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ABSTRACT
Graph coloring is a fundamental problem with wide reaching ap-

plications in various areas including data mining and databases,

e.g., in parallel query optimization. In recent years, there has been

a growing interest in solving various graph coloring problems in

the streaming model. The initial algorithms in this line of work

are all crucially randomized, raising natural questions about how

important a role randomization plays in streaming graph coloring.

A couple of very recent works prove that deterministic or even ad-

versarially robust coloring algorithms (that work on streams whose

updates may depend on the algorithm’s past outputs) are consid-

erably weaker than standard randomized ones. However, there is

still a significant gap between the upper and lower bounds for the

number of colors needed (as a function of the maximum degree

Δ) for robust coloring and multipass deterministic coloring. We

contribute to this line of work by proving the following results.

• In the deterministic semi-streaming (i.e.,𝑂 (𝑛 ·polylog 𝑛) space)
regime, we present an algorithm that achieves a combinatori-

ally optimal (Δ + 1)-coloring using 𝑂 (logΔ log logΔ) passes.
This improves upon the prior 𝑂 (Δ)-coloring algorithm of As-

sadi, Chen, and Sun (STOC 2022) at the cost of only an𝑂 (log logΔ)
factor in the number of passes.

• In the adversarially robust semi-streaming regime, we design

an 𝑂 (Δ5/2)-coloring algorithm that improves upon the previ-

ously best 𝑂 (Δ3)-coloring algorithm of Chakrabarti, Ghosh,

and Stoeckl (ITCS 2022). Further, we obtain a smooth col-

ors/space tradeoff that improves upon another algorithm of

the said work: whereas their algorithm uses 𝑂 (Δ2) colors and
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𝑂 (𝑛Δ1/2) space, ours, in particular, achieves (i) 𝑂 (Δ2) colors
in 𝑂 (𝑛Δ1/3) space, and (ii) 𝑂 (Δ7/4) colors in 𝑂 (𝑛Δ1/2) space.
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1 INTRODUCTION
In the graph coloring problem, we are given an undirected graph

and the goal is to assign colors to the nodes of the graph such

that adjacent nodes receive different colors. Graph coloring is a

fundamental problem in graph theory with numerous applications

in computer science, including in databases, data mining, register

allocation, and scheduling [17, 28, 29]; see, e.g., the application to

parallel query optimization by Hasan andMotwani [24] in VLDB’95.

The emergence of massive graphs in many of these application

domains has necessitated the study of graph coloring algorithms

that are capable of handling such graphs efficiently on modern

architecture. Of particular interest is the family of graph streaming
algorithms: such an algorithm computes its solution using only

a small number of sequential passes over the edges of the input

graph, while using a sublinear amount of memory.

Several graph coloring problems have been studied in the stream-

ing setting, typically with the goal of achieving a palette size (total

number of colors used) proportional to the graph’s chromatic num-

ber [1, 21], maximum vertex-degree [2–5, 12], arboricity [12], or

degeneracy [11]. Also studied is the closely-related problem of

(degree+1)-list-coloring [23] (see also [2]). Furthermore, graph col-

oring has been considered under different streaming paradigms

such as random stream order and the vertex-arrival model [13].
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Most of these works consider the semi-streaming regime, where

we are restricted to 𝑂 (𝑛 · polylog 𝑛) space for processing an 𝑛-

vertex graph. Since even just storing the output coloring can require

Ω(𝑛 log𝑛) space, this is close to optimal for the problem. We study

semi-streaming graph coloring, focusing on the most popular color

parameter in this line of work, namely the maximum degree Δ of

the graph: we call this “Δ-based coloring.”

A trivial greedy algorithm achieves a (Δ + 1)-coloring in the

offline setting. However, obtaining this color bound in the streaming
model is fairly challenging. A breakthrough work by Assadi, Chen,

and Khanna [4] did achieve such a coloring in semi-streaming space.

An aspect of this algorithm, shared with almost all subsequent

streaming coloring algorithms, is that it is inherently randomized.

This raises the natural question: to what extent is randomization
necessary for Δ-based coloring? Indeed, a derandomized version

can be advantageous in multiple scenarios, e.g., having low or zero

error even when the algorithm is rerun a huge (maybe exponential)

number of times, or for robustness against input streams generated

based on the algorithm’s past outputs or internal states.

Two recent works have addressed this question. On the one

hand, Assadi, Chen, and Sun [3] ruled out non-trivial single-pass

deterministic algorithms for Δ-based coloring: any such algorithm

requires exp(ΔΩ (1) ) colors for semi-streaming space (and ΔΩ (1/𝛼 )

colors for 𝑂 (𝑛1+𝛼 ) space). They further showed that allowing mul-
tiple semi-streaming passes over the stream makes better tradeoffs

possible: one can get an𝑂 (Δ2)-coloring in two passes, and an𝑂 (Δ)-
coloring in𝑂 (logΔ) passes. On the other hand, Chakrabarti, Ghosh,
and Stoeckl [18], considered a “middle ground” between determin-

istic and randomized algorithms, namely the adversarially robust
algorithms introduced by [9], recipient of the PODS’20 best paper

award. These algorithms are required to work even when stream

updates are generated by an adaptive adversary, depending on the

algorithm’s previous outputs (and thus implicitly on its internal ran-

domness; observe that deterministic algorithms are always robust).

They showed that a (possibly randomized) robust semi-streaming

coloring algorithm requires Ω(Δ2) colors, while an 𝑂 (Δ)-coloring
admits no 𝑜 (𝑛2)-space robust algorithm. The same work also gave

a robust semi-streaming algorithm achieving 𝑂 (Δ3) colors. Thus,
the results in [3, 18] establish a neat trichotomy for single-pass

semi-streaming graph coloring: (i) a (Δ + 1)-color palette suffices

for standard randomized streaming; (ii) poly(Δ) colors are neces-
sary and sufficient for robust streaming; and (iii) exp(Δ) colors are
needed for deterministic algorithms.

Many questions in this line of work, however, remain unresolved.

Here are two particular ones:

(i) For deterministic algorithms, how many passes are needed to
achieve a tight (Δ + 1)-coloring?

(ii) For robust algorithms, where in the range [Δ2,Δ3] does the
above “poly(Δ)” number of colors lie?

This paper takes steps towards resolving both these questions.

1.1 Our Contributions
The Deterministic Setting. In this setting, our main result is a

multi-pass semi-streaming algorithm that achieves a (Δ+1)-coloring,
thus signicantly improving the 𝑂 (Δ)-color bound of [3] to the

combinatorially optimal Δ + 1, while paying only an additional

𝑂 (log logΔ) factor in the number of passes.

Theorem 1.1. There is a deterministic 𝑂 (logΔ log logΔ)-pass
semi-streaming algorithm to (Δ + 1)-color a graph with maximum
degree Δ, where the graph edges arrive in any adversarial order.1

To fully appreciate this improvement, note that in streaming,

as well as several other computational models, it is known that

𝑂 (Δ)-coloring is an “algorithmically much easier” problem than

(Δ + 1)-coloring. For instance, there are quite simple single-pass

randomized algorithms known for 𝑂 (Δ)-coloring [4, 12], whereas

the only known streaming (Δ + 1)-coloring algorithm, due to [4],

uses sophisticated tools and a combinatorially involved analysis.
2

Our algorithm in Theorem 1.1 uses a variety of novel ideas and

techniques. It is inspired by a recent distributed algorithm of Ghaf-

fari and Kuhn [22] that solves (Δ + 1)-coloring in the CONGEST

model of distributed computation; which in turn was inspired by

earlier algorithms of [7] and [27]. In building on these works, we

must contend with the limitation that the semi-streaming model

does not allow enough space for a typical vertex to “know” much

of its neighborhood; this is in sharp contrast to distributed com-

puting models (including CONGEST). The algorithm of [22] asks

each vertex to progressively whittle down its space of candidate

colors by using full information about its neighborhood. Since

we cannot do this in a streaming setting, we make novel use of

pairwise-independent hashing to collect the necessary information

“approximately.” Another innovation in our algorithm is the intro-

duction of a stream-computable quantity we call “slack” (inspired

by, but different from, a similar notion used in distributed coloring

algorithms [23]) that measures roughly how many free colors each

vertex has. The precise definition of slack is a key contribution of

this work, since it is crucial for the eventual analysis of our algo-

rithm. Moreover, our algorithm achieves roughly 𝑂 (logΔ) passes,
whereas that of [22] uses 𝑂 (log2 Δ log𝑛) distributed rounds; this

quantitative difference stems, in part, from our delicate tuning of

parameters in an iterative process that colors vertices in batches.

As a by-product of the technology developed for establishing

Theorem 1.1, we also find an efficient streaming algorithm for the

more general problem of (degree + 1)-list-coloring. In this problem,

the input stream specifies a graph 𝐺 as usual and, for each vertex

𝑥 , a list 𝐿𝑥 of at least deg(𝑥) + 1 allowed colors for 𝑥 ; the goal is to

properly color 𝐺 subject to these lists. We get the following result.

Theorem 1.2. Let 𝐶 be a set of colors of size 𝑂 (𝑛2). There is a
deterministic semi-streaming algorithm for (degree + 1)-list-coloring
a graph𝐺 given arbitrarily interleaved stream of the graph edges and
(𝑥, 𝐿𝑥 ) pairs specifying the list 𝐿𝑥 of allowed colors for a vertex 𝑥 ,
where 𝐿𝑥 ⊆ 𝐶 with |𝐿𝑥 | ≥ deg(𝑥)+1. The algorithm uses𝑂 (𝑛 log2 𝑛)
bits of space and runs in 𝑂 (logΔ log logΔ) passes.

1
If Δ is not known in advance, it can be determined in𝑂 (𝑛 log𝑛) space using a single
pass.

2
Similar examples of this difference appear in the (randomized) LOCAL algorithms [19,

30], (deterministic) dynamic graph algorithms [14], or even provable separations

for the “palette sparsification” technique [2, 4]. Yet another example is the closely

related problem of𝑂 (degeneracy)-coloring versus (degeneracy+ 1)-coloring studied
by [11] who proved that the former admits a (randomized) single-pass semi-streaming

algorithm while the latter does not.
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The Adversarially Robust Setting. In this setting, our algorithm

needs to be correct against an adversary who constructs the input

graph adaptively by inserting edges based on the past colorings

returned by the algorithm. This is inherently a single-pass setting.

However, we are now allowed to use randomness. Observe that

the stream elements might depend on past outputs, which in turn

depend on the random bits used by the algorithm. While [4] gave

a semi-streaming (Δ + 1)-coloring algorithm in the “non-robust”

setting where the stream is fixed in advance, [18] showed that a

robust semi-streaming algorithm must use Ω(Δ2) colors. Our main

result in the robust setting is the following.

Theorem 1.3. There is an adversarially robust semi-streaming
algorithm to𝑂 (Δ5/2)-color a graph, given oracle access to𝑂 (𝑛Δ) bits
of randomness.

The above result improves a robust algorithm of [18], which

runs in a similar semi-streaming amount of space and accesses as

many random bits, but only gives an 𝑂 (Δ3)-coloring. Further, our
robust algorithm admits a smooth tradeoff between the number of

colors and the memory used: we can get an 𝑂 (Δ5/2−3𝛽/2)-coloring
in 𝑂 (𝑛Δ𝛽 ) space3 for any 𝛽 ∈ [0, 1]. While [18] gave a robust

algorithm giving an 𝑂 (Δ2)-coloring using 𝑂 (𝑛Δ1/2) space, our
result implies robust 𝑂 (Δ2)-coloring is possible with 𝑂 (𝑛Δ1/3)
space, and 𝑂 (Δ7/4)-coloring with 𝑂 (𝑛Δ1/2) space.

Our algorithm overcomes the challenges posed by the adaptive

adversary by crucially exploiting the graph structure and using

enhanced versions of some known techniques on subgraphs of the

input graph. These techniques include those in the adversarially

robust literature, such as sketch switching [9, 18], as well as those in
the coloring literature, such graph partitioning [12] and degeneracy-
based coloring [11].

