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ABSTRACT 15 

Bacterial motility plays a key role in important cell processes such as chemotaxis and biofilm 16 

formation, but is challenging to quantify due to the small size of the individual microorganisms 17 

and the complex interplay of biological and physical factors that influence motility phenotypes. 18 

Swimming, the first type of motility described in bacteria, still remains largely unquantified. 19 

Light microscopy has enabled qualitative characterization of swimming patterns seen in different 20 

strains, such as run and tumble, run-reverse-flick, run and slow, stop and coil, and push and pull, 21 

which has allowed for elucidation of the underlying physics. However, quantifying these 22 

behaviors (e.g., identifying run distances and speeds, turn angles and behavior by surfaces or 23 

cell-cell interactions) remains a challenging task. A qualitative and quantitative understanding of 24 

bacterial motility is needed to bridge the gap between experimentation, omics analysis, and 25 

bacterial motility theory. In this review, we discuss the strengths and limitations of how phase 26 

contrast microscopy, fluorescence microscopy, and digital holographic microscopy have been 27 

used to quantify bacterial motility. Approaches to automated software analysis, including cell 28 

recognition, tracking, and track analysis, are also discussed with a view to providing a guide for 29 

experimenters to setting up the appropriate imaging and analysis system for their needs.  30 
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1. INTRODUCTION 37 

Since the development of a tracking microscope in 1971(Berg, 1971), researchers have 38 

recognized the need for tools that would allow for both imaging and recording of microbial 39 

motility. The ideal experimental apparatus would record images of cells in a 3D volume with high 40 

signal to noise ratios and at high framerates. This would in turn allow cell tracking algorithms to 41 

easily characterize cell motility quickly and effectively, preferably with minimal user input. 42 

Advances over the past few decades have brought this ideal case closer to reality. Unfortunately, 43 

despite numerous experimental setups and data analysis techniques, the holy grail of precise and 44 

straightforward 3D tracking of bacteria remains elusive. That being said, progress has been made 45 

in understanding motility phenotypes of various bacteria using a variety of imaging and software 46 

techniques, which we will summarize here with the goal of making it easier for those planning 47 

bacterial tracking experiments to choose hardware and software.  48 

Acquisition and analysis software may be open-source or commercial. Choices are determined 49 

by the project’s budget as well as any needs to re-tune available code to custom optical systems. 50 

The platforms ImageJ (FIJI) (Schindelin et al., 2012) and ICY (de Chaumont et al., 2012) are 51 

highly versatile, open source, and widely used by biologists, so in this review we will mention 52 

when a FIJI or ICY package or plug-in exists for a particular technique. Many packages for 53 

MATLAB are also available, as well as custom programs based in Python.  54 

Several recent reviews of cell and particle motility exist, and we will focus on areas 55 

complementary to those recently discussed. One thorough review covers tracking of more complex 56 

cells, which largely applies to 2D processes such as cell migration as well as tracking of sub-57 

cellular organelles, and offers a comprehensive list of software for this application (Emami et al., 58 

2021). While there is significant overlap with bacterial tracking, the latter presents certain specific 59 
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challenges, particularly fast speeds and 3D motion. It is also simpler in some respects, since 60 

contouring is usually not necessary and subcellular features are neglected. Another recent review 61 

focuses on ameboid motility to illustrate the steps required in motility quantification of complex 62 

cells (Boquet-Pujadas et al., 2021). Single-molecule investigations of bacterial cells using high 63 

resolution fluorescence techniques have been also well reviewed elsewhere (Gahlmann and 64 

Moerner, 2014). Additionally, “microswimmers” may also refer to non-living particles. Many 65 

studies have been conducted on microspheres (Lee et al., 2007, Lei et al., 2015, Zhang et al., 2017) 66 

and other types of nonliving swimmers, and approaches to their tracking have been reviewed (Pané 67 

et al., 2019). Although nonliving particles can be used to approximate bacteria in size, their lack 68 

of self-motility and relatively slow speeds simplify data processing in ways that are not possible 69 

for bacteria; in addition, they may be engineered to provide contrast for different imaging 70 

techniques. We will limit the scope of the current review to tracking of unstained, self-motile 71 

microorganisms on the order of 1-2 µm in diameter and the unique challenges these present, 72 

specifically complex, frequently overlapping tracks and speeds of up to hundreds of cell lengths 73 

per second. 74 

 75 
1.1. Bacterial motility 76 

Motility is a crucial microbial phenotype that has evolved independently in Bacteria, Eukarya, 77 

and Archaea. On the molecular level, 18 different motility types can currently be identified, with 78 

more undoubtedly to be discovered in microorganisms that have not yet been cultured (Miyata et 79 

al., 2020). Some bacteria use flagella for swimming motility, whereas archaea use the unrelated 80 

archaellum (Albers et al., 2018, Albers and Jarrell, 2015). Directional motion allows 81 

microorganisms to find nutrients, escape predators, waste products, and toxins, and assemble into 82 

biofilms. The best studied microorganisms are Escherichia coli (E. coli) and Salmonella enterica 83 
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serovar Typhimurium, and much of what we know about motility and chemotaxis come from these 84 

organisms (Bardy et al., 2017).  85 

 86 
Research into different microorganisms with different motility patterns has grown over the past 87 

two decades, identifying new classes of motility, motility in new classes of microorganisms, and 88 

elucidating the physics of swimming at the micron scale. Flagellins are highly conserved in 89 

bacteria, but flagellar conformations of bacteria and archaea vary greatly, as do body shapes, as 90 

shown in Fig. 1 (a), (b). At least six types of swimming patterns can be distinguished in low-91 

resolution microscopic recordings; these correspond to both flagellar arrangement and function. 92 

