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Abstract. Because the average treatment effect (ATE) measures the change in social welfare,
even if positive, there is a risk of negative effect on, say, some 10% of the population. Asses-
sing such risk is difficult, however, because any one individual treatment effect (ITE) is never
observed, so the 10% worst-affected cannot be identified, whereas distributional treatment
effects only compare the first deciles within each treatment group, which does not corre-
spond to any 10% subpopulation. In this paper, we consider how to nonetheless assess this
important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distri-
bution. We leverage the availability of pretreatment covariates and characterize the tightest
possible upper and lower bounds on ITE-CVaR given by the covariate-conditional average
treatment effect (CATE) function. We then proceed to study how to estimate these bounds
efficiently from data and construct confidence intervals. This is challenging even in random-
ized experiments as it requires understanding the distribution of the unknown CATE func-
tion, which can be very complex if we use rich covariates to best control for heterogeneity.
We develop a debiasing method that overcomes this and prove it enjoys favorable statistical
properties even when CATE and other nuisances are estimated by black box machine learn-
ing or even inconsistently. Studying a hypothetical change to French job search counseling
services, our bounds and inference demonstrate a small social benefit entails a negative

impact on a substantial subpopulation.
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1. Introduction
Policymakers and project managers regularly conduct
randomized experiments (“A/B tests”) to assess poten-
tial changes to policy or product. A key metric is the
average treatment effect (ATE), which is the difference in
the population average outcome when everyone or no
one is treated. ATEs are easily estimated by differences
in the sample-average outcome within treatment
groups, barring interference. Estimation from observa-
tional data are also possible under appropriate assump-
tions, for example, unconfoundedness (Imbens and
Rubin 2015). Identifying an individual’s outcome with
their utility, as we will throughout this paper, the ATE
is the difference in social welfare in these two counter-
factual scenarios. By linearity, this coincides with the
population average of each individual’s treatment effect,
the difference in their own utility in the two counterfac-
tual scenarios.

Treatment effects, however, can vary widely between
individuals (Heckman et al. 1997, Crump et al. 2008).
Thus, even if the ATE is positive, there is a risk that a
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large subpopulation has a negative effect, and the pur-
pose of this paper is to assess this risk. Distributional
treatment effects (DTEs), which compare the two coun-
terfactual utility distributions, cannot capture this risk.
Indeed, Imbens and Wooldridge (2009, p. 17) note
“quantile effects are defined as differences between
quantiles of the two marginal potential outcome distri-
butions, and not as [differences between] quantiles of the
unit level effect.” They nonetheless advocate for focusing
on DTESs, because policy choice “should be governed by
preferences of the policymaker over these distributions.”
Such rational decision-making framing, however, pre-
sumes a policymaker facing a choice between lotteries
drawing at random from individual outcomes. Instead,
concerned with equity beyond social welfare, we should
worry about the individuals, not the policymaker.

One way to gain further insight into heterogeneity is
to consider conditional ATEs (CATEs) given pretreat-
ment covariates. For example, if we observe a discrete
sensitive attribute (e.g., race), we can simply compare
the CATE in each attribute-value group.' However, it
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may not always be clear what are relevant attributes
and whether we are omitting important ones. Given
rich and continuous covariates, we can still reliably
learn the CATE function by leveraging recent advances
in causal machine learning (Imai and Ratkovic 2013,
Athey and Imbens 2016, Wager and Athey 2018, Kiinzel
et al. 2019, Kennedy 2020, Nie and Wager 2021). It can
still be unclear, nonetheless, whether the covariates are
relevant for fairness considerations, what groups are
captured in this way, and how to summarize a complex
CATE function into a single measure of risk.

It is therefore appealing to focus directly on the distri-
bution of individual treatment effects (ITEs). In this
paper, we will consider the conditional value at risk
(CVaR) of this distribution, which gives the average
effect among the worst-affected 10%, 20%, etc. The chal-
lenge is that no ITE can ever be observed: the so-called
fundamental problem of causal inference. Nonetheless,
regardless of whether covariates are meaningful for fair-
ness considerations, if they control for heterogeneity,
CATE may predict ITE well.

In this paper, we study the tightest-possible upper
and lower bounds on the CVaR of the ITE distribution
given by CATE. We first characterize these best-possible
bounds had we known the CATE distribution exactly.
Then, having specified the most we can know from infi-
nite data (i.e., distributions), we consider inference on
these from actual data. One challenge is that CATE can
be complex and we may wish to use flexible machine-
learning estimates thereof. Another challenge is our
bounds depend on quantiles of an unknown function
(CATE). We design debiased estimators and confidence
intervals (ClIs) that overcome these challenges by being
exceedingly robust to CATE learning: enabling infer-
ence even under slow estimation rates (i.e., local robust-
ness; Chernozhukov et al. 2022), remaining consistent
even under mis-estimation of some nuisances, that is,
double robustness (Robins et al. 1994), and surprisingly
remaining valid as bounds even when CATE is mis-
estimated (i.e., double validity; Dorn et al. 2021). We
conclude by using our tools to illustrate treatment effect
risk in a case study of job search assistance benefits.

2. Problem Setup and Definitions
Each individual in the population is associated with
two potential outcomes, Y*(0), Y*(1) € R, corresponding
to individual utility under “treat all” and “treat none,”
respectively, and baseline covariates (observable char-
acteristics), X € X'. The ITE, ATE, and CATE are, respec-
tively,

5=Y'(1)—Y(0), T=E[Y'(1)]-E[Y'(0)]=ES=Et(X),
(X) =E[6|X] = u(X,1) — u(X,0),

where u(X,a) = E[Y*(a)| X].

We assume E&? < oo throughout.

Of interest is the average effect among the (100 x
a)%-worst affected, formalized by CVaR,(6), where for
any variable Z, we define its cumulative distribution
function (CDF), a-quantile, and a-CVaR,” respectively, as

Fz(z)=P(Z < 2), )
Fgl(a) =inf{z: Fz(z) > a}, )

CVaR,(Z) =E[Z|Z < F;'(a)] - (' F2(F;' (@) - 1)
X (F;' () — E[Z|Z < F;\(a))). 3)

This formally defines the expectation among the (100 x
a)% smallest values in the population described by Z. It
is the average at/below the a-quantile when there is
exactly a-fraction at/below the a-quantile (Fz(F;'(a)) =
a, such as would occur if Z were continuous). Other-
wise, we must remove a fraction of the atom at the
a-quantile so as to make an exactly a-sized subpopula-
tion to average over (i.e., the second term in Equation
(3)). Also, CVaRy(Z) = EZ.