One caveat of the above result is the need for a large number of

random bits. The same caveat applies to the aforementioned robust

𝑂 (Δ3)-coloring algorithm of [18]. We note three points in defense

of this “lenient” model, where random bits are “free” and do not

count towards space usage. First, the lower bound of Ω(Δ2) colors
for robust semi-streaming algorithms does apply even in this lenient

model. Second, in practice, one might reduce the randomness usage

via a cryptographic pseudorandom generator. But perhaps the best

response is our next result, wherein we design a fresh algorithm that

removes this caveat while achieving the same color bound as [18].

Note that this is the first non-trivial robust coloring algorithm in

the strict semi-streaming model that accounts for all random bits

in space usage.

Theorem 1.4. There is an adversarially robust 𝑂 (Δ3)-coloring
algorithm that runs in semi-streaming space, even when one charges
for the random bits used by the algorithm.

1.2 Related work
Prior works most relevant to our paper are [3], [18], and [22]. We

have already discussed their results and comparisons with our work

in the sections above. Other important related work include the

growing literature on streaming graph coloring [1, 2, 4, 5, 11–13, 23].

However, all these works study the problem in the “static” streaming

3
The𝑂 ( ·) notation suppresses polylogarithmic factors.

model. Starting with [9], there has been a rapidly growing interest

in adversarially robust streaming, leading to a long line of papers on

the topic in the last couple of years [6, 8, 10, 15, 18, 20, 25, 26, 31, 32].

To the best of our knowledge, [18] is the only prior work to study

graph coloring in the robust model. For a detailed account on these

works, please see Appendix A.

2 PRELIMINARIES
Notation. Throughout the paper, “log” denotes the base-2 log-

arithm; [𝑛] denotes the set {1, . . . , 𝑛}; F𝑝 is the finite field with 𝑝

elements; 1cond is the indicator function for condition cond, i.e.,
it takes the value 1 when cond is true, and 0 otherwise; and the

notation 𝑎 ∈𝑅 𝐴 means that 𝑎 is drawn uniformly at random from

the finite set 𝐴.

A graph 𝐺 = (𝑉 , 𝐸) typically has 𝑛 = |𝑉 | vertices. We may

identify𝐺 with its set 𝐸 of edges, and write {𝑢, 𝑣} ∈ 𝐺 to mean that

{𝑢, 𝑣} ∈ 𝐸. For 𝐵 ⊆ 𝐸, deg𝐵 (𝑥) denotes the degree of 𝑥 in the graph

formed by the edges in 𝐵. For 𝑋 ⊆ 𝑉 , 𝐺 [𝑋 ] denotes the subgraph
of 𝐺 induced by 𝑋 .

The Classical Streaming Model. In the static or classical stream-

ing setting, an algorithm operates on a long sequence ⟨𝑒1, 𝑒2, . . .⟩
of elements, fixed in advance. It may make multiple passes over

the stream. For a given parameter 𝛿 , we typically aim to design a

streaming algorithm with parameter 𝑆 as low as possible so that,

for all possible input streams, it uses ≤ 𝑆 bits of space and errs with
probability ≤ 𝛿 . If the algorithm is deterministic, then 𝛿 = 0.

The Adversarially Robust Streaming Model. In the adversarial
setting, we view the algorithm as one party in a game it plays

with an adversary; the adversary produces a sequence ⟨𝑒1, 𝑒2, . . .⟩
of elements, and can ask the algorithm to report an output 𝑜𝑖 after

each new element 𝑒𝑖 . Unlike the static setting, the next element 𝑒𝑖+1
produced by the adversary may depend (possibly randomly

4
) on

the transcript ⟨𝑒1, 𝑜1, . . . , 𝑒𝑖 , 𝑜𝑖 ⟩ of the game. The algorithm is said

to err if at least one of its outputs is incorrect for the problem at

hand. In this setting, we typically aim to find streaming algorithms

minimizing 𝑆, 𝛿 , where the algorithm (a) never exceeds 𝑆 bits of

space and (b) errs with probability ≤ 𝛿 for all possible adversaries.

Colorings. A partial coloring of a graph𝐺 = (𝑉 , 𝐸) using a palette
C (any nonempty finite set) is a tuple (𝑈 , 𝜒) where𝑈 ⊆ 𝑉 is the set

of uncolored vertices and 𝜒 : 𝑉 → C ∪ {⊥} is a function such that

𝜒 (𝑥) = ⊥ ⇔ 𝑥 ∈ 𝑈 (we may also simply refer to 𝜒 as the partial

coloring). The coloring is said to be proper if, for all {𝑢, 𝑣} ∈ 𝐸 such

that 𝑢 ∉ 𝑈 and 𝑣 ∉ 𝑈 , we have 𝜒 (𝑢) ≠ 𝜒 (𝑣). A proper coloring of

𝐺 is a partial coloring where 𝑈 = ∅.
Given a graph-theoretic parameter𝜓 , the𝜓 -coloring (algorith-

mic) problem asks one to determine a proper coloring of an input

graph 𝐺 using a palette of size |C| ≤ 𝜓 . This paper focuses first on
(Δ+1)-coloring and later on poly(Δ)-coloring. We also consider the

list-coloring problem, wherein each 𝑥 ∈ 𝑉 has an associated list (re-

ally a set) 𝐿𝑥 ⊆ C and we are to find a coloring satisfying 𝜒 (𝑥) ∈ 𝐿𝑥
for all 𝑥 . Specifically, we study the problem of (deg+1)-list-coloring,
in which |𝐿𝑥 | = deg(𝑥) + 1 for each 𝑥 .

4
However, by Yao’s lemma, there is always a deterministic adversary at least as effective

as any randomized one at making the algorithm fail.
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Hash Functions. We will use the following standard properties

of families of hash functions. A hash familyH of functions 𝐴→ 𝐵

is 𝑘-independent if, for all distinct 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴, and arbitrary

𝑏1, . . . , 𝑏𝑘 ∈ 𝐵, Prℎ∈𝑅H
[ ∧𝑘

𝑖=1 ℎ(𝑎𝑖 ) = 𝑏𝑖
]
= 1/|𝐵 |𝑘 . The family is

2-universal if, for all 𝑎1 ≠ 𝑎2 ∈ 𝐴, Prℎ∈𝑅H
[
ℎ(𝑎1) = ℎ(𝑎2)

]
≤ 1/|𝐵 |.

Useful Lemmas. We use the following variations of standard

lemmas, proofs of which are given in the full version of the paper.

Lemma 2.1 (Constructive variant of Turán’s theorem).

Given a graph with 𝑛 vertices and𝑚 edges, one can find an indepen-
dent set of size ≥ 𝑛2/(2𝑚 + 𝑛) in deterministic polynomial time. □

Lemma 2.2 (Mix of Chernoff bound andAzuma’s ineqality).

Let𝑋1, . . . , 𝑋𝑘 be a sequence of {0, 1} random variables, and 𝑐 ∈ [0, 1]
a real number for which, for all 𝑖 ∈ 𝑘 , E[𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1] ≤ 𝑐 . Then
Pr

[∑
𝑖∈[𝑘 ] 𝑋𝑖 ≥ (1 + 𝑡)𝑘𝑐

]
≤ 2
−𝑡𝑘𝑐 , assuming 𝑡 ≥ 3. □

3 A (MULTIPASS) DETERMINISTIC
ALGORITHM

This section presents our first main result, giving a multipass de-

terministic semi-streaming algorithm for (Δ + 1)-coloring, proving
Theorem 1.1. As usual, the input graph 𝐺 = (𝑉 , 𝐸) has 𝑛 = |𝑉 | ver-
tices and maximum degree Δ. Later, we shall extend our algorithm

to the (deg+1)-list-coloring problem, so it will be helpful to think

of each vertex 𝑥 ∈ 𝑉 being associated with a set 𝐿𝑥 of allowed

colors; for our main algorithm, 𝐿𝑥 = [Δ + 1] for each 𝑥 ∈ 𝑉 .

3.1 High-Level Organization
The algorithm’s passes are organized as follows. The algorithm

proceeds in epochs, where each epoch starts with a partial coloring

𝜒 that has a certain subset 𝑈 ⊆ 𝑉 uncolored and ends with a new

partial coloring that extends 𝜒 by coloring at least a third of the

vertices in 𝑈 , thereby shrinking |𝑈 | to ≤ 2

3
|𝑈 |. In the beginning,

𝑈 = 𝑉 . After at most ⌈log
3/2 Δ⌉ such epochs, we will have |𝑈 | ≤

𝑛/Δ: at this point, the algorithm makes a final pass to collect all

edges incident to 𝑈 and greedily extend 𝜒 to a full coloring of 𝐺 .

Each epoch of the algorithm is divided into stages, where each
stage whittles down a set of proposed colors for each uncolored

vertex. The following definition is crucial to the logic of an epoch

and is an important conceptual contribution of this work.

Definition 3.1 (Partial commitment, slack, potential). A partially
committed coloring (PCC) of 𝐺 is an assignment of colors and lists

to the vertices satisfying the following conditions.

• Every vertex outside a subset 𝑈 ⊆ 𝑉 of uncolored vertices

is assigned a specific color 𝜒 (𝑥) ∈ 𝐿𝑥 ; the resulting 𝜒 is a

proper partial coloring.

• Each 𝑥 ∈ 𝑈 has an associated set 𝑃𝑥 of proposed colors,

defining a collection P = {𝑃𝑥 }𝑥∈𝑈 .

• For all vertices 𝑥,𝑦 ∈ 𝑈 , either 𝑃𝑥 = 𝑃𝑦 or 𝑃𝑥 ∩ 𝑃𝑦 = ∅.
We shall denote such a PCC by the tuple (𝑈 , 𝜒,P). Given such a

PCC, define the slack of a vertex with respect to a set𝑇 of colors by

slack(𝑥 | 𝑇 ) = max{0, |𝑇 ∩ 𝐿𝑥 | − |{𝑦 ∈ N(𝑥) ∖𝑈 : 𝜒 (𝑦) ∈ 𝑇 }|} ,
(1)

and further define 𝑠𝑥 = slack(𝑥 | 𝑃𝑥 ); that is, 𝑠𝑥 is the number of

colors in 𝑃𝑥 that are available to 𝑥 in 𝐿𝑥 minus the number of times

the colors in 𝑃𝑥 have appeared in the already colored neighbors of

𝑥 . Define the potential of the PCC to be

Φ = Φ(𝑈 , 𝜒,P) =
∑︁
{𝑥,𝑦}∈𝐸

1𝑥∈𝑈∧𝑦∈𝑈 · 1𝑃𝑥=𝑃𝑦 ·
(
1

𝑠𝑥
+ 1

𝑠𝑦

)
(2)

which sums the quantity (1/𝑠𝑥 + 1/𝑠𝑦) over all edges {𝑥,𝑦} inside
𝑈 with 𝑃𝑥 = 𝑃𝑦 . □

Intuitively, the slack defined here is a lower bound on the number

of unused colors available to a vertex. Our definition differs from

the “slack” defined by [23], where the number of colors used by the

neighbors is known exactly. It turns out that such a lower bound

on the number of unused colors is sufficient for our algorithm to

progressively refine a PCC. The advantage of this lower bound—

equivalently, of the upper bound |{𝑦 ∈ N(𝑥) ∖𝑈 : 𝜒 (𝑦) ∈ 𝑇 }| on
the number of used colors, instead of the exact quantity |𝑇 ∩{𝜒 (𝑦) :
𝑦 ∈ N(𝑥) ∖𝑈 }|—is that the former is a linear function of the data

stream, and can be easily computed in 𝑂 (log𝑛) space by storing a

single counter which is incremented each time an edge {𝑥,𝑦} with
𝑦 ∉ 𝑈 and 𝜒 (𝑦) ∈ 𝑇 is encountered. Meanwhile, as a consequence

of the set disjointness lower bound in communication complexity,

determining the latter can require up to Ω(Δ) space. In the LOCAL

and CONGEST models, each vertex can easily store and maintain

a list of all its available colors (equivalently, colors used by its

neighborhood), so the algorithms of [7, 22, 23] do not need such a

modified notion of “slack.”