The common gut and soil bacteria Escherichia coli and Bacillus subtilis have peritrichous flagella 93 

and show a well-characterized pattern of motility involving “runs” (where all the flagella rotate 94 

together in a bundle, turning counter-clockwise) and “tumbles” (where the flagella turn clockwise 95 

and the bundle separates) (Fig. 1 (c)). Bacteria with peritrichous flagella that only rotate clockwise 96 

can show run-and-stop or run-and-slow patterns (Armitage and Schmitt, 1997) (Fig. 1 (d)). 97 

Another pattern, the “run-reverse flick” pattern of aquatic microorganisms with a single polar 98 

flagellum, such as Vibrio alginolyticus, is also known (Fig. 1 (e)) (Stocker, 2011). This pattern of 99 

swimming, common in marine bacteria, involves 180-degree reversals, creating zig-zag tracks, 100 

often at high speeds compared to bacteria with peritrichous flagella (up to 100 µm/s vs. 10-30 101 

µm/s). Another type of swimming seen with a single flagellum is the stop-and-coil motion of 102 

microorganisms such as Rhodobacter sphaeroides, where the flagellum cannot reverse direction, 103 

so it coils in order to allow the microorganism to change orientation (Armitage, 1999) (Fig. 1 (f)). 104 

Motile magnetotactic cocci have been identified that have peritrichous flagella and swim in a 105 

helical motion due to push-pull action of the flagella (Zhang et al., 2014) (Bente et al., 2020) (Fig. 106 

1 (g)). Swimming patterns of spiral-shaped cells are characterized more by the appearance of the 107 
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cells themselves rather than the track of movement. In Spirochetes such as Borrelia and 108 

Treponema, pairs of flagella rotate within the periplasm, generating a helical wave (Tahara et al., 109 

2018). In spirochaetes, two “run” modes and two non-translational modes have been identified. In 110 

general, changes in flagellar number, arrangement, hook length, or other parameters profoundly 111 

(Zhu et al., 2022) affect motility and chemotaxis patterns (Najafi et al., 2018). 112 

Other types of swimming continue to be elucidated. Synechococcus is a cyanobacterium that 113 

swims without flagella (Waterbury et al., 1985).  Other types of non-swimming motility are also 114 

seen but are less understood. Type IV pili are used by many species for motility on surfaces, 115 

usually called twitching motility (Piepenbrink et al., 2016). Gliding refers to a surface mechanism 116 

used by a heterogeneous group of bacteria, powered by ion channels and secretory mechanisms 117 

independent of flagella (Nan and Zusman, 2016). Sliding is a type of surface motility that requires 118 

no active motor (Holscher, 2017). Staphylococci, previously considered non-motile, have been 119 

shown to have means of locomotion that include spreading, darting, and comet formation (Pollitt 120 

and Diggle, 2017). In this review we focus on motility that is tracked in liquid medium, thus 121 

restricting our discussion to swimming and to some extent gliding.  122 

Much less is known about swimming in archaea, although it has been known for some time that 123 

swimming is induced by rotation of the archaellum. Much of the difficulty in studying these 124 

microorganisms arises from the need to observe them under extremophilic conditions: anaerobic, 125 

temperature extremes, and/or very high salt. A systematic study of the swimming patterns of 126 

several types of archaea was performed in 2012 (Herzog and Wirth, 2012). Some archaea show 127 

the fastest movement relative to body size of any known organism on Earth. The patterns of fast-128 

swimming archaea were characterized as “run and seek,” with different behaviors (slower zig-129 

zagging) near the surface of the slide. The tracks are closest to the bacterial “run and flick” pattern, 130 
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but many archaea are distinguished by their remarkable speeds. Some microscopy systems 131 

designed to accommodate the needs of archaea will be specifically mentioned in this paper. 132 

High-resolution recordings permit observation of detailed features of tracks rather than 133 

characterizing all forward motion as simply “runs.” These studies have led to an increasing 134 

appreciation of the importance of cell body shape in swimming. The cell body is often considered 135 

to be a source of passive drag, but non-rod-shaped cell bodies may contribute to motility. Many 136 

marine motile bacteria are curved rods falling within a relatively narrow range of elongation and 137 

curvature. Detailed models of swimming speeds and chemotaxis efficiencies have identified 138 

shapes that are optimized across a panel of selective parameters (Schuech et al., 2019). Even more 139 

recently, helical motion of a crescent-scaped bacterial cell, Caulobacter crescentus, was observed 140 

to affect swimming patterns in this singly flagellated cell (Yuan et al., 2021).  141 

 142 
1.2. Imaging challenges 143 

Understanding motility phenotypes provides a framework of what quantities might be of 144 

interest to characterize and quantify bacterial motility. For instance, the length of a bacterium’s 145 

“run” could change based on environmental factors such as viscosity. Rapid characterization of 146 

run length for numerous cells would give good statistics and provide a sound basis of comparison. 147 

However, quantification of bacterial motility remains challenging due to the technological 148 

difficulty of imaging live, active microorganisms on the order of the size of 2l of visible light that 149 

can move tens or even hundreds of cell lengths per second. For any imaging system, a variety of 150 

trade-offs must be made according to the specific goals of the experiment. Increased spatial 151 

resolution usually leads to decreased field of view, unless cameras with very high sensor sizes are 152 

used. High frame rates are necessary to capture fast processes but lead to extremely large datasets 153 

if carried out over long times. Fluorescent labels increase signal to noise of imaging, but dyes may 154 



 8 

affect microorganism behavior. Finally, data may be analyzed cell by cell, which optimizes 155 

accuracy but limits the number of cells considered; or statistical analyses may treat hundreds to 156 

thousands of cells at a time but fall prey to false positive and false negative identification of tracks. 157 

The purpose of this review is to identify the recent breakthroughs in bacterial motility analysis 158 

and identify what parameters of an imaging system are necessary to study the identified 159 

phenomena and what the limiting technological factors are in each case. Summary tables are 160 

provided that should assist researchers in choosing imaging and tracking techniques that are 161 

appropriate for the systems studied, or in developing custom systems that can push the limits of 162 

what is currently known. Both hardware and software are considered, with particular attention to 163 

automated identification and tracking algorithms. 164 

 165 
FIG. 1. Cell morphologies and swimming patterns. (a) Both bacteria and archaea show a variety of body shapes that 166 
can be classified as cocci (spherical), bacilli (rods), curved rods, or spirals. (b) Flagella and archaella may be 167 
attached to the cell in a variety of patterns. A rod-shaped body is shown for simplicity, but the different flagellar 168 
patterns are seen across body types. From top to bottom are monotrichous (a single flagellum, which may be lateral 169 
or polar), lophotrichous (multiple flagella attached at a single point), amphitrichous (flagella on each end), 170 
peritrichous (multiple flagella attached at different points all over the surface), and periplasmic (flagella enclosed in 171 
the periplasmic space). (c) Run-and tumble pattern as exemplified by E. coli. (d) Run-and slow pattern as 172 
exemplified by Sinorhizobium melioti. (e) Reverse and flick as exemplified by V. alginolyticus. (f) Stop and coil as 173 
exemplified by R. sphaeroides. (g) Push and pull as identified by the eukaryote Chlamydomonas. 174 

175 
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2. MICROSCOPY TECHNIQUES 176 

Throughout the years, a variety of imaging techniques have been employed with the goal of 177 

bacterial tracking. These include phase contrast microscopy, darkfield microscopy, fluorescence 178 

microscopy, and digital holographic microscopy (both in-line and off-axis). Each system has 179 

tradeoffs; the most commonly used in recent studies are discussed in detail below. 180 

 181 
2.1. Phase contrast microscopy 182 

Phase contrast microscopy is a standard technique found in most microbiology laboratories and 183 

easily implemented on all commercial microscopes. Depending upon the objective lens chosen, it 184 

is capable of either high resolution or fairly large depth of field. Diffraction-limited lateral (XY) 185 

resolution is given by l/NA, where l is the wavelength of illuminating light and NA is the 186 

numerical aperture of the objective. Depth of field d is the sum of two terms, a wave term and a 187 

geometrical optical term (Davidson and Spring): 188 

 189 
𝑑 = !"

($%)!
+ !'

(($%)
, (1) 190 

 191 
where n is index of refraction of the medium between the lens and the coverslip (air or 192 

immersion oil), e is the smallest resolvable element, and M is the magnification. (Fig. 2).  193 
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 194 
FIG 2. Tradeoff between resolution and depth of field for 550 nm illumination and air objectives. The non-linear 195 
relationship can be appreciated by observing that for bacterial cells on the order of 1 µm, the ability to resolve the 196 
cells will lead to a depth of field of < 10 µm, whereas a decrease of resolution for 2.5 µm will permit a depth of field 197 
of > 50 µm.  198 
 199 
Phase contrast microscopy represents one of the most established and successful methods of 200 

bacterial tracking. It has been used for some significant recent results, such as tracking a variety 201 

of swimming archaea, including hyperthermophiles (Herzog and Wirth, 2012) and discovery of 202 

the importance of cell body motion in swimming of Caulobacter (Liu et al., 2014).  203 

The primary disadvantage of phase contrast microscopy is that cells are lost as they swim in X 204 

and Y, or out of focus in the Z plane. Manual manipulation or digital tracking stages may be used 205 

to follow cells. Methods to follow single cells include the use of scanning stages (Berg and Brown, 206 

1974, Frymier et al., 1995, Yang et al., 2015) or scanning objectives (Corkidi et al., 2008). These 207 

methods are limited by their scanning speed. Most recently, a technique has been proposed for 208 

determining Z depth in out-of-focus microorganisms by fitting the Airy ring pattern to calibrated 209 

patterns from test cells (Taute et al., 2015).  210 

In some experiments, it is not necessary to permit the cells to swim freely in Z. In this case, 211 

sample chambers or flow cells may be constructed that restrict the cells to a single focal plane. 212 

This is useful when only 2D motion is necessary, such as to determine the fraction of motile cells 213 
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or a general idea of the swimming speed. This may be useful for determining cell health or growth 214 

phase (Ziegler et al., 2015). 215 

The typical light microscopes used for phase contrast (or related techniques such as differential 216 

interfererence contrast [DIC]) may be modified for use with extremophiles. The low-temperature 217 

swimming record seen in the bacterium Colwellia psychrerythrea, -15 ºC, was determined using a 218 

laboratory microscope customized by the vendor for use at subzero temperatures. The entire 219 

instrument and its operator were then located in an adjustable-temperature cold room (Junge et al., 220 

2003). At the other extreme, a heated indium tin oxide (ITO) chamber heated to 75 ºC, with the 221 

microscope objectives heated to 65 ºC, was used for imaging hyperthermophilic archaea (Charles-222 

Orszag et al., 2021).  223 

2.2. Digital holographic microscopy 224 

Digital holographic microscopy (DHM) is a volumetric technique based upon interferometry, 225 

where a volume of view is captured in a single snapshot (hologram). The hologram appears as a 226 

pattern of Airy rings indicating out-of-focus objects throughout the focal depth. The typical 227 

approach to analyzing DHM data is to reconstruct the optical field through a chosen Z depth and 228 

spacing based upon the hologram. Reconstruction methods depend upon the DHM geometry used, 229 

namely “off-axis”, where object and reference beams interfere at an angle (Fig. 3 (a)), or “inline” 230 

imaging (DIHM) where a single beam serves as both object and reference (Fig. 3 (b)). The different 231 

approaches to geometry and reconstruction have been reviewed in (Xiao et al., 2014) and (Myung, 232 

2010). 233 

Off-axis holography separates the spatial frequencies from the unscattered “direct term” as well 234 

as separating the real and virtual images from one another, facilitating ease of reconstruction into 235 

both amplitude and quantitative phase images (Schnars and Jüptner, 2002). Amplitude images are 236 



 12 

equivalent to transmission light microscopy. Quantitative phase images have no direct counterpart 237 

in ordinary light microscopy and are related to the product of the cell thickness h and the difference 238 

in refractive index between the medium (nm) and cell (nc), with the phase shift Δ𝜙 given by 239 

(Marquet et al., 2005, Rappaz et al., 2005) (Marquet, Rappaz, Magistretti, Cuche, Emery, Colomb 240 

and Depeursinge, 2005) 241 

Δ𝜙 = )*
"
ℎ(𝑛+ − 𝑛,)  (2), 242 

where l is the wavelength of illumination. This value is modulo 2𝜋, so complications arise 243 

when Δ𝜙 exceeds 2𝜋. However, for experiments involving bacteria, this is rarely an issue. Instead, 244 

the challenge lies in resolving any phase shift, as 𝑛+ − 𝑛, is on the order of 0.03-0.05 (Wyatt, 245 

1970), and methods such as frame averaging to reduce noise cannot be performed on rapidly 246 

moving cells. 247 

The lateral resolution of DHM is equivalent to that of brightfield microscopy. Reconstruction 248 

of DIHM images is more complicated, since the direct term is not readily filtered out, leading to 249 

“ghost” images. Nonetheless, many algorithms have been developed for reconstruction and phase 250 

retrieval from these images (Galande et al., 2021, Latychevskaia and Fink, 2009, Micó et al., 2011, 251 

Wang et al., 2018, Zhang et al., 2003). 252 
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 253 

FIG. 3. Off-axis DHM and DIHM. (a) Off-axis holography uses the interference of two coherent beams of light from 254 
a single source to record the complete sample volume in each captured frame. The “object” beam passes through the 255 
sample, while the “reference” beam takes an identical-length unperturbed path to the detector. The two beams are 256 
interfered at the detector array and the resulting interference pattern records a pattern of interference fringes which, 257 
in Fourier space, yield the real image (O*R), the virtual image (R*O), and the so-called “direct” term IO+IR. Either 258 
the real or virtual image is selected in Fourier space (as indicated by the red circle) and reconstructed using a chosen 259 
algorithm; numerical refocusing allows reconstruction of phase and amplitude images through the depth of the 260 
sample. (b) Digital in-line holographic microscopy (DIHM) uses a single beam which is assumed to be slightly 261 
perturbed by the object and interferes with itself. The resulting hologram does not capture information as fringes. 262 
The illustrated reconstruction method shows a dark-field-like reconstruction that works for phase, amplitude, and 263 
phase-amplitude objects (hologram and reconstruction are adapted from 264 
(https://www.sciencedirect.com/science/article/pii/S0143816620300762) under terms of the Creative Commons 265 
license; the images were cropped). 266 
 267 
The limit to the depth that can be reconstructed from DHM results from a degradation of spatial 268 

resolution as the reconstruction propagator extends outside the focal plane. For typical bacterial 269 

imaging experiments with ~1 µm spatial resolution, the depth of the sample is limited to ~1 mm 270 

(Kühn et al., 2014), which is very large compared with other microscopic techniques and which 271 

represents the biggest advantage of this imaging technique, allowing a simultaneous snapshot of 272 

essentially an unconstrained volume. Acquisition rates are limited by the camera frame rate. As a 273 

result of this major advantage, a large number of recent papers have reported prokaryotic tracking 274 

using DHM. The optics of DHM are also simple and the hardware is low in cost. 275 
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The disadvantage of DHM is a generally low resolution (Peng and Caojin, 2022), and the 276 

intrinsic low contrast of most prokaryotic cells in amplitude and phase. Some dyes may increase 277 

contrast for DHM, but this is an area that has not been well explored (Nadeau et al., 2016). The 278 

development of agents for specific enhancement of phase contrast has also been little studied, 279 

though it is possible through labeling techniques such as genetically encoded air-filled vesicles 280 

which provide substantial change in refractive index relative to aqueous medium (Farhadi et al., 281 

2020). 282 

DHM leads to large datasets and its analysis is computationally intensive. A 30 second dataset 283 

at 15 frames/s and 4 Mpx yields 1.8 GB of images before reconstruction. Depending upon the z-284 

spacing selected for reconstruction, a full reconstructed dataset may be upwards of 1 Tb. Few 285 

software packages are available for analysis. Commercial software is usually tied to a specific 286 

instrument. Open-source Fiji for both in-line and off-axis DHM have recently been reported 287 

(Buitrago-Duque and Garcia-Sucerquia, 2022) (Cohoe et al., 2019). 288 

An alternative to reconstruction is to extract Z information directly from the holograms. If the 289 

form of the diffraction pattern or the Z-position of the object are known, the Airy pattern may be 290 

easily fit to a function based upon Lorenz-Mie theory (Cheong et al., 2009, Lee et al., 2007, 291 

Ruffner et al., 2018). For more complex shapes, a discrete dipole approximation must be used 292 

(Wang et al., 2014). Open-source software is available to perform these fits, but this approach is 293 

highly complex and computationally intensive when neither the exact shape and size nor the axial 294 

depth are known. Good signal to noise is also essential to permit accurate fitting of the patterns. 295 

This approach has been used to track runs and tumbles in E. coli (Wang et al., 2016) (Fig. 4). 296 

DHM instruments are simple and robust and readily adapted to imaging at cold temperatures. 297 

We have performed in situ recordings at air temperatures down to -13 ºC (Lindensmith et al., 298 
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2016). For imaging thermophiles, we have created a low-cost system where the microscope is 299 

submerged in a pot of boiling water with the optics protected by a plastic bag. Imaging 300 

temperatures of >90 ºC can be obtained using this setup (Dubay et al., 2022). 301 

A summary of the hardware and software parameters in recent DHM studies of bacteria is given 302 

in Table I. 303 

 304 
Fig. 4. Holograms of freely swimming E. coli in a time series. Two frames are shown in the left column, where the 305 
asymmetry in the fringes is noticeably different between the frames. The best-fit holograms are shown in the middle, 306 
and three-dimensional renderings from the best-fit holograms are shown on the right using the discrete dipole 307 
approximation and the software HoloPy (http://manoharan.seas.harvard.edu/holopy/). (Image from: Anna Wang, 308 
Rees F. Garmann, Vinothan N. Manoharan, “Tracking runs and tumbles with scattering solutions and digital 309 
holographic microscopy,” Opt. Express 24, 23719-23725 (2016); © 2016 Optica Publishing Group under the terms 310 
of the Open Access license. Image not edited). 311 
  312 
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 313 
Microorganism 
Studied 

Software Objective(s) l (nm) Camera 

E. colia HoloPy 60x  
NA=1.2 
In-line 

660 Photon Focus 
MVD-1024E-
160, 100fps 

E. colib Trajectories linked by 
home-made Python 
code 

40x 
NA=0.6 
In-line 

455 sCMOS 
20Hz for 2min 

S. marcescensc Manual Tracking /  
2D WTMM 
segmentation method 

NA=0.3 
Off-axis 

405 170ms intervals 
for 3min 

E. colid No tracking 40x NA=0.6 
100x NA=1.4 
In-line 

455 
450 

sCMOS 
 

E. coli 
Pseudomonase 

Coordinates from 
Rayleigh-Sommerfeld 
propagation/Trajectories 
from homemade 
program 

40x NA=0.6 
In-line 

455 sCMOS 
20fps 

P. aeruginosaf Bacterial trajectory: 
bespoke Matlab scripts: 
DHMTracking and 
StackMaster 

60x NA=1.4 
In-line 

685 CMOS 
41.6Hz 

E. colig Image recognition 3D 
tracking method 

40x NA=0.6 
In-line 

505 sCMOS 
50fps/2min 

E. colih Median division 
followed by 
reconstruction; 
projection and tracking 
in XY and manual 
extraction of Z 

20x NA=0.5 
 

515 
642  

Mikrotron MC-
1362 CMOS 
50 fps 

Pseudomonas 
aeruginosai 

Median subtraction; 
reconstruction and 
projection into XY, XZ, 
and YZ; polynomial 
regression smoothing 

20x NA 0.4 
In-line 

532 pco.imaging 
CMOS 
5 fps 

B. subtilisj Custom open source 
reconstruction and 
tracking software 

NA 0.3 aspheres 405 Allied Prosilica 
GT 15 fps 

Table I. Imaging parameters in recent bacterial motility studies using holographic microscopy.  314 
a Wang et al. Optics Express 2016, 24, (21), 23719-23725. 315 
b Qi et al. Langmuir 2017, 33, (14), 3525-3533. 316 
c Marin et al. Methods 2018, 136, 60-65. 317 
d Huang et al. Optics Express 2018, 26, (8), 9920-9930. 318 
e Peng et al. Langmuir 2019, 35, (37), 12257-12263. 319 
f Hook, et al.  Msystems 2019, 4, (5). 320 
g Wang et al. Optics Express 2020, 28, (19), 28060-28071. 321 
h Farthing et al. Optics Express 2017, 25, (23), 28489-28500. 322 
i Vater et al. PLoS One 2014, 9, (1), e87765.  323 
j Dubay et al. Frontiers in Microbiology 2022 https://doi.org/10.3389/fmicb.2022.836808 324 
 325 
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2.3. Fluorescence microscopy 326 

Fluorescence microscopy has the highest signal-to-noise of any of the discussed microscopic 327 

techniques. It has a higher effective resolution than other techniques because of reduced noise as 328 

well as the ability of targeted probes to highlight small structures, such as flagella, that are 329 

ordinarily below the diffraction limit. What we mean by “effective resolution” is that the centroid 330 

of a high signal-to-noise image can be localized to nanometer precision even if the object’s size 331 

appears inaccurate. This phenomenon has been used to image individual fluorescent nanoparticles 332 

<5 nm in diameter as well as to develop superresolution techniques such as PALM and STORM, 333 

where centroids of different objects are separated temporally (Waters and Wittmann, 2014). 334 

While some dyes might affect motility (Martin and Logsdon, 1987, Wainwright et al., 1997), 335 

the advantages of fluorescence make it essential whenever high resolution or high signal-to-noise 336 

are needed. Membrane dyes have been shown to have less effect on motility and cell division than 337 

DNA-targeting dyes (Charles-Orszag, Lord and Mullins, 2021). When studying extremophiles, it 338 

is important to note that many commonly used dyes do not fluoresce under extremes of 339 

temperature, salt concentration, and/or pH, and that cell-wall or membrane-targeting dyes that 340 

work in bacteria may not work in archaea. Fluorescent probes that work in thermophiles, 341 

halophiles, and at pH extremes have been reported (Leuko et al., 2004) (Rastadter et al., 2022) 342 

(Maslov et al., 2018). 343 

At the whole-cell level, the ability to genetically modify bacteria to express fluorescent proteins 344 

(FPs) such as green fluorescent protein (GFP) and its variants has enabled numerous tracking 345 

experiments in both simple and complex milieux. FPs have little effect on physiology and 346 

demonstrate low phototoxicity, permitting them to be used for long-term recordings, although care 347 

should be taken to use green light rather than blue or violet for excitation, as the shorter 348 
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wavelengths affect cell growth (El Najjar et al., 2020). Green excitation corresponds to Yellow 349 

Fluorescent Protein (YFP) emission; YFP is very commonly used in microbial studies. The GFP 350 

family of proteins requires oxygen for maturation and thus cannot be used in anaerobes; a variety 351 

of oxygen-independent alternatives have emerged recently (Chia et al., 2019, Chia et al., 2020, Ko 352 

et al., 2020). 353 

For observation of flagella, fluorescence microscopy with labeling is essential. Fluorescence 354 

has been used to observe correlate flagellar movements with tumbles in E. coli, B. subtilis, and 355 

motile Enterococcus (Turner et al., 2016). Cells were labeled with the dye Alexa Fluor 532, and 356 

an overlay of phase contrast and fluorescence was used to visualize the cell bodies and flagella 357 

(Fig. 5 (a)). Fluorescent labeling of flagella may also be used to provide complementary 358 

information for cells tracked by other means. One study examining the distribution of flagellar 359 

filaments FlaA and FlaB used fluorescent labeling of inserted cysteine residues to visualize the 360 

flagella in individual cells, then used DHM without labeling for high-throughput tracking (Fig. 5 361 

(b)) (Kuhn et al., 2018). 362 

The biggest drawback for long-term fluorescence microscopy is photobleaching. 363 

Photobleaching may be reduced by limiting light intensity and/or exposure times or by the addition 364 

of antioxidants to the medium (or the removal of oxygen if possible) (Bernas et al., 2004, Boudreau 365 

et al., 2016, Giloh and Sedat, 1982).  366 

 367 
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 368 
Fig. 5. Use of fluorescence microscopy and flagellar labeling to elucidate the role of flagella in swimming. (a) Track 369 
of a typical untreated E. coli cell (upper panel) with combined phase-contrast and fluorescence images (dark and 370 
light, respectively, lower-left panel). Runs are shown in blue, tumbles are in red, and runs with the laser on are in 371 
green. Each data point along the trajectory corresponds to one video frame (30/s). At the start, image 1 (lower-left 372 
panel), the phase-contrast image shows the cell moving parallel to the X-Y image plane. Cell-body measurements 373 
were made from this image. At image 68, the cell is seen end-on while moving along the Z axis at track point 68. 374 
The overview (right panel) shows the track in the X-Y plane from points 100–200, and includes laser illumination 375 
points 157–191. The cell was running with a tight bundle in image 161. A tumble occurred during points 168–177. 376 
In image 177, as the tumble ended, the bundle started to reform, a process that was completed at point 188 (not 377 
shown). A tightly formed bundle is evident in image 191. After this point, another tumble began. The scale bar is 2 378 
μm (FromBiophys J. 2016 Aug 9; 111(3): 630–639. doi: 10.1016/j.bpj.2016.05.053, © 2016 Biophysical Society, 379 
used with permission). (b) Micrographs of cells with fluorescently labeled flagellar filaments displaying the outcome 380 
of the genetic editing of the flagellin genes (from Kuhn et al, 2018, under terms of the Creative Commons license). 381 
 382 
 Parameters of recent bacterial tracking studies using fluorescence microscopy are 383 

summarized in Table II. 384 

 385 
  386 
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Microorganism  
Studied 

Objective(s) Fluorophore  Camera Tracking Method 

E. colia 100x/ NA 0.9 Yellow fluorescent 
protein YFP 

ANDOR iXon 897 
EMCCD 
(30 fps at 512x512) 
 

Lagrangian tracker (motorized 
stage, photobleaching 
correction) 

E. colib 60x/NA 1.27 Red fluorescent 
protein mRFP1 

Hamamatsu Orca 
Flash 4.0 (50 fps) 

Custom software, confined 
channels 

E. coli 
P. aeruginosac 

40x, NA 1.0 Vybrant Dyecycle 
Green 

Zeiss, 80 ms 
exposure 

Segmentation and LAP 
tracking 

E. coli  
B. subtilis  
Enterococcusd 

25x LWD/ 
NA 1.1 

Alexa Fluor 532 
maleimide 
(flagellar labeling) 

KPC-650BH 
(30 fps) 

Tracking microscope 

Table II. Parameters used in some recent bacterial tracking studies using fluorescence microscopy. 387 
a Figueroa-Morales et al. Physical Review X 2020, 10, (2), 021004. 388 
bVizsnyiczai et al Nat Commun 2020, 11, (1), 2340. 389 
c Khong et al. bioRxiv 2020, 2020.05.03.075507. 390 
d Turner et al. Biophysical Journal 2016, 111, (3), 630-639. 391 
 392 

2.4. Differential dynamic microscopy 393 

Differential dynamic microscopy (DDM) is a recent method (introduced in 2008 and developed 394 

for bacteria in 2011-2012 (Martinez et al., 2012, Wilson et al., 2011)) that allows critical motility 395 

parameters such as velocities and fraction of motile particles to be extracted from recordings with 396 

low signal to noise ratios. DDM uses successive images to characterize the motility of a population 397 

by calculating the temporal fluctuations of the number density over different length scales. The 398 

key parameter is the differential image correlation function (DICF), 𝑔(𝑞, 𝜏), which is the modulus 399 

of the difference of two Fourier-space images over a time step τ: 400 

𝑔(𝑞, 𝜏) = 〈|𝐼(𝑞, 𝑡 + 𝜏) − 𝐼(𝑞, 𝑡)|)〉-. (3) 401 

The DICF is related to the intermediate scattering function (ISF), f(q, τ), by  402 

g(q, τ) = A(q)[1 − f(q, τ)] + B(q), (4) 403 

where A(q) depends on the optics, particle shape, and mutual arrangement, and B(q) represents 404 

the camera noise. For a mixed population of motile- and non-motile cells with motile fraction a,  405 

the ISF consists of a part due to Brownian motion, represented by the diffusion coefficient D, and 406 

a part due to swimming: 407 
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𝑓(𝑞, 𝜏) = (1 − 𝛼)𝑒./!01 + 𝛼𝑒./!0- ∫ 𝑑𝑣𝑃(𝑣) 23!(/41)
/41

5
6 , (5) 408 

where P(v) is the velocity distribution function. The term due to swimming decorrelates much 409 

more quickly than that due to Brownian motion, resulting in a two-phase f that may be fit to a 410 

multi-parameter function to extract the diffusion coefficient, mean swimming speed, and fraction 411 

swimming. The advantages of this method are rapid, tracking-free determination of these key 412 

motility parameters. The disadvantages are lack of visualization, so that spurious results are 413 

difficult to identify; some comparison with manual tracking is needed. In addition, a form for the 414 

velocity distribution function needs to be specified, so some advance knowledge of swimming 415 

characteristics is needed. The technique also requires a large data volume, approximately 1000 416 

frames at 50 frames/s for cells swimming at typical run-and-tumble speeds (10-50 µm/s). 417 

3. RECORDING APPARATUS AND SOFTWARE 418 

3.1. Cameras  419 

Commercially available cameras require trade-offs between field of view and framerate. Until 420 

recently, obtaining full 2048x2048 or even 1024 x 1024 pixel images at >50 frames/s required 421 

highly specialized and costly instrumentation. Although fast cameras are becoming more readily 422 

available, obtaining frame rates >50 fps usually requires some downsampling as well as limiting 423 

any simultaneous data imaging. Cameras for fluorescence represent a special category, as they 424 

must be extremely sensitive and have low background; most are cooled. If specialized wavelengths 425 

such as ultraviolet or infrared are imaged, this imposes additional demands upon the camera. 426 

Because of the complexity of the trade-offs, we have identified the camera model in all of the 427 

studies identified in Tables I and II. 428 

The effect of framerate on analysis of bacterial tracks has been discussed in the context of a 429 

velocity jump process model, where identification of re-orientation events is key to accurate 430 
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parameter estimation. As the sampling rate becomes so slow that multiple re-orientation events 431 

between frames become probable, there is a rapid breakdown in analysis accuracy (Harrison and 432 

Baker, 2018). 433 

3.2. Acquisition software 434 

Acquisition software is dependent on the microscopy technique chosen. For most applications, 435 

the camera software is sufficient; a software development kit (SDK) is usually provided with 436 

camera purchase. Manufacturers often sell software separately, but the cost of the software 437 

sometimes exceeds that of the camera. The open-source package MicroManager (Edelstein et al., 438 

2010) has been developed to interface with a large number of commercial cameras, microscopes, 439 

and accessories in order to minimize costs associated with software. 440 

For specialized techniques such as DHM, software is usually custom. Several research groups, 441 

including our own, have made their DHM software openly available (Fregoso et al., 2020, Zhang 442 

et al., 2015). 443 

 444 
4. CELL IDENTIFICATION AND TRACKING 445 

Creating and finding tools for cell tracking is an ongoing area of development. In 2012 a “Cell 446 

Tracking Challenge” was hosted by the IEEE International Symposium on Biomedical Imaging 447 

(ISBI). The results were published in 2014 (Chenouard et al., 2014) with the statement “at present, 448 

there exists no universally best method for particle tracking,” and this is still valid today, nearly a 449 

decade later. 450 

Large datasets are generated from imaging and recording samples. One of the primary 451 

challenges for bacterial tracking relates to its low signal to noise ratios. There are a variety of both 452 

in-house and commercially available software packages that attempt to solve this problem. 453 

However, there is currently no “black box” solution that works for any bacterial dataset. Cell 454 
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tracking in 2D and 3D consists of 1) preprocessing the images, 2) detecting the cells and 3) cell 455 

tracking by linking them correctly in successive video frames. Step 1 is usually semi-automated, 456 

whereas steps 2 and 3 can be done manually or automatically.  457 

 458 
 459 

4.1. Preprocessing 460 

The preprocessing necessary is highly dependent upon the technique used. For most brightfield 461 

and phase contrast techniques, some sort of background subtraction using different denoising 462 

approaches (rolling ball algorithm, median, Gaussian filter) is necessary. Such filters are found in 463 

all common image-processing software packages, both open-source and commercial. 464 

For DHM, aberration correction is essential. A large amount of research has gone into 465 

development of experimental and software techniques for improvement of DHM contrast. The 466 

denoising approaches to amplitude and phase images are different. While amplitude images are 467 

generally noisier than phase images, especially with respect to speckle noise, approaches to de-468 

noising are simpler. If the fringes are temporally stable, the hologram may be median subtracted 469 

before reconstruction in amplitude (Bedrossian et al., 2020) (Fig. 6 (a)-(c)). Alternatively, 470 

amplitude images may be median subtracted plane-by-plane after reconstruction. For motile 471 

objects, this usually results in sufficient de-noising for particle detection. Additional signal-to-472 

noise may be obtained using frame-to-frame subtraction, a method which is frequently used for 473 

DIHM. These techniques remove motionless objects, which can be an advantage or a disadvantage 474 

depending upon the experiment. 475 

Quantitative phase retrieval presents specific challenges; approaches to phase aberration 476 

correction have been recently reviewed (Sirico et al., 2022). Digital aberration correction is usually 477 

performed using a reference hologram (Colomb et al., 2006), but this reference must be chosen 478 
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carefully. If objects are moving, a good reference hologram may be the median of the entire image 479 

stack, provided that the fringes are stable (Fig. 6 (d)). For long acquisitions or when fringes are 480 

not stable, a “rolling mean” of a selected number of images may serve as a reference hologram. 481 

Obtaining an empty reference from a chamber without cells is usually not possible, since many of 482 

the aberrations arise from the precise sample chamber and area of the chamber being imaged. Thus, 483 

even microscopic changes in the slide position can alter the aberrations. 484 

An advantage of phase reconstructions is the Gouy phase anomaly, where an object switches 485 

from light to dark across the focal plane (Fig. 6 (e)). This means that the Z-derivative has a 486 

maximum at that point, so the axial derivative of a phase reconstruction reduces noise in Z (Fig. 6 487 

(f)) and in XY (Fig. 6 (g)). The choice of reconstruction spacing for the derivative depends upon 488 

the dataset (Gibson et al., 2021). 489 

 490 
Fig. 6. Appearance of bacteria (in this case, the marine microorganism Collwellia psychrerythraea 34H) 491 
under DHM with and without denoising. (a) Raw hologram of part of the microscopic field of view. (b) 492 
Median subtracted hologram (as in (Bedrossian, Wallace, Serabyn, Lindensmith and Nadeau, 2020)) showing 493 
individual cells whose Airy patterns overlap in Z. (c) Reconstruction on a single focal plane in amplitude. 494 
Cells in focus (arrow) are reduced to 1-2 pixels, while cells not in focus in that plane retain large diffraction 495 
patterns. (d) Phase reconstruction on a single Z plane, with an example cell indicated by an arrow, using a 496 
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reference hologram that is the mean of the entire stack. (e) YZ image through a stack of phase images 497 
reconstructed every 1 µm, showing the Gouy phase anomaly. (f) Derivative image of cell in the YZ plane. 498 
(g) Derivative image of the same plane in XY with arrow indicating the same cell as in Panel (d). 499 
 500 
For 3D datasets of all types, deconvolution may be necessary to improve axial resolution, which 501 

is lower than lateral resolution for all microscopic techniques. Deconvolution is based upon 502 

knowing the shape of the point-spread function (PSF) for the microscope system, and reducing 503 

each PSF in the image to a point based upon this input. Exact algorithms depend upon the particular 504 

parameters of the PSF and the noise, and so are specific to each microscopy technique. 505 

Comprehensive, practical reviews are available for brightfield microscopy and fluorescence 506 

microscopy (Goodwin, 2014, Swedlow, 2013), as well as for more specialized techniques such as 507 

light sheet microscopy (Becker et al., 2019). The PSF may be experimentally measured by imaging 508 

unresolved point particles, or may be theoretically calculated based upon the optics of the 509 

microscope. Theoretical modeling of the PSF is done within the software with the user supplying 510 

values such as the objective lens, immersion medium, and illumination wavelength. Commercial 511 

packages and open-source plug-ins are available for deconvolution of fluorescence and brightfield 512 

images (Table III). 513 

4.2. Cell detection  514 

Cell detection consists of recognizing pixel clusters of a defined size, which stand out from the 515 

background in a way that may be identified by an algorithm. Frequently, but not always, images 516 

are thresholded and converted to binary before tracking. Thresholding of fluorescence images is 517 

fairly straightforward, but for low signal-to-noