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Abstract. Because the average treatment effect (ATE) measures the change in social welfare, 
even if positive, there is a risk of negative effect on, say, some 10% of the population. Asses
sing such risk is difficult, however, because any one individual treatment effect (ITE) is never 
observed, so the 10% worst-affected cannot be identified, whereas distributional treatment 
effects only compare the first deciles within each treatment group, which does not corre
spond to any 10% subpopulation. In this paper, we consider how to nonetheless assess this 
important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distri
bution. We leverage the availability of pretreatment covariates and characterize the tightest 
possible upper and lower bounds on ITE-CVaR given by the covariate-conditional average 
treatment effect (CATE) function. We then proceed to study how to estimate these bounds 
efficiently from data and construct confidence intervals. This is challenging even in random
ized experiments as it requires understanding the distribution of the unknown CATE func
tion, which can be very complex if we use rich covariates to best control for heterogeneity. 
We develop a debiasing method that overcomes this and prove it enjoys favorable statistical 
properties even when CATE and other nuisances are estimated by black box machine learn
ing or even inconsistently. Studying a hypothetical change to French job search counseling 
services, our bounds and inference demonstrate a small social benefit entails a negative 
impact on a substantial subpopulation.
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Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/ 
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1. Introduction
Policymakers and project managers regularly conduct 
randomized experiments (“A/B tests”) to assess poten
tial changes to policy or product. A key metric is the 
average treatment effect (ATE), which is the difference in 
the population average outcome when everyone or no 
one is treated. ATEs are easily estimated by differences 
in the sample-average outcome within treatment 
groups, barring interference. Estimation from observa
tional data are also possible under appropriate assump
tions, for example, unconfoundedness (Imbens and 
Rubin 2015). Identifying an individual’s outcome with 
their utility, as we will throughout this paper, the ATE 
is the difference in social welfare in these two counter
factual scenarios. By linearity, this coincides with the 
population average of each individual’s treatment effect, 
the difference in their own utility in the two counterfac
tual scenarios.

Treatment effects, however, can vary widely between 
individuals (Heckman et al. 1997, Crump et al. 2008). 
Thus, even if the ATE is positive, there is a risk that a 

large subpopulation has a negative effect, and the pur
pose of this paper is to assess this risk. Distributional 
treatment effects (DTEs), which compare the two coun
terfactual utility distributions, cannot capture this risk. 
Indeed, Imbens and Wooldridge (2009, p. 17) note 
“quantile effects are defined as differences between 
quantiles of the two marginal potential outcome distri
butions, and not as [differences between] quantiles of the 
unit level effect.” They nonetheless advocate for focusing 
on DTEs, because policy choice “should be governed by 
preferences of the policymaker over these distributions.” 
Such rational decision-making framing, however, pre
sumes a policymaker facing a choice between lotteries 
drawing at random from individual outcomes. Instead, 
concerned with equity beyond social welfare, we should 
worry about the individuals, not the policymaker.

One way to gain further insight into heterogeneity is 
to consider conditional ATEs (CATEs) given pretreat
ment covariates. For example, if we observe a discrete 
sensitive attribute (e.g., race), we can simply compare 
the CATE in each attribute-value group.1 However, it 
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may not always be clear what are relevant attributes 
and whether we are omitting important ones. Given 
rich and continuous covariates, we can still reliably 
learn the CATE function by leveraging recent advances 
in causal machine learning (Imai and Ratkovic 2013, 
Athey and Imbens 2016, Wager and Athey 2018, Künzel 
et al. 2019, Kennedy 2020, Nie and Wager 2021). It can 
still be unclear, nonetheless, whether the covariates are 
relevant for fairness considerations, what groups are 
captured in this way, and how to summarize a complex 
CATE function into a single measure of risk.

It is therefore appealing to focus directly on the distri
bution of individual treatment effects (ITEs). In this 
paper, we will consider the conditional value at risk 
(CVaR) of this distribution, which gives the average 
effect among the worst-affected 10%, 20%, etc. The chal
lenge is that no ITE can ever be observed: the so-called 
fundamental problem of causal inference. Nonetheless, 
regardless of whether covariates are meaningful for fair
ness considerations, if they control for heterogeneity, 
CATE may predict ITE well.

In this paper, we study the tightest-possible upper 
and lower bounds on the CVaR of the ITE distribution 
given by CATE. We first characterize these best-possible 
bounds had we known the CATE distribution exactly. 
Then, having specified the most we can know from infi
nite data (i.e., distributions), we consider inference on 
these from actual data. One challenge is that CATE can 
be complex and we may wish to use flexible machine- 
learning estimates thereof. Another challenge is our 
bounds depend on quantiles of an unknown function 
(CATE). We design debiased estimators and confidence 
intervals (CIs) that overcome these challenges by being 
exceedingly robust to CATE learning: enabling infer
ence even under slow estimation rates (i.e., local robust
ness; Chernozhukov et al. 2022), remaining consistent 
even under mis-estimation of some nuisances, that is, 
double robustness (Robins et al. 1994), and surprisingly 
remaining valid as bounds even when CATE is mis- 
estimated (i.e., double validity; Dorn et al. 2021). We 
conclude by using our tools to illustrate treatment effect 
risk in a case study of job search assistance benefits.

2. Problem Setup and Definitions
Each individual in the population is associated with 
two potential outcomes, Y∗(0), Y∗(1) ∈ R, corresponding 
to individual utility under “treat all” and “treat none,” 
respectively, and baseline covariates (observable char
acteristics), X ∈ X . The ITE, ATE, and CATE are, respec
tively,
δ � Y∗(1) � Y∗(0), τ � E[Y∗(1)] �E[Y∗(0)] � Eδ � Eτ(X),

τ(X) � E[δ |X] � µ(X, 1) � µ(X, 0),
where µ(X, a) � E[Y∗(a) |X]:

We assume Eδ2 < ∞ throughout.

Of interest is the average effect among the (100 ×

α)%-worst affected, formalized by CVaRα(δ), where for 
any variable Z, we define its cumulative distribution 
function (CDF), α-quantile, and α-CVaR,2 respectively, as

FZ(z) � P(Z ≤ z), (1) 
F�1

Z (α) � inf{z : FZ(z) ≥ α}, (2) 
CVaRα(Z) � E[Z |Z ≤ F�1

Z (α)] � (α�1FZ(F�1
Z (α)) � 1)

× (F�1
Z (α) � E[Z |Z ≤ F�1

Z (α)]): (3) 

This formally defines the expectation among the (100 ×

α)% smallest values in the population described by Z. It 
is the average at/below the α-quantile when there is 
exactly α-fraction at/below the α-quantile (FZ(F�1

Z (α)) �

α, such as would occur if Z were continuous). Other
wise, we must remove a fraction of the atom at the 
α-quantile so as to make an exactly α-sized subpopula
tion to average over (i.e., the second term in Equation 
(3)). Also, CVaR1(Z) � EZ.

Rockafellar and Uryasev (2000) give an optimization 
reformulation of CVaR: letting (u)� � u ∧ 0,

CVaRα(Z) � sup
β

(β+ α�1E(Z � β)�)

� F�1
Z (α) + α�1E(Z � F�1

Z (α))�: (4) 
We consider data from a randomized experiment or 
observational study. Each individual is associated with 
a treatment A ∈ {0, 1}, and we observe the factual out
come Y � Y∗(A) (never Y∗(1 � A)). The data are (Xi, Ai, 
Yi) ~ (X, A, Y), 1 ≤ i ≤ n. We assume unconfoundedness 
throughout: Y∗(a)╨A |X.3 Randomized experiments 
(our focus) ensure this by design (often with X╨A). 
Our results nonetheless extend to observational settings 
assuming unconfoundedness. Under unconfounded
ness, ATE and CATE are identifiable, i.e., are functions 
of the (X, A, Y) distribution: µ(X, a) � E[Y |X, A � a], 
τ(X) � µ(X, 1) � µ(X, 0), τ � Eτ(X) (� E[Y |A � 1] �E[Y |

A � 0] if X╨A). Define also the propensity score 

e(X) � P(A � 1 |X):

We now illustrate treatment effect risk and its uniden
tifiability, which motivates us to consider the tightest- 
possible identifiable bounds (Section 3) and inference 
thereon (Section 4).
Example 1 (Simple Example). Consider two hypotheses:

H1 :
Y∗(0)

Y∗(1)

� �

~ N
0
0

� �

,
1 �1

�1 1

� �� �

,

A ~ Bernoulli(1=2),

H2 :
Y∗(0)

Y∗(1)

� �

~ N
0
0

� �

,
1 1
1 1

� �� �

,

A ~ Bernoulli(1=2):

Under both H1 and H2, we have (A, Y) ~ Bernoulli 
(1=2) × N (0, 1). However, under H1, δ ~ N (0, 2) and 
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CVaR0:1(δ) � �3:5, whereas under H2, δ� 0 and CVaR0:1 
(δ) � 0. Therefore, CVaR0:1(δ) cannot be identified 
from (A, Y).

Remark 1 (Covariate-Conditional Policies). Treat (i.e., roll
out to) all or none is often the choice faced by project 
managers, but given covariates, we can learn covariate- 
conditional treatment policies (Qian and Murphy 2011, 
Zhao et al. 2012, Kallus 2018, Kitagawa and Tetenov 
2018, Athey and Wager 2021, Kallus and Zhou 2021). 
Learning aside, treating only when τ(X) > 0 ensures 
all covariate-defined groups have nonnegative group- 
average effects.4 The sum of these nonnegative effects can 
also be estimated using flexible nonparametric methods 
(Luedtke and van der Laan 2016a, b, 2017). Personalizing 
on all available covariates is, however, generally infeasi
ble because of operational, nonstationarity, and/or ethi
cal/reputational concerns. Nonetheless, given any policy 
π : X → {0, 1}, we may simply redefine ITE as Y(π(X)) �

Y(0), and our results still apply. This is especially relevant 
when π personalizes on some covariates and the rest 
explain heterogeneity conditionally thereon.

Remark 2 (Risk of Observed vs. Unobserved Variables). 
CVaR is an example of coherent risk measures (Artz
ner et al. 1999), which are used to assess distributions 
beyond expectations and are equivalent to distribu
tionally robust worst-case expectations (Ruszczyński 
and Shapiro 2006). For example, CVaR is the worst-case 
expectation among distributions with Radon-Nikodym 
derivative to the given distribution bounded by 1=α. 
Other distributional divergences can also define ambigu
ity sets (Ben-Tal et al. 2013, Bertsimas et al. 2018, Esfa
hani and Kuhn 2018). Alternative approaches limit the 
complexity of subpopulations (Kearns et al. 2018, Lahoti 
et al. 2020). In finance (Krokhmal et al. 2002), distribu
tionally robust supervised learning (Bagnell 2005), 
demographics-free fair learning (Lahoti et al. 2020), and 
CVaR-DTEs (Kallus et al. 2019), the variable whose risk 
is of interest is always observed. For example, model loss 
on each training example is observed. In contrast, we 
consider risk of an unobserved variable; hence, we study 
bounds in Section 3. For inference, we are uniquely con
cerned with risk of an unknown function; hence, we 
develop learning robust methods in Section 4.

3. Bounds
3.1. Upper Bound: CATE-CVaR
An upper bound on CVaRα(δ) is crucial: If negative or 
substantially below ATE, the change poses certifiable 
risk or inequity to an (100 × α)% subpopulation.

Theorem 1 (Upper Bound by CATE-CVaR). We have
CVaRα(δ) ≤ CVaRα(τ(X)): (5) 

Moreover, for any X distribution and integrable τ : X → R, 
there exists a (X,δ)-distribution with the given X distribution, 
τ(X) � E[δ |X], and Equation (5) holding with equality.

Because τ(X) represents our best guess for δ (in squared 
error), imputing the unknown δ with τ(X) seems reason
able. Theorem 1 shows this in fact provides an upper 
bound.5 If τ(X) is continuous, CVaRα(τ(X)) � E[δ |τ(X)

≤ F�1
τ(X)

(α)], and Equation (5) is intuitive: CVaRα(δ) is 
worst average effect among all (100 × α)%-subpopula
tions, whereas CVaRα(τ(X)) only among X-defined sub
populations. This bound is also tight: given just τ(X), it 
cannot be improved.6 Although it is tight, the bound 
may be practically uninformative, depending on how pre
dictive X is and how the bound is used. Without covar
iates, the bound is trivial: CVaRα(δ) ≤ τ. Even if X is 
not very predictive but just enough to demonstrate 
CVaRα(δ) ≤ CVaRα(τ(X)) < 0, the bound may still be 
very practically informative.

Remark 3 (CVaR as Summary of CATE). As discussed in 
Section 1, if we have protected groups (that we observe), 
we may consider CATE along that grouping. Otherwise, 
the significance of a CATE-learning prediction of τ(x)

for some group X� x is unclear. Theorem 1 shows that, 
regardless of substantive meanings of included covari
ates X, aggregate statistics of the τ(X) distribution pro
vide insight into treatment effect risk, giving important 
meaning to the outputs of CATE learning with rich 
covariates. Nonetheless, it is insufficient to rely solely on 
CATE learning for estimation: As we explore in Section 
4, averaging the 10% lowest predictions from a CATE 
learner suffers from both optimizer’s curse and statistical 
instability, and we must develop special inferential pro
cedures to target Equation (5).

Aside from being a bound, CVaRα(τ(X)) is also of 
interest as a summary of effect heterogeneity along 
meaningful covariates X. When X is more than a few 
discrete groups, understanding the many facets of 
CATE is challenging, both interpretationally and sta
tistically. We could test for X heterogeneity (Gail and 
Simon 1985, Sawilowsky 1990, Davison 1992, Crump 
et al. 2008),7 for example, omnibus test H0 : 0 ∈ arg minγ 
E(τ(X) � τ� γ⊤(X �EX))

2 (Chernozhukov et al. 2018a). 
This, however, may detect minor heterogeneity in small 
subpopulations, may not assess magnitude or direction, 
and may be inappropriate if we expect heterogeneity. In 
contrast, CVaRα(τ(X)) is a simple, meaningful summary 
of τ(X). Inference, however, is a challenge. We tackle 
this in Section 4.

Remark 4 (Interquantile Averages of CATE). CVaR of CATE 
can in fact permit us to summarize average effects in the 
middle and not just the tails. Consider any 0 < α <

α′ < 1. Provided that Fτ(X)(F�1
τ(X)

(α)) � α, Fτ(X)(F�1
τ(X)

(α′))

� α′ (e.g., τ(X) is continuous), we have that

E[Y∗(1) � Y∗(0) |F�1
τ(X)(α) < τ(X) ≤ F�1

τ(X)(α
′)]

�
α′CVaRα′ (τ(X)) �αCVaRα(τ(X))

α′ � α
: (6) 

Kallus: Treatment Effect Risk: Bounds and Inference 
Management Science, 2023, vol. 69, no. 8, pp. 4579–4590, © 2023 INFORMS 4581 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

32
.1

74
.2

52
.1

79
] o

n 
18

 S
ep

te
m

be
r 2

02
3,

 a
t 1

2:
01

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Equation (6) is the average effect among individuals 
with CATE between the α- and α′-quantiles. A similar 
but different quantity is considered in Chernozhukov 
et al. (2018a): The average effect among individuals in 
interquantile ranges of an estimate of CATE fit on a 
split sample rather than the true CATE. They consider 
averaging this over splits, but that average still needs 
not correspond to Equation (6), and this approach is 
not robust to errors in the CATE estimate, meaning 
these errors will propagate to nonnegligible terms in 
the estimate and its variance. In contrast, by leverag
ing the unique optimization structure of CVaR, in Sec
tion 4, we provide an estimator that is robust to such 
errors, allowing us to estimate the CVaR of the true 
CATE rather than a split-sample-estimated CATE. By 
writing Equation (6) using CVaR, we can then lever
age these results to get robust estimates for interquan
tile averages, as we will explain in Remark 6.

Remark 5 (Who Is Negatively Affected?). Suppose we find 
CVaRα(τ(X)) < 0, whereas τ > 0, where α is “substantial”: 
The social-welfare benefit of the proposal is borne by 
some substantial negatively impacted subpopulation. 
Although that may already cool enthusiasm for the pro
posal, we may wonder who are the harmed individuals, 
for example, to help design a new, better treatment.

Assuming continuity, CVaRα(τ(X)) is the ATE among 
individuals with τ(X) ≤ F�1

τ(X)
(α): an identifiable group. A 

question is interpretation. This is easy if τ(X) is linear or 
tree (or estimated using such models, which still gives a 
bound per Theorem 7). We can also consider summaries 
of this group, for example, fraction belonging to sensitive 
groups, or learn simpler models to explain membership 
(Ribeiro et al. 2016, Lakkaraju et al. 2019). Alternatively, 
given we detect substantial inequities, we can separately 
investigate which variables negatively modulate treat
ment effect by, for example, studying arg minγE(τ(X) �

τ� γ⊤X)
2 (Chernozhukov et al. 2018a, Kennedy 2020).

3.2. Lower Bounds Under Limited Residual 
Heterogeneity Range

Much as we try to best control for heterogeneity, dispa
rate effect-predictiveness of covariates may mean some 
negative ITEs are averaged out and hidden while others 
are singled out. A remedy when concerned about dis
proportionate predictiveness among sensitive groups 
(e.g., race) would be to include these (or proxies) within 
X. However, we may always worry about missing 
something. A lower bound can provide assurances 
about what the upper bound may be missing.

This depends on how much residual heterogeneity 
remains. Our first set of lower bounds limit the range of 
residual heterogeneity, that is, almost-sure bounds on 
δ� τ(X), whereas our second set of lower bounds limit 
its variance, that is, bounds on Var(δ |X) � E(δ� τ(X))

2.

Theorem 2. Suppose |τ(X) � δ | ≤ b. Then

CVaRα(δ) ≥ sup
β
β+

1
2αE[(τ(X) � b � β)�]

�

+
1

2αE[(τ(X) + b � β)�]

�

: (7) 

Moreover, for any X distribution and integrable τ : X →

R, there exists a (X,δ)-distribution with the given X distri
bution, τ(X) � E[δ |X], |τ(X) � δ | ≤ b, and Equation (7) 
holding with equality.

The right-hand side of Equation (7) is the α-CVaR of 
the equal mixture distribution of τ(X) � b and τ(X) + b. 
It reduces to CVaRα(τ(X)) when b� 0 (equivalent to 
δ � τ(X)). When α� 1, it becomes τ for any b ≥ 0 (as nec
essary for tightness). The lower bound is established via 
weak semi-infinite duality and its tightness by exhibit
ing the equal-mixture distribution.

Because (τ(X) 6 b � β)� ≥ (τ(X) � β)� �b, Equation 
(7) upper bounds CVaRα(τ(X)) � b. This simpler bound 
is tight if we only assume a one-sided-bounded range.

Theorem 3. Suppose τ(X) � δ ≤ b. Then
CVaRα(δ) ≥ CVaRα(τ(X)) � b: (8) 

Moreover, for α < 1, given any ε > 0, X distribution, and 
integrable τ : X → R, some (X,δ) distribution has the given 
X marginal, τ(X) � E[δ |X], τ(X) � δ ≤ b, and Equation (8) 
holding with equality up to ε error.

The lower bound is immediate, and its tightness is 
given by exhibiting a skewed two-point-mass distribu
tion. For α� 1, Equation (8) simply reads τ ≥ τ� b, but 
for any α < 1, Equation (8) is actually tight.

3.3. Lower Bounds Under Limited Residual 
Heterogeneity Variance

Limiting residual heterogeneity within a range may be 
implausible, or plausible only with large constants, 
yielding a weak bound. We next explore the implication 
of the residual ITE variance after controlling for X, 
which we can bound given observables.

Theorem 4. Suppose Var(δ |X) ≤ σ2(X) for some integrable 
σ2 : X → R+. Then,

CVaRα(δ) ≥ sup
β

 

β+
1

2αE
"

τ(X) � β

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(τ(X) � β)2
+ σ2(X)

q #!

: (9) 

Moreover, for any ε > 0, X distribution, and integrable 
τ : X → R, there exists a (X,δ) distribution with the given 
X distribution, τ(X) � E[δ |X], Var(δ |X) ≤ σ2(X), and 
Equation (9) holding with equality up to ε error.

The proof of Theorem 4 leverages strong duality for 
convex semi-infinite optimization. Equation (9) equals 
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CVaRα(τ(X)) whenever σ2(X) � 0 and τ whenever 
α� 1. Because |δ� τ(X) | ≤ b ⇒ Var(δ |X) ≤ b2, plugging 
σ2(X) � b2 into Equation (9) must be looser than Equa
tion (7) by tightness. Triangle inequality verifies this 
directly: 

P
6 (τ(X) 6 b � β)� � τ(X) � β� 1

2
P

6 |τ(X)6 

b � β | ≥ τ(X) � β�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(τ(X) � β)2
+ b2

q

.
A residual variance bound is both more plausible and 

easier to calibrate than an absolute bound. Letting 
ρ(X) � Corr(Y(0), Y(1) |X) ∈ [�1, 1], we have

Var(δ |X) � Var(Y |X, A � 0) + Var(Y |X, A � 1)

� 2ρ(X)Var1=2(Y |X, A � 0)Var1=2(Y |X, A � 1),
(10) 

where all terms but ρ(X) are identifiable. Thus, postulat
ing different potential outcome correlations, we obtain 
different bounds. Equation (10) is maximized for ρ(X) �

�1, which is tight, as all correlations are realizable. 
Thus, plugging σ2(X) � (Var1=2(Y |X, A � 0) + Var1=2(Y |

X, A � 1))
2 into Equation (9) yields a tight lower bound 

on ITE-CVaR, given conditional expectations and var
iances. We may obtain better bounds if we postulate 
larger ρ(X).

Theorem 4 also implies a simpler but looser bound.

Corollary 1. We have

0 ≤ CVaRα(τ(X)) � CVaRα(δ) ≤
1

2αE[Var1=2(δ |X)]

(11) 

≤
1

2αE[Var1=2(Y |X, A � 0) + Var1=2(Y |X, A � 1)]

(12) 

≤
1

2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[(Y � µ(X, A))
2

|A � 0]

q

+
1

2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[(Y � µ(X, A))
2
|A � 1]

q

: (13) 

Equation (11) more transparently bounds the slack in 
Equation (5) in terms of residual effect variance. How
ever, it is not tight, as can be seen for α� 1. Equation (12) 
is looser but appealing as it is identifiable. Equation (13) is 
even looser but depends only on the root-mean-squared 
error of regressing Y on X for each A ∈ {0, 1} (i.e., the 
numerator of nonparametric R2).

4. Inference
We next turn to estimating the bounds developed in 
Section 3 and constructing CIs. Recall our data, 
(Xi, Ai, Yi) ~ (X, A, Y), 1 ≤ i ≤ n, may be experimental 
or observational. The only relevant technical differ
ence between these two cases is whether propensity, 
e(X) � P(A � 1 | X), is known or not. Although it 
does not matter here, e(X) is usually constant in 

experiments (A╨X). In observational settings, e(X) 
may be estimated.

We focus here on inference on CATE-CVaR. We pro
vide analogous procedures for the lower bounds of The
orems 2–4 and Corollary 1 in Online Appendix A. Fix α. 
Our inferential target is

Ψ � CVaRα(τ(X)) � β∗ +
1
α
E(τ(X) � β∗)�, where β∗

� F�1
τ(X)(α) � inf{β : P τ(X) ≤ β

� �
≥ α}:

Because τ(X) is not directly observed, the first step is fit
ting it. Fortunately, recent advances in causal machine 
learning provide excellent tools for this (Imai and Ratko
vic 2013, Athey and Imbens 2016, Wager and Athey 
2018, Künzel et al. 2019, Kennedy 2020, Nie and Wager 
2021). Given an estimate τ̂, we might consider a plug-in 
approach: Ψ̂plug-in � supβ β+ 1

nα
Pn

i�1 (τ̂(Xi) � β)�

� �
. There 

are two challenges with this estimator. One is that the 
statistical behavior of Ψ̂plug-in depends heavily on that 
of τ̂: If τ converges slowly and/or has nonnegligible 
bias, as occurs when fit by flexible machine-learning 
methods, both estimation rates and valid inference may 
be imperiled for Ψ̂plug-in. Another is that it can be 
severely downward biased: it essentially averages the 
(100 × α)% smallest CATE predictions, thus systemati
cally picking out those with the most negative errors 
(optimizer’s curse).

Instead, we develop a debiasing approach that is insen
sitive to CATE estimation, accommodating both miss
pecified parametric models and flexible-but-imprecise 
machine-learning CATE estimators. The main challenge 
is estimating β∗, which cannot be expressed by an estimat
ing equation in X, Y(0), Y(1), so its efficient/orthogonal 
estimation is unclear, unlike the case of quantile/CVaR 
treatment effects (Firpo 2007, Belloni et al. 2017, Kallus 
et al. 2019). Fortunately, we care only about Ψ, not β∗, and 
special optimization structure in Ψ gives robustness to 
perturbations. so even rough estimates suffice. We there
fore treat both τ and β∗ as nuisance parameters, together 
with e, µ, and ensure simultaneous orthogonality to all 
four nuisances.

Algorithm 1 (Point Estimate and CI for CVaRα(τ(X)))
Input: Level α ∈ (0, 1), data {(Xi, Ai, Yi) : i � 1, : : : , n}, 
number of folds K, and e, µ,τ-estimators 
1: for k � 1, : : : , K do estimate ê(k), µ̂(k), τ̂(k) using data 

{(Xi, Ai, Yi) : i ≢ k � 1 (mod K)}

2: Set β̂ � 1
K
PK

k�1 inf{β :
P

i≡k�1 (mod K)(I[τ̂
(k)(Xi) ≤ β] �

α) ≥ 0}

3: for i � 1, : : : , n do set φi � φ(Xi, Ai, Yi; ê(i mod K), 
µ̂(i mod K), τ̂(i mod K), β̂)

4: Set Ψ̂ � 1
n
Pn

i�1φi, ˆse �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n(n�1)

Pn
i�1 (φi � Ψ̂)

2
q

5: Return Ψ̂ as point estimate and [Ψ̂6Φ�1((1 +

γ)=2) ˆse] as γ CIs
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Algorithm 1 summarizes our procedure, where for 
Line 3 define

φ(X, A, Y; ě, µ̌, τ̌, β̌) � β̌ +
1
α
I[τ̌(X) ≤ β̌]

 

µ̌(X, 1)

� µ̌(X, 0) +
A � ě(X)

ě(X)(1 � ě(X))

Y � µ̌(X, A)
� �

� β̌

!

: (14) 

Note that Ψ � Eφ(X, A, Y, e, µ,τ,β∗), which Algorithm 1
essentially approximates by using estimates for the 
unknown e, µ,τ,β∗ and replacing the mean over (X, A, 
Y) by a sample average over the data (Xi, Ai, Yi). In par
ticular, we use a “cross-fitting” scheme so that nuisance 
estimates are independent of the sample being averaged 
(Schick 1986, Zheng and van der Laan 2011, Chernozhu
kov et al. 2018b).8

Our specific construction in Equation (14) is crucial 
for the success of Algorithm 1. The plug-in approach is 
essentially the same approach applied instead to φ̃(X, 
A, Y; τ̌, β̌) � β̌ + 1

α (τ̌(X) � β̌)�. The problem with it arises 
from the fact that Eφ̃(X, A, Y; τ̌, β̌) is sensitive to changes 
to τ̌, β̌ near τ,β∗ (nonzero derivative) so that small errors 
propagate. In contrast, we show Eφ(X, A, Y; ě, µ̌, τ̌, β̌)

has zero derivative in ě, µ̌, τ̌, β̌ at e, µ,τ,β∗ (Lemma EC.1, 
which also bounds the second derivative and second 
moments), a condition known as Neyman orthogonality 
that ensures that small errors are insignificant (Chernoz
hukov et al. 2018b). This leads to local robustness (Theo
rem 5) and double robustness (Theorem 6) guarantees. 
The orthogonality in e, µ is the same as in ATE estimation 
(Robins et al. 1994, Chernozhukov et al. 2022) because, for 
every τ̌, β̌, Eφ(X, A, Y; e, µ, τ̌, β̌) is just a subgroup ATE 
(rescaled and recentered). The orthogonality in τ,β∗ is a 
consequence of a saddle-point formulation 

Ψ � supβ̌∈Rinfτ̌:X→REφ(X, A, Y; e, µ, τ̌, β̌)

� infτ̌:X→Rsupβ̌∈REφ(X, A, Y; e, µ, τ̌, β̌)

and first-order optimality conditions. One complication 
is making differentiability in τ̌ at τ formal, which we 
tackle using Assumption 2. This saddle-point formula
tion also shows that if we get τ wrong we still obtain an 
upper bound on Ψ (Lemma 2), yielding a double validity 
guarantee (Theorem 7).

As we discuss in detail in Section 4.3, we treat τ as a 
separate nuisance from µ even though τ(x) � µ(x, 1) �

µ(x, 0). This enables the use of specialized CATE lear
ners. We also treat β∗ as a separate nuisance (not as a 
parameter as in Kallus et al. 2019) and fit it as the quan
tile of τ̂(X). As simple regressions, e and µ can be fit 
by parametric regression or standard machine-learning 
methods such as random forests, gradient boosting, 
neural networks, and so on.

Remark 6 (Comparing Different Levels and Interquantile 
Averages). To assess disparities, we may want to compare 
CVaRα(τ(X)) to ATE (equivalently, CVaR1(τ(X))). To get 
good CIs on CVaRα′ (τ(X)) � CVaRα(τ(X)), we can re
place φi in Line 3 of Algorithm 1 with the difference of φis 
for α′ and α (using the same nuisances except β̂(k)). Setting 
α′ � 1, this will, in particular, correctly yield smaller CIs 
on τ� CVaRα(τ(X)) for α near one. Similarly, if we want 
CIs on interquantile average effects as in Remark 4, then 
per Equation (6), we may simply replace φi in Line 3 of 
Algorithm 1 with the difference of φis for α′ and α, 
weighted by α′

α′�α and αα′�α, respectively. We may also con
sider covariances of φi corresponding to many α levels 
for constructing simultaneous intervals.

Remark 7 (Partial-Identification Intervals). Although Algo
rithm 1 focuses on CATE-CVaR, which upper bounds 
ITE-CVaR, in Online Appendix A, we provide infer
ence procedures for lower bounds on ITE-CVaR. 
These can be combined to construct intervals contain
ing ITE-CVaR with probability γ. By union bound, we 
can simply combine the one-sided (1 + γ)=2 CIs for 
the lower and upper bounds. However, coverage may 
be conservative (> γ) for the partial identification 
interval given by the bounds. For calibrated γ-cover
age (asymptotically), we must account for correlation 
between lower- and upper-bound estimates, given by 
the correlation between φis for each procedure. Then, 
we can construct calibrated intervals following appen
dix A.4 of Kallus et al. (2022).

Remark 8 (Monotonicity). Although CVaRα(τ(X)) is 
monotone in α, Algorithm 1’s output for different α 
may not be due to estimation errors. We can postprocess 
to ensure monotonicity using rearrangement (Hardy 
et al. 1952), which only improves estimation and does 
not affect inference (Chernozhukov et al. 2010). We use 
this in Section 5.

4.1. Local Robustness and CIs
We now establish favorable guarantees for Algorithm 1. 
First, we show it is insensitive to slow but consistent 
estimation of nuisances, having first-order behavior as if 
we used true values.

We will need some minimal regularity.

Assumption 1 (Boundedness). Suppose e ≤ e ≤ 1 � e and 
|Y | ≤ B for positive constants e, B > 0.

The first condition of Assumption 1 ensures that the 
X distributions of experimental groups overlap. It is usu
ally guaranteed in randomized experiments by setting 
e(X) constant (A╨X). In unconfounded observational 
studies, it is a standard assumption. The second condi
tion requires bounded outcomes and is largely technical 
to make analysis tractable.
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Assumption 2 (Margin). Suppose Fτ(X) is continuously dif
ferentiable at F�1

τ(X)
(α) with a positive derivative.

Assumption 2 prohibits degeneracy of the quantile 
and essentially ensures two things at once: limited sensi
tivity to errors in the quantile and the learnability of the 
quantile itself.

On the one hand, Assumption 2 implies that the proba
bility of τ(X) being within δ of its α-quantile scales at most 
linearly with δ, known as a margin condition with expo
nent 1 (Mammen and Tsybakov 1999, Audibert and Tsy
bakov 2007). Margin conditions have been used in causal 
inference to ensure a smooth dependence on τ(X) and 
robustness to errors therein (equation (16) in Luedtke and 
van der Laan 2016b; assumption 2.2 in Kitagawa and Tete
nov 2018; and assumption 6 in Kennedy et al. 2020). 
Assumption 2 also implies the α-quantile is unique, ensur
ing regularity; nonuniqueness may require additional sta
bilization as in Luedtke and van der Laan (2016b).

Assumption 2 simultaneously implies that the proba
bility near the α-quantile scales at least linearly, which 
ensures rates of estimation for the quantile. The same is 
needed for asymptotic normality of sample quantiles of 
observed variables (corollary 21.5 in Van der Vaart 1998). 
Compared with standard analysis of quantile estimation, 
an added complexity here is that we only have an esti
mate of the variable, τ(X), whose quantile we wish to esti
mate. We next deal with this complexity, showing how 
rates for τ̂(k) translate to rates for β under Assumption 2.

Lemma 1. Suppose Assumption 2 holds. Then, β in Line 2 
of Algorithm 1 satisfies

| β̂� β∗ | � Op

�
‖τ̂(k) � τ‖

q
q+1
q + n�1=2

�
∀q ∈ [1, ∞], 

where throughout we interpret aq+b
cq+d � a

c for q � ∞.

We now show that Ψ̂ enjoys local robustness (Chernoz
hukov et al. 2022 and references therein). Aside from a 
now-standard analysis of cross-fitting (Chernozhukov 
et al. 2018b), the crucial steps are characterizing the first 
and second functional derivatives of our special φ con
struction (Lemma EC.1) and leveraging Lemma 1. A slight 
deviation from the usual cross-fitting analysis is carefully 
handling the fact that all but one nuisance (β̂) are cross-fit.

Theorem 5. Suppose Assumptions 1 and 2 hold and that for 
k � 1, : : : , K, ‖ê(k) � e‖2 � op(1), ‖µ̂(k) � µ‖2 � op(1), ‖ê(k) �

e‖2‖µ̂(k) � µ‖2 � op n�1
2

� �
, ‖τ̂(k) � τ‖q � op n�

q+1
4q

� �
, P(‖µ̂(k)‖∞ ≤

B) → 1, and P(e ≤ ê(k) ≤ 1 � e) → 1. Then Ψ̂, ˆse in Line 4 
of Algorithm 1 satisfy

Ψ̂ �
1
n
Xn

i�1
φ(X,A,Y; e,µ,τ,β∗) + op(n�1=2) �Ψ+ Op(n�1=2),

P(Ψ ∈ [Ψ̂6Φ�1((1 +γ)=2)ŝe]) → γ ∀γ:

The rate assumptions on ê(k) and µ̂(k) are lax: It suffices 
to have op(n�1=4) rates on both or to have no rate on µ̂(k)

at all if e is known. This parallels standard conditions in 
double machine-learning ATE estimation, achievable 
by a variety of machine-learning methods (Chernozhu
kov et al. 2018b). We explore the condition on τ̂(k) in Sec
tion 4.3.

4.2. Double Robustness and Double Validity
Theorem 5 guarantees good performance if all nui
sances are estimated slowly but still consistently. How
ever, even if nuisances are inconsistent, we perform 
well.

First, we establish a property mirroring doubly robust 
ATE estimation (Robins et al. 1994): Even if e or µ is 
inconsistent, we remain consistent, provided τ is consis
tently estimated, albeit slowly.

Theorem 6 (Double Robustness). Fix any ẽ, µ̃ with e ≤ ẽ 
≤ 1 � e, ‖µ̃‖∞ ≤ B. Let rn → 0 be a deterministic sequence. 
Suppose Assumptions 1 and 2 hold and that for k � 1, 
: : : , K, ‖ê(k) � ẽ‖2 � op(1), ‖µ̂(k) � µ̃‖2 � op(1), ‖τ̂(k) � τ‖q �

Op

�
r

q+1
2q
n

�
, P(‖µ̂(k)‖∞ ≤ B) → 1, P(e ≤ ê(k) ≤ 1 � e) → 1, 

and

either ‖ê(k) � e‖2 � Op(rn) or ‖µ̂(k) � µ‖2 � Op(rn):

Then Ψ̂ in Line 4 of Algorithm 1 satisfies

Ψ̂ �Ψ+ Op(rn ∨ n�1=2):

Theorem 6 is particularly strong in experiments (e 
known), so we can get away with µ̂(k) � 0.

It would appear we must consistently estimate CATE 
to have hope of estimating its CVaR. Although true, we 
next show that even if we mis-estimate CATE and also 
one of e, µ, we still get an upper bound on CATE-CVaR 
(hence on ITE-CVaR). This appears to be the second 
finding of a double-validity property since being first 
documented in sensitivity analysis (Dorn et al. 2021).

We first establish the population-level bound behav
ior and then state the implication for estimation.

Lemma 2. Fix any τ̃ : X → R. Let β̃ � F�1
τ̃(X)

(α). Suppose 
Assumption 2 holds with τ replaced with τ̃. Then,

CVaRα(τ(X)) ≤ β̃ +
1
α
E[I[τ̃(X) ≤ β̃](τ(X) � β̃)]: (15) 

Theorem 7 (Double Validity). Fix any ẽ, µ̃, τ̃ with e ≤

ẽ ≤ 1 � e, ‖µ̃‖∞ ≤ B, ‖τ̃‖∞ ≤ 2B. Let rn → 0 be a determin
istic sequence. Suppose Assumption 1 holds, Assumption 2
holds with τ replaced with τ̃, and that for k � 1, : : : , K, ‖ê(k)

� ẽ‖2 � op(1), ‖µ̂(k) � µ̃‖2 � op(1), ‖τ̂(k) � τ̃‖q � Op

�
r

q+1
q

n

�
, 

P(‖µ̂(k)‖∞ ≤ B) → 1, P(e ≤ ê(k) ≤ 1 � e) → 1, and

either ‖ê(k) � e‖2 � Op(rn) or ‖µ̂(k) � µ‖2 � Op(rn):
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Then Ψ̂ in Line 4 of Algorithm 1 satisfies

Ψ̂ ≥Ψ� Op(rn ∨ n�1=2):

Theorem 7 guarantees extensive robustness and suggests 
a practical, black box–free approach in experimental set
tings: set µ̂(k) � 0 and use simple misspecified parametric 
models (e.g., linear) for CATE estimation, and we still 
estimate a valid ITE-CVaR bound at fast Op(n�1=2) rates.

4.3. CATE Estimation and Rates
Algorithm 1 accepts separate learners for both µ and τ. 
Therefore, although τ(x) � µ(x, 1) � µ(x, 0), we need not 
have τ̂(k)(X) � µ̂(k)(x, 1) � µ̂(k)(x, 0), and in fact we 
should not. Recent work advocates and provides spe
cialized methods for directly estimating CATE (Imai and 
Ratkovic 2013, Athey and Imbens 2016, Wager and 
Athey 2018, Künzel et al. 2019, Kennedy 2020, Nie and 
Wager 2021).

This is important because Algorithm 1 uses the µ and 
τ estimates differently and, correspondingly, our theo
retical results impose different assumptions on each. 
The τ estimate is used for approximating the event 
I[τ(X) ≤ β∗], which is crucial for targeting CVaR cor
rectly. In contrast, the µ estimate is just used to estimate 
a weighted average treatment effect, given the weights 
I[τ(X) ≤ β∗], and is therefore interchangeable with 
propensity.

We next review different options for CATE estimation 
and how these ensure the conditions of Theorems 5–7. 
We emphasize that these need not be understood as 
exhaustive list of which learners to use: Practically, the 
nuisance estimation rates are high-level assumptions that 
generally say one may safely plug-in black box machine- 
learning estimators to Algorithm 1: No restrictions are 
made but rates (no metric-entropy conditions), estima
tors can be flexible/nonparametric in that rates can be 
much slower than “parametric” Op(n�1=2) rates, and 
results are exceedingly robust to inconsistent estimation.

4.3.1. Experimental Settings. A major issue with CATE 
estimation by differencing outcome regressions is that 
effect signals are easily lost. CATE is generally simpler 
and less variable than baseline mean outcomes, µ(X, 
0), µ(X, 1). For example, many variables often help pre
dict outcomes, but few modulate the treatment effect. It 
is therefore imperative to learn CATE directly.

In experimental settings (e known) we can construct a 
pseudo-outcome ∆ �

A�e(X)

e(X)(1�e(X))
Y and, because τ(X) �

E[∆ |X], learn CATE by regressing ∆ on X, using any 
supervised-learning method. Setting either q � ∞ or 
q� 2, either ‖τ̂(k) � τ‖∞ � op(n�1=4) or ‖τ̂(k) � τ‖2 � op(n�3=8)

suffices to satisfy the rate condition in Theorem 5. One 
case that theoretically ensures ‖τ̂(k) � τ‖∞ � op(n�1=4) is 

when τ(x) is more-than-d=2-smooth in x ∈ Rd (Stone 1982, 
theorem 1). Another option is τ(x) linear with o(

ffiffiffi
n

√
=log d)

nonzero coefficients (Belloni et al. 2017). Alternatively, to 
theoretically ensure ‖τ̂(k) � τ‖2 � op(n�3=8), we may use 
nonparametric least squares assuming τ belongs to any 
function class with log covering number at radius ɛ at 
most ɛ�p with p< 2/3 (Wainwright 2019). This works 
regardless of µ being nice.

We may avoid black box models (and cross-fitting) 
altogether by using simple linear regression of ∆ on X to 
obtain a valid bound per Theorem 7.

To satisfy the other conditions, for Theorems 6 and 7, 
we can set µ � 0, and for Theorem 5, we need only esti
mate µ consistently without rate. We can either estimate 
µ directly or only estimate µ(X) � E[Y |X] and set 
µ̂(k)(X, A) � µ̂

(k)
(X) + (A � e(X))τ̂(k)(X). Consistency for 

either is immediate from EY2 < ∞ (Györfi et al. 2002).

4.3.2. Observational Settings. When e is unknown, the 
pseudo-outcome construction needs refinement. One 
option is DR-leaner (Kennedy 2020): regress ∆ � µ̂(X, 
1) � µ̂(X, 0) +

A�ê(X)

ê(X)(1�ê(X))
(Y � µ̂(X, A)) on X, where ê, µ̂

are appropriately cross-fitted. Another is R-learner (Nie 
and Wager 2021): let τ̂ minimize the average of (Y �

µ̂(X) � (A � ê(X))τ̂(X))
2, where ê, µ̂ are appropriately 

cross-fitted. Kennedy (2020, corollary 3) provides rates 
for local-polynomial R-learners: If e(x) is se-smooth in 
x ∈ Rd, µ(x)sµ-smooth, and τ(x) more-than-d=2-smooth, 
then we obtain op(n�1=4) rate pointwise error, provided 
se ≥ sµ, se+sµ

2 > d
8. To convert pointwise error bounds to 

sup-norm error bounds, ‖τ̂(k) � τ‖∞ � op(n�1=4), we may 
follow the discretization approach of Stone (1982), 
incurring only logarithms. Alternatively, we can imple
ment a DR-learner using nonparametric least squares, 
and following Kennedy (2020, corollary 3) and Wain
wright (2019), we will obtain ‖τ̂(k) � τ‖2 � op(n�3=8) if τ 
belongs to any function class with log covering number 
at radius ɛ at most ɛ�p with p< 2/3 and if ‖ê(k) �

e‖2‖µ̂(k) � µ‖2 � op(n�3=8). Otherwise, we can simply use 
misspecified linear R- or DR-learners and still get a valid 
bound per Theorem 7.

5. Case Study
We now demonstrate our bounds and inference.9 Al
though we consider a program evaluation example, we 
believe our results are also particularly relevant to A/B 
testing on online platforms, where, after testing, prod
uct innovations are usually either scrapped/reworked 
or broadly rolled out, and where ATEs are often small, 
creating an opportunity for many users to be negatively 
impacted despite positive average effects. Little data are 
public, however.
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5.1. Background and Setup
Behaghel et al. (2014) analyze a large-scale randomized 
experiment comparing assistance programs offered to 
French unemployed individuals. They compare three 
arms: individuals in the “control” arm receive the stan
dard services of the Public Employment Services, in 
“public” receive an intensive counseling program run 
by a public agency, and in “private” a similar program 
run by private agencies.

We consider a hypothetical scenario where the private- 
run counseling program (A � 0) is currently being offered 
to the unemployed and we consider the change to a 
public-run program (A � 1).10 We take re-employment 
within six months as our (binary) outcome.

The ATE is 1.22 percentage points (90% CI, [�0:35, 
2:8]), a 4.9% increase in re-employment. This suggests a 
positive/neutral effect, so a policymaker might hypothet
ically consider this an acceptable policy change, for exam
ple, if the public-run program provided cost savings.11

To apply our methodology, we consider all pretreat
ment covariates in table 2 of Behaghel et al. (2014), 
except we treat as numeric (rather than dichotomize) 
age, number children, years of experience, salary target, 
assignment timing, and number unemployment spells. 
Other variables quantify education, employment level 
and type, gender, martial status, national origin, region, 
unemployment reason, and long-term unemployment 
risk. The propensity is constant. As recommended in 
Section 4.3.1, we fit CATE using a pseudo-outcome 
linear regression. We estimate µ using cross-fitted 
gradient-boosting machines.

5.2. Upper Bounds
Figure 1 presents inference on CATE-CVaR using Algo
rithm 1 for α ∈ {0:01, 0:02, : : : , 1}. The line represents our 
point estimate, after rearrangement as recommended in 
Remark 8,12 and the shaded region represents pointwise 
90% CIs. Uncertainty grows for smaller α.

We see that the ATE estimate (right-most point) is 
positive with an interval containing zero. We find, how
ever, that some 56% sized X-defined subpopulation has 

a negative effect at 90% confidence.13 This strongly sug
gests that the change, if enacted could materially, nega
tively impact a large portion of the population, despite 
the positive/neutral ATE. Thus, considering treatment 
effect risk provides a crucial metric not reflected in the 
ATE. This risk is also not reflected in DTEs: The binary 
potential outcome distributions are fully specified by 
just E[Y(0)], E[Y(1)].14

In Figure 2 we focus on comparing CATE-CVaR to 
ATE following Remark 6. The only difference to Figure 
1 is a slight vertical shift and that CIs (correctly) shrink 
to a point as α→ 1, enabling more confident conclu
sions comparing subpopulations to the population.

In Figure 3, we consider estimating CATE-CVaR 
using the plug-in approach mentioned in Section 4, 
using standard errors of φ̃(X, A, Y; τ̂, β̂) to construct CIs. 
That is, we just compute the CVaR of CATE predictions 
on the data. The result is heavily downward biased with 
far-too-narrow CIs.

In Figure 4, we consider CATE-CVaR when we cap
ture less heterogeneity, using only age, high school 
dropout, African national origin, and Paris region resi
dent as covariates (X1). This detects no significant risk. 
This illustrates that, although Theorem 1 is tight, the 
bound can be practically uninformative if covariates are 

Figure 1. Inference on CVaRα(τ(X))

Figure 2. Inference on CVaRα(τ(X)) � τ 

Figure 3. Plug-in Estimator 
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not very predictive. Although using the full set of covar
iates X, we are able to detect that some 50% of the popu
lation has a negative effect, using only the subset X1, we 
fail to detect this because we cannot informatively seg
ment the population into heterogeneously impacted 
groups.

5.3. Lower Bounds
Although the upper bounds show a significant subpop
ulation can be negatively harmed, being only bounds, it 
may be the subpopulation can be harmed even more or 
an even larger subpopulation can be harmed. Lower 
bounds help us understand how much greater the risk 
might be.

In Figure 5, we consider our lower bounds (versus 
ATE) when limiting the residual heterogeneity range 
given by Theorems 2 (two-sided range) and 3 (one-sided 
range).

Because it may be hard to justify and calibrate a limited 
range, in Figure 6, we consider lower bounds given by 
Theorem 4 and Corollary 1 by limiting residual heteroge
neity variance. For the former, we fit Var(Y |A, X) using 
gradient-boosting machines and construct σ2(X) per 

Equation (10) by varying constant values of ρ(X) �

ρ ∈ [�1, 1]. Recall ρ � �1 always yields an assumption- 
free bound. We use the same model to estimate the 
right-hand side of Equation (12). We compute the 
cross-validated root-mean-squared prediction error to 
estimate the right-hand side of Equation (13).

We observe that assuming perfectly conditionally cor
related potential outcomes yields a lower bound very 
close to the upper bound. The bounds of Corollary 1
appear loose; indeed, they are not tight. Nonetheless, 
the tightness of the other bounds does not mean they 
are practically informative, which depends on their use. 
The width of the bounds need not determine informa
tiveness either. If the upper bound is negative, that is 
informative by itself of certain harm, regardless of how 
much more negative is the lower bound. If the upper 
bound is positive, however, a good lower bound may 
still help bound potential but uncertain harm.

6. Concluding Remarks
We study the average effect on those worst-affected by a 
proposed change as a measure of its risk, how to tightly 
bound it given covariates that explain some heterogene
ity, and how to make robust inferences on these bounds 
even when this heterogeneity is roughly estimated. This 
provides very practical tools for assessing policy and 
product changes beyond their ATE and DTEs. We can 
safely use flexible yet biased/slow-to-converge machine 
learning, or we can avoid black box models and easily 
get good bounds by considering only linear projections 
of heterogeneity. In the hypothetical case study this 
detected that, what appeared to be a positive/neutral 
change could actually very negatively impact a substan
tial subpopulation.

We focused on experimental (or, unconfounded ob
servational) settings without interference, where risk is 
already unidentifiable despite randomization. A future 
direction is to consider the impact of interference (Athey 

Figure 4. Restricted Covariate Set 

Figure 5. (Color online) Bounds Based on Residual- 
Heterogeneity Range 

Figure 6. (Color online) Bounds Based on Residual- 
Heterogeneity Variance 
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et al. 2018, Johari et al. 2022) or confounding (Tan 2006), 
where even ATEs are unidentifiable and fairness is 
harder to assess (Kallus and Zhou 2018, Jung et al. 2020, 
Kilbertus et al. 2020). Interestingly, for partial identifica
tion under Tan (2006)’ model, X-conditional outcome- 
CVaR plays a crucial role (Dorn et al. 2021). Another 
direction may be to consider other risk measures, such as 
given by Kullback-Leibler ambiguity sets (Ahmadi-Javid 
2012). Per Endnote 5, the tight upper bound is still the 
risk measure applied to CATE, but it remains to compute 
lower bounds and design robust inference methods.

Endnotes
1 We may still make some inferences on these even if we do not 
observe such attributes (Chen et al. 2019, Kallus et al. 2022).
2 CVaR is sometimes defined for the right tail, corresponding to our 
�CVaRα(�Z).
3 Also, Y � Y∗(A) assumes noninterference (Rubin 1986).
4 However, even this ideal can induce disparate impacts (Kallus 
and Zhou 2019).
5 Equation (5) extends to any coherent risk by writing δ � τ(X) +

(δ� τ(X)) and using subadditivity.
6 The bound need not be tight given the (X, A, Y) distribution, 
which characterizes more than the mean of the (δ |X) distribution, 
as described by the Fréchet-Hoeffding bounds. We focus on best 
bounds given just by CATE, which is the common tool to under
stand effect heterogeneity in practice.
7 There are also tests for heterogeneity not explained by X (Ding et al. 
2016, 2019). These, like us, leverage bounds on unidentifiable quantities.
8 We may avoid cross-fitting and fit nuisances once on the whole 
sample if we assume estimates belong to a Donsker class with prob
ability tending to one; we omit this option for brevity.
9 Replication code is available at https://github.com/CausalML/ 
TreatmentEffectRisk.
10 Some individuals assigned to the additional counseling refused it. 
We nonetheless restrict our attention to intent-to-treat interventions, 
considering hypothetically making available either the public-run or 
private-run counseling to unemployed individuals, who may decline it.
11 Behaghel et al. (2014, section IV) discuss why public-run pro
grams fare better.
12 We present the figure without rearrangement in Online Appen
dix B.
13 Becuase outcome is binary, the largest fraction that can have a 
negative effect is (50 × (1 � τ))%, so either τ < 0 or at most half may 
be negatively affected. The ATE interval indeed contains zero with 
confidence only 90%.
14 In particular, the α-quantile DTE is uselessly zero for all α ∈

[0, 1]\{1 �E[Y(0)], 1 �E[Y(1)]} and the α-CVaR DTE is 1
α (E[Y(1)] �

1 +α)+ � 1
α (E[Y(0)] � 1 + α)+, which is not even monotonic. For 

illustration we plot it in Online Appendix B.
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