The set Free(𝑇, 𝑥) := 𝑇 ∩𝐿𝑥 ∖ {𝜒 (𝑦) : 𝑦 ∈ N(𝑥)∖𝑈 } is the set of
all colors in𝑇 that are available for 𝑥 , in light of the local constraints

imposed by 𝐿𝑥 and 𝜒 . Notice that | Free(𝑇, 𝑥) | ≥ slack(𝑥 | 𝑇 ), since
a color in 𝑇 might be used more than once in the neighborhood of

𝑥 , thus reducing the LHS only once, but the RHS more than once.

Hence, if we extend 𝜒 to a full coloring by choosing, independently

for each 𝑥 ∈ 𝑈 , a uniformly random color in Free(𝑃𝑥 , 𝑥), the only
monochromatic edges wemight create are within𝑈 and the number,

𝑚mono (𝑈 , 𝜒,P), of such edges satisfies

E𝑚mono (𝑈 , 𝜒,P) =
∑︁

{𝑥,𝑦}∈𝐸 (𝐺 [𝑈 ])
𝑃𝑥 =𝑃𝑦

| Free(𝑃𝑥 , 𝑥) ∩ Free(𝑃𝑦, 𝑦) |
| Free(𝑃𝑥 , 𝑥) | · | Free(𝑃𝑦, 𝑦) |

≤
∑︁

{𝑥,𝑦}∈𝐸 (𝐺 [𝑈 ])
𝑃𝑥 =𝑃𝑦

(
1

𝑠𝑥
+ 1

𝑠𝑦

)
= Φ . (3)

3.2 The Logic of an Epoch: Extending a Partial
Coloring

Returning to the algorithm outline, at the start of an epoch, the

current partial coloring 𝜒 and its corresponding set𝑈 of uncolored

vertices define a trivial PCC where 𝑃𝑥 = 𝐿𝑥 = [Δ + 1] for each
𝑥 . We shall eventually show that the resulting potential Φ ≤ |𝑈 |.
Each stage in the epoch shrinks these sets 𝑃𝑥 in such a way that

the potential Φ does not increase much. After several stages, each

𝑃𝑥 in the PCC becomes a singleton and the bound on Φ, together
with eq. (3), ensures that assigning each 𝑥 ∈ 𝑈 the sole surviving

color in 𝑃𝑥 would not create too many monochromatic edges. Now,

Lemma 2.1 allows us to commit to these proposed colors for at least

1

3
|𝑈 | of the uncolored vertices; this defines a new partial coloring

and ends the epoch.
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We now describe how to shrink the sets 𝑃𝑥 . For this, view each

color as a 𝑏-bit vector where 𝑏 = ⌈log(Δ + 1)⌉ according to some

canonical mapping, e.g., a ∈ {0, 1}𝑏 ↦→ 1 +∑𝑏
𝑖=1 𝑎𝑖2

𝑖−1
. Each set 𝑃𝑥

will correspond to a subcube of {0, 1}𝑏 where the first several bits

have been fixed to particular values.
5
Each stage of the 𝑟 th epoch

(except perhaps the last, due to divisibility issues) will shrink each

𝑃𝑥 by fixing an additional 𝑘 bits of its subcube, thus reducing the

dimension of the subcube. We choose 𝑘 := 1 + ⌊log(𝑛/|𝑈 |)⌋, so that
|𝑈 |2𝑘 ≤ 2𝑛; this bound will be important when we analyze the

space complexity. The epoch ends when all bits of each 𝑃𝑥 have

been fixed, making each 𝑃𝑥 a singleton; clearly, this happens after

⌈𝑏/𝑘⌉ stages.
This brings us to the heart of the algorithm: we need to describe,

for each 𝑥 ∈ 𝑈 and the particular value of 𝑘 for the current epoch,

how to fix the next 𝑘 bits for 𝑃𝑥 . Let 𝑃𝑥,j be the subset of 𝑃𝑥 where

the 𝑘 lowest-indexed free bits are set to j ∈ {0, 1}𝑘 : this partitions
𝑃𝑥 into 2

𝑘
subcubes. Define

𝑤𝑥,j =
slack(𝑥 | 𝑃𝑥,j)∑

i∈{0,1}𝑘 slack(𝑥 | 𝑃𝑥,i)
. (4)

An easy calculation shows that if, for each 𝑥 , we choose j at random
according to the distribution given by (𝑤𝑥,j)j∈{0,1}𝑘 to obtain a new

random collection P̃ of proposed color sets for each vertex, then

EΦ(𝑈 , 𝜒, P̃) = Φ(𝑈 , 𝜒,P) . (5)

Therefore, there exists a particular realization P′ of P̃ such that

Φ(𝑈 , 𝜒,P′) ≤ Φ(𝑈 , 𝜒,P). However, it is not clear how to identify

such a P′ deterministically and space-efficiently in a stream.

A key idea that enables a space-efficient derandomization is

to choose the j values for the vertices 𝑥 ∈ 𝑈 in a pseudorandom

fashion, using a 2-independent familyH of hash functions𝑉 ↦→ [𝑝]
for a value 𝑝 which is Ω(𝑛 log𝑛). By using a map 𝑔w : 𝑈 × [𝑝] →
{0, 1}𝑘 , as specified in the following lemma (proved in the full

version), we can use a uniform random value in [𝑝] to sample from

a distribution close enough to the (𝑤𝑥,j) distribution.

Lemma 3.2. There is a function 𝑔w : 𝑈 × [𝑝] → {0, 1}𝑘 satisfying

|𝑔−1w (𝑥, j) |
𝑝

≤ 𝑤𝑥,j

(
1 + 1

8 log𝑛

)
, ∀ j ∈ {0, 1}𝑘 . □

Then, for each 𝑥 , we shrink 𝑃𝑥 to 𝑃𝑥,j(𝑥 ) where j(𝑥) = 𝑔w (𝑥, ℎ(𝑥))
and ℎ ∈𝑅 H . Let Pℎ denote the resulting collection of proposed

color sets.

By choosing (e.g.) the Carter–Wegman family of affine functions

on F𝑝 for prime 𝑝 , we can take |H | = 𝑂 (𝑛2 log2 𝑛). This lets us
identify a specific function ℎ ∈ H for which Φ(𝑈 , 𝜒,Pℎ) is not
much larger than the average over all ℎ ∈ H , using two streaming

passes and 𝑂 (𝑛) space. We then show that the new potential is

at most 1 +𝑂 (1/log𝑛) times the old. Repeating this argument for

each of the 𝑂 (log𝑛) stages in the epoch shows that at the end of

the epoch, the potential will have increased by at most a constant

factor, which allows us to shrink 𝑈 by a factor 2/3.
The above outline suggests𝑂 (log𝑛) epochs, each using𝑂 (log𝑛)

stages, each of which uses 𝑂 (1) passes. A more careful analysis

bounds the number of passes by 𝑂 (logΔ log logΔ).
5
If Δ + 1 is not a power of 2, 𝑃𝑥 might contain elements not in 𝐿𝑥 , but this doesn’t

matter because Free(𝑇, 𝑥 ) ⊆ 𝐿𝑥 always.

3.3 Detailed Algorithm and Analysis
We now describe the algorithm more formally, by fleshing out the

precise logic of an epoch. Let Q (𝑖 ) denote the partition of the color

space {0, 1}𝑏 into subcubes 𝑄
(𝑖 )
j defined by setting the 𝑖th 𝑘-bit

block to each of the 2
𝑘
possible patterns j; i.e.,

𝑄
(𝑖 )
j :=

{
a ∈ {0, 1}𝑏 : (𝑎𝑘𝑖−𝑘+1, . . . , 𝑎𝑘𝑖 ) = j

}
Q (𝑖 ) :=

{
𝑄
(𝑖 )
j

}
j∈{0,1}𝑘 . (6)

If 𝑘 does not divide 𝑏, we must make an exception for the ⌈𝑏/𝑘⌉th
partition, for which the relevant bit patterns j would be shorter;

for clarity of presentation, we shall ignore this edge case in what

follows. The full logic of the algorithm is given in Algorithm 1.

Algorithm 1 Deterministic Semi-Streaming (Δ + 1)-Coloring
1: procedure Deterministic-Coloring(streamed 𝑛-vertex

graph 𝐺 = (𝑉 , 𝐸) with max degree Δ)
2: 𝑈 ← 𝑉 ; 𝜒 (𝑥) ← ⊥ for all 𝑥 ∈ 𝑉 ⊲ all vertices uncolored

3: repeat
4: Coloring-Epoch(𝐺,𝑈 , 𝜒) ⊲ shrinks |𝑈 | to at most

2

3
|𝑈 |

5: until |𝑈 | ≤ 𝑛/Δ
6: In one pass, collect every edge incident to a vertex in 𝑈

7: Use these edges to greedily complete 𝜒 to a proper coloring

of 𝐺

8: procedure Coloring-Epoch(graph 𝐺 , partial coloring (𝑈 , 𝜒))
9: 𝑏 ← ⌈log(Δ + 1)⌉ ⊲ each color is a 𝑏-bit vector

10: 𝑘 ← 1 + ⌊log (𝑛/|𝑈 |)⌋ ⊲ number of bits fixed in each stage

11: for each 𝑥 ∈ 𝑈 do 𝑃𝑥 ← {0, 1}𝑏 ⊲ the initial, trivial PCC

12: for each stage 𝑖 , from 1 through ⌈𝑏/𝑘⌉ do
13: P ← Refine-PCC((𝑈 , 𝜒,P), 𝑖 , 𝑏, 𝑘)

14: end-of-epoch pass: ⊲ each 𝑃𝑥 is now a singleton

15: Collect 𝐹 ← {{𝑢, 𝑣} ∈ 𝐸 : 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 , and 𝑃𝑢 = 𝑃𝑣}
⊲ (We will prove that |𝐹 | = 𝑂 ( |𝑈 |))

16: In the graph (𝑉 , 𝐹 ), find an independent set 𝐼 with |𝐼 | ≥
1

3
|𝑈 |, using Lemma 2.1

17: for each 𝑥 ∈ 𝐼 do ⊲ extend 𝜒 by coloring 𝑥

18: 𝑈 ← 𝑈 ∖ {𝑥}
19: 𝜒 (𝑥) ← the sole element in 𝑃𝑥

The most important aspect of the analysis is to quantify the

progress made in each epoch and establish that the colors proposed

at the end of each stage do not produce too many monochromatic

edges (i.e., those in 𝐹 .) This analysis will demonstrate the utility of

the potential defined in eq. (2).

Given a PCC (𝑈 , 𝜒,P) where P = {𝑃𝑥 }𝑥∈𝑈 , define the “conflict

degree” of each 𝑥 ∈ 𝑈 by

d
conf
(𝑥) = d

conf
(𝑥 ;𝑈 , 𝜒,P) := |{𝑦 ∈ N(𝑥) ∩𝑈 : 𝑃𝑦 = 𝑃𝑥 }| , (7)

which counts the neighbors of𝑥 that could potentially formmonochro-

matic edges with 𝑥 , were we to assign colors from P to the un-

colored vertices. Recall the quantities 𝑠𝑥 = slack(𝑥 | 𝑃𝑥 ) from
Definition 3.1.

Lemma 3.3. For every PCC, Φ(𝑈 , 𝜒,P) = ∑
𝑥∈𝑈 d

conf
(𝑥)/𝑠𝑥 .
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Algorithm 2 Refining a Partially Committed Coloring

1: procedure Refine-PCC(streamed 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸) with max degree Δ; PCC (𝑈 , 𝜒,P); stage number 𝑖; parameters 𝑏, 𝑘)

2: pass 1:
3: for each 𝑥 ∈ 𝑈 and 𝑄 ∈ Q (𝑖 ) do compute slack(𝑥 | 𝑃𝑥 ∩𝑄) by using eq. (1)

4: Determine all𝑤𝑥,j values using eq. (4), noting that 𝑃𝑥,j = 𝑃𝑥 ∩𝑄 (𝑖 )j
5: Let 𝑝 ← a prime in [8𝑛 log𝑛, 16𝑛 log𝑛]
6: LetH := {𝑧 ↦→ 𝑎𝑧 + 𝑏 : 𝑎, 𝑏 ∈ F𝑝 } be a family of hash functions 𝑈 ↦→ [𝑝] ⊲ Carter–Wegman hashing

7: Implicitly construct 𝑔w : 𝑈 × [𝑝] → {0, 1}𝑘 as per Lemma 3.2

8: Define Pℎ := (𝑃𝑥,ℎ)𝑥∈𝑈 where 𝑃𝑥,ℎ := 𝑃𝑥 ∩𝑄 (𝑖 )𝑔w (𝑥,ℎ (𝑥 ) )
⊲ Identify a specific ℎ★ ∈ H for which Φ(𝑈 , 𝜒,Pℎ★) is not much larger than average, as follows:

9: pass 2:
10: SplitH into

√︁
|H | parts of equal size

11: Estimate

∑
ℎ Φ(𝑈 , 𝜒,Pℎ) for each part, up to (1 + 1/(8 log𝑛)) relative error

12: Pick the part minimizing the estimated sum

13: pass 3:
14: Estimate Φ(𝑈 , 𝜒,Pℎ) for each ℎ within the chosen part, up to (1 + 1/(8 log𝑛)) relative error
15: Choose ℎ★ as the (approximate) minimizer

16: P ← Pℎ★ ⊲ constrain the PCC more tightly

Proof. From the definitions in eqs. (1) and (2), using some

straightforward algebra,

Φ(𝑈 , 𝜒,P) =
∑︁

{𝑢,𝑣}∈𝐸 (𝐺 [𝑈 ])
𝑃𝑢=𝑃𝑣

(
1

𝑠𝑢
+ 1

𝑠𝑣

)
=

∑︁
𝑥∈𝑈

|{𝑦 ∈ 𝑈 : {𝑥,𝑦} ∈ 𝐸 ∧ 𝑃𝑥 = 𝑃𝑦}|
𝑠𝑥

=
∑︁
𝑥∈𝑈

d
conf
(𝑥)

𝑠𝑥
. □

Lemma 3.4. For all 𝑥 and disjoint sets 𝑇1,𝑇2: slack(𝑥 | 𝑇1 ∪𝑇2) ≤
slack(𝑥 | 𝑇1) + slack(𝑥 | 𝑇2).

Proof. This follows from eq. (1) and the fact that max{0, 𝑎1 +
𝑎2} ≤ max{0, 𝑎1} +max{0, 𝑎2}. □

The following major lemma addresses the core of the algorithm;

it is proven in Appendix B.

Lemma 3.5 (Restated as Lemma B.1). Suppose we start a particu-
lar epoch with the partial coloring (𝑈 , 𝜒) and the initial, trivial PCC
(𝑈 , 𝜒,P0). Suppose there are ℓ stages in this epoch and the 𝑖th stage
begins with the PCC P𝑖 . Let Φ𝑖 := Φ(𝑈 , 𝜒,P𝑖 ) be the corresponding
potential, for 0 ≤ 𝑖 ≤ ℓ . Then Φ0 ≤ |𝑈 | and Φℓ ≤ 2|𝑈 |.

The crucial combinatorial property of the (Δ + 1)-coloring prob-

lem is that given any proper partial coloring, every uncolored vertex

is guaranteed to have a free color not in use by its colored neigh-

bors. The next lemma argues that even as we gradually tighten

constraints in our PCC during the stages of an epoch, a similar

guarantee is maintained.

Lemma 3.6. In each epoch, for all 𝑥 ∈ 𝑈 , the stages maintain the
invariant that 𝑠𝑥 ≥ 1 and after the last stage we have 𝑠𝑥 = 1.

Proof. At the start of the epoch, 𝑠𝑥 ≥ |𝐿𝑥 | − |N(𝑥) | = (Δ + 1) −
deg(𝑥) ≥ 1.

Consider a particular stage, which begins with a PCC (𝑈 , 𝜒,P),
where P = {𝑃𝑥 }𝑥∈𝑈 . Fix a vertex 𝑥 ∈ 𝑈 . In the next PCC formed

at the end of the stage, 𝑃𝑥 shrinks down to 𝑃𝑥,j = 𝑃𝑥 ∩ 𝑄 (𝑖 )j for

a pattern j ∈ {0, 1}𝑘 satisfying 𝑤𝑥,j > 0: the way 𝑔w is defined

(Lemma 3.2) ensures this. By Lemma 3.4,∑︁
i∈{0,1}𝑘

slack(𝑥 | 𝑃𝑥,i) ≥ slack(𝑥 | 𝑃𝑥 ) = 𝑠𝑥 ≥ 1 ,

so there exists j ∈ {0, 1}𝑘 for which slack(𝑥 | 𝑃𝑥,j) ≥ 1. One such j
must be picked as the chosen pattern for 𝑥 , because𝑤𝑥,j > 0 implies

slack(𝑥 | 𝑃𝑥,j) > 0. Consequently, the new value of 𝑃𝑥 chosen at

the end of the stage will satisfy the invariant 𝑠𝑥 ≥ 1.

After the last stage in the epoch, every set 𝑃𝑥 is a singleton

because, in the corresponding subcube of {0, 1}𝑏 , all bits have been
fixed. 𝑃𝑥 cannot be empty, because |𝑃𝑥 ∩ 𝐿𝑥 | ≥ 𝑠𝑥 ≥ 1. Thus

|𝑃𝑥 ∩ 𝐿𝑥 | = 𝑠𝑥 = 1. □

Lemma 3.7. The set 𝐹 collected at the end of an epoch satisfies
|𝐹 | ≤ |𝑈 |.

Proof. At the end of an epoch, we have

2|𝑈 |
lemma 3.5

≥ Φℓ
lemma 3.3

=
∑︁
𝑥∈𝑈

d
conf
(𝑥)

𝑠𝑥

lemma 3.6

=
∑︁
𝑥∈𝑈

|{𝑦 ∈ N(𝑥) ∩𝑈 : 𝑃𝑥 = 𝑃𝑦}|
1

= 2|𝐹 | . □

Lemma 3.8. Each epoch maintains the invariant that (𝑈 , 𝜒) is a
proper partial coloring and shrinks the set of uncolored vertices 𝑈 to
a smaller𝑈 ′ with |𝑈 ′ | ≤ 2

3
|𝑈 |.

Proof. At the end of the epoch, each set 𝑃𝑥 is a singleton and the

sole color 𝑐𝑥 ∈ 𝑃𝑥 is not used in N(𝑥) because 𝑠𝑥 ≠ 0 (Lemma 3.6).

Therefore, the set 𝐹 collected at the end is precisely the set of edges

that would be monochromatic if we colored each 𝑥 ∈ 𝑈 with

𝑐𝑥 . It follows that the end-of-epoch logic in the algorithm, which
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commits to these colors only on an independent set in the graph

(𝑉 , 𝐹 ), maintains the invariant of a proper partial coloring.

By Lemma 2.1, (𝑉 , 𝐹 ) contains an independent set 𝐼 of size

|𝐼 | ≥ |𝑈 |2
2|𝐹 | + |𝑈 |

lemma 3.7

≥ |𝑈 |
3

and one can compute 𝐼 in polynomial time. Therefore, |𝑈 ′ | = |𝑈 | −
|𝐼 | ≤ 2

3
|𝑈 |. □

The full version of the paper addresses the space and pass com-

plexity of the algorithm in greater detail. The conclusions are given

in the following lemmas.

Lemma 3.9. Algorithm 1 runs in 𝑂 (𝑛 log2 𝑛) bits of space. □

Lemma 3.10. Algorithm 1 runs in 𝑂 (logΔ · log logΔ) streaming
passes.

Proof Sketch. The number of passes used is dominated by the

number of times the subroutine Refine-PCC is called; for the 𝑖th

epoch, this is 𝑂 (𝑏/𝑘) = 𝑂 (logΔ/𝑖). Summing over all 𝑂 (log𝑛)
epochs gives a total of 𝑂 (logΔ log logΔ) passes. See following

lemma. □

This concludes the proof of our first major algorithmic result.

Theorem 3.11 (Formal version of Theorem 1.1). There is a
deterministic 𝑂 (logΔ log logΔ)-pass semi-streaming algorithm to
(Δ + 1)-color an 𝑛-vertex graph using 𝑂 (𝑛 log2 𝑛) bits of space. □

We can extend Algorithm 1 to obtain a deterministic (degree+1)-

list coloring using essentially the same memory and number of

passes, thus establishing Theorem 1.2 (see Appendix C for proof).

Further, see the full version of the paper for implications of our

result in communication complexity.

4 COLORING ROBUSTLY AGAINST AN
ADAPTIVE ADVERSARY

We now turn to the adversarially robust streaming setting. See

Section 2 to recall the definition of this model.

We require the following graph-theoretic concept.

Definition 4.1 (degeneracy). The degeneracy of a graph𝐺 is the

least integer value 𝜅 for which every induced subgraph of 𝐺 has a

vertex of degree ≤ 𝜅.
Equivalently, it is the least value 𝜅 for which there is an acyclic

orientation of the graph where the maximum out-degree of any

vertex is ≤ 𝜅. By greedily assigning colors to the vertices of this

orientation of 𝐺 in reverse topological order, one obtains a proper

(𝜅 + 1)-coloring of 𝐺 ; we call this a (degeneracy + 1)-coloring.

We set up some terminology to help us outline our algorithm.

• Buffer. As the stream arrives, we explicitly store a buffer 𝐵

of at most 𝑛 edges. When the buffer is full (i.e., has reached

its capacity of 𝑛 edges), we empty it completely, and move

on to storing the next batch of 𝑛 edges.

• Epoch. We say we are in the 𝑖th epoch when we are storing

the 𝑖th batch of 𝑛 edges in our buffer.

• Level. We define levels for the vertices with respect to their

degree in the (entire) graph seen so far. At the point of query,

we say that a vertex is in level ℓ if its degree in the current

graph is in

(
(ℓ − 1)

√
Δ, ℓ
√
Δ
]
.

• Zone (fast and slow). We define zones (fast or slow) for

the vertices with respect to their degree in the buffer 𝐵. At
the time of query, we say that a vertex 𝑣 is in the fast zone
(or simply, a fast vertex) if deg𝐵 (𝑣) >

√
Δ; otherwise, we say

that it is in the slow zone (or a slow vertex).
• Block. We have multiple independent coloring functions,

denoted byℎ𝑖 and𝑔𝑖 , that assign each node a color uniformly

at random from a palette of suitable size.
6
As a result, we

obtain a partition of the nodes into monochromatic classes

that we call blocks. Each block produced by a coloring func-

tion 𝑓 is called an 𝑓 -block. More formally, for each 𝑐 in the

range of 𝑓 , the set of nodes {𝑣 ∈ 𝑉 : 𝑓 (𝑣) = 𝑐} is an 𝑓 -block.
• 𝑓 -Monochromatic. An edge {𝑢, 𝑣} with 𝑓 (𝑢) = 𝑓 (𝑣) is
called 𝑓 -monochromatic.

• 𝑓 -Sketches. For a function 𝑓 , we call the underlying sketch

of the algorithm, which stores only 𝑓 -monochromatic edges

among the ones it receives, as an 𝑓 -sketch.

We are now ready to present our algorithm. We give the pseu-

docode in Algorithm 3 and describe its analysis on a high-level

below. The rigorous analysis is deferred to the full version of the

paper.

First, we describe why Algorithm 3 colors the slow nodes using

𝑂 (Δ5/2) colors while storing only 𝑂 (𝑛) edges in ∪Δ
𝑖=1
𝐴𝑖 . Next, we

explain why it colors the fast nodes using 𝑂 (Δ5/2) colors while
storing 𝑂 (𝑛) edges in ∪

√
Δ

𝑖=1
𝐶𝑖 . Additionally, 𝐵 stores 𝑂 (𝑛) edges.

These collectively imply the desired result.

Coloring slow vertices. Consider breaking the edge stream into Δ
“chunks” of size 𝑛 each. As described above, our buffer 𝐵 basically

stores a chunk from start to end, and then deletes it entirely to

move on to the next chunk. We initialize Δ independent coloring

functions ℎ1, . . . , ℎΔ. For each 𝑖 , the function ℎ𝑖 assigns each node a

color from [Δ2] uniformly at random. An ℎ𝑖 -sketch then processes

the prefix of the stream until the end of chunk 𝑖 . By definition (see

above), it stores a received edge (𝑢, 𝑣) in the set 𝐴𝑖 only if it is

ℎ𝑖 -monochromatic.

Suppose a query arrives in the current epoch curr > 1 (in the

first epoch, we have the entire graph in store, and can determin-

istically return an optimal coloring). Fix a subgraph induced by

only the slow vertices in an arbitrary ℎcurr−1-block on the edge

set 𝐴curr−1 ∪ 𝐵. Recolor this subgraph using an offline (Δ′ + 1)-
coloring algorithm where Δ′ is its max-degree. Now do this for

each ℎcurr−1-block, using fresh palettes for the distinct blocks. The

resultant coloring is our output for the slow nodes. We now argue

that the number of edges stored in ∪Δ
𝑖=1
𝐴𝑖 is roughly 𝑂 (𝑛) and the

number of colors used is 𝑂 (Δ5/2).
Observe that for each 𝑖 , the ℎ𝑖 -sketch processes the prefix of the

stream until the end of chunk 𝑖 . But note that, until that point, we

based our outputs only on 𝐴 𝑗 s for 𝑗 < 𝑖 , which are independent of

ℎ𝑖 in particular. Therefore, we ensure that each ℎ𝑖 -sketch processes

6
Thus, the functions are likely to generate improper colorings.
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Algorithm 3 Robust Semi-Streaming 𝑂 (Δ5/2)-Coloring
Input: Edge insertion stream for an 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸)

Initialize:
1: 𝑑 (𝑣) ← 0 for each 𝑣 ∈ 𝑉 ⊲ degree counters

2: for 𝑖 from 1 to [Δ] do ⊲ for each of Δ possible epochs

3: Let ℎ𝑖 : 𝑉 →
[
Δ2

]
be uniformly random

4: 𝐴𝑖 ← ∅ ⊲ edges stored by ℎ𝑖 -sketch

5: for 𝑖 from 1 to

[√
Δ
]
do ⊲ for each of

√
Δ possible levels

6: Let 𝑔𝑖 : 𝑉 →
[
Δ3/2

]
be uniformly random

7: 𝐶𝑖 ← ∅ ⊲ edges stored by 𝑔𝑖 -sketch

8: 𝐵 ← ∅ ⊲ buffer

9: curr← 1 ⊲ current epoch number

Process(edge {𝑢, 𝑣}):
10: if |𝐵 | = 𝑛 then ⊲ when buffer is full...

11: 𝐵 ← ∅; curr← curr + 1 ⊲ ...reset it and start next epoch

12: 𝐵 ← 𝐵 ∪ {{𝑢, 𝑣}}; ⊲ store edge in buffer

13: 𝑑 (𝑢) ← 𝑑 (𝑢) + 1; 𝑑 (𝑣) ← 𝑑 (𝑣) + 1 ⊲ increase deg(𝑢), deg(𝑣)
14: for 𝑖 from curr to Δ do ⊲ for epochs curr and above...

⊲ store ℎ𝑖 -monochromatic edges in 𝐴𝑖
15: if ℎ𝑖 (𝑢) = ℎ𝑖 (𝑣) then 𝐴𝑖 ← 𝐴𝑖 ∪ {{𝑢, 𝑣}}
16: for 𝑖 from

⌈
max{𝑑 (𝑢 ),𝑑 (𝑣) }√

Δ

⌉
+ 1 to Δ do ⊲ for levels ≥ both 𝑢, 𝑣

⊲ store 𝑔𝑖 -monochromatic edges in 𝐶𝑖
17: if 𝑔𝑖 (𝑢) = 𝑔𝑖 (𝑣) then 𝐶𝑖 ← 𝐶𝑖 ∪ {{𝑢, 𝑣}}.

Query():
18: if curr = 1 then
19: Return (degree+1)-coloring of 𝐵

⊲ Partition vertices into fast (𝐹 ) and slow (𝑆) zones

20: 𝐹 ← {𝑣 ∈ 𝑉 : deg𝐵 (𝑣) >
√
Δ}; 𝑆 ← 𝑉 ∖ 𝐹

21: for 𝑐 from 1 to [Δ2] do
⊲ consider each ℎcurr−1-block among slow vertices

22: 𝑆curr−1 (𝑐) ← {𝑤 ∈ 𝑆 : ℎcurr−1 (𝑤) = 𝑐}
23: Using fresh colors, (degree+1)-color subgraph induced by

𝑆curr−1 (𝑐) on edge set 𝐴curr−1 ∪ 𝐵
24: for ℓ from 1 to

[√
Δ
]
do ⊲ for each level ℓ ...

25: for 𝑐 from 1 to

[
Δ3/2

]
do

⊲ consider each 𝑔ℓ -block among fast vertices in level ℓ

26: 𝐹 (ℓ, 𝑐) ←
{
𝑤 ∈ 𝐹 :

⌈
𝑑 (𝑤 )√

Δ

⌉
= ℓ, and 𝑔ℓ (𝑤) = 𝑐

}
27: Using fresh colors, (degeneracy+1)-color subgraph in-

duced by 𝐹 (ℓ, 𝑐) on edge set 𝐶ℓ ∪ 𝐵
28: Return resultant coloring for 𝑆 ∪ 𝐹 = 𝑉

a part of the stream independent of their randomness. Thus, since

ℎ𝑖s have range [Δ2], an edge {𝑢, 𝑣} received by an ℎ𝑖 -sketch is ℎ𝑖 -

monochromatic with probability 1/Δ2
. Since it receives at most 𝑛Δ

edges, it stores only𝑂 (𝑛Δ/Δ2) = 𝑂 (𝑛/Δ) edges in expectation in𝐴𝑖 .
By a Chernoff Bound argument, the actual value is tightly concen-

trated around this expectation w.h.p. Then, the Δ sets 𝐴1, . . . , 𝐴Δ

store roughly 𝑂 (𝑛/Δ · Δ) = 𝑂 (𝑛) edges in total w.h.p.

Now, we first verify that we properly color the subgraph of 𝐺

induced by the slow nodes. Every slow node is in some ℎcurr−1-
block. Fix an arbitrary edge 𝑒 of 𝐺 in any ℎcurr−1-block of slow

vertices. By definition, 𝑒 is ℎcurr−1-monochromatic. Observe that

𝑒 must be stored in 𝐴curr−1 ∪ 𝐵: if 𝑒 ∈ 𝐵, then it is definitely

stored, and otherwise, it was in an epoch ≤ curr − 1; therefore,

the ℎcurr−1-sketch received it and must have stored it in 𝐴curr−1.
This means each such intra-block edge 𝑒 is properly colored by

the offline algorithm. Again, each inter-block edge is also properly

colored since we use distinct palettes for distinct blocks.

Now we argue the color bound. For each slow node, an ℎ𝑖 -sketch

receives at most Δ edges incident to it and hence, 𝐴𝑖 stores 𝑂 (Δ ·
1/Δ2) = 𝑂 (1/Δ) edges incident to it in expectation (by the previous

argument). By a Chernoff Bound argument and taking union bound

over all nodes, we get that each of them has degree roughly𝑂 (log𝑛)
in𝐴𝑖 w.h.p. Further, since these nodes are slow, they have degree at

most

√
Δ in 𝐵. Therefore, the degree of each slow node in the edge

set 𝐴curr−1 ∪ 𝐵 is 𝑂 (
√
Δ + log𝑛) = 𝑂 (

√
Δ) since we can assume

that Δ = Ω(log2 𝑛) (if not, we can store the entire graph in semi-

streaming space and then color it optimally). Hence, each ℎcurr−1-
block of slow nodes induced on 𝐴curr−1 ∪ 𝐵 is colored with a fresh

palette of𝑂 (
√
Δ) colors by the offline algorithm. There are Δ2

many

ℎcurr−1-blocks, which means we use𝑂 (Δ2 ·
√
Δ) = 𝑂 (Δ5/2) colors.

Coloring fast vertices. To handle these, we use another

√
Δ inde-

pendent coloring functions 𝑔1, . . . , 𝑔√Δ. Each 𝑔𝑖 assigns each node

a color from [Δ3/2] uniformly at random. When an edge {𝑢, 𝑣}
arrives, let ℓ be the maximum between the two levels of 𝑢 and 𝑣 .

We send it to the 𝑔𝑖 -sketches for all 𝑖 ≥ ℓ + 1. Recall that a 𝑔𝑖 -sketch
then stores the edge in the set 𝐶𝑖 only if it is 𝑔𝑖 -monochromatic.

We prove that each 𝑔𝑖 -sketch processes edges independent of

their randomness. This is the tricky part. Intuitively, for each edge

{𝑢, 𝑣} that a 𝑔𝑖 -sketch receives, the levels of 𝑢 and 𝑣 were strictly

smaller than 𝑖 when it was inserted. The only values 𝑔 𝑗 (𝑢) and
𝑔 𝑗 (𝑣) that were used to return outputs until then were for 𝑗 < 𝑖 .

Hence, 𝑔𝑖 (𝑢) and 𝑔𝑖 (𝑣) were completely unknown to the adver-

sary when {𝑢, 𝑣} was inserted. Thus, the edge stream received

by each 𝑔𝑖 -sketch is independent of the randomness “that mat-

ters” in processing it. Hence, since the probability of each edge

being 𝑔𝑖 -monochromatic is 1/Δ3/2
, each 𝑔𝑖 -sketch stores roughly

𝑂 (𝑛Δ/Δ3/2) = 𝑂 (𝑛/
√
Δ) edges in 𝐶𝑖 . The total number of edges

stored in 𝐶1, . . . ,𝐶√Δ is then roughly 𝑂 (𝑛/
√
Δ ·
√
Δ) = 𝑂 (𝑛).

When a query arrives, for each level ℓ , consider only the fast

vertices in each 𝑔ℓ -block. Then consider the subgraph induced by

these vertices on the edge set𝐶ℓ∪𝐵. Color it using a (degeneracy+1)-
coloring offline algorithm.We prove that this colors the fast vertices

properly with 𝑂 (Δ5/2) colors.
To verify that it is a proper coloring, we need to show that the

subgraph of𝐺 induced on each 𝑔ℓ -block of fast vertices is stored in

𝐶ℓ ∪ 𝐵. This follows from the “fastness” property of the nodes: if

any such edge {𝑢, 𝑣} is not in 𝐵, then, since the degrees of nodes 𝑢
and 𝑣 increased by at least

√
Δ in the buffer, they must have been at

levels lower than ℓ when {𝑢, 𝑣} was inserted. Therefore, it was fed
to the 𝑔ℓ -sketch, which stored it in𝐶ℓ since it is 𝑔ℓ -monochromatic.

Hence, each intra-block edge of fast vertices is properly colored
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by the offline algorithm. Also, each inter-block edge is properly

colored since we use distinct palettes for distinct blocks.

Finally, for the color bound, we prove that the degeneracy of

each 𝑔ℓ -block induced on 𝐶ℓ ∪ 𝐵 is ≤
√
Δ. Then, each block is

colored with 𝑂 (
√
Δ) colors, and there are Δ3/2 𝑔ℓ -blocks for each

of the

√
Δ values of ℓ . Hence, the total number of colors used is

𝑂 (
√
Δ · Δ3/2 ·

√
Δ) = 𝑂 (Δ5/2).

Thus, we get the following result.

Theorem 4.2 (Formal version of Theorem 1.3). There is an
𝑂 (Δ5/2)-coloring algorithm which is robust against adaptive adver-
saries with total error probability ≤ 𝛿 , and runs in 𝑂 (𝑛 log𝑂 (1) 𝑛 ·
log𝛿−1) bits of space, given oracle access to𝑂 (𝑛Δ) bits of randomness.

By adjusting parameters, we can obtain a corollary giving smooth

colors/space tradeoff (see Appendix D for details).

Corollary 4.3 (Restated as Corollary D.1). By adjusting
parameters of Algorithm 3, we can obtain a robust 𝑂 (Δ(5−3𝛽 )/2)-
coloring algorithm using 𝑂 (𝑛Δ𝛽 ) space. This algorithm still requires
oracle access to 𝑂 (𝑛Δ1−𝛽 ) bits of randomness.

Finally, we give a robust algorithm achieving semi-streaming

space even in the “strict” model where all random bits do count

to the space usage. This algorithm processes the stream in 𝑂 (Δ)
epochs, like Algorithm 3, but does not have a “fast zone”, and uses a

coloring function per epoch to split vertices into blocks. To reduce

the number of random bits required, we randomly pick the coloring

functions from 4-independent hash families; it turns out that this

guarantees that the number of monochromatic edges is bounded

with constant probability. This can be amplified to high probability.

See Appendix E for more details.

Theorem 4.4 (Formal version of Theorem 1.4). There is an
adversarially robust 𝑂 (Δ3)-coloring algorithm that runs in 𝑂 (𝑛)
space and uses 𝑂 (Δ) random bits, with high probability.
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A DETAILED ACCOUNT OF RELATEDWORK
The study of graph coloring in the classical streaming model was

initiated parallelly and independently by Bera and Ghosh [12]

and Assadi, Chen, and Khanna [4]. The former work obtained an

𝑂 (Δ)-coloring algorithm in semi-streaming space, while the lat-

ter achieved a tight (Δ + 1)-coloring in the same amount of space.

The latter work uses an elegant framework called palette sparsifi-
cation: each node samples a list of roughly log𝑛 colors from the

palette of size Δ+ 1, and it is shown that w.h.p. there exists a proper

list-coloring where each node uses a color only from its list. This

immediately gives a semi-streaming (Δ + 1)-coloring algorithm

since one can store only “conflicting” edges that can be shown to be

only 𝑂 (𝑛) many w.h.p.
7
This framework implying semi-streaming

coloring algorithms was then explored by Alon and Assadi [2] un-

der various palette sizes (based on multiple color parameters) as

well as list sizes. Their results also implied interesting algorithms

for coloring triangle-free graphs and for (degree+1)-list coloring.

Very recently, Assadi, Chen, and Sun [3] studied deterministic

Δ-based coloring and showed that for a single pass, no non-trivial

streaming algorithm can be obtained. For semi-streaming space,

any deterministic algorithm needs exp(ΔΩ (1) )) colors, whereas
for 𝑂 (𝑛1+𝛼 ) space, ΔΩ (1/𝛼 )

colors are needed. Observe that these

bounds are essentially matched by the trivial algorithm that stores

the graph when Δ ≤ 𝑛𝛼 in order to (Δ+1)-color it at the end; or just
color the graph trivially with 𝑛 = Δ1/𝛼

colors, without even reading

the edges, when Δ > 𝑛𝛼 . In light of this, a natural approach is to

consider the problem allowingmultiple passes over the input stream.

They show that in just one additional pass, an 𝑂 (Δ2)-coloring can

be obtained deterministically, while with 𝑂 (logΔ) passes, we can
have a deterministic𝑂 (Δ)-coloring algorithm. Another very recent

work on Δ-based coloring is that of Assadi, Kumar, and Mittal [5],

who surprisingly proved Brooks’s theorem in the semi-streaming

setting: any (connected) graph that is not a clique or an odd cycle

can be colored using exactly Δ colors in semi-streaming space.

Other works on streaming coloring include the work of Ab-

boud, Censor-Hillel, Khoury, and Paz [1] who show that coloring

an 𝑛-vertex graph with the optimal chromatic number of colors

requires Ω(𝑛2/𝑝) space in 𝑝 passes. They also show that decid-

ing 𝑐-colorability for 3 ≤ 𝑐 < 𝑛 (that might be a function of 𝑛)

needs Ω((𝑛 − 𝑐)2/𝑝) space in 𝑝 passes. Another notable work is

that of Bera, Chakrabarti, and Ghosh [11], who considered the

problem with respect to the degeneracy parameter that often yields

more efficient colorings, especially for sparse graphs. They de-

signed a semi-streaming 𝜅 (1 + 𝑜 (1))-coloring algorithm for graphs

of degeneracy 𝜅. They also proved that a combinatorially tight

(𝜅 + 1)-coloring is not algorithmically possible in sublinear space.

In particular, semi-streaming coloring needs 𝜅+Ω(
√
𝜅) colors. Bhat-

tacharya, Bishnu, Mishra, and Upasana [13] showed that verifying

whether an input vertex-coloring of a graph is proper is hard in the

vertex-arrival streaming model where each vertex arrives with its

color and incident edges. Hence, they consider a relaxed version

of the problem that asks for a (1 ± 𝜖)-estimate of the number of

conflicting edges. They prove tight bounds for this problem on

7
The algorithm that is immediately implied is an exponential-time one where one can

store the conflicting edges and obtain the list-coloring by brute force. An elaborate

method was then needed to implement it in polynomial time.

adversarial-order streams and further study it on random-order

streams. Recently, Halldorsson, Kuhn, Nolin, and Tonayan [23]

gave a palette-sparsification-based semi-streaming algorithm for

(degree+ 1)-list-coloring for any arbitrary list of colors assigned to
the nodes, improving upon the work of [2] whose algorithm works

only when the color-list of each vertex 𝑣 is {1, . . . , deg(𝑣) +1}. Note
that all the works mentioned above are in the “static” streaming

model and all their algorithms, except those in [3], are randomized

and non-robust.

Startingwith thework of Ben-Eliezer, Jayaram,Woodruff, and Yo-

gev [9], the adversarially robust streamingmodel has seen a flurry of

research in the last couple of years [6, 8, 10, 15, 18, 20, 25, 26, 31, 32].

Chakrabarti, Ghosh, and Stoeckl [18] were the first to study graph

coloring in this model. They showed a separation between standard

and robust streaming coloring algorithms by establishing lower

bounds of (i) Ω(Δ2) colors for robust semi-streaming coloring, and

(ii) Ω(𝑛Δ) space for robust 𝑂 (Δ)-coloring. In fact, they prove a

smooth colors/space tradeoff: a robust 𝐾-coloring algorithm re-

quires Ω(𝑛Δ2/𝐾) space. On the upper bound side, they design an

𝑂 (Δ3)-coloring robust algorithm in semi-streaming space, with

oracle access to 𝑂 (𝑛Δ) many random bits. They also obtain an

𝑂 (Δ2)-coloring in 𝑂 (𝑛
√
Δ) space (including random bits used).

B PROOF OF LEMMA 3.5
Lemma B.1 (Restatement of Lemma 3.5). Suppose we start a

particular epoch with the partial coloring (𝑈 , 𝜒) and the initial, triv-
ial PCC (𝑈 , 𝜒,P0). Suppose there are ℓ stages in this epoch and the
𝑖th stage begins with the PCC P𝑖 . Let Φ𝑖 := Φ(𝑈 , 𝜒,P𝑖 ) be the corre-
sponding potential, for 0 ≤ 𝑖 ≤ ℓ . Then Φ0 ≤ |𝑈 | and Φℓ ≤ 2|𝑈 |.

Proof. Recalling that each 𝐿𝑥 ∩𝑃𝑥 = 𝐿𝑥 = [Δ+ 1] for the initial
PCC, we use eqs. (1) and (7) to derive

𝑠𝑥 − dconf (𝑥) = max{0,Δ + 1 − |N(𝑥) ∖𝑈 |} − |N(𝑥) ∩𝑈 |
= Δ + 1 − deg(𝑥)
≥ 1 .

Thus, d
conf
(𝑥)/𝑠𝑥 ≤ 1 (and is not “0/0”) for all 𝑥 ∈ 𝑈 . Lemma 3.3

now implies Φ0 ≤ |𝑈 |.
We now argue that, between each pair of successive stages, the

potential Φ𝑖 does not increase by much. First observe that when ℎ

is drawn uniformly at random fromH , and 𝑢 ≠ 𝑣 ,

Pr [𝑔w (𝑢,ℎ(𝑢)) = 𝑔w (𝑣, ℎ(𝑣)) = j] (8)

= Pr [𝑔w (𝑢,ℎ(𝑢)) = j] · Pr [𝑔w (𝑣, ℎ(𝑣)) = j]
= Pr

[
ℎ(𝑢) ∈ 𝑔−1w (𝑢, j)

]
· Pr

[
ℎ(𝑣) ∈ 𝑔−1w (𝑣, j)

]
≤ 𝑤𝑢,j𝑤𝑣,j

(
1 + 1

8 log𝑛

)
2

≤ 𝑒1/(4 log𝑛)𝑤𝑢,j𝑤𝑣,j . (9)

To keep the rest the derivation compact, let us abbreviate “slack”

to “sk.” Also let 𝐸′ = 𝐸 (𝐺 [𝑢]) be the set of edges in 𝐺 between

vertices in𝑈 , and let𝐶 = 𝑒1/4 log𝑛 . The candidate PCCs Pℎ defined

in line 8 are tightenings of the current PCC in which we pick

subcubes according to the specific hash function ℎ. With ℎ chosen

uniformly at random fromH :

EΦ(𝑈 , 𝜒,Pℎ)
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=
∑︁
{𝑢,𝑣}∈𝐸

E1𝑢∈𝑈∧𝑣∈𝑈∧𝑃𝑢,ℎ=𝑃𝑣,ℎ ·
(

1

sk(𝑢 | 𝑃𝑢,ℎ)
+ 1

sk(𝑣 | 𝑃𝑣,ℎ)

)
=

∑︁
{𝑢,𝑣}∈𝐸′

∑︁
j∈{0,1}𝑘

Pr

[
𝑃𝑢,ℎ = 𝑃𝑢,j = 𝑃𝑣,j = 𝑃𝑣,ℎ

]
·(

1

sk(𝑢 | 𝑃𝑢,j)
+ 1

sk(𝑣 | 𝑃𝑣,j)

)
line 8

=
∑︁

{𝑢,𝑣}∈𝐸′

∑︁
j∈{0,1}𝑘

1𝑃𝑢=𝑃𝑣 Pr [𝑔w (𝑢,ℎ(𝑢)) = 𝑔w (𝑣, ℎ(𝑣)) = j] ·(
1

sk(𝑢 | 𝑃𝑢,j)
+ 1

sk(𝑣 | 𝑃𝑣,j)

)
eq. (9)

≤
∑︁
{𝑢,𝑣}∈𝐸′
𝑃𝑢=𝑃𝑣

∑︁
j∈{0,1}𝑘

𝐶𝑤𝑢,j𝑤𝑣,j ·
(

1

sk(𝑢 | 𝑃𝑢,j)
+ 1

sk(𝑣 | 𝑃𝑣,j)

)
eq. (4)

= 𝐶
∑︁
{𝑢,𝑣}∈𝐸′
𝑃𝑢=𝑃𝑣

∑︁
j∈{0,1}𝑘

sk(𝑢 | 𝑃𝑢,j)∑
i sk(𝑢 | 𝑃𝑢,i)

·
sk(𝑣 | 𝑃𝑣,j)∑
i sk(𝑣 | 𝑃𝑣,i)

·

(
1

sk(𝑢 | 𝑃𝑢,j)
+ 1

sk(𝑣 | 𝑃𝑣,j)

)
= 𝐶

∑︁
{𝑢,𝑣}∈𝐸′
𝑃𝑢=𝑃𝑣

∑︁
j∈{0,1}𝑘

sk(𝑢 | 𝑃𝑢,j) + sk(𝑣 | 𝑃𝑣,j)∑
i sk(𝑢 | 𝑃𝑢,i) ·

∑
i sk(𝑣 | 𝑃𝑣,i)

= 𝐶
∑︁
{𝑢,𝑣}∈𝐸′
𝑃𝑢=𝑃𝑣

(
1∑

j sk(𝑢 | 𝑃𝑢,j)
+ 1∑

j sk(𝑣 | 𝑃𝑣,j)

)
lemma 3.4

≤ 𝐶
∑︁
{𝑢,𝑣}∈𝐸′
𝑃𝑢=𝑃𝑣

(
1

sk(𝑢 | 𝑃𝑢 )
+ 1

sk(𝑣 | 𝑃𝑢 )

)
= 𝐶Φ𝑖 . (10)

Thus, picking ℎ★ with Φ(𝑈 , 𝜒,Pℎ★) below average would ensure

Φ𝑖+1 ≤ 𝑒1/(4 log𝑛)Φ𝑖 . However, due to precision constraints, each of
lines 11 and 14 could contribute a relative error of (1 + 1/(8 log𝑛)),
so the ℎ★ actually picked by the algorithm gives only the following

weaker guarantee:

Φ𝑖+1 ≤
(
1 + 1

8 log𝑛

)
2

𝑒1/(4 log𝑛)Φ𝑖 ≤ 𝑒1/(2 log𝑛)Φ𝑖 .

Since the number of stages in the epoch is ℓ ≤ ⌈𝑏/𝑘⌉ ≤ log(Δ +
1) ≤ log𝑛, we have

Φℓ ≤
(
𝑒1/(2 log𝑛)

)ℓ
Φ0 ≤ 𝑒1/2 |𝑈 | ≤ 2|𝑈 | . □

C EXTENSION: DETERMINISTIC LIST
COLORING

We can extend Algorithm 1 to handle the more general problem of

(deg+1)-list-coloring. This requires a new technical lemma and a

careful refinement of some of the low-level details of the previous

algorithm.

Theorem C.1 (Restatement of Theorem 1.2). Let 𝐶 be a set of
colors of size𝑂 (𝑛2). There is a deterministic semi-streaming algorithm
for (degree + 1)-list-coloring a graph 𝐺 given a stream consisting of,
in any order, the edges of 𝐺 and (𝑥, 𝐿𝑥 ) pairs specifying the list 𝐿𝑥

of allowed colors for a vertex 𝑥 , where 𝐿𝑥 ⊆ 𝐶 . The algorithm uses
𝑂 (𝑛 log2 𝑛) bits of space and runs in 𝑂 (logΔ log logΔ) passes.

Here is a technical lemma that is key to the proof of the above.

Lemma C.2. Let 𝑠 ≥ 1 be an integer, and let𝐶 be a set. There exists
a family F of 𝑂 ( |𝐶 |2) partitions of 𝐶 so that, for every collection
𝐿1, . . . , 𝐿𝑡 of subsets of 𝐶 :

1

|F |
∑︁
R∈F

∑︁
𝑖∈[𝑡 ]

max

𝑆∈R
( |𝐿𝑖 ∩ 𝑆 | − 1) ≤

1

√
𝑠

∑︁
𝑖∈[𝑡 ]
( |𝐿𝑖 | − 1) , (11)

In particular, there must exist Q ∈ F where
∑
𝑖∈[𝑡 ] max𝑆∈Q ( |𝐿𝑖 ∩

𝑆 | − 1) is less than the right hand side.

Proof. LetH be a 2-universal hash family𝐶 → [𝑠], with |H | =
𝑂 ( |𝐶 |2). (For example,H = {(𝑥 ↦→ (𝑎𝑥 + 𝑏 mod 𝑝) mod 𝑠) : 𝑎, 𝑏 ∈
Z𝑝 , 𝑎 ≠ 0} for 𝑝 prime and ≥ |𝐶 |, as per [16].) Let ℎ be a randomly

chosen element of H , and let R = {𝑅1, . . . , 𝑅𝑠 } be the random

partition for which 𝑅𝑖 = {𝑥 ∈ 𝐶 : ℎ(𝑥) = 𝑖}. Consider the function
𝑓 (𝑥) = 𝑥 (𝑥 + 1)/2 defined on [0,∞); because it is convex and

increasing on [0,∞), 𝑓 −1 (𝑥) =
√︁
2𝑥 + 1/4 − 1/2 is concave and

increasing on [0,∞). Because for all 𝑧 ≥ 1, 𝑧 − 1 = 𝑓 −1 (
(𝑧
2

)
), we

have for any 𝑖 ∈ [𝑡] that:

max

𝑗∈[𝑠 ]
( |𝐿𝑖 ∩ 𝑅 𝑗 | − 1) ≤ 𝑓 −1

(
max

𝑗∈[𝑠 ]

(
𝐿𝑖 ∩ 𝑅 𝑗

2

))
≤ 𝑓 −1 ©­«

∑︁
𝑗∈[𝑠 ]

(
𝐿𝑖 ∩ 𝑅 𝑗

2

)ª®¬ .
Taking expectations and using the concavity of 𝑓 to apply Jensen’s

inequality:

E max

𝑗∈[𝑠 ]
( |𝐿𝑖 ∩ 𝑅 𝑗 | − 1) ≤ E 𝑓 −1

©­«
∑︁
𝑗∈[𝑠 ]

(
𝐿𝑖 ∩ 𝑅 𝑗

2

)ª®¬
≤ 𝑓 −1 ©­«E

∑︁
𝑗∈[𝑠 ]

(
𝐿𝑖 ∩ 𝑅 𝑗

2

)ª®¬ .
Expressing the sum under the inverse function in terms of ℎ lets us

apply the universality of the hash family:

E
∑︁
𝑗∈[𝑠 ]

(
𝐿𝑖 ∩ 𝑅 𝑗

2

)
= E

∑︁
𝑥,𝑦∈𝐿𝑖 :𝑥≠𝑦

1ℎ (𝑥 )=ℎ (𝑦)

=
∑︁

𝑥,𝑦∈𝐿𝑖 :𝑥≠𝑦
Pr[ℎ(𝑥) = ℎ(𝑦)] ≤

(
|𝐿𝑖 |
2

)
1

𝑠
.

We briefly detour to prove an inequality for 𝑓 , holding for all 𝑧 ≥ 1:

𝑓

(
1

√
𝑠
(𝑧 − 1)

)
=

1√
𝑠
(𝑧 − 1) · ( 1√

𝑠
(𝑧 − 1) + 1)

2

=
1

𝑠

(𝑧 − 1) (𝑧 +
√
𝑠 − 1)

2

≥ 1

𝑠

(
𝑧

2

)
,

which implies 𝑓 −1 ( 1𝑠
(𝑧
2

)
) ≤ 1√

𝑠
(𝑧 − 1). Thus:

E max

𝑗∈[𝑠 ]
( |𝐿𝑖 ∩ 𝑅 𝑗 | − 1) ≤ 𝑓 −1

((
|𝐿𝑖 |
2

)
1

𝑠

)
≤

√︂
1

𝑠
( |𝐿𝑖 | − 1) .

By linearity of expectation, it follows

E
∑︁
𝑖∈[𝑡 ]

max

𝑗∈[𝑠 ]
( |𝐿𝑖 ∩ 𝑅 𝑗 | − 1) ≤

√︂
1

𝑠

∑︁
𝑖∈[𝑡 ]
( |𝐿𝑖 | − 1) .
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This is equivalent to Eq. 11, if we let F be the set of possible values

of R. □

Proof of Theorem 1.2. There are twomain changes to the algo-

rithm in Theorem 1.1. First, because the color lists 𝐿𝑥 are no longer

fixed, computing slack(𝑥 | 𝑃𝑥 ∩𝑄) for each 𝑥 ∈ 𝑈 and𝑄 ∈ Q (𝑖 ) re-
quires counting both |{𝑦 ∈ N(𝑥) ∖𝑈 : 𝜒 (𝑥) ∈ (𝑃𝑥 ∩𝑄)}| as before,
and |𝑃𝑥 ∩𝑄 ∩ 𝐿𝑥 |. As both quantities are integers in [0, . . . ,Δ + 1],
and can be computed by incrementing counters each time an edge

or (vertex, list of colors) pair arrives, the total space usage from this

stage is still 𝑂 (logΔ) |𝑈 |2𝑘 .
The other change is that we now adaptively pick the sequence of

partitionsQ (1) , . . . ,Q (ℓ ) , and use more stages. Instead of letting the

number ℓ of stages be ⌈log(Δ + 1)/𝑘⌉, we use ℓ = ⌈2 log(Δ + 1)/𝑘⌉+
1 stages instead. For the first ⌈2 log(Δ + 1)/𝑘⌉ stages, we adaptively
construct partitions using Lemma C.2 on the 𝐿𝑥 with 𝑠 set to 2

𝑘
;

the resulting partitions use 𝑂 (ℓ log |C|) = 𝑂 (logΔ log𝑛) space to
store in total.

Finding the best partition from Lemma C.2 is complicated by the

fact that the algorithm can not exactly store the color lists 𝐿𝑥 for

each vertex. Let F be the family of partitions from Lemma C.2. At

the start of each stage, we use four passes over the stream to identify

a partition R ∈ F for which the quantity

∑
𝑥∈𝑈 𝑎R (𝑃𝑥 ∩ 𝐿𝑥 ) is

below average, for 𝑎R (𝑆) = max𝑅∈R ( |𝑆 ∩𝑅 | − 1). This can be done

using the same method as was used to identify an approximately

sub-average hash function ℎ★ in Algorithm 1. In the first pass, we

split F into 𝑂 ( |F |1/4) parts, and compute

∑
R

∑
𝑥∈𝑈 𝑎R (𝑃𝑥 ∩ 𝐿𝑥 )

for each part; after the pass completes, we pick the part with the

least value of this sum, split it into 𝑂 ( |F |1/4) smaller parts, and

repeat the process. The fourth pass will compute

∑
𝑥∈𝑈 𝑎R (𝑃𝑥∩𝐿𝑥 )

for individual partitions R of the family F ; we let Q (𝑖 ) be the best
partition from this pass. All this is possible because the value of

𝑎R (𝑃𝑥 ∩ 𝐿𝑥 ) can be computed as soon as the pair (𝑥, 𝐿𝑥 ) arrives in
the stream. Consequently, it is possible to compute, for any family

F of partitions,

∑
R∈F

∑
𝑥∈𝑈 𝑎R (𝑃𝑥 ∩ 𝐿𝑥 ) in a single pass over

the stream, using 𝑂 (log𝑛) bits of space. (These sums have integer

values, so no approximation is necessary.) As |H | = 𝑂 ( |𝐶 |2) =
𝑂 (𝑛4), each individual pass requires storing only 𝑂 (𝑛 log𝑛) bits
worth of counters.

At the start of the first stage, since all |𝐿𝑥 | ≤ Δ + 1, we have∑
𝑥∈𝑈 ( |𝐿𝑥 ∩ 𝑃𝑥 | − 1) ≤ Δ|𝑈 |. Letting 𝑗𝑥 be the index of 𝑃𝑥,𝑗 =

𝑃𝑥 ∩𝑄 (𝑖 )𝑗 chosen to succeed 𝑃𝑥 , we have (due to Lemma C.2).∑︁
𝑥∈𝑈
( |𝐿𝑥 ∩ 𝑃𝑥,𝑗𝑥 | − 1) ≤

∑︁
𝑥∈𝑈

max

𝑗∈[𝑠 ]
( |𝐿𝑥 ∩ 𝑃𝑥 ∩𝑄 (𝑖 )𝑗 | − 1)

≤ 2
−𝑘/2

∑︁
𝑥∈𝑈
( |𝐿𝑥 ∩ 𝑃𝑥 | − 1)

Each stage reduces

∑
𝑥∈𝑈 ( |𝐿𝑥 ∩ 𝑃𝑥 | − 1) by a factor of 2

−𝑘/2
, so

after ℓ − 1 = ⌈2 log(Δ + 1)/𝑘⌉ stages, we have∑︁
𝑥∈𝑈
( |𝐿𝑥 ∩ 𝑃𝑥 | − 1) ≤ Δ|𝑈 | (2−𝑘/2(ℓ−1) ) ≤ Δ

Δ + 1 |𝑈 | ≤ |𝑈 |

In the last stage, we set Q = {{𝑥} : 𝑥 ∈ C, where C =
⋃

𝑥∈𝑈 𝐿𝑥 .

Unlike the other stages, where |Q| ≤ 2
𝑘
, we need to run an addi-

tional pass to record, for each 𝑥 ∈ 𝑈 , the values of |𝐿𝑥 ∩ 𝑃𝑥 |. This
requires only 𝑂 ( |𝑈 | log𝑛) bits. In the following pass to compute

slack(𝑥 | 𝑃𝑥 ∩𝑄) for each 𝑥 ∈ 𝑈 and 𝑄 ∈ Q, we use the fact that
slack(𝑥 | 𝑃𝑥 ∩𝑄) will only be one if 𝑄 ⊆ 𝑃𝑥 ∩ 𝐿𝑥 and there is no

𝑦 ∈ N(𝑥) ∖𝑈 satisfying 𝜒 (𝑦) ∈ 𝑄 to save space; instead of tracking

sums for every (𝑥,𝑄) ∈ 𝑈 × C combination, we store a {0, 1} value
for each (𝑥,𝑄) ∈ ∪𝑥∈𝑈 {(𝑥,𝑄) : 𝑄 ∈ 𝐿𝑥 ∩ 𝑃𝑥 } which is initialized

to 1 and set to 0 if the stream contains an edge to a neighboring

𝑦 ∈ [𝑛] ∖𝑈 with color in𝑄 . After this stage, the condition |𝐿𝑥 | ≤ 1

holds, as required for the proof of Theorem 1.1 to work.

Despite the less efficient partitioning scheme, the algorithm still

uses roughly the same amount of space; for all but the last stage,

it still uses 2
𝑘 |𝑈 | counters. The last stage requires one bit for each

element in a list 𝐿𝑥 – but since

∑
𝑥∈𝑈 ( |𝐿𝑥 | − 1) ≤ |𝑈 |, we have∑

𝑥∈𝑈 |𝐿𝑥 | ≤ 2|𝑈 |, which implies only 2|𝑈 | bits are needed.
Storing the per vertex partitions 𝑃𝑥 requires only ℓ𝑘 + log( |C|) =

𝑂 (log𝑛) bits, each, at a given point in the algorithm. As in the

original algorithm, each partition 𝑃𝑥 can be determined using the

sequence of sets from Q (1) , . . . ,Q (ℓ ) that contain it.

The analysis to prove that the potential does not increase by

much requires no adjustment. □

D EXTENSION: SPACE-COLOR TRADEOFFS
Corollary D.1 (Restatement of Corollary 4.3). By adjusting

parameters of Algorithm 3, we can obtain a robust 𝑂 (Δ(5−3𝛽 )/2)-
coloring algorithm using 𝑂 (𝑛Δ𝛽 ) space and 𝑂 (𝑛Δ1−𝛽 ) bits of oracle
randomness.

Proof. These parameter changes do not significantly affect the

proofs of correctness for Algorithm 3.

As before, we assume that the powers ofΔ given here are integers,

and that Δ = Ω(log2 𝑛):
• Change the buffer replacement frequency (Line 10) from 𝑛 to

𝑛Δ𝛽
. Because a graph stream with maximum degree Δ con-

tains at most 𝑛Δ/2 edges, reduce the number of epochs from

Δ to Δ1−𝛽
. The for loops initializing, updating, and query-

ing the variables ℎ𝑖 and 𝐴𝑖 should have bounds adjusted

accordingly.

• Reduce the range of the functions ℎ𝑖 from [Δ2] to [Δ2−2𝛽 ].
The expected number of edges stored in all of the sets 𝐴𝑖
will now be roughly:

# epochs × |𝐺 |
# slow blocks

=
Δ1−𝛽 ·𝑂 (𝑛Δ)

Δ2−2𝛽 = 𝑂 (𝑛Δ𝛽 ) ,

and with high probability, the space usage should not exceed

this by more than a logarithmic factor.

• Increase the threshold for a vertex to be considered "fast"

from

√
Δ to Δ(1+𝛽 )/2. To match this, the level of a vertex

will now be computed as

⌈
𝑑 (𝑣)

Δ(1+𝛽 )/2

⌉
, and the number of levels

reduced from

√
Δ to Δ(1−𝛽 )/2. Again, all of the for loops

related to the fast zone of the algorithm need to have their

bounds adjusted.

• Reduce the range of the functions𝑔ℓ from [Δ3/2] to [Δ(1−𝛽 )3/2].
The expected number of edges stored in all of the sets 𝐶ℓ
will now be roughly:

# levels × |𝐺 |
# fast blocks

=
Δ(1−𝛽 )/2 ·𝑂 (𝑛Δ)

Δ(1−𝛽 )3/2
= 𝑂 (𝑛Δ2𝛽 ) .
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Algorithm 4 Randomness-Efficient Adversarially Robust 𝑂 (Δ3)-
Coloring in Semi-Streaming Space

Input: Stream of edge insertions of an 𝑛-vertex graph 𝐺 =

(𝑉 , 𝐸)

Initialize:
Define 𝑃 := ⌈10 log𝑛⌉, and let ℓ = 2

⌊logΔ⌋
be the greatest power

of 2 which is ≤ Δ
LetU be a 4-independent family of hash functions from 𝑉 to

[ℓ2], of size poly(𝑛)
1: for 𝑖 ∈ [Δ], 𝑗 ∈ [𝑃] do
2: ℎ𝑖, 𝑗 be a uniformly random function fromU mapping𝑉 to

[ℓ2]
3: 𝐷𝑖, 𝑗 ← ∅ ⊲ Either a set of ℎ𝑖, 𝑗 -monochromatic edges, or ⊥

after invalidation

4: 𝐵 ← ∅ ⊲ buffer of edges from this epoch

5: curr← 1 ⊲ current epoch number

Process(edge {𝑢, 𝑣}):
6: if |𝐵 | = 𝑛 then

⊲ End current epoch, switch to next

7: 𝐵 ← ∅; curr← curr + 1
8: 𝐵 ← 𝐵 ∪ {{𝑢, 𝑣}}; ⊲ Update current buffer

9: for 𝑖 from curr + 1 to Δ, and 𝑗 ∈ [𝑃] do
10: if ℎ𝑖, 𝑗 (𝑢) = ℎ𝑖, 𝑗 (𝑣) then ⊲ For ℎ𝑖, 𝑗 -monochromatic edges...

11: if 𝐷𝑖, 𝑗 ≠ ⊥ ∧ |𝐷𝑖, 𝑗 | < 7𝑛
Δ then

⊲ Record edge in 𝐷𝑖, 𝑗 if there is space

12: 𝐷𝑖, 𝑗 ← 𝐷𝑖, 𝑗 ∪ {{𝑢, 𝑣}}
13: else
14: 𝐷𝑖, 𝑗 ← ⊥ ⊲ Wipe buffer 𝐷𝑖, 𝑗 if it gets too large

Query():
⊲ This can fail if all 𝐷curr, 𝑗 = ⊥

15: Let 𝑘 = min{ 𝑗 ∈ [𝑃] : 𝐷curr, 𝑗 ≠ ⊥}
16: Let 𝜒 = greedy coloring of 𝐷curr,𝑘 ∪ 𝐵
17: Output the coloring where 𝑦 ∈ 𝑉 is assigned

(𝜒 (𝑦), ℎcurr, 𝑗 (𝑦)) ∈ [(Δ + 1)] × [ℓ2]

The number of colors used by the vertices in the slow zone will

be:

# slow blocks × (𝑂 (# fast threshold) +𝑂 (log𝑛))

= Δ2−𝛽𝑂 (Δ(1+𝛽 )/2) = 𝑂 (Δ(5−3𝛽 )/2) ,
and by the fast zone:

# levels × # fast blocks × O(# fast threshold) + log𝑛))

= Δ(1−𝛽 )/2Δ(1−𝛽 )3/2𝑂 (Δ(1+𝛽 )/2) = 𝑂 (Δ(5−3𝛽 )/2) .
Combining the two, we find the modified algorithm produces a

𝑂 (Δ(5−3𝛽 )/2) coloring with high probability. □

E A RANDOMNESS-EFFICIENT ROBUST
ALGORITHM

In this section, we prove Theorem 4.4. The pseudocode is given in

Algorithm 4. The lemmas below prove its correctness.

Lemma E.1. Algorithm 4 is an adversarially robust𝑂 (Δ3)-coloring
algorithm, which uses 𝑂 (𝑛) bits of space (including random bits used
by the algorithm), with high probability.

Proof. The only step of Algorithm 4 that an adversary could

make fail is Line 15. By Lemma E.2, this happens with 1/poly(𝑛)
probability. Assuming Line 15 does not fail, Lemma E.3 proves that

the output of the algorithm is a valid (Δ + 1)Δ2
coloring. Finally,

Lemma E.4 verifies that Algorithm 4 uses at most𝑂 (𝑛) bits of space
and of randomness. □

We defer the proofs of the next two lemmas to the full version.

Lemma E.2. Line 15 of Algorithm 4 will execute successfully, with
high probability, on input streams provided by an adaptive adversary.

□

Lemma E.3. If Line 15 does not fail, then Algorithm 4 outputs a
valid (Δ + 1) (Δ2) coloring of the input graph. □

The next lemma bounds the space usage.

Lemma E.4. Algorithm 4 requires only 𝑂 (𝑛) bits of space; this
includes random bits.

Proof. Because |U| = 𝑂 (poly𝑛), picking a random hash func-

tion fromU requires only 𝑂 (log𝑛) random bits. As the algorithm

stores Δ𝑃 = 𝑂 (Δ log𝑛) of these hash functions as (ℎ𝑖, 𝑗 )𝑖∈[Δ], 𝑗∈[𝑃 ] ,
the total space needed by these function is 𝑂 (Δ(log𝑛)2).

Next, for each of the sets of edges 𝐷𝑖, 𝑗 , for 𝑖 ∈ [Δ], 𝑗 ∈ [𝑃], Lines
11 through 14 ensure that |𝐷𝑖, 𝑗 | is always ≤ 7𝑛

Δ + 1; sets that grow
too large are replaced by⊥. Since edges can be stored using𝑂 (log𝑛)
bits, the total space usage of all the 𝐷𝑖, 𝑗 is 𝑂

(
𝑛
Δ

)
Δ𝑃 · 𝑂 (log𝑛) =

𝑂
(
𝑛(log𝑛)2

)
. Similarly, the buffer 𝐵 never contains more than 𝑛

edges, since it is reset when the condition of Line 6 is true; thus 𝐵

can be stored with 𝑂 (𝑛 log𝑛) bits. The counter curr is negligible.

In total, the algorithm needs 𝑂
(
Δ(log𝑛)2

)
+ 𝑂

(
𝑛(log𝑛)2

)
=

𝑂 (𝑛) bits of space. □
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