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Abstract

In many applications of online decision making,
the environment is non-stationary and it is there-
fore crucial to use bandit algorithms that han-
dle changes. Most existing approaches are de-
signed to protect against non-smooth changes,
constrained only by total variation or Lipschitz-
ness over time, where they guarantee ©(7%/3)
regret. However, in practice environments are of-
ten changing smoothly, so such algorithms may
incur higher-than-necessary regret in these set-
tings and do not leverage information on the rate
of change. We study a non-stationary two-armed
bandits problem where we assume that an arm’s
mean reward is a 3-Holder function over (normal-
ized) time, meaning it is (8 — 1)-times Lipschitz-
continuously differentiable. We show the first
separation between the smooth and non-smooth
regimes by presenting a policy with O(T3/5) re-
gret for 5 = 2. We complement this result by
an Q(T(P+1/(26+1)) Jower bound for any inte-
ger 5 > 1, which matches our upper bound for

B=2.

1. Introduction

As a fundamental variant of the MAB problem, non-
stationary bandits provide a middleground between the
stochastic bandits (Lai et al., 1985) and adversarial ban-
dits (Auer et al., 2002). In the standard non-stationary
model (Besbes et al., 2014), the mean reward function is
adversarially chosen in advance, and rewards are realized
stochastically.

The adversary is confined by the fotal variation budget V':
the mean reward function r,(t) of every arm a is required to

be Lipschitz and have total variation Zthl [ra(t) —ro(t +
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1)| < V. The problem under this framework is well under-
stood. In particular, an optimal regret bound O (V1/372/3)
is known (Besbes et al., 2014), even when V is unknown
(Cheung et al., 2019).

This model may nonetheless be overly pessimistic for some
applications as it allows the adversary to instantaneously
shock the reward function’s slope. However, in many appli-
cations, the underlying environment changes in a smooth
manner, e.g., temperature, demand for a seasonal products,
economic factors, just to name a few.

This motivates us to consider adversaries constrained to
choose reward functions that are smooth in time. We model
the level of smoothness by borrowing a standard concept
from non-parametric statistics, called the Holder class. As
formally defined in Section 2, a function is S-Holder if the
first (8 — 1) derivatives exist and are Lipschitz. In particular,
for 5 = 1, our model recovers the model of Besbes et al.
(2014) with V' = O(1), which has an optimal ©(72/3)
regret. By setting 8 > 1, we constrain the adversary more
than in past literature. This motivates the following question:
Can we break the O(T?/?) regret bound (i.e., optimal bound
for 8 = 1) under smooth non-stationarity (i.e., 3 > 2)?

In this work, we provide an affirmative answer by showing
an O(T3/) upper bound for § = 2. A natural idea would
be to predict the derivative of the reward function and then
make decisions based on the predicted trend. Surprisingly,
our algorithm, which achieves the optimal regret, does not
use any derivative information. Moreover, we show that this
bound is in fact nearly optimal:' for any integer 8 > 1, we
show every policy has worst-case regret Q(7'(#+1)/(26+1)),

1.1. Related Work

Past multi-armed bandit literature has recognized the impor-
tance of non-stationarity by considering several aspects: con-
textual information (Luo et al., 2018; Russac et al., 2019);
uncertainty in the number of changes (Auer et al., 2019;
Chen et al., 2019); and Bayesian prior information (Trovo
et al., 2020). However, these papers make no smoothness
assumptions. (The “smoothly changing setting” in Trovo
et al. (2020) assumes Lipschitz reward functions that may

!'Unless stated otherwise, “nearly optimal” means optimal up
to logarithmic factors.
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be non-differentiable, and is hence different from our work.)

There is another line of related work that considers reward
function generated by a stochastic process. For example,
when the reward function is drawn from a known reflected
Brownian motion with variance o2, the optimal regret is
known to be O (k:a2). Other evolution models include other
Gaussian processes (Griinewélder et al., 2010) and discrete
Markov chains (Zhou et al., 2021).

Beyond bandits, model smoothness and the Holder class
are often studied in non-parametric statistics (Gyorfi et al.,
2002; Tsybakov, 2004). In the MAB literature, Holder
smoothness has been considered in contextual bandits; see
e.g., (Hu et al., 2020; Gur et al., 2022).

1.2. Our Contributions

As our first and most important contribution, we present
the first separation for non-stationary bandits between
the smooth (8 > 2) and non-smooth (i.e., classical, or
[ = 1) regimes: we develop a policy that we show achieves
O(T3/%) regret when 3 = 2. This policy and regret bound
also apply to instances with 5 > 2, since a S-Holder func-
tion with 8 > 2 is also 2-Holder. This is asymptotically
lower than the optimal ©(7°%/3) regret bound for the clas-
sical 8 = 1 setting (Besbes et al., 2014), and shows that
smoothness can be exploited to reduce regret. On the tech-
nical level, our analysis relies on an amortization which, as
a byproduct, can also be applied to give an alternate proof
for the O(T?/3) upper bound when 3 = 1.

As our second contribution, we provide an
Q(TB+1/ 2B+ Jower bound on regret that is valid for
for every integer 5 > 1. This shows that our upper bound
for § = 2 is tight up to logarithmic factors and that our
proposed policy is also nearly optimal. If our lower bound
is tight for general 3, then as 5 — oo, it would suggest that
it is possible to achieve T/2t9(1/8) regret, which would
almost match that of the classical stationary bandits. If
true, this would show that smoothness can be an effective
replacement for stationarity as a way to achieve low regret.

Our third contribution is introducing the notion of smooth-
ness in non-stationary online models, by borrowing a stan-
dard concept, Holder smoothness, from non-parametric
statistics. Our model fills the gap between the adversar-
ial and model-based non-stationary models, and may open
up a new direction in online decision making.

2. Formulation

Consider the following non-stationary bandit model. For
eacharm a € {0,1} and time ¢ = 1,...,T up to horizon
T, let Z! be an independent random variable taking values
on [—1,1]. An instance is given by the distribution of these

variables. The reward function is r,(t) := E[Z!]. Its de-
pendence on ¢ makes this bandit model non-stationary. We
consider two cases: in the one-armed case ¢(t) = 0 for all
t, while in the two-armed case we make no such restriction.
We discuss generalizing to more arms in Section 7.

In each round ¢ € [T'],? the learner selects an arm A; where-
upon they observe and receive a reward Y; := Zﬁlt. Based
on the observed past rewards, they then select the next arm
Ay41, with the goal of maximizing the cumulative sum of
rewards. This decision-making process is called a policy.

The problem would be trivial if r,(-)’s were known:
In each round ¢ the optimal policy chooses any
af € argmax,e(o,1} 7o(t) and collects reward r*(t) =
max,e(o,1317(t)} in expectation.

When r,(+)’s are unknown and the policy needs to learn the
reward functions on the fly. A standard metric for assessing
apolicy A is called regret, defined as the difference between
the expected total rewards of A and the optimum given
knowledge of the r,(¢)’s.

Definition 2.1 (Regret). The regrer® of a policy A under
instance r = {r,(¢)} is defined as

Reg(4,7) = E[S1, (m() - 24,)] -

For a family F of instances, the worst-case regret of A is
max,cr Reg(A,r). The minimax regret is the minimum
achievable worst-case regret among all policies.

To define smoothness for a bandit instance, which is a col-
lection of functions on a discrete domain [T'], we first define
smoothness for functions on a continuous domain.

Definition 2.2 (Holder Class). For integers 5 > 1 and
L > 0, we say a function f : [0,1] — R is S-Hdlder and
write f € ¥(8, L) if () f is (8 — 1)-order differentiable,
and (ii) f®—1 and f are both L-Lipschitz.

For example, consider the values 5 = 1 and 5 = 2, which
are the most important for our analysis. One can easily
verify that f € 3(1, L) if and only if f is L-Lipschitz, and
that f € X(2, L) if and only if f is differentiable and f’, f
are L-Lipschitz.

A bandit instance is 3-Holder if its reward function can be
“embedded” into a S-Holder function in the following sense.

Definition 2.3 (Smooth Non-stationary Bandit Instance).
A non-stationary bandit instance r = {r,(¢)} is called -
Holder, if for each arm a, there exists a function p, €
¥(B, L) with domain [0, 1] such that 7, (t) = p, (t/T) for

?For any integer T', we write [T] = {1,2,...,T}.

3Our notion of regret is sometimes called the dynamic regret,
since the arm in the benchmark may change over time. Distinct
from this, there is a substantial literature where the regret is against
the best fixed arm, e.g., in adversarial bandits.
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Figure 1. Illustration of the family F3 of reward functions. Here
we show the “snapshots” of the curves on the two epochs
[zj,2j4+1] and [zj41, xj42]. As can be seen from the figure, for
any combination of red or blue curves, the change at any endpoint
is smooth - both red and blue have O derivative at any x;.

any t € [T]. We denote by X (8, L) the family of all
[-Holder instances with k arms.

For example, in the one-armed case, consider r1(t) =
f(t/T) for f(z) = |z — 3|. This instance is 1-Holder
but not 2-Holder. In fact, for any differentiable function g
with 71 (t) = ¢g(t/T), the derivative ¢’ must change from
—1 to +1 inside an interval of length O(1/T"). This means
|g”| is not bounded by any absolute constant.

We emphasize that in Definition 2.3, p, is defined on the
normalized time scale [0, 1] while r, is defined on the
{1,...,T}. To avoid confusion, we will use x for the [0, 1]
scale and ¢ for the {1, ..., T} scale.

Finally, we note that (Manegueu et al., 2021) also considered
Hoélder-continuous rewards satisfying |1, (t) — pq ()] <
[t —t'|? for any t,t' € [0,1] (their “a” is our “B”); see
their page 11. This is only meaningful for 5 < 1, since
otherwise the function is necessarily constant. To generalize
to f > 1, our Holder class requires differentiability and
Holder-continuity of the highest derivative.

In this sense, (Manegueu et al., 2021) considered 5 < 1,
(Besbes et al., 2014) considered 8 = 1, and we are the first
to consider 3 > 1, which is our main contribution. The leap
from § = 1 to 8 > 1 is more challenging than from 5 =1
to 8 < 1: the former must leverage derivatives, whereas the
latter can still work with the functions themselves while bet-
ter tracking general 5 < 1 exponents in arguments similar
to the case of 8 = 1.

3. Lower Bounds

We show an Q(T(#+1)/(28+1)) Jower bound on regret for
the S-Holder family of bandit instances. To show this bound,
we construct a family F of S-Holder instances and prove
that every policy suffers the claimed regret on it.

We describe this family at a high level using Figure 1. Fix
some ¢ > 0 and partition [0, 1] into epochs [z, xj41] with

z; =j-6)forj=0,1,...,m — 1 where m = 6—16. For

each reward function in this family, its restriction on each
epoch is either constant, on the order of &P (colored red), or
a bowl-shaped curve (colored blue). The family F3 consists
of all such 2™ choices. A bowl curve b on [z;,2j41] is
(8 — 1)-times differentiable, with vanishing derivatives at
x; and x4, which enables a smooth concatenation with a
constant curve or another bowl curve.

As shown in Figure 1, over the two epochs [z}, z;1]| and
[€;41,%j42], an instance can correspond to each of the
following 22 = 4 combinations of constant and bowl-shaped
curves: a constant curve (all red); the curve constituted by
two bowl-shaped curves, one on each epoch (all blue); and
the two combinations of constant and bowl-shaped curves
(one red then blue; the other blue then red). We formally
define bowl-shaped curves and the family of instances Fg
in 3.1, then use it to show our lower bound in 3.2.

3.1. Constructing the Family 73

Before constructing our family of instances 3 for the lower
bound, the first question is: do such bowl-shaped curves
even exist? More precisely, is there a function which (i) has
vanishing derivatives up to order (3 — 1) at the endpoints of
an interval of length &, and (ii) has maximum height Q(5%)?
We answer this affirmatively via an explicit construction.

Proposition 3.1. Fix an integer 3 > 1. There exists a family
{9} of (B — 1)-times continuously differentiable functions,
with g. defined on [0, €, satisfying all of the following:

(i) (vanishing derivatives at the boundary) g¥ 0) =
9 e)=0foranyj=1,...,8—1,

(ii) (monotonicity) g. > 0,

(iii) (polynomial growth) g () = ©(?) as ¢ — 0%, Equiv-
alently, g.(g) = Cp(e) - €” where Cp(e) = O(1),

(iv) (Lipschitz derivatives) géﬁ D g 1-Lipschitz.
The proof of the above is rather technical and we defer the
details to Appendix A.

As Figure 1 illustrates, a bowl-curve is obtained by connect-
ing two rotated copies of gs with a constant function.

Definition 3.2 (Bowl-Shaped Curves). Fix any integer 5 >
—1/(28+1)

landlet § = §(3,T) = (22<6+1>C§T) .

j=0,...,m—1and z € [0, 1], define

For

:Ll‘j-‘!-l,r(x) = 05(25) ' (26)5 : ]]'[Ej,l‘j+1)(x)7
and pj11,0(2) =

—ggg(oz—zz:j)Jr%CB@é)ﬁ, ifx € [z, z; +20),

—%Cﬁ(Qé)ﬂ, ifx € [$j+2(5,$j + 40),
g2 (z — xj; — 20) — £C3(20)°, ifx € [v; + 46, j41),
0, else.
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Each reward function in the family is specified by a binary
vector that encodes its color in each epoch. The colors will
be chosen adversarily by our lower bound in response to an
algorithm’s choices.

Definition 3.3 (The Family F3). For any wv

(v1, .., 0m) = {r,b}™, let p,(x) = ZT:I i, (7). We
define Fg = {p, : v € {r,b}"}.

One can easily verify that for every v € {4-1}" the function
4, is B-Holder. In particular, by property (i) in Proposition
3.1, if x is a multiple of ¢, then forany 1 < i < § — 1,
the left and right order-i derivatives at = both become 0,
ensuring a smooth transition.

The construction of bowl-shaped curves illustrates the role
of 3: for a fixed 4, the total variation of the bowl-shaped
curve is only O(6%). In other words, the more smoothness
we ask for, the less drastically the bowl curve can vary,
reducing regret. This suggests that the lower bound and the
optimal regret should decrease in /3.

3.2. The Lower Bound

We are now ready to state the lower bound. Note our lower
bound actually applies even if we restrict Z! € {£1}.

Theorem 3.4 (Lower bound for Integer (3). For any in-
teger B > 1 and policy A, it holds that Reg(A,v) >

L.2-p (Cy)~ 71 . T35,

As the key step, observe that for any ¢ € [z; + 20, z; +
46], arm 0 is optimal under the blue curve and arm 1 is
optimal under the red curve. We show that the probability of
choosing the wrong arm in those rounds is at least %, under
an adversarially chosen instance. This is true regardless of
the algorithm and the shape of the reward function in the
previous epochs.

Formally, consider two instances that are identical up to the
(4 — 1)** epoch. For any prefix u € {r,b}?~! and color
X € {r,b}, we will consider the instances jiy, g, and f,gb
where @ denotes vector concatenation. Write t; = x;T.
We show the following in Appendix A.3.

Lemma 3.5 (Likely to Select a Wrong Arm). For anyt in
the j-th epoch [t;_1,t;], any prefixu € {r,b}~! and any
policy A, we have Pygp[A; = 1] + Pyug.[A; = 0] > .

Observe that if the policy chooses a wrong arm at time
t € [tj + 26T, t; + 40T, then an Q(57) regret is incurred,
leading to a high regret in this epoch.

We show that for every policy, there is an instance where
Q(6”) regret is incurred in every epoch. Indeed, in 3, the
shape of the reward function in previous epochs imposes
no constraints on its shape in future epochs. Thus, given a
policy, the adversary can choose the reward curve’s shape
in the next epoch (encoded red or bowl), whichever leads

to higher regret. In other words, we have effectively m
separate instances, each with time horizon 667". We com-
plete the proof by lower bounding the regret in each epoch
separately using Lemma 3.5.

Proof of Theorem 3.4. Consider the regret on an epoch j
under instance v,

Regj(A,v) =E { bt (T*(t) - Zih)} )

t=t; v

where 7 (t) = max {0, u, (£)}. Note that Reg;(4,v)
depends solely on the first j epochs, so we only need to
specify the first j entries of v. Under this notation, by
Lemma 3.5, for any prefix u € {r,b} 71,

Reg;(A,u @)+ Reg;(A,u®b)
tj71+45T

>

t=tj_1 +26T

(Pu@b[At = 1] + ]P)u@r[At = 0]) . 56

1
> 20T - 6% = 6P 1T,
Thus for some color v; € {r,b}, we have Reg,(A,u &
v;) > 26°TIT. Note that this inequality holds for any
epoch j and prefix u € {r,b}?~!, so we can inductively
construct a sequence v € {r, b} with Reg;(A,v[j]) >

£6PT1T for each j € [m] where v[j] = (v1,...,v;). Sum-

ming over j € [m], we conclude that

Reg(A,0) = 3 Reg, (A, o)) > m- 217 = 157
A -2 12

JE
2B+

Substituting § = (22(5+1)C’§T) 771 We obtain

1 _ 28
Reg(4,v) > 5277 (C;) T T 0

4. Algorithm and Analysis in One-Armed Case

We begin with the one-armed setting, i.e., ro = 0, and con-
sider a single arm with unknown reward function r4(t) =
u1(t/T) where iy € £(8, L). We can then suppress the
subscripts and write p(t) = p1(t) and r(t) = r1(t). The
generalization to the two-armed version is straightforward;
see Section 5.

4.1. The Budgeted Exploration Algorithm

Consider the following Budgeted Exploration (BE) policy,
formally defined in Algorithm 1. The policy is specified
by two parameters, the exploration budget B > 1 and
epoch size A € (0,1). The policy partitions the normal-
ized timescale [0, 1] into epochs [x;, z;4+1] where z; = iA
foreachi = 0,...,A~! — 1,* or equivalently, partitions

*For simplicity we assume A~ is an integer. Apparently, this
assumption is not essential.
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{1,...,T} into epochs [t;, t;11] where t; = x;T. In each
epoch, the algorithm pulls the changing arm (i.e., arm 1)
from the start of the epoch until either (i) the epoch ends,
or (ii) the budget B is run out, whereupon the algorithm
selects the static arm (i.e., arm 0) in all remaining rounds in
the epoch.

Algorithm 1 Budgeted Exploration Policy BE(B, A)
1: fori=1,...,A ' do
2:  Select arm 1 from round ¢; until round ¢; + S; with
S; = min{S;, AT — 1} where

ti+s

S'i:min{s:ZZf<—B}.

t=t;

3:  Then select arm O from round ¢; + .S; 4+ 1 till ¢, 1.
4: end for

We show that in the one-armed case, for suitable B and
A, the BE algorithm achieves optimal regret bounds for
8 = 1,2, both matching the lower bounds in Section 3.

Theorem 4.1 (Optimal Regret Bound, 8 = 1). For
some B = O(TY?) and A = O(T~/3), we have
Reg (BE(B,A), %, (1,L)) = O (L1/3T2/3 log!/3 T).

Remarkably, the following upper bound provides the first
separation between smooth (3 > 2) and non-smooth (8 =
1) bandits (Besbes et al., 2015).

Theorem 4.2 (Optimal Regret Bound, 3 = 2). For
some B = O(T%*°) and A = O(T~'/%), we have

Reg (BE(B, A), % (2, 1)) = O (LV5T%/10g*° T).

Although these bounds are achieved by the same algorithm,
their analyses involve different rationales. Specifically, for
[ = 2 the analysis must utilize smoothness to reduce the re-
gret over what is achievable when 8 = 1. We will therefore
prove them separately in Section 4.3 and 4.4.

4.2. Preliminaries

Before presenting the proofs of Theorems 4.1 and 4.2, we
first state and prove tools used in both proofs. We will focus
on bounding the regret conditional on the following clean
event, which will be shown to occur with high probability.
Loosely, this is the event that the rewards in all sufficiently
large time intervals obey Hoeffding’s inequality.

Definition 4.3 (Clean Event). For any arm a and rounds
t,t' € [T, consider the event

t/

Z (Za,s — a(s)) < \/6logT - (t' —t)

s=t

tt
C)t =

We define the clean event as C = (), C};’t/ where the

intersection is over all arms a and all ¢, with ¢/ — ¢ >
2logT.

We next show C occurs with high probability.

Lemma 4.4 (Clean Event Occurs w.h.p.). For any T, it
holds that P|C] < T1.

Proof. By Hoeftding’s inequality (Vershynin, 2018, Theo-
rem 2.2.6), forany 1 < ¢t <t < T witht' —¢ > 2logT,
taking 6 = \/6logT - (# —t + 1), we have

i 1
P (C(t{t) < exp <_2(tl—t—f—1) . GIOgT (t/ —t+ 1))

=773,

There are at most 72 combinations of ¢,t’, so by the union
bound, we have

PCI=P||J | <Y p(c) <! O

a,t,t’ a,t,t’

4.3. Proof of Theorem 4.1

Before delving deep into our focus, the 5 = 2 case, we
analyze the § = 1 case as a warm-up. We will show a
stronger statement than Theorem 4.1.

Proposition 4.5. Suppose 6AT log T < B2. Then

Reg (BE(A, B), X1 (1,L)) < A™'- (14 LA*T + B).

We then obtain Theorem 4.1 by selecting

A=L2B7"Y30g T and B = L='/3T310g?/ T..

At a high level, on each epoch the function p either (i) is
always positive, (ii) is always negative or (iii) has a unique
crossing, i.e., u(x) = 0 for some x. We will bound the
regret for these three types of epochs, referred to as positive,
negative and crossing epochs, in Lemma 4.7, Lemma 4.8
and Lemma 4.9 respectively, and then combine them to
complete the proof.

We first consider a positive epoch <. In this case, the optimal
arm is arm 1, which coincides with the choice of the BE
policy before the epoch’s stopping rule is triggered. Thus,
there is no regret in this epoch before time ¢; + S;. This can
be formally shown by rephrasing Wald’s classical identity
as follows. Recall that (Z!) are the rewards of arm 1.

Lemma 4.6 (Wald’s Identity, Rephrased). For any epoch i,
we have E [ i;—&;& Z{] =F [ z:;sl r(t)}
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As a result, we only need to bound the regret incurred after
t; + S;. We will do this by bounding the probability that the
budget is ever run out, i.e., S; < AT, as detailed in the next
lemma. Recall that R; = max {0, r(t)} — Z% is the regret
in round ¢.

Lemma 4.7 (Regret on Positive Epochs). Suppose u(x) > 0
for x € [x;,x;11]. Then, whenever B?> > 6AT -log T, the

regret of BE(B, A) on epoch i satisfies E [Z:jtl Rt] <1l
The above essentially follows from the definition of the
clean event. When C occurs, the cumulative reward up to
the first s rounds in this epoch lies within an interval of
width w(s) < /s of the mean, which is positive.’ Further,
by the assumption that B > /AT we have w(s) < B
whenever s < AT. We defer the proof to Appendix B.2

Now we turn to the negative epochs.

Lemma 4.8 (Regret on Negative Epochs). If u(t) < 0
for x € [z;,x;11], then the regret on epoch i satisfies

E [Zi’:; Rt} <B+1.

We defer the details to Appendix B.3. The above follows
from the definition of the stopping time S;. In fact, if the
process never stops until the end of epoch, then the cumula-
tive reward is above —B. If it does stop at some s < AT,
then the cumulative reward is just below — B, and hence
above —(B + 1) since | Z1| < 1.

Finally we consider crossing epochs. The following essen-
tially follows from the Lipschitzness of .

Lemma 4.9 (Regret on Crossing Epochs). Let j be a cross-
ing epoch, i.e., () = 0 for some & € [x;,x;41). Then, the
regret in this epoch satisfies E [ zz; + Rt} < 2LAT.

Proof. By Lipschitzness of p, we have |u(x)| = |u(z) —
w(z)| < LA whenever z; < x < x;j41. In the original time
scale, this means |r(¢)| < LA whenever ¢t; < t < t;41,
and hence

tjt1
> Ir(t)| < AT - LA = LAT.

t=t;
To connect the above with the regret, observe that

t]'+1 tj+1

E|Y R|=E|) (max{0,r(t)} - ;)

t=t; t=t;

tj+1 tj+1

<>l -E | 24,

t=t; t=t;

>When illustrating high level ideas, we use A < B to denote
A= 0O(B).

Moreover, for each ¢ we have [E[ZY, ]| < |r(t)], so

ti+1 tit1

E > R <2> |r(t)] <2LAT.

t=t; t=t;

O

We are now ready to show the O(T'%/3) upper bound. To
suppress notations, we will subsequently write R[i] =

E {Zigg Rt} as the regret on epoch 4.

Proof of Proposition 4.5. Let J,J_, J, C {1,..., A1}
be the subsets of positive, negative and crossing epochs.
Note that J, UJ_UJ, = {1,..., A71}, so the total regret
can be decomposed as

1/A
ZR[@'] = Z R[i] + _Z R[i] + Z R[i]. (1)

By Lemma 4.7, Lemma 4.8 and Lemma 4.9, whenever
6AT log T < B2, we have

() < |Jy|- 14 |J_|-(B+1) +|J| - 2LAT
<A™' (14 B+ LA®T). O

4.4. Proof of Theorem 4.2

We next show the O(T3/°) regret for 5 = 2. We will show
the following bound for generic policy parameters, which
implies Theorem 4.2 by choosing

A =LY 0g /> T and B = L~Y°T%/%10g®/° T.
Proposition 4.10. Suppose 6AT log T < B2, then

Reg (BE(A, B),%4(2,L)) < 2A7" - (LA®T + B).

The proof strategy is similar to the 5 = 1 case. Specifically,
note that Lemma 4.7 and Lemma 4.8 do not rely on the
smoothness of u, so they also hold for 5 = 2. However,
as the key difference, we will derive a more fine-grained
regret bound for the crossing epochs. To state this result, we
classify the epochs based on whether p’ ever vanishes on
them.

Definition 4.11 (Stationary Points and Stationary Epochs).
A point s € [0, 1] is said to be stationary if y/'(s) = 0. An
epoch is said to be stationary (or non-stationary otherwise)
if it contains a stationary point.

As the key step, we need the following regret bound on the
crossing epochs, which resembles Lemma 4.9 but is more
refined as it crucially relies on the fact that § = 2.
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Lemma 4.12 (Key Lemma: Regret on Crossing Epochs).
Let j be a crossing epoch and j + £ be a stationary epoch,
with £ being possibly negative or 0. Moreover, suppose every
epoch between them is non-stationary, i.e., epoch i is non-
stationary whenever (j+{—1)-(j—i) < 0. Then, the regret

in epoch j satisfies E [Ezg“ Rt} <2L- (|| 4+1)- A3T.

Proof. We assume ¢ > 0 w.l.o.g. As the key observation,
we first claim that /| = O ((£+ 1)A) on epoch j. In
fact, since epoch (j — /) is stationary, there exists an s €
[€j_¢,2j—041] C [0, 1] with ¢i/(s) = 0. Moreover, since p/
is Lipschitz, for any x € [z, 2;41] we have

W(@)| = w(@) — ()| S L-la—s| < L-(£+1)A.

We next claim that |r(t)| = O((¢ + 1)A?) on epoch j. In
fact, let £ € [xj,x;41] be any crossing, i.e., u(Z) = 0.
Then for any « € [z, 2;41], by the mean value theorem,
for some ¢ between Z and z, i.e., (( —z) - (( — Z) <0, it
holds that

()| = |p(z) = u(@)] = W' (C) - (& — o).

By the previous claim, i.e., |//| < L - (£ 4+ 1)A on epoch 7,
the above implies that

(@) < L-((+1)A- |7 -z < L-(0+1)A2,

Translating this to the original time scale, we have |r(t)| <
L-(¢+1)A?forany t € [tj,t;11], and thus the claim holds.

Finally, summing over ¢’s, we obtain
tj+1

O Ir)] < L(€ +1)A% - AT, 2)

t=t;
We use this to bound the regret. Note that

tj+1 tj+1

E|[> R|=E|> (max{0,u(t)} - Y;)

t=t; t=t;

tjt1 tjt1

<D @[ -E|Y . O

t=t; t=t;

Observe that for each t we have |EY;| < |r()], so the above
is bounded by 2 Z?;ti r(t)|. Combining this with (2), we
conclude that (3) < 2L - (£ + 1) - A3T. O

The above lemma suggests that for the adversary to generate
a high regret on a crossing epoch, the nearest stationary
point must be proportionally far away. This motivates
us to consider an amortization scheme: bucket the epochs
1,..., A" linto contiguous blocks (called cycles) separated
at stationary epochs, and then show that in each cycle, the
regret on each epoch is low on average.

This proof strategy, however, assumes there is at least one
stationary point. Thus, as the final building block, we need
to handle the corner case where p has no stationary point.
We prove the following in Appendix B.

Lemma 4.13 (Corner Case). Suppose i/ (x) # 0forall x €
[0,1]. Then, Reg (BE(B,A), u) < LA’T + (B +1)A~L.

Now we are ready to prove the main upper bound.

Proof of Proposition 4.10. If there is no stationary point,
ie., ¢/ (t) # 0 for all ¢ € [0, 1], then the desired bound
follows immediately from Lemma 4.13.

Otherwise, index the stationary epochs as s1 < -+ < $j.
Crucially, observe that for any j, there is at most one cross-
ing epoch between s; and s; 1, say iy, if it does exist. Then
by Lemma 4.12,

Rliy) < 2L-(|ix—s;|+1)-A%T < 2L-(|sj41—s;])-A®T.

Combining the above with Lemma 4.7 and Lemma 4.8, the
total expected regret on epochs s; through s;; satisfies

> R[] < (sjp1—si) - RLA’T + B+ 1).

55 <i<s 41

The above clearly also holds when there is no crossing
between s; and s; ;. In fact, in this case, the 2LA3T term
disappears. Summing over j = 1,...,n, we have

1/A - n '
Ziil R[Z] < Zj:l Zsjgi<5j+1 R[Z]
<3 (sj41—8i) - QLAPT + B+ 1)
<2n-(LA®T + B),

and the desired bound follows by noticing that n < %. O

5. Two-Armed Setting

Algorithm 2 adapts the BE policy to the two-armed case.
In each epoch it alternates between the two arms until the
difference in the cumulative rewards exceeds B. It then
chooses the empirically better arm until the epoch ends.

Its analysis is similar to the one-armed case by considering
the gap function G(z) = po(z) — p1(z) in place of pq ().
The only difference is that positive and negative epochs are
replaced by non-crossing epochs via the following lemma.

Lemma 5.1 (Non-crossing Epoch). Suppose G(x) # 0 for
any x € [xj,x;41). Then the regret in this epoch satisfies

E [l B < B+0().

This is essentially obtained by merging the two lemmas for
positive and negative epochs in the previous section. W.1.0.g.
assume A > 0. First we show that the regret by time 25;
is no greater than B + 1, using the definition of S; and the
boundedness of the rewards, as in the proof of Lemma 4.8.
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Algorithm 2 BE(B, A) Policy, Two-Armed Case
1: fori=1,...,A ' do
2:  Select arm 0 in rounds ¢; + 2k and arm 1 in rounds
ti + 2k + 1 for £k = 0,1,...,5; where §; =
min {S LAT - 1)} with

S; = min {8 : ‘ i (Zé“"mC — Z'{"""Qk"'l) ‘ > B} .
k=0

3:  Let A be the arm with higher cumulative rewards
from rounds ¢; to t; + 25; + 1. Select A from round
t; + 2(51 + 1) till ¢;44.

4: end for
1651 a BEB=TY3 A=T"153) e
16.0 BE(B=T25 A=T-15) o
15.57 ] - loga(Regret) = 0.70logx(T) -2.02 ‘
150 loga(Regret) = 0.62logy(T) -1.19 ;
g 14.5 A
O 14.0
€5 e
2130 o
125 e
1201 A&
1.s{
11.0
20 21 2 23 24 25 26
Time horizon log,(T)

Figure 2. Log-log plot of the averaged regrets incurred by policy
BE(B = T3, A = T~Y3) and BE(B = T?/5, A = T~'/%)
as a function of the time horizon length 7', with the linear relation-
ship estimates. Here, the averaged regrets are calculated across
randomly generated instances with sinusoidal mean rewards.

Then, we show that the expected regret after 2.5; is O(1), as
in the proof of Lemma 4.7. This can be done by considering
the event that the better arm, i.e., arm 0, ever has cumulative
rewards lower than arm 1 by B. Concentration bounds can
show that this event occurs with low probability. Moreover,
due to the boundedness of (G, when this event occurs, the
regret is also bounded, leading to O(1) regret.

6. Experiments

We implemented our algorithm with simulations on syn-
thetic data in the one-armed setting. We consider our BE
policy where the parameters are chosen to be optimal for
the non-smooth and smooth environments respectively. For-
mally, we consider the policy BE(B, A) where the tuple
(B, A) is chosen to be (T'/3, T~1/3) for non-smooth and
(T2/>,7=1/5) for smooth non-stationary environments.

We consider random trigonometric reward functions whose
amplitudes, frequencies and phase shifts are randomly
drawn. Specifically, in each instance, we have 7¢(t) = A
and r1(t) = —A-sin(2nvt /T + $) + A, where v ~ Uz 5 5],
A~ N(0.25072,0.001) and ¢ ~ Ujg 2]

An astute reader may have noticed that A depends on v
when we generate the instances. This choice is actually quite
natural. In fact, consider u(x) = —Asin(2rve + ¢) + A.
Note that i/ has a v2 A term, so by choosing A to scale as
v=2, || becomes bounded by an absolute constant and
hence p € X(2, L) for some L = O(1).

We visualize the regret of the two policies via a log-log plot
with time horizon T = 27 where j = 20,21, ..., 26; see
Figure 2. Theoretically, the slope of a log-log curve should
equal the exponent of the cumulative regret. In fact, if the cu-
mulative regret is ¢1'%, then the log-regret is log ¢ + dlog 7.
Our simulation shows that under smooth non-stationarity,
the T°/5-regret policy outperforms the T'2/3-regret policy.
Moreover, the log-log curves have slope 0.70 and 0.62 re-
spectively, which are close to their theoretical values.

7. Conclusions and Future Directions

In this paper, we presented smoothly-varying non-stationary
bandits and demonstrated the first separation between the
smooth and non-smooth case by showing we can break the
O(T?/3) regret lower bound for Lipschitz variation if we
further assume Lipschitz-continuous differentiablity, attain-
ing O(T?/5) regret. We showed this upper bound is tight
by establishing a lower bound of Q(7'(3+1)/(28+1)) for any
[3-Holder smooth variation.

One important direction is more than two arms. Algorithm 2
can be straightforwardly adapted to more arms: perform
successive elimination in each epoch, until either the explo-
ration budget is used up or the epoch ends. But it is not clear
whether the regret has sublinear dependence on k.

We conjecture that the lower bounds can be matched for
every integer 5 > 3 but this remains open. If this is true,
it means that as smoothness increases we can obtain regret
that approaches the optimal O(y/T) regret of stationary
bandits, since O(TP+1/(26+1)) = 71/2+0(1/5),
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A. Omitted Proofs in Section 3

In this section we provide details for constructing the family in the lower bound proof.

A.l. Preliminaries: the Flock Transformation and the Pyramid

We need the notion of flocks to construct bowl-shaped curves. Pictorially, the flock transformation of a given function h
(called the base function) is given by a sequence of copies of & side by side, each weighted by a constant. For example, the
topmost subfigure in Figure 3 is a flock transformation of the pyramid-shaped base function.

Definition A.1 (Flock Transformation). For any base function h(z) : [0, w] — R and weight vector v € RY, the v-flock is a
function F,[h] : [0, fw] — R given by

4

F,[h)(x) = Zvi “h((E—Dw+zx).

=1

We now specify the family of functions g. for constructing a bowl-shaped curve. We will set the highest derivative, i.e.,

géﬁ 71), to be a flock transformation of the pyramid function whose weight vector is chosen from among the following

neutralizing vectors.

Definition A.2 (Neutralizing Vectors). Let 1Y = 1 and @ be vector concatenation. For each integer & > 1, recursively
define the k-th neutralizing vector as v* = v*=1 @ (—vF=1) € {il}Qk. A flock corresponding to a neutralizing vector is
called a neutral flock.

As the name suggests, these vectors have the property that the sum of their entries on any dyadic interval is 0. Formally,

ZEJ;_QQ Vf =0 forany v = v*® and integers ¢ > 1, 7 > 0. In our construction we set the highest derivative of g. to be a

neutral flock of pyramid functions defined as follows.

Definition A.3 (Pyramid Function). For any w > 0, define the w-pyramid function as

A.2. Proof of Proposition 3.1

We first describe the high level idea. We will prove Proposition 3.1 constructively by considering ¢ = g. obtained by
iteratively integrating the pyramid function for (5 — 1) times. Figure 1 illustrates this idea for 8 = 4 using the pyramid
function, with € = 4w. Specifically, we start by setting the highest derivative, i.e., ¢(*), to be a neutral flock of pyramids;
see the topmost subfigure. Then, as shown in the other two subfigures, the lower-order derivatives all vanish at the boundary
points, i.e., at 0 and 4w. Moreover, since ¢¢®) is bounded by the function f(z) = x, we can verify that g¥)(¢) = O(*~%)
fori =0,...,3, in particular, we have g(g) = O(&?) as desired.

To formally define the family {g. }, we need the following.

Definition A.4 (Anti-derivative). Consider any Lebesgue integrable function f : R>o — R. We define ®°[f] = f and for
any integer ¢ > 1, the level-{ anti-derivative ®[f] : R — R is given by

q)g[f](x):/of/o“m/o@ Fan) day ... dae.

Now consider g. = ®#~1 [F, 52 [A,]] with w = w(e) = 27(F~Ve. Note that the (3 — 1)-st derivative is F,s-1[A,],
which is 1-Lipschitz, so property (iv) holds trivially. Moreover, observe that w2°~! = ¢, and hence g. is supported on [0, €]
as desired.

We next formally verify that {g. } has the other properties claimed in Proposition 3.1. The next result, which connects the
notions of anti-derivatives, flock transformation and neutralizing vectors, says that the anti-derivative of a neutral flock is
still a neutral flock.

10
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Figure 3. Tllustration of g. for 5 = 4: g(3> is a pyramid flock. The function g(2) (z) is defined as the integration of g(3> from O to .
Similarly, g () is the integration of ¢’ from 0 to .

Proposition A.5 (Anti-derivative Preserves Neutrality). Let hq : [0, w] — R be any base function and let j > 0 be any
integer. Then, for any 0 < { < k, there exists some base function hy : [0,2w] — R such that

O [Fers [ho]] = Fyi [,
more precisely, hy = ®'[F,¢[ho]].

To see the intuition, consider again 5 = 4 (readers can again refer to Figure 3) and consider pyramid base function hg = A,,.
In this case, the highest derivative is given by a v2-flock of pyramids, i.e.,

g® = F,2[ho). 4

Now consider ¢(®). On one hand, as illustrated in the middle subfigure in Figure 3, ¢(®) is a '-flock under the base function
h1 = ‘I)l[F,,l [Aw]], i.e.,

9® = Fafh]. ®)
On the other hand, by (4) we also have
g? = @] = @' [F,2[ho]]
Combining with (5), we have
D [F2 [hol] = Foalhi],
as claimed for £ = j = 1.

Before formally showing this, we first state some basic properties of the flock transform. We use o to denote the composition
of mappings.

Lemma A.6 (Algebra of the Flock Transform). For any integers i, j,k > 0, it holds that
(i) (Distributive Law) (Fi o F,;) 0 F,x = F,i 0 (F,; 0 F 1),
(i1) (Additive Law) F i o F,; = Fi+; = F,j o F,i.

11
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The proof of the above is rather straightforward and we leave it to the readers. We are now ready to prove Proposition A.5.

Proof of Proposition A.5. Consider induction on j. Wlog assume w = 1. The base case, j = 0, is trivially true, since F,o
is the identity mapping. Now consider 7 > 1. As the induction hypothesis, suppose the claim holds, i.e.,

®' o Fvi =F,io®' o F, e,
fori =0,...,j — 1. Denote by TH(%) the above identity. Then, for any base function A, it holds that

‘I’z o Fl,z/.+_7‘ [h] = ‘I)Z o FV14+_7‘—1 [Fl,l [h”

= F, i1 0®'F[F,[h] by IH(j — 1)
=F,-10®'F i [h] by Lemma A.6
= r,j-10 Fyl o @f o FVZ [h,} by IH(].)
=F,; o® 0 F,h], by Lemma A.6
and the induction completes. O

We use Proposition A.5 to verify properties (i) and (ii) in Proposition 3.1. To verify that the derivatives do vanish at the
endpoints, we need the following nice property of the neutralizing vectors.

Lemma A.7 (Symmetric Area Property). For any base function h. : [0, w] — R and integer k > 1, the v*-flock satisfies
k
[2 Fulh)(z) dz = 0.

Proof. Induction on k. For k = 1 this is obviously true. As the induction hypothesis, suppose this is true for some k > 2.
Recall that by definition it holds that v* = ¥~ @ (—vF~1), so

2k+1qy

/0 Juw e+ () do

2k ok+1w
:/ fw,uk (.’,E) dx + / f’w,—uk (ka + Z') dx
0 2

kaw
2k 2kw
:/ fw,uk (LL') dx _/ fw,vk (l’) dx
0 0
=0.

O

Proposition A.8 (Vanishing Derivatives at the Endpoints). Let h : [0, w] — R be any base function and H = F,[h]. Let
g = ®(H). Then, the function g : [0,2°w] — R is {-times continuously differentiable with g\9)(0) = g (2w) = 0 for
anyj=1,...,L

Proof. By Proposition A.5, for any j, there exists base function h; : [0, 2°w] — R such that g“~9) = ®[H] = F,.—;[h;].
By Lemma A.7, it follows that

2w
gD (2 = =31 (2 — gU=i-D)(0) = / g9 — 0,
0

Proposition 3.1 then follows immediately since we have verified properties (i)-(iv).

A.3. Proof of Lemma 3.5

We first introduce some standard concepts and tools. For simplicity, for any instance p : [0,1] — R, let (Zﬁ)te[T] be the
reward vector under this instance.

12
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Definition A.9 (KL-Divergence). Let X, Y € {£1}" be random vectors, specified by probability mass functions fx, fy :
{£1}™ — [0, 1]. The Kullback-Leibler divergence (or KL-divergence) is defined as

fX()
= 2 Ixlosi.

ve{xl}n"

We show that at any time, the KL-divergence of the two random variables is on the order of the squared difference of their
means.

Lemma A.10 (Bounding the KL-Divergence). Fori = 1,2, suppose random variable Z; takes value on {£1} and has
mean r;. Then, when |r2| S , we have KL(Zy, Z5) < (7"1 — 7‘2)2.

Proof. By definition, we can write Z; = 2X; — 1 where Z; ~ Ber (%) for ¢ = 1, 2. Then, we have

KL(Z1, Z3) = KL(X;, X2)
’/‘1—|—1 T1—|—1 1—T1 1—7“1
= In In
2 7’2+1 2 1—7’2
rm+1ri—re l—riro—m

- 2 7’2+1 2 177’2
(ry —r2)?

- 171"3

4

< —(r — 1)

_3(7“1 2)

The following says that two instances with small KL-divergence are hard to distinguish between.

Theorem A.11 (Pinsker’s Inequality). Let X,Y € {41}" be two random vectors. For any event® E, we have 2(P[Y €
E] -P[X € E])? <KL(X,Y).

The chain rule characterizes the KL-divergence for random vectors, on which we will later apply Pinsker’s inequality. The
following can be found as Theorem 2.4 (b) in (Slivkins et al., 2019).

Theorem A.12 (Chain Rule for Product Distributions). Suppose X1,...,X,,Y1,...,Y, € {£1} are independent. Con-
sider X = (X;) andY = (Y;). Then, KL(X,Y) = > | KL(X,, Y3).

Proof of Lemma 3.5. For any color x € {r, b}, denote by Z, = (Z;)i;ll the reward vector under instance u & . Consider
the event F; := {A; = 0}. By Pinsker’s inequality (Theorem A.11) and the chain rule (Theorem A.12),

t
Z (6)
s=t;_

By the construction of 5 and Lemma A.10, for t;_; < s < t we have KL(Z}, Z§) < 4 (505(25)5)2, and thus

[\D\P—‘

1
|P[Z, € Ey] —P[Zy € Ef]|* < FKL(Z:, Zy) = ZKL JZ8) =0+

1 5 2 2260% 28
<=-.-(= 2 (t—ti) < —F - 60T
(6) 53 (20[3( 0) > (t—tj—1) < 3 ) 60T, @)
where the last inequality follows since by definition, ¢t — t;_y < t; — t;_1 = 607. Finally, recall that 6 =
. 2

(22(ﬁ+1)C§T) o , 80 (7) gives ’]P’[Zr € B —P[Zy € Et}‘ < i. Therefore,

P(Z. € E/]+P[Z, € E} =PZ, e B ]+1—-PlZ, € By >1— |IE”[Zr € B —P[Zy € Et]| > 3
i.e., Pu@b[At = 1] + Pu@r[At = 0} Z

N[

®In this work, by “event” we mean a Borel set.

13
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B. Omitted Proofs in Section 4
B.1. Proof of Lemma 4.6

For simplicity fix ¢ and write S = S;. Observe that

t;+S

>4
t=t;

E +E

ti+S
—E [Z (2t — (1))

t=t;

ti+S
> r(t)] : ®)

t=t;

Note that Z{ — r(t)’s are independent, mean 0, and S is a stopping time, so the partial sum M, := > ;_,(Zi —r(t)) isa
martingale (w.r.t. the filtration induced by {Z;}). By Wald’s stopping time theorem, E[Mg] = 0. Therefore, (8) becomes

0+E [ng r(t)} . O

B.2. Proof of Lemma 4.7

Write S = 5. Since p > 0, the optimal policy always chooses arm 1 in this epoch. Recall that at time ¢; + S the BE
algorithm switches to arm 0, the sub-optimal arm. We can thus simplify the regret as

E [2@@) 7))

t=t;

t;+S tiy1
=E|) (r)-2ZD+ Y (r(t)-Z)

t=t; t=t;+S5+1

tit1
=0+E| > (r(t)-2)
t=t;+S+1
tita

=E Z r(t)] , 9)

t=t;+S+1

where the last identity follows since Z{’s are mean 0 and independent of S. Further, since ;1 —t; = AT and |r| < 1, we
have

(9) <P[S=AT —1]-0+P[S < AT —1] - AT = P[S < AT — 1] - AT.

We conclude the proof by bounding P[S < AT — 1]. Consider the event {S = s} where s < AT — 1. We claim that the
event {S = s} would not occur conditional on the clean event C. In fact, if {S = s} occurs, we have Y ;_, Z{ < —B.
However, conditional on C, we have

ti+s
| Z(Zf —r(t)] < V65 -logT < /6ATlogT,

t=t;

and more explicitly,
ti+s ti+s

> Zi > r(t) - /6ATlogT >0 - B,
t=t t=t

=l =l

where the last inequality follows since 6AT log 7' < B2. It follows that P[{S = s} N C] = 0 for any s < AT — 1, and
hence

P[S<AT]|=P[{S<AT}NC] <P[C] <T "
Therefore, (9) <P[S < AT]- AT <T~!. AT <1. O
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B.3. Proof of Lemma 4.8

Write S = S;. In this case the optimal arm is arm 0, so we can simplify the regret as

tit1 ti+S tiy1
E|> (=Z4,)| =-E|> 2| - > % (10)
t=t; t=t; t=t;+5+1
Note that Z{ is independent of S, so the second expectation is 0.
To analyze the first term, for any s > 0 define X 1it® Z!. Then by definition of S, on the event {S = s} we have

X,s_1 < B. Since we assumed each the reward dlstrlbutlon to be {£1}-valued, this implies that X; < B + 1. Therefore,

ti+S

> % =

t=t;

= Z]EX S1(X <ZIP (B+1)=(B+1),

where the first identity follows from Lebesgue’s Dominated Convergence Theorem and the boundedness of X ¢ for any fixed
s. The claimed bound immediately follows by combining the above with (10). O

B.4. Proof of Lemma 4.13

Note that in this case x has at most one crossing on its domain [0, 1]. As the trivial case, suppose there is no crossing, then
the upper bound follows immediately by applying Lemma 4.7 or Lemma 4.8 on each epoch.

Now suppose there is exactly one crossing, say & € [x;,, Z;,+1] for some integer 7. Then, for any = € [z;,, Z;y+1]. by
Lipschitzness, we have

lu(@)] = (@) — p(@)] = |1'() - (x — )| < LA.
Translating this to the original time scale, we have |r(t)| < LA whenever t;, <t < t;,11. Therefore,

tig+1

er )| < LA (tig1 — tiy) = LA - AT, (1)

Meanwhile, since any epoch i # iy is either negative or positive, by Lemma 4.7 and Lemma 4.8 we have R[i] < B + 1.
Combining this with (11), the total regret is then bounded as

1/A
> Rli) = Rlig] + Y _ R[i] < LA’T + A™"- (B +1).
i i#ig
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