Rockafellar and Uryasev (2000) give an optimization
reformulation of CVaR: letting (1) _ =u A 0,

CVaR,(Z) =sup(B+a 'E(Z—-B)_)
B

=F,(a)+a '"E(Z - F,(a))_. 4)

We consider data from a randomized experiment or
observational study. Each individual is associated with
a treatment A € {0,1}, and we observe the factual out-
come Y = Y*(A) (never Y*(1 — A)). The data are (X;, A;,
Y;) ~(X,A,Y), 1 <i<n We assume unconfoundedness
throughout: Y*(a) L A|X.> Randomized experiments
(our focus) ensure this by design (often with X _1L A).
Our results nonetheless extend to observational settings
assuming unconfoundedness. Under unconfounded-
ness, ATE and CATE are identifiable, i.e., are functions
of the (X, A, Y) distribution: u(X,a)=E[Y|X,A=a4],
t(X) = p(X, 1) — (X, 0), 7 = Ex(X) (=E[Y|A=1]—E[Y|
A =0]if X 1L A). Define also the propensity score

e(X) = P(A =1]X).

We now illustrate treatment effect risk and its uniden-
tifiability, which motivates us to consider the tightest-
possible identifiable bounds (Section 3) and inference
thereon (Section 4).

Example 1 (Simple Example). Consider two hypotheses:
i () (o) (5 7))
"y 0)’\-1 1))
A ~ Bernoulli(1/2),
Y*(0) 0\ /1 1
e (Y*(l)) NN((O)’ (1 1))
A ~ Bernoulli(1/2).

Under both H; and H,, we have (A,Y) ~ Bernoulli
(1/2) x N(0,1). However, under H;, 6 ~A(0,2) and
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CVaRg1(6) = —3.5, whereas under H,, 6 =0 and CVaR;
(0) =0. Therefore, CVaRy1(6) cannot be identified
from (A, Y).

Remark 1 (Covariate-Conditional Policies). Treat (i.e., roll-
out to) all or none is often the choice faced by project
managers, but given covariates, we can learn covariate-
conditional treatment policies (Qian and Murphy 2011,
Zhao et al. 2012, Kallus 2018, Kitagawa and Tetenov
2018, Athey and Wager 2021, Kallus and Zhou 2021).
Learning aside, treating only when 7(X) >0 ensures
all covariate-defined groups have nonnegative group-
average effects.* The sum of these nonnegative effects can
also be estimated using flexible nonparametric methods
(Luedtke and van der Laan 2016a, b, 2017). Personalizing
on all available covariates is, however, generally infeasi-
ble because of operational, nonstationarity, and/or ethi-
cal/reputational concerns. Nonetheless, given any policy
7: X — {0,1}, we may simply redefine ITE as Y(t(X)) —
Y(0), and our results still apply. This is especially relevant
when 7t personalizes on some covariates and the rest
explain heterogeneity conditionally thereon.

Remark 2 (Risk of Observed vs. Unobserved Variables).
CVaR is an example of coherent risk measures (Artz-
ner et al. 1999), which are used to assess distributions
beyond expectations and are equivalent to distribu-
tionally robust worst-case expectations (Ruszczynski
and Shapiro 2006). For example, CVaR is the worst-case
expectation among distributions with Radon-Nikodym
derivative to the given distribution bounded by 1/a.
Other distributional divergences can also define ambigu-
ity sets (Ben-Tal et al. 2013, Bertsimas et al. 2018, Esfa-
hani and Kuhn 2018). Alternative approaches limit the
complexity of subpopulations (Kearns et al. 2018, Lahoti
et al. 2020). In finance (Krokhmal et al. 2002), distribu-
tionally robust supervised learning (Bagnell 2005),
demographics-free fair learning (Lahoti et al. 2020), and
CVaR-DTEs (Kallus et al. 2019), the variable whose risk
is of interest is always observed. For example, model loss
on each training example is observed. In contrast, we
consider risk of an unobserved variable; hence, we study
bounds in Section 3. For inference, we are uniquely con-
cerned with risk of an wunknown function; hence, we
develop learning robust methods in Section 4.

3. Bounds

3.1. Upper Bound: CATE-CVaR

An upper bound on CVaR,(0) is crucial: If negative or
substantially below ATE, the change poses certifiable
risk or inequity to an (100 x a)% subpopulation.

Theorem 1 (Upper Bound by CATE-CVaR). We have
CVaR, () < CVaR,(7(X)). (5)

Moreover, for any X distribution and integrable T: X — R,
there exists a (X, 0)-distribution with the given X distribution,
1(X) = E[6|X], and Equation (5) holding with equality.

Because 7(X) represents our best guess for 6 (in squared
error), imputing the unknown 6 with 7(X) seems reason-
able. Theorem 1 shows this in fact provides an upper
bound.’ If 7(X) is continuous, CVaR,(7(X)) = E[5|7(X)
< Fg(lx)(a)], and Equation (5) is intuitive: CVaR,(0) is
worst average effect among all (100 X o)%-subpopula-
tions, whereas CVaR, (7(X)) only among X-defined sub-
populations. This bound is also tight: given just 7(X), it
cannot be improved.® Although it is tight, the bound
may be practically uninformative, depending on how pre-
dictive X is and how the bound is used. Without covar-
iates, the bound is trivial: CVaR,(0) <T. Even if X is
not very predictive but just enough to demonstrate
CVaR,(6) < CVaR,(7(X)) <0, the bound may still be
very practically informative.

Remark 3 (CVaR as Summary of CATE). As discussed in
Section 1, if we have protected groups (that we observe),
we may consider CATE along that grouping. Otherwise,
the significance of a CATE-learning prediction of 7(x)
for some group X=x is unclear. Theorem 1 shows that,
regardless of substantive meanings of included covari-
ates X, aggregate statistics of the 7(X) distribution pro-
vide insight into treatment effect risk, giving important
meaning to the outputs of CATE learning with rich
covariates. Nonetheless, it is insufficient to rely solely on
CATE learning for estimation: As we explore in Section
4, averaging the 10% lowest predictions from a CATE
learner suffers from both optimizer’s curse and statistical
instability, and we must develop special inferential pro-
cedures to target Equation (5).

Aside from being a bound, CVaR,(7(X)) is also of
interest as a summary of effect heterogeneity along
meaningful covariates X. When X is more than a few
discrete groups, understanding the many facets of
CATE is challenging, both interpretationally and sta-
tistically. We could test for X heterogeneity (Gail and
Simon 1985, Sawilowsky 1990, Davison 1992, Crump
et al. 2008),” for example, omnibus test Hy : 0 € argmin,,
ErX)-T—y"(X - EX))* (Chernozhukov et al. 2018a).
This, however, may detect minor heterogeneity in small
subpopulations, may not assess magnitude or direction,
and may be inappropriate if we expect heterogeneity. In
contrast, CVaR,(7(X)) is a simple, meaningful summary
of 7(X). Inference, however, is a challenge. We tackle
this in Section 4.

Remark 4 (Interquantile Averages of CATE). CVaR of CATE
can in fact permit us to summarize average effects in the
middle and not just the tails. Consider any 0<a <
a’ < 1. Provided that Fr(x)(F; (@) = @, Frx)(F ()
=a’ (e.g., 7(X) is continuous), we have that

E[Y*(1) = Y*(0)[F k(@) < 1(X) < F o (@)]

_ a’CVaRy (1(X)) — aCVaR,(7(X))
B o —a '

©6)
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Equation (6) is the average effect among individuals
with CATE between the a- and a’-quantiles. A similar
but different quantity is considered in Chernozhukov
et al. (2018a): The average effect among individuals in
interquantile ranges of an estimate of CATE fit on a
split sample rather than the true CATE. They consider
averaging this over splits, but that average still needs
not correspond to Equation (6), and this approach is
not robust to errors in the CATE estimate, meaning
these errors will propagate to nonnegligible terms in
the estimate and its variance. In contrast, by leverag-
ing the unique optimization structure of CVaR, in Sec-
tion 4, we provide an estimator that is robust to such
errors, allowing us to estimate the CVaR of the true
CATE rather than a split-sample-estimated CATE. By
writing Equation (6) using CVaR, we can then lever-
age these results to get robust estimates for interquan-
tile averages, as we will explain in Remark 6.

Remark 5 (Who Is Negatively Affected?). Suppose we find
CVaR,(1(X)) < 0, whereas 7 > 0, where «a is “substantial”:
The social-welfare benefit of the proposal is borne by
some substantial negatively impacted subpopulation.
Although that may already cool enthusiasm for the pro-
posal, we may wonder who are the harmed individuals,
for example, to help design a new, better treatment.
Assuming continuity, CVaR,(7(X)) is the ATE among
individuals with 7(X) < FT’(lx)(a): an identifiable group. A
question is interpretation. This is easy if 7(X) is linear or
tree (or estimated using such models, which still gives a
bound per Theorem 7). We can also consider summaries
of this group, for example, fraction belonging to sensitive
groups, or learn simpler models to explain membership
(Ribeiro et al. 2016, Lakkaraju et al. 2019). Alternatively,
given we detect substantial inequities, we can separately
investigate which variables negatively modulate treat-
ment effect by, for example, studying arg min, E(7(X) —
T— )/TX)2 (Chernozhukov et al. 2018a, Kennedy 2020).

3.2. Lower Bounds Under Limited Residual
Heterogeneity Range

Much as we try to best control for heterogeneity, dispa-
rate effect-predictiveness of covariates may mean some
negative ITEs are averaged out and hidden while others
are singled out. A remedy when concerned about dis-
proportionate predictiveness among sensitive groups
(e.g., race) would be to include these (or proxies) within
X. However, we may always worry about missing
something. A lower bound can provide assurances
about what the upper bound may be missing.

This depends on how much residual heterogeneity
remains. Our first set of lower bounds limit the range of
residual heterogeneity, that is, almost-sure bounds on
0 — 1(X), whereas our second set of lower bounds limit
its variance, that is, bounds on Var(5|X) = E(6 — 7(X))>.

Theorem 2. Suppose | t(X) — 6| < b. Then

1
CVaR,(0) > m;p (ﬁ + ﬂE[(T(X) -b—p)_1]

o B0 +0 - f)1). )

Moreover, for any X distribution and integrable ©: X —
R, there exists a (X, 0)-distribution with the given X distri-
bution, ©(X) =E[6|X], |t(X) — 6| <b, and Equation (7)
holding with equality.

The right-hand side of Equation (7) is the a-CVaR of
the equal mixture distribution of 7(X) — b and ©(X) + b.
It reduces to CVaR,(7(X)) when b=0 (equivalent to
0 =1(X)). When a =1, it becomes T for any b > 0 (as nec-
essary for tightness). The lower bound is established via
weak semi-infinite duality and its tightness by exhibit-
ing the equal-mixture distribution.

Because (1(X)=*=b—p)_ > (1(X)—B)_ —b, Equation
(7) upper bounds CVaR,(7(X)) — b. This simpler bound
is tight if we only assume a one-sided-bounded range.

Theorem 3. Suppose ©(X) — 6 < b. Then
CVaR,(6) > CVaR,(1(X)) — b. 8)

Moreover, for a <1, given any € >0, X distribution, and
integrable T : X — R, some (X, 0) distribution has the given
X marginal, ©(X) = E[6|X], ©(X) — 0 < b, and Equation (8)
holding with equality up to € error.

The lower bound is immediate, and its tightness is
given by exhibiting a skewed two-point-mass distribu-
tion. For a =1, Equation (8) simply reads 7 > 7 — b, but
for any a < 1, Equation (8) is actually tight.

3.3. Lower Bounds Under Limited Residual
Heterogeneity Variance

Limiting residual heterogeneity within a range may be

implausible, or plausible only with large constants,

yielding a weak bound. We next explore the implication

of the residual ITE variance after controlling for X,

which we can bound given observables.

Theorem 4. Suppose Var(5|X) < 5%(X) for some integrable
G2: X > R,. Then,

CVaR,(5) > sup (ﬁ +1E (X) — B
8 20

—J(X) - P +52(X)

)- ©)

Moreover, for any € >0, X distribution, and integrable
T: X — R, there exists a (X, 0) distribution with the given
X distribution, t(X)=E[5]|X], Var(|X) <5*(X), and
Equation (9) holding with equality up to € error.

The proof of Theorem 4 leverages strong duality for
convex semi-infinite optimization. Equation (9) equals
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CVaR,(7(X)) whenever 5(X)=0 and T whenever
a=1.Because |6 — 7(X)| < b = Var(§|X) < b?, plugging
52(X) = b* into Equation (9) must be looser than Equa-
tion (7) by tightness. Triangle inequality verifies this
directly: > . (t(X) £b—B)_=1(X) - 1> . [1(X) =

b—Bl=1(X)—B—/(1(X) — B)* + 2.

A residual variance bound is both more plausible and
easier to calibrate than an absolute bound. Letting
p(X) = Corr(Y(0), Y(1)|X) € [-1,1], we have

Var(6|X) = Var(Y|X,A=0)+ Var(Y|X,A=1)

—2p(X)Var/2(Y|X,A = 0)Var'/2(Y|X,A = 1),
(10)

where all terms but p(X) are identifiable. Thus, postulat-
ing different potential outcome correlations, we obtain
different bounds. Equation (10) is maximized for p(X) =
—1, which is tight, as all correlations are realizable.
Thus, plugging 2(X) = (Var'2(Y|X,A = 0) + Var'/2(Y|
X, A= 1))2 into Equation (9) yields a tight lower bound
on ITE-CVaR, given conditional expectations and var-
iances. We may obtain better bounds if we postulate
larger p(X).
Theorem 4 also implies a simpler but looser bound.

Corollary 1. We have

0 < CVaR,(7(X)) — CVaR,(d) < %E[Varl/2(6|X)]

a
< ia]E[Varl/z(ﬂX,A =0)+ Var'2(Y|X, A =1)]
(12)
< 5 B — p(X A4 = 0]
+ o\ EIY — (X AP 1A =11 (13)

Equation (11) more transparently bounds the slack in
Equation (5) in terms of residual effect variance. How-
ever, it is not tight, as can be seen for a = 1. Equation (12)
is looser but appealing as it is identifiable. Equation (13) is
even looser but depends only on the root-mean-squared
error of regressing Y on X for each A €{0,1} (ie, the
numerator of nonparametric R?).

4. Inference

We next turn to estimating the bounds developed in
Section 3 and constructing Cls. Recall our data,
(Xi,Ai, Yi)~(X,A,Y),1<i<n, may be experimental
or observational. The only relevant technical differ-
ence between these two cases is whether propensity,
e(X)=P(A=1] X), is known or not. Although it
does not matter here, ¢(X) is usually constant in

experiments (AL X). In observational settings, e(X)
may be estimated.

We focus here on inference on CATE-CVaR. We pro-
vide analogous procedures for the lower bounds of The-
orems 2—4 and Corollary 1 in Online Appendix A. Fix a.
Our inferential target is

W = CVaR,(1(X)) =" + %E(T(X) —p)_, where "

= F. (@) = inf{B : P(1(X) < B) 2 a}.

Because 7(X) is not directly observed, the first step is fit-
ting it. Fortunately, recent advances in causal machine
learning provide excellent tools for this (Imai and Ratko-
vic 2013, Athey and Imbens 2016, Wager and Athey
2018, Kiinzel et al. 2019, Kennedy 2020, Nie and Wager
2021). Given an estimate 7, we might consider a plug-in
approach; WPlusTn — supy (B + 5 2ot (£(X;) —B)_). There
are two challenges with this estimator. One is that the

statistical behavior of WP8™" depends heavily on that
of t: If T converges slowly and/or has nonnegligible
bias, as occurs when fit by flexible machine-learning
methods, both estimation rates and valid inference may
be imperiled for WPUS™  Another is that it can be
severely downward biased: it essentially averages the
(100 X @)% smallest CATE predictions, thus systemati-
cally picking out those with the most negative errors
(optimizer’s curse).

Instead, we develop a debiasing approach that is insen-
sitive to CATE estimation, accommodating both miss-
pecified parametric models and flexible-but-imprecise
machine-learning CATE estimators. The main challenge
is estimating 8, which cannot be expressed by an estimat-
ing equation in X, Y(0), Y(1), so its efficient/orthogonal
estimation is unclear, unlike the case of quantile/CVaR
treatment effects (Firpo 2007, Belloni et al. 2017, Kallus
etal. 2019). Fortunately, we care only about W, not *, and
special optimization structure in W gives robustness to
perturbations. so even rough estimates suffice. We there-
fore treat both T and " as nuisance parameters, together
with e, 1, and ensure simultaneous orthogonality to all
four nuisances.

Algorithm 1 (Point Estimate and Cl for CVaR,(7(X)))
Input: Level a € (0,1), data {(X;,A;,Y:):i=1,...,n},
number of folds K, and e, 1, t-estimators
1: fork=1,...,K do estimate é(k),ﬁ(k),f(k)

{(Xi,Ai,Yi) riZE k-1 (mod K)}
2: Set f = S0 inf{B: Yy (mod AP (x) <l -
a) >0} '
3: for i=1,...,n do set ¢, =p(X; A, y;; etimod K)
~(imod K), f(imod K),'é)

i
4 SetW =17 ¢ so= \/n(,%l)z;;l (¢, — B

5: Return W as point estimate and [V +o'((1+
y)/2)se] as y Cls

using data
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Algorithm 1 summarizes our procedure, where for
Line 3 define

O, A, Y381, %, B) = f+ LI[H(X) < ] (p(x,l)

A—¥(X)
e(X)(1 —é(X))

(Y - i(X, A)) - ﬁe>‘ (14)

e

— (X, 0) +

Note that W = Ep(X, A, Y, e, 11,7, 87), which Algorithm 1
essentially approximates by using estimates for the
unknown e, i, 7, " and replacing the mean over (X, A,
Y) by a sample average over the data (X;, A;, Y;). In par-
ticular, we use a “cross-fitting” scheme so that nuisance
estimates are independent of the sample being averaged
(Schick 1986, Zheng and van der Laan 2011, Chernozhu-
kov etal. 2018b).®

Our specific construction in Equation (14) is crucial
for the success of Algorithm 1. The plug-in approach is
essentlally the same approach applied instead to (X,
A,Y;%,B) =B +1(1(X) — B)_. The problem with it arises
from the fact that Ep(X,A,Y;%,B) is sensitive to changes
to T, near 7, §* (nonzero derivative) so that small errors
propagate. In contrast, we show Ed(X,A,Y;é,i,%,p)
has zero derivative in é, 1, T, B ate, 1,7, (Lemma EC.1,
which also bounds the second derivative and second
moments), a condition known as Neyman orthogonality
that ensures that small errors are insignificant (Chernoz-
hukov et al. 2018b). This leads to local robustness (Theo-
rem 5) and double robustness (Theorem 6) guarantees.
The orthogonality in e, i1 is the same as in ATE estimation
(Robins et al. 1994, Chernozhukov et al. 2022) because, for
every T, ﬁ, Ep(X, A, Y;e,u,1, ﬁ) is just a subgroup ATE
(rescaled and recentered). The orthogonality in 7," is a
consequence of a saddle-point formulation

W = supppinfrveEQ(X, A, Y;e, 1, T, B)
= infr.vozsup; EO(X, A, Ve, 1, %, B)

and first-order optimality conditions. One complication
is making differentiability in ¥ at 7 formal, which we
tackle using Assumption 2. This saddle-point formula-
tion also shows that if we get 7 wrong we still obtain an
upper bound on W (Lemma 2), yielding a double validity
guarantee (Theorem 7).

As we discuss in detail in Section 4.3, we treat T as a
separate nuisance from u even though 7(x) = u(x,1) —
t(x,0). This enables the use of specialized CATE lear-
ners. We also treat §* as a separate nuisance (not as a
parameter as in Kallus et al. 2019) and fit it as the quan-
tile of 7(X). As simple regressions, ¢ and u can be fit
by parametric regression or standard machine-learning
methods such as random forests, gradient boosting,
neural networks, and so on.

Remark 6 (Comparing Different Levels and Interquantile
Averages). To assess disparities, we may want to compare
CVaR,(1(X)) to ATE (equivalently, CVaR;(7(X))). To get
good CIs on CVaR, (7(X)) — CVaR,(7(X)), we can re-
place ¢, in Line 3 of Algorithm 1 with the dlfference ofp;s
for @” and « (using the same nuisances except ﬁ ) Setting
a’ =1, this will, in particular, correctly yield smaller CIs
onT — CVaR,(7(X)) for a near one. Similarly, if we want
ClIs on interquantile average effects as in Remark 4, then
per Equation (6), we may simply replace ¢, in Line 3 of
Algorithm 1 with the difference of ¢;s for a’ and «,
%, respectively. We may also con-
sider covariances of (j) correspondmg to many «a levels
for constructing simultaneous intervals.

Remark 7 (Partial-ldentification Intervals). Although Algo-
rithm 1 focuses on CATE-CVaR, which upper bounds
ITE-CVaR, in Online Appendix A, we provide infer-
ence procedures for lower bounds on ITE-CVaR.
These can be combined to construct intervals contain-
ing ITE-CVaR with probability y. By union bound, we
can simply combine the one-sided (1+y)/2 Cls for
the lower and upper bounds. However, coverage may
be conservative (>7y) for the partial identification
interval given by the bounds. For calibrated y-cover-
age (asymptotically), we must account for correlation
between lower- and upper-bound estimates, given by
the correlation between ¢;s for each procedure. Then,
we can construct calibrated intervals following appen-
dix A.4 of Kallus et al. (2022).

Remark 8 (Monotonicity). Although CVaR,(7(X)) is
monotone in a, Algorithm 1’s output for different o
may not be due to estimation errors. We can postprocess
to ensure monotonicity using rearrangement (Hardy
et al. 1952), which only improves estimation and does
not affect inference (Chernozhukov et al. 2010). We use
this in Section 5.

4.1. Local Robustness and Cls
We now establish favorable guarantees for Algorithm 1.
First, we show it is insensitive to slow but consistent
estimation of nuisances, having first-order behavior as if
we used true values.

We will need some minimal regularity.

Assumption 1 (Boundedness). Suppose e <e<1—e and
|Y| < B for positive constants e, B > 0.

The first condition of Assumption 1 ensures that the
X distributions of experimental groups overlap. It is usu-
ally guaranteed in randomized experiments by setting
e(X) constant (A L X). In unconfounded observational
studies, it is a standard assumption. The second condi-
tion requires bounded outcomes and is largely technical
to make analysis tractable.
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Assumption 2 (Margin). Suppose F.(x) is continuously dif-
ferentiable at F T‘(lX)(oz) with a positive derivative.

Assumption 2 prohibits degeneracy of the quantile
and essentially ensures two things at once: limited sensi-
tivity to errors in the quantile and the learnability of the
quantile itself.

On the one hand, Assumption 2 implies that the proba-
bility of 7(X) being within 6 of its a-quantile scales at most
linearly with 6, known as a margin condition with expo-
nent 1 (Mammen and Tsybakov 1999, Audibert and Tsy-
bakov 2007). Margin conditions have been used in causal
inference to ensure a smooth dependence on 7(X) and
robustness to errors therein (equation (16) in Luedtke and
van der Laan 2016b; assumption 2.2 in Kitagawa and Tete-
nov 2018; and assumption 6 in Kennedy et al. 2020).
Assumption 2 also implies the a-quantile is unique, ensur-
ing regularity; nonuniqueness may require additional sta-
bilization as in Luedtke and van der Laan (2016b).

Assumption 2 simultaneously implies that the proba-
bility near the a-quantile scales at least linearly, which
ensures rates of estimation for the quantile. The same is
needed for asymptotic normality of sample quantiles of
observed variables (corollary 21.5 in Van der Vaart 1998).
Compared with standard analysis of quantile estimation,
an added complexity here is that we only have an esti-
mate of the variable, 7(X), whose quantile we wish to esti-
mate. We next deal with this complexity, showing how
rates for %) translate to rates for § under Assumption 2.

Lemma 1. Suppose Assumption 2 holds. Then, f in Line 2
of Algorithm 1 satisfies

q

Bp1=0, (IR~ +n72)  vge[1,eo],
where throughout we interpret ZZ_LZ; =2forq = oco.

We now show that W enjoys local robustness (Chernoz-
hukov et al. 2022 and references therein). Aside from a
now-standard analysis of cross-fitting (Chernozhukov
et al. 2018b), the crucial steps are characterizing the first
and second functional derivatives of our special ¢ con-
struction (Lemma EC.1) and leveraging Lemma 1. A slight
deviation from the usual cross-fitting analysis is carefully
handling the fact that all but one nuisance () are cross-fit.

Theorem 5. Suppose Assumptions 1 and 2 hold and that for
k=1, K (6 —elly =0,(1), 12% — pll, = 0,(1), €% —

~ -1 ~ ot ~
elalli® — plly = 0p (n74), 16 —ll =0, (n75), PV <

B)—> 1, and P <é® <1—-2) — 1. Then W, se in Line 4
of Algorithm 1 satisfy

n
W= %Z(j)(X,A, Yie, 1,7, 5) +0,(n1?) =W +0,(n"1?),
i=1

P(We W +d Y ((1+y)/2)se]) =y Vy.

The rate assumptions on ¢* and i® are lax: It suffices

to have 0,(1~1/*) rates on both or to have no rate on 1%’

at all if e is known. This parallels standard conditions in
double machine-learning ATE estimation, achievable
by a variety of machine-learning methods (Chernozhu-
kov et al. 2018b). We explore the condition on 7* in Sec-
tion 4.3.

4.2. Double Robustness and Double Validity
Theorem 5 guarantees good performance if all nui-
sances are estimated slowly but still consistently. How-
ever, even if nuisances are inconsistent, we perform
well.

First, we establish a property mirroring doubly robust
ATE estimation (Robins et al. 1994): Even if e or u is
inconsistent, we remain consistent, provided 7 is consis-
tently estimated, albeit slowly.

Theorem 6 (Double Robustness). Fix any ¢, [i with e <e
<1-2¢||ftlles < B. Let r, — 0 be a deterministic sequence.
Suppose Assumptions 1 and 2 hold and that for k=1,

K E® =2l =0, (1), 169 — il = 0,(1), 1120 — 7]l =

g+l
O (), PUAYNw < B) > 1, Pe < ¥ <1-2) - 1,
and

either (6% —ell, = Op(ry) or [|a® — pll, = Op(ry).

Then W in Line 4 of Algorithm 1 satisfies
V=w4 Op(ry v n=12).

Theorem 6 is particularly strong in experiments (e
known), so we can get away with i* = 0.

It would appear we must consistently estimate CATE
to have hope of estimating its CVaR. Although true, we
next show that even if we mis-estimate CATE and also
one of ¢, u, we still get an upper bound on CATE-CVaR
(hence on ITE-CVaR). This appears to be the second
finding of a double-validity property since being first
documented in sensitivity analysis (Dorn et al. 2021).

We first establish the population-level bound behav-
ior and then state the implication for estimation.

Lemma 2. Fix any 7 : X — R. Let = F?(lx)(a). Suppose

T

Assumption 2 holds with t replaced with T. Then,

CVaR,(c(X)) < + L E[I[7(X) <FI(e(X) ~p)l. (15)

Theorem 7 (Double Validity). Fix any é,[i,T with € <
e<1l—el|lille <B 7|l <2B. Let 1, — 0 be a determin-
istic sequence. Suppose Assumption 1 holds, Assumption 2
holds with t replaced with 7, and that for k=1,...,K, ||¢®

g+l
~ 2l =0,(1), 2% ~ il =0, (1), 1% ~7ll, =0 (),
P(|a%], <B) = 1,PE<é® <1-2) — 1,and

either |6 — el = Op(rn) or 8% — pill = O, (ra).
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Then W in Line 4 of Algorithm 1 satisfies

W>w— Op(rn v n~12).

Theorem 7 guarantees extensive robustness and suggests
a practical, black box—free approach in experimental set-
tings: set 1™ = 0 and use simple misspecified parametric
models (e.g., linear) for CATE estimation, and we still

estimate a valid ITE-CVaR bound at fast O, (/) rates.

4.3. CATE Estimation and Rates

Algorithm 1 accepts separate learners for both y and .
Therefore, although 7(x) = u(x, 1) — u(x,0), we need not
have t®(X)= ﬁ(k)(x,l) — ﬁ(k)(x, 0), and in fact we
should not. Recent work advocates and provides spe-
cialized methods for directly estimating CATE (Imai and
Ratkovic 2013, Athey and Imbens 2016, Wager and
Athey 2018, Kiinzel et al. 2019, Kennedy 2020, Nie and
Wager 2021).

This is important because Algorithm 1 uses the y and
T estimates differently and, correspondingly, our theo-
retical results impose different assumptions on each.
The 7 estimate is used for approximating the event
I[7(X) < 7], which is crucial for targeting CVaR cor-
rectly. In contrast, the u estimate is just used to estimate
a weighted average treatment effect, given the weights
I[7(X) <B], and is therefore interchangeable with
propensity.

We next review different options for CATE estimation
and how these ensure the conditions of Theorems 5-7.
We emphasize that these need not be understood as
exhaustive list of which learners to use: Practically, the
nuisance estimation rates are high-level assumptions that
generally say one may safely plug-in black box machine-
learning estimators to Algorithm 1: No restrictions are
made but rates (no metric-entropy conditions), estima-
tors can be flexible/nonparametric in that rates can be
much slower than “parametric” O,(n~"/?) rates, and
results are exceedingly robust to inconsistent estimation.

4.3.1. Experimental Settings. A major issue with CATE
estimation by differencing outcome regressions is that
effect signals are easily lost. CATE is generally simpler
and less variable than baseline mean outcomes, u(X,
0), u(X, 1). For example, many variables often help pre-
dict outcomes, but few modulate the treatment effect. It
is therefore imperative to learn CATE directly.

In experimental settings (¢ known) we can construct a
pseudo-outcome A = %Y and, because 7(X) =
E[A[|X], learn CATE by regressing A on X, using any
supervised-learning method. Setting either g=oco or
q=2, either [[t® — ||, = 0,(n"1/*) or ||t® — ]|, = 0,(n~%/®)
suffices to satisfy the rate condition in Theorem 5. One

case that theoretically ensures ||t — 1|, = 0,(n"1/*) is

when 7(x) is more-than-d /2-smooth in x € R? (Stone 1982,
theorem 1). Another option is 7(x) linear with o(+/n/log d)
nonzero coefficients (Belloni et al. 2017). Alternatively, to
theoretically ensure [|t* — 1||, = 0,(n~3/%), we may use
nonparametric least squares assuming 7 belongs to any
function class with log covering number at radius € at
most €7 with p<2/3 (Wainwright 2019). This works
regardless of 11 being nice.

We may avoid black box models (and cross-fitting)
altogether by using simple linear regression of A on X to
obtain a valid bound per Theorem 7.

To satisfy the other conditions, for Theorems 6 and 7,
we can set =0, and for Theorem 5, we need only esti-
mate i consistently without rate. We can either estimate
u directly or only estimate @(X)=E[Y|X] and set

ﬁ(k) (X,A) = ﬁ(k)(X) + (A —e(X)t®(X). Consistency for

either is immediate from EY? < co (Gyorfi et al. 2002).

4.3.2. Observational Settings. When ¢ is unknown, the
pseudo-outcome construction needs refinement. One
option is DR-leaner (Kennedy 2020): regress A = [i(X,
1) = (X, 0) + sppoa (Y — (X, A)) on X, where é,fi
are appropriately cross-fitted. Another is R-learner (Nie
and Wager 2021): let T minimize the average of (Y —
(X)) —(A — é(X))t(X))?, where ¢, are appropriately
cross-fitted. Kennedy (2020, corollary 3) provides rates
for local-polynomial R-learners: If e(x) is s.-smooth in
x e RY, T(x)s u-smooth, and 7(x) more-than-d /2-smooth,
then we obtain o,(1n~'/*) rate pointwise error, provided

o+ . .
Se = Sy, : zs“ > %. To convert pointwise error bounds to

sup-norm error bounds, ||t® — 7|, = 0p(n71/*), we may
follow the discretization approach of Stone (1982),
incurring only logarithms. Alternatively, we can imple-
ment a DR-learner using nonparametric least squares,
and following Kennedy (2020, corollary 3) and Wain-
wright (2019), we will obtain ||£® — ||, = 0,(n~3/%) if T
belongs to any function class with log covering number
at radius € at most e ” with p<2/3 and if e —
elllg® — ull, = 0,(n~%/#). Otherwise, we can simply use
misspecified linear R- or DR-learners and still get a valid
bound per Theorem 7.

5. Case Study

We now demonstrate our bounds and inference.” Al-
though we consider a program evaluation example, we
believe our results are also particularly relevant to A/B
testing on online platforms, where, after testing, prod-
uct innovations are usually either scrapped/reworked
or broadly rolled out, and where ATEs are often small,
creating an opportunity for many users to be negatively
impacted despite positive average effects. Little data are
public, however.
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5.1. Background and Setup

Behaghel et al. (2014) analyze a large-scale randomized
experiment comparing assistance programs offered to
French unemployed individuals. They compare three
arms: individuals in the “control” arm receive the stan-
dard services of the Public Employment Services, in
“public” receive an intensive counseling program run
by a public agency, and in “private” a similar program
run by private agencies.

We consider a hypothetical scenario where the private-
run counseling program (A = 0) is currently being offered
to the unemployed and we consider the change to a
public-run program (A=1)."" We take re-employment
within six months as our (binary) outcome.

The ATE is 1.22 percentage points (90% CI, [—-0.35,
2.8]), a 49% increase in re-employment. This suggests a
positive/neutral effect, so a policymaker might hypothet-
ically consider this an acceptable policy change, for exam-
ple, if the public-run program provided cost savings."'

To apply our methodology, we consider all pretreat-
ment covariates in table 2 of Behaghel et al. (2014),
except we treat as numeric (rather than dichotomize)
age, number children, years of experience, salary target,
assignment timing, and number unemployment spells.
Other variables quantify education, employment level
and type, gender, martial status, national origin, region,
unemployment reason, and long-term unemployment
risk. The propensity is constant. As recommended in
Section 4.3.1, we fit CATE using a pseudo-outcome
linear regression. We estimate u using cross-fitted
gradient-boosting machines.

5.2. Upper Bounds
Figure 1 presents inference on CATE-CVaR using Algo-
rithm 1 for o € {0.01,0.02, ..., 1}. The line represents our
point estimate, after rearrangement as recommended in
Remark 8,'> and the shaded region represents pointwise
90% Cls. Uncertainty grows for smaller a.

We see that the ATE estimate (right-most point) is
positive with an interval containing zero. We find, how-
ever, that some 56% sized X-defined subpopulation has

Figure 1. Inference on CVaR,(7(X))
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Figure 2. Inference on CVaR,(7(X)) — T
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a negative effect at 90% confidence.” This strongly sug-
gests that the change, if enacted could materially, nega-
tively impact a large portion of the population, despite
the positive/neutral ATE. Thus, considering treatment
effect risk provides a crucial metric not reflected in the
ATE. This risk is also not reflected in DTEs: The binary
potential outcome distributions are fully specified by
just E[Y(0)], E[Y(1)]."*

In Figure 2 we focus on comparing CATE-CVaR to
ATE following Remark 6. The only difference to Figure
1 is a slight vertical shift and that CIs (correctly) shrink
to a point as & — 1, enabling more confident conclu-
sions comparing subpopulations to the population.

In Figure 3, we consider estimating CATE-CVaR
using the plug-in approach mentioned in Section 4,
using standard errors of ¢~)(X,A, Y; 1T, B ) to construct Cls.
That is, we just compute the CVaR of CATE predictions
on the data. The result is heavily downward biased with
far-too-narrow ClIs.

In Figure 4, we consider CATE-CVaR when we cap-
ture less heterogeneity, using only age, high school
dropout, African national origin, and Paris region resi-
dent as covariates (X;). This detects no significant risk.
This illustrates that, although Theorem 1 is tight, the
bound can be practically uninformative if covariates are

Figure 3. Plug-in Estimator
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Figure 4. Restricted Covariate Set
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not very predictive. Although using the full set of covar-
iates X, we are able to detect that some 50% of the popu-
lation has a negative effect, using only the subset X;, we
fail to detect this because we cannot informatively seg-
ment the population into heterogeneously impacted
groups.

5.3. Lower Bounds

Although the upper bounds show a significant subpop-
ulation can be negatively harmed, being only bounds, it
may be the subpopulation can be harmed even more or
an even larger subpopulation can be harmed. Lower
bounds help us understand how much greater the risk
might be.

In Figure 5, we consider our lower bounds (versus
ATE) when limiting the residual heterogeneity range
given by Theorems 2 (two-sided range) and 3 (one-sided
range).

Because it may be hard to justify and calibrate a limited
range, in Figure 6, we consider lower bounds given by
Theorem 4 and Corollary 1 by limiting residual heteroge-
neity variance. For the former, we fit Var(Y|4, X) using
gradient-boosting machines and construct *(X) per

Figure 5. (Color online) Bounds Based on Residual-
Heterogeneity Range
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Figure 6. (Color online) Bounds Based on Residual-
Heterogeneity Variance
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Equation (10) by varying constant values of p(X)=
p €[—1,1]. Recall p = —1 always yields an assumption-
free bound. We use the same model to estimate the
right-hand side of Equation (12). We compute the
cross-validated root-mean-squared prediction error to
estimate the right-hand side of Equation (13).

We observe that assuming perfectly conditionally cor-
related potential outcomes yields a lower bound very
close to the upper bound. The bounds of Corollary 1
appear loose; indeed, they are not tight. Nonetheless,
the tightness of the other bounds does not mean they
are practically informative, which depends on their use.
The width of the bounds need not determine informa-
tiveness either. If the upper bound is negative, that is
informative by itself of certain harm, regardless of how
much more negative is the lower bound. If the upper
bound is positive, however, a good lower bound may
still help bound potential but uncertain harm.

6. Concluding Remarks

We study the average effect on those worst-affected by a
proposed change as a measure of its risk, how to tightly
bound it given covariates that explain some heterogene-
ity, and how to make robust inferences on these bounds
even when this heterogeneity is roughly estimated. This
provides very practical tools for assessing policy and
product changes beyond their ATE and DTEs. We can
safely use flexible yet biased /slow-to-converge machine
learning, or we can avoid black box models and easily
get good bounds by considering only linear projections
of heterogeneity. In the hypothetical case study this
detected that, what appeared to be a positive/neutral
change could actually very negatively impact a substan-
tial subpopulation.

We focused on experimental (or, unconfounded ob-
servational) settings without interference, where risk is
already unidentifiable despite randomization. A future
direction is to consider the impact of interference (Athey
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et al. 2018, Johari et al. 2022) or confounding (Tan 2006),
where even ATEs are unidentifiable and fairness is
harder to assess (Kallus and Zhou 2018, Jung et al. 2020,
Kilbertus et al. 2020). Interestingly, for partial identifica-
tion under Tan (2006)" model, X-conditional outcome-
CVaR plays a crucial role (Dorn et al. 2021). Another
direction may be to consider other risk measures, such as
given by Kullback-Leibler ambiguity sets (Ahmadi-Javid
2012). Per Endnote 5, the tight upper bound is still the
risk measure applied to CATE, but it remains to compute
lower bounds and design robust inference methods.

Endnotes

T We may still make some inferences on these even if we do not
observe such attributes (Chen et al. 2019, Kallus et al. 2022).

2 CVaR is sometimes defined for the right tail, corresponding to our
~CVaRy(~2).

3 Also, Y = Y*(A) assumes noninterference (Rubin 1986).

4 However, even this ideal can induce disparate impacts (Kallus
and Zhou 2019).

5 Equation (5) extends to any coherent risk by writing 6 = 7(X) +
(6 — 1(X)) and using subadditivity.

8 The bound need not be tight given the (X, A, Y) distribution,
which characterizes more than the mean of the (6|X) distribution,
as described by the Fréchet-Hoeffding bounds. We focus on best
bounds given just by CATE, which is the common tool to under-
stand effect heterogeneity in practice.

7 There are also tests for heterogeneity ot explained by X (Ding et al.
2016, 2019). These, like us, leverage bounds on unidentifiable quantities.

8 We may avoid cross-fitting and fit nuisances once on the whole
sample if we assume estimates belong to a Donsker class with prob-
ability tending to one; we omit this option for brevity.

9Replication code is available at https://github.com/CausalML/
TreatmentEffectRisk.

19 Some individuals assigned to the additional counseling refused it.
We nonetheless restrict our attention to intent-to-treat interventions,
considering hypothetically making available either the public-run or
private-run counseling to unemployed individuals, who may decline it.

" Behaghel et al. (2014, section TV) discuss why public-run pro-
grams fare better.

12 We present the figure without rearrangement in Online Appen-
dix B.

'3 Becuase outcome is binary, the largest fraction that can have a
negative effect is (50 x (1 —7))%, so either T <0 or at most half may
be negatively affected. The ATE interval indeed contains zero with
confidence only 90%.

"1In particular, the a-quantile DTE is uselessly zero for all ae
[0,1]\{1 = E[Y(0)],1 —E[Y(1)]} and the a-CVaR DTE is 1(E[Y(1)] —
1+a), —L(E[Y(0)] = 1+a),, which is not even monotonic. For
illustration we plot it in Online Appendix B.
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