ith epoch when we are storing
the ith batch of n edges in our buffer.
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o Level. We define levels for the vertices with respect to their
degree in the (entire) graph seen so far. At the point of query,
we say that a vertex is in level ¢ if its degree in the current
graph is in (({’ - )VA, {’\/Z]

e Zone (fast and slow). We define zones (fast or slow) for
the vertices with respect to their degree in the buffer B. At
the time of query, we say that a vertex v is in the fast zone
(or simply, a fast vertex) if degg(v) > VA; otherwise, we say
that it is in the slow zone (or a slow vertex).

e Block. We have multiple independent coloring functions,
denoted by h; and g;, that assign each node a color uniformly
at random from a palette of suitable size.® As a result, we
obtain a partition of the nodes into monochromatic classes
that we call blocks. Each block produced by a coloring func-
tion f is called an f-block. More formally, for each c in the
range of f, the set of nodes {v € V : f(v) = ¢} is an f-block.

e f-Monochromatic. An edge {u,0} with f(u) = f(v) is
called f-monochromatic.

o f-Sketches. For a function f, we call the underlying sketch
of the algorithm, which stores only f-monochromatic edges
among the ones it receives, as an f-sketch.

We are now ready to present our algorithm. We give the pseu-
docode in Algorithm 3 and describe its analysis on a high-level
below. The rigorous analysis is deferred to the full version of the
paper.

First, we describe why Algorithm 3 colors the slow nodes using
O(As/z) colors while storing only 5(n) edges in Ul.A:lAi. Next, we
explain why it colors the fast nodes using O(A%/2) colors while

storing O(n) edges in UECL Additionally, B stores O(n) edges.
These collectively imply the desired result.

Coloring slow vertices. Consider breaking the edge stream into A
“chunks” of size n each. As described above, our buffer B basically
stores a chunk from start to end, and then deletes it entirely to
move on to the next chunk. We initialize A independent coloring
functions hy, .. ., ha. For each i, the function h; assigns each node a
color from [A?] uniformly at random. An h;-sketch then processes
the prefix of the stream until the end of chunk i. By definition (see
above), it stores a received edge (u,0) in the set A; only if it is
h;-monochromatic.

Suppose a query arrives in the current epoch curr > 1 (in the
first epoch, we have the entire graph in store, and can determin-
istically return an optimal coloring). Fix a subgraph induced by
only the slow vertices in an arbitrary hcyrr—1-block on the edge
set Acurr—1 U B. Recolor this subgraph using an offline (A’ + 1)-
coloring algorithm where A’ is its max-degree. Now do this for
each hcyrr—1-block, using fresh palettes for the distinct blocks. The
resultant coloring is our output for the slow nodes. We now argue
that the number of edges stored in UiAzlAi is roughly O(n) and the
number of colors used is O(A%/2).

Observe that for each i, the h;-sketch processes the prefix of the
stream until the end of chunk i. But note that, until that point, we
based our outputs only on Ajs for j < i, which are independent of
h; in particular. Therefore, we ensure that each h;-sketch processes

®Thus, the functions are likely to generate improper colorings.
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Algorithm 3 Robust Semi-Streaming O(A® / 2)-Coloring

Input: Edge insertion stream for an n-vertex graph G = (V, E)

Initialize:
: d(v) < O0foreachv eV > degree counters
: for i from 1 to [A] do > for each of A possible epochs
Leth; : V — [Az] be uniformly random
A0 > edges stored by h;-sketch

5. for i from 1 to [\/Z] do > for each of VA possible levels

W

6: Letg;: V — [A3/ 2] be uniformly random
7: Ci—0
8: B« 0

9: curr «— 1

> edges stored by g;-sketch

> buffer
> current epoch number

Process(edge {u,v}):
10: if |B| = n then
11: B < 0; curr <= curr +1 » _reset it and start next epoch
B« BU {{u,v}}; > store edge in buffer
d(u) < d(u) +1;d(v) < d(v) +1 »>increase deg(u), deg(v)
for i from curr to A do > for epochs curr and above...
> store h;-monochromatic edges in A;

15: if hi(u) = hij(v) then A; — A; U {{u,0}}

> when buffer is full...

12:
13:
14:

16: for i from [W-‘ +1to A do » for levels > both u, v
> store g;-monochromatic edges in C;
17: if g;(u) = g;i(v) then C; « C; U {{u,v}}.
Query():
18: if curr =1 then
19: Return (degree+1)-coloring of B
> Partition vertices into fast (F) and slow (S) zones
20 F« {v €V :degg(v) > VA};S < VN F
21: for ¢ from 1 to [A?] do
> consider each hcyrr—1-block among slow vertices
22: Scurr—1(¢) < {w € S : heurr—1(w) = ¢}
23: Using fresh colors, (degree+1)-color subgraph induced by
Scurr—1(c) on edge set Acyrr—1 U B
24: for ¢ from 1 to [\/Z] do > for each level /...
25: for ¢ from 1 to |A%/2| do
> consider each gp-block among fast vertices in level ¢
26: F(t,c) « {w eF: [%-‘ =¢, and g;(w) = c}
27: Using fresh colors, (degeneracy+1)-color subgraph in-

duced by F(¢,c) on edge set Cr U B

28: Return resultant coloring for SUF =V

a part of the stream independent of their randomness. Thus, since
his have range [A?], an edge {u, v} received by an h;-sketch is h;-
monochromatic with probability 1/A2. Since it receives at most nA
edges, it stores only O(nA/A?) = O(n/A) edges in expectation in A;.
By a Chernoff Bound argument, the actual value is tightly concen-
trated around this expectation w.h.p. Then, the A sets Ay, ..., Aa
store roughly O(n/A - A) = O(n) edges in total w.h.p.
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Now, we first verify that we properly color the subgraph of G
induced by the slow nodes. Every slow node is in some hcyrr-1-
block. Fix an arbitrary edge e of G in any hcyrr—1-block of slow
vertices. By definition, e is hcyrr—1-monochromatic. Observe that
e must be stored in Acyrr—1 U B: if e € B, then it is definitely
stored, and otherwise, it was in an epoch < curr — 1; therefore,
the hcyrr—1-sketch received it and must have stored it in Acyrr—1-
This means each such intra-block edge e is properly colored by
the offline algorithm. Again, each inter-block edge is also properly
colored since we use distinct palettes for distinct blocks.

Now we argue the color bound. For each slow node, an h;-sketch
receives at most A edges incident to it and hence, A; stores O(A -
1/A%) = O(1/A) edges incident to it in expectation (by the previous
argument). By a Chernoff Bound argument and taking union bound
over all nodes, we get that each of them has degree roughly O(log n)
in A; wh.p. Further, since these nodes are slow, they have degree at
most VA in B. Therefore, the degree of each slow node in the edge
set Acurr—1 U Bis O(VA + logn) = O(VA) since we can assume
that A = Q(log? n) (if not, we can store the entire graph in semi-
streaming space and then color it optimally). Hence, each hcyrr—1-
block of slow nodes induced on Acyrrr—1 U B is colored with a fresh
palette of O(VA) colors by the offline algorithm. There are A? many
heurr—1-blocks, which means we use O(A? - \/Z) = O(AS/Z) colors.

Coloring fast vertices. To handle these, we use another VA inde-
pendent coloring functions g, . . NS Each g; assigns each node

a color from [A3/ 2] uniformly at random. When an edge {u,v}
arrives, let £ be the maximum between the two levels of u and v.
We send it to the g;-sketches for all i > £+ 1. Recall that a g;-sketch
then stores the edge in the set C; only if it is g;-monochromatic.

We prove that each g;-sketch processes edges independent of
their randomness. This is the tricky part. Intuitively, for each edge
{u, v} that a g;-sketch receives, the levels of u and v were strictly
smaller than i when it was inserted. The only values g;(u) and
gj(v) that were used to return outputs until then were for j < i.
Hence, g;(u) and g;(v) were completely unknown to the adver-
sary when {u,v} was inserted. Thus, the edge stream received
by each g;-sketch is independent of the randomness “that mat-
ters” in processing it. Hence, since the probability of each edge
being g;-monochromatic is 1/ A3/2 each gi-sketch stores roughly
O(nA/A32)y = O(n/VA) edges in C;. The total number of edges
stored in Cy, .. "C\/Z is then roughly O(n/VA - VA) = O(n).

When a query arrives, for each level ¢, consider only the fast
vertices in each gg-block. Then consider the subgraph induced by
these vertices on the edge set C,UB. Color it using a (degeneracy+1)-
coloring offline algorithm. We prove that this colors the fast vertices
properly with O(A%/2) colors.

To verify that it is a proper coloring, we need to show that the
subgraph of G induced on each g,-block of fast vertices is stored in
Cr U B. This follows from the “fastness” property of the nodes: if
any such edge {u, v} is not in B, then, since the degrees of nodes u
and v increased by at least VA in the buffer, they must have been at
levels lower than £ when {u, v} was inserted. Therefore, it was fed
to the g,-sketch, which stored it in Cy since it is gp-monochromatic.
Hence, each intra-block edge of fast vertices is properly colored
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by the offline algorithm. Also, each inter-block edge is properly
colored since we use distinct palettes for distinct blocks.

Finally, for the color bound, we prove that the degeneracy of
each g,-block induced on C; U B is < VA. Then, each block is
colored with O(VA) colors, and there are A3/2 ge-blocks for each
of the \/Z values of £. Hence, the total number of colors used is
O(VA - A2 . A) = O(AY/2),

Thus, we get the following result.

THEOREM 4.2 (FORMAL VERSION OF THEOREM 1.3). There is an
O(As/z)—coloring algorithm which is robust against adaptive adver-
saries with total error probability < §, and runs in O(nlogo(l) n-
log 671) bits of space, given oracle access to O(nA) bits of randomness.

By adjusting parameters, we can obtain a corollary giving smooth
colors/space tradeoff (see Appendix D for details).

COROLLARY 4.3 (RESTATED As CoroLLARY D.1). By adjusting
parameters of Algorithm 3, we can obtain a robust O(A®=3F)/2).
coloring algorithm using O(nAP) space. This algorithm still requires
oracle access to O(nAl_ﬁ) bits of randomness.

Finally, we give a robust algorithm achieving semi-streaming
space even in the “strict” model where all random bits do count
to the space usage. This algorithm processes the stream in O(A)
epochs, like Algorithm 3, but does not have a “fast zone”, and uses a
coloring function per epoch to split vertices into blocks. To reduce
the number of random bits required, we randomly pick the coloring
functions from 4-independent hash families; it turns out that this
guarantees that the number of monochromatic edges is bounded
with constant probability. This can be amplified to high probability.
See Appendix E for more details.

THEOREM 4.4 (FORMAL VERSION OF THEOREM 1.4). There is an
adversarially robust O(A3)-coloring algorithm that runs in O(n)
space and uses O(A) random bits, with high probability.
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A DETAILED ACCOUNT OF RELATED WORK

The study of graph coloring in the classical streaming model was
initiated parallelly and independently by Bera and Ghosh [12]
and Assadi, Chen, and Khanna [4]. The former work obtained an
O(A)-coloring algorithm in semi-streaming space, while the lat-
ter achieved a tight (A + 1)-coloring in the same amount of space.
The latter work uses an elegant framework called palette sparsifi-
cation: each node samples a list of roughly log n colors from the
palette of size A+ 1, and it is shown that w.h.p. there exists a proper
list-coloring where each node uses a color only from its list. This
immediately gives a semi-streaming (A + 1)-coloring algorithm
since one can store only “conflicting” edges that can be shown to be
only O(n) many w.h.p.” This framework implying semi-streaming
coloring algorithms was then explored by Alon and Assadi [2] un-
der various palette sizes (based on multiple color parameters) as
well as list sizes. Their results also implied interesting algorithms
for coloring triangle-free graphs and for (degree+1)-list coloring.
Very recently, Assadi, Chen, and Sun [3] studied deterministic
A-based coloring and showed that for a single pass, no non-trivial
streaming algorithm can be obtained. For semi-streaming space,
any deterministic algorithm needs exp(A®(1))) colors, whereas
for O(n”“) space, AR/@) colors are needed. Observe that these
bounds are essentially matched by the trivial algorithm that stores
the graph when A < n® in order to (A+1)-color it at the end; or just
color the graph trivially with n = A2 colors, without even reading
the edges, when A > n%. In light of this, a natural approach is to
consider the problem allowing multiple passes over the input stream.
They show that in just one additional pass, an O(A?)-coloring can
be obtained deterministically, while with O(log A) passes, we can
have a deterministic O(A)-coloring algorithm. Another very recent
work on A-based coloring is that of Assadi, Kumar, and Mittal [5],
who surprisingly proved Brooks’s theorem in the semi-streaming
setting: any (connected) graph that is not a clique or an odd cycle
can be colored using exactly A colors in semi-streaming space.
Other works on streaming coloring include the work of Ab-
boud, Censor-Hillel, Khoury, and Paz [1] who show that coloring
an n-vertex graph with the optimal chromatic number of colors
requires Q(n?/p) space in p passes. They also show that decid-
ing c-colorability for 3 < ¢ < n (that might be a function of n)
needs Q((n — c)?/p) space in p passes. Another notable work is
that of Bera, Chakrabarti, and Ghosh [11], who considered the
problem with respect to the degeneracy parameter that often yields
more efficient colorings, especially for sparse graphs. They de-
signed a semi-streaming k(1 + 0(1))-coloring algorithm for graphs
of degeneracy . They also proved that a combinatorially tight
(k + 1)-coloring is not algorithmically possible in sublinear space.
In particular, semi-streaming coloring needs x+Q(+v/x) colors. Bhat-
tacharya, Bishnu, Mishra, and Upasana [13] showed that verifying
whether an input vertex-coloring of a graph is proper is hard in the
vertex-arrival streaming model where each vertex arrives with its
color and incident edges. Hence, they consider a relaxed version
of the problem that asks for a (1 + €)-estimate of the number of
conflicting edges. They prove tight bounds for this problem on

"The algorithm that is immediately implied is an exponential-time one where one can
store the conflicting edges and obtain the list-coloring by brute force. An elaborate
method was then needed to implement it in polynomial time.
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adversarial-order streams and further study it on random-order
streams. Recently, Halldorsson, Kuhn, Nolin, and Tonayan [23]
gave a palette-sparsification-based semi-streaming algorithm for
(degree + 1)-list-coloring for any arbitrary list of colors assigned to
the nodes, improving upon the work of [2] whose algorithm works
only when the color-list of each vertex v is {1, . . ., deg(v) + 1}. Note
that all the works mentioned above are in the “static” streaming
model and all their algorithms, except those in [3], are randomized
and non-robust.

Starting with the work of Ben-Eliezer, Jayaram, Woodruff, and Yo-
gev [9], the adversarially robust streaming model has seen a flurry of
research in the last couple of years [6, 8, 10, 15, 18, 20, 25, 26, 31, 32].
Chakrabarti, Ghosh, and Stoeckl [18] were the first to study graph
coloring in this model. They showed a separation between standard
and robust streaming coloring algorithms by establishing lower
bounds of (i) Q(A?) colors for robust semi-streaming coloring, and
(if) Q(nA) space for robust O(A)-coloring. In fact, they prove a
smooth colors/space tradeoff: a robust K-coloring algorithm re-
quires Q(nA%/K) space. On the upper bound side, they design an
O(A3)-coloring robust algorithm in semi-streaming space, with
oracle access to O(nA) many random bits. They also obtain an
O(A?)-coloring in O(nVh) space (including random bits used).

B PROOF OF LEMMA 3.5

LEMMA B.1 (RESTATEMENT OF LEMMA 3.5). Suppose we start a
particular epoch with the partial coloring (U, y) and the initial, triv-
ial PCC (U, x, Po). Suppose there are £ stages in this epoch and the
ith stage begins with the PCC P;. Let ®; := ®(U, y, P;) be the corre-
sponding potential, for 0 < i < £. Then ®y < |U| and @, < 2|U|.

PRroOF. Recalling that each Ly N Px = Ly = [A+1] for the initial
PCC, we use egs. (1) and (7) to derive
sx — deonf(x) = max{0,A+1—|N(x) \U|} — |[N(x) N U|
=A+1-deg(x)
>1.
Thus, deonf(x)/sx < 1 (and is not “0/0”) for all x € U. Lemma 3.3
now implies &y < |U].
We now argue that, between each pair of successive stages, the

potential ®; does not increase by much. First observe that when h
is drawn uniformly at random from H, and u # o,

Pr [gw (u, h(w)) = gw (v, h(v)) =] ®)
=Pr[gw(u, h(u)) = ]| - Pr [gw (0, h(0)) = j]
=Pr[h(w) € g5 (u.j)] - Pr[h(0) € g5 (2.))]
1 2
< Wy, jWo,j (1 + 810gn)
< 61/(410g")wu,jwo,j ) 9)

To keep the rest the derivation compact, let us abbreviate “slack”
to “sk” Also let E’ = E(G[u]) be the set of edges in G between
vertices in U, and let C = e!/41°67 The candidate PCCs P, defined
in line 8 are tightenings of the current PCC in which we pick
subcubes according to the specific hash function h. With h chosen
uniformly at random from H:

E®(U, y,Pr)



Coloring in Graph Streams via Deterministic and Adversarially Robust Algorithms

Z E ]lueU/\veU/\Pu,h:Pu,h :
{u,0}€E

= 2 2 Pl
{u,0}€E’ je{0,1}k

1 1
+
(Sk(u | Pyp)  sk(o| Pyp)

:Pv,j:Pv,h]'

1 1
(sk(u [ Pup) k(v ] Pv,j>)

> Lp,=p, Prigw(uh(w) = gw (0, h(0)) =j] -
{u,0}€E’ jE{O,l}k

line 8

1 1
(sk(u [ Pup) k(v ] Pu,j>)

eq. (9)
ST cmg

(uv}eE’ je{o1}k

1 1
(sk(u [ Puy) k(o] Pv,j))

@@ Z sk(u | Pyj) . sk(o | Pyj) '
Ly A Sk | Pup)  Sisk(o | Pup)
u,v}e _]E{O,l}
Py =Py
(st * 517
sk(u | Puj)  sk(o | Pyj)
- c sk(u | Pyy) +sk(v | Pyj)
(woreE je o1}k 2isk(u | Puj) - Xjsk(v | Pogi)
Pu=P,
1 1
= C +
{Z (zj k(] Pug) * Ty5k(0] Pu,j))
Pu=Py
lemma 3.4 1 1
< C +
{M;E, (sk(u | Py)  sk(o | Pu))
Pu=Py
= C®;. (10)

Thus, picking h* with ®(U, y, Py« ) below average would ensure
@41 < el/(41081) &, However, due to precision constraints, each of
lines 11 and 14 could contribute a relative error of (1 + 1/(8logn)),
so the h* actually picked by the algorithm gives only the following
weaker guarantee:

2
Bipy < (14 ——| /@logmg, < (1/logng,
8logn

Since the number of stages in the epoch is £ < [b/k] < log(A +
1) < logn, we have

4
@ < (el/(ZIOg")) @y < '2|U| < 2|U]. o

C EXTENSION: DETERMINISTIC LIST
COLORING

We can extend Algorithm 1 to handle the more general problem of
(deg+1)-list-coloring. This requires a new technical lemma and a
careful refinement of some of the low-level details of the previous
algorithm.

THEOREM C.1 (RESTATEMENT OF THEOREM 1.2). Let C be a set of
colors of size O(n?). There is a deterministic semi-streaming algorithm
for (degree + 1)-list-coloring a graph G given a stream consisting of,
in any order, the edges of G and (x, Ly) pairs specifying the list Ly
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of allowed colors for a vertex x, where Ly C C. The algorithm uses
O(nlog? n) bits of space and runs in O(log Aloglog A) passes.

Here is a technical lemma that is key to the proof of the above.

LemMA C.2. Lets > 1 be an integer, and let C be a set. There exists
afamily F of O(|C|?) partitions of C so that, for every collection
Ly,. Lt of subsets of C:

|T| Z Z max(|L nsl-1) < — Z(|L|—1)
ReFie t] le[t]

In particular, there must exist Q € F where ¥ic[4]
S| — 1) is less than the right hand side.

(11)

maxgeQ(|L; N

ProoF. Let H be a 2-universal hash family C — [s], with |H| =
O(|C|?). (For example, H = {(x > (ax + b mod p) mod s) : a,b €
Zp,a # 0} for p prime and > |C|, as per [16].) Let h be a randomly
chosen element of H, and let R = {Ry,...,Rs} be the random
partition for which R; = {x € C : h(x) = i}. Consider the function
f(x) = x(x + 1)/2 defined on [0, ); because it is convex and

increasing on [0, ), f~!(x) = 4/2x +1/4 — 1/2 is concave and

increasing on [0, c0). Because forallz > 1,z -1 = f_l((g)) we

have for any i € [¢] that:
max (|L; NRj| - 1) < f* (max (Li ﬂRj)) < Z (L,- ﬁRj) .
Jjels] Jjels] R 9

2
Taking expectations and using the concavity of f to apply Jensen’s
inequality:
> (Lirwﬁy))
1 2

JEls
Li N R;
N .

Jjels]
Expressing the sum under the inverse function in terms of h lets us
apply the universality of the hash family:

E max (|L; NRj|-1) <Ef!
jels]

< f_l(E

LiNR
Y ( ’ ]) D, Lhw=hey
jels] xX,yEL;:x#y
Lil\1
-3 o =nn < (1)
xX,yEL;:x#y $

We briefly detour to prove an inequality for f, holding for all z > 1:

FE-1)-(FE-1D+1)
1 _ % Vs
r(e)- z
_1(z=-1D(z++s-1) 1z
T 2 ‘E(z)’

which implies f_l(%(g)) < %(z —1). Thus:

EmﬁquRﬂ—l)sf‘l((' l') ) \[(ILll—l)
JEls

By linearity of expectation, it follows

E Z mellx(|L,ﬂRj|—l)<

l€]

JE DLl -1).
ie[t]
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This is equivalent to Eq. 11, if we let 7 be the set of possible values
of R. |

ProoOF oF THEOREM 1.2. There are two main changes to the algo-
rithm in Theorem 1.1. First, because the color lists Ly are no longer
fixed, computing slack(x | Px N Q) foreachx e Uand Q € QW re-
quires counting both [{y € N(x) \U : y(x) € (Px N Q)}| as before,
and |Py N Q N Ly|. As both quantities are integers in [0,..., A + 1],
and can be computed by incrementing counters each time an edge
or (vertex, list of colors) pair arrives, the total space usage from this
stage is still O(log A)|U|2F.

The other change is that we now adaptively pick the sequence of
partitions Q(l), e Q([), and use more stages. Instead of letting the
number ¢ of stages be [log(A + 1) /k], weuse £ = [2log(A + 1) /k]+
1 stages instead. For the first [21og(A + 1) /k] stages, we adaptively
construct partitions using Lemma C.2 on the Ly with s set to 2k ;
the resulting partitions use O(¢log |C|) = O(log Alog n) space to
store in total.

Finding the best partition from Lemma C.2 is complicated by the
fact that the algorithm can not exactly store the color lists Ly for
each vertex. Let 7 be the family of partitions from Lemma C.2. At
the start of each stage, we use four passes over the stream to identify
a partition R € ¥ for which the quantity ) ey ag(Px N Ly) is
below average, for ag (S) = maxgeg (]S N R| — 1). This can be done
using the same method as was used to identify an approximately
sub-average hash function h* in Algorithm 1. In the first pass, we
split ¥ into O(|7"|1/4) parts, and compute }\g > ey 4R (Px N Ly)
for each part; after the pass completes, we pick the part with the
least value of this sum, split it into O(|F [1/4) smaller parts, and
repeat the process. The fourth pass will compute Y.y ag (PxNLyx)
for individual partitions R of the family 7; we let Q) be the best
partition from this pass. All this is possible because the value of
ag (Px N Ly) can be computed as soon as the pair (x, Lx) arrives in
the stream. Consequently, it is possible to compute, for any family
¥ of partitions, Y geF 2xer AR (Px N Ly) in a single pass over
the stream, using O(log n) bits of space. (These sums have integer
values, so no approximation is necessary.) As |H| = O(|C|?) =
O(n*), each individual pass requires storing only O(nlogn) bits
worth of counters.

At the start of the first stage, since all |Lx| < A + 1, we have
Yxet (|Lx N Px| = 1) < AJUJ. Letting jy be the index of Py ; =

Py N Q;i) chosen to succeed Py, we have (due to Lemma C.2).

DL NPl -1 < Y

xeU xeU

< 27k/2 Z (L N Py| — 1)

xeU

max (|Ly N Px N Q(.i)| -1
jels] J

Each stage reduces Y, ¢y (|Lx N Px| — 1) by a factor of 27k/2 5o
after £ — 1 = [2log(A + 1)/k] stages, we have

A
Ul < U]
+1

2, (e 0Pl = 1) < AUl MY <
xeU
In the last stage, we set Q = {{x} : x € C, where C = Uyecpy Lx-
Unlike the other stages, where |Q| < 2k, we need to run an addi-
tional pass to record, for each x € U, the values of |Ly N Py|. This
requires only O(|U|log n) bits. In the following pass to compute

A
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slack(x | Px N Q) for each x € U and Q € Q, we use the fact that
slack(x | Px N Q) will only be one if Q € Px N Ly and there is no
y € N(x) \ U satistying y(y) € Q to save space; instead of tracking
sums for every (x, Q) € U X C combination, we store a {0, 1} value
for each (x,Q) € Uycpy{(x,0Q) : Q € Ly N Py} which is initialized
to 1 and set to 0 if the stream contains an edge to a neighboring
y € [n] \ U with color in Q. After this stage, the condition |Ly| < 1
holds, as required for the proof of Theorem 1.1 to work.

Despite the less efficient partitioning scheme, the algorithm still
uses roughly the same amount of space; for all but the last stage,
it still uses 2X|U| counters. The last stage requires one bit for each
element in a list Ly — but since Y,y (|Lx| — 1) < |U|, we have
YxeU |Lx| < 2|U|, which implies only 2|U| bits are needed.

Storing the per vertex partitions Py requires only ¢k +log(|C|) =
O(logn) bits, each, at a given point in the algorithm. As in the
original algorithm, each partition Py can be determined using the

sequence of sets from Q(l), .. .,Q(f) that contain it.
The analysis to prove that the potential does not increase by
much requires no adjustment. O

D EXTENSION: SPACE-COLOR TRADEOFFS

CoRrOLLARY D.1 (RESTATEMENT OF COROLLARY 4.3). By adjusting
parameters of Algorithm 3, we can obtain a robust O(A=3p)/2).
coloring algorithm using O(nAP) space and O(nAY=F) bits of oracle
randomness.

Proor. These parameter changes do not significantly affect the
proofs of correctness for Algorithm 3.

Asbefore, we assume that the powers of A given here are integers,
and that A = Q(log? n):

o Change the buffer replacement frequency (Line 10) from n to
nAP. Because a graph stream with maximum degree A con-
tains at most nA/2 edges, reduce the number of epochs from
Ato A'=P_The for loops initializing, updating, and query-
ing the variables h; and A; should have bounds adjusted
accordingly.

Reduce the range of the functions h; from [A?] to [AZ—Zﬁ ].
The expected number of edges stored in all of the sets A;
will now be roughly:

# epochs X |G| A=F . 0(nA)
# slow blocks A2-2

and with high probability, the space usage should not exceed
this by more than a logarithmic factor.

Increase the threshold for a vertex to be considered "fast"
from VA to A1+A)/2_ To match this, the level of a vertex

will now be computed as [%-‘, and the number of levels

reduced from VA to A=P)/2, Again, all of the for loops
related to the fast zone of the algorithm need to have their
bounds adjusted.

Reduce the range of the functions g, from [A3/2] to [A(1-A)3/2],
The expected number of edges stored in all of the sets Cp
will now be roughly:

= 0(nAP),

#levels x |G| AU=P/2.0(nn)
# fast blocks A(1=B)3/2

=0(na%).
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Algorithm 4 Randomness-Efficient Adversarially Robust O(A3)-
Coloring in Semi-Streaming Space

Input: Stream of edge insertions of an n-vertex graph G =
(V.E)

Initialize:
Define P := [10log n], and let £ = 21°6 2] be the greatest power
of 2 whichis < A
Let U be a 4-independent family of hash functions from V to
[£2], of size poly(n)

1: for i € [A],j € [P] do

2: hi,j be a uniformly random function from U mapping V to
[¢]

3: D; j < 0 v Either a set of h; j-monochromatic edges, or L
after invalidation

4 B0

5. curr «— 1

> buffer of edges from this epoch
> current epoch number

Process(edge {u,v}):
6: if |B| = n then
> End current epoch, switch to next
7: B« 0;curr « curr+1
8: B— BU{{u,v}}; > Update current buffer
9: for i from curr+1to A, and j € [P] do
10: if h; j(u) = h; j(v) then > For h; j-monochromatic edges...
11: ifDi’j iJ_/\|Di,j| < %"then
> Record edge in D; j if there is space

12: Di,j — Di,j U {{u,l)}}

13: else

14: Dijje—1 > Wipe buffer D; ; if it gets too large
Query():

> This can fail if all Deyrrj = L
15: Let k = min{j € [P] : Deyrr,j # L}
16: Let y = greedy coloring of Deypr i U B
17: Output the coloring where y €
(@), heurr,j(y)) € [(A+1)] x [¢%]

V is assigned

The number of colors used by the vertices in the slow zone will
be:

# slow blocks X (O(# fast threshold) + O(logn))
= A2 Po(aP)/2) = o(A5-3P) /2y
and by the fast zone:
# levels X # fast blocks X O(# fast threshold) + log n))
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— A(l—ﬁ)/ZA(I—ﬂ)3/2o(A(1+ﬁ)/2) — O(A(5—3ﬁ)/2) .

Combining the two, we find the modified algorithm produces a
O0(AG=3P)/2) coloring with high probability. O

E A RANDOMNESS-EFFICIENT ROBUST
ALGORITHM

In this section, we prove Theorem 4.4. The pseudocode is given in
Algorithm 4. The lemmas below prove its correctness.

LemMAE.1. Algorithm 4 is an adversarially robust O(A3)-coloring
algorithm, which uses O(n) bits of space (including random bits used
by the algorithm), with high probability.

Proor. The only step of Algorithm 4 that an adversary could
make fail is Line 15. By Lemma E.2, this happens with 1/poly(n)
probability. Assuming Line 15 does not fail, Lemma E.3 proves that
the output of the algorithm is a valid (A + 1)A? coloring. Finally,
Lemma E.4 verifies that Algorithm 4 uses at most O(n) bits of space
and of randomness. O

We defer the proofs of the next two lemmas to the full version.

LEmMA E.2. Line 15 of Algorithm 4 will execute successfully, with
high probability, on input streams provided by an adaptive adversary.
m]

LemMA E.3. If Line 15 does not fail, then Algorithm 4 outputs a
valid (A + 1) (A?) coloring of the input graph. O

The next lemma bounds the space usage.

LEmMA E.4. Algorithm 4 requires only O(n) bits of space; this
includes random bits.

Proor. Because |U| = O(poly n), picking a random hash func-
tion from U requires only O(log n) random bits. As the algorithm
stores AP = O(Alog n) of these hash functions as (hi,j)ic[a],je[P]
the total space needed by these function is O(A(log n)?).

Next, for each of the sets of edges D j, for i € [A], j € [P], Lines
11 through 14 ensure that |D; ;| is always < %" +1; sets that grow
too large are replaced by L. Since edges can be stored using O(log n)
bits, the total space usage of all the D; j is O (%) AP - O(logn) =
O (n(logn)?). Similarly, the buffer B never contains more than n
edges, since it is reset when the condition of Line 6 is true; thus B
can be stored with O(nlog n) bits. The counter curr is negligible.

In total, the algorithm needs O (A(log n)z) + O (n(log n)z) =
O(n) bits of space. O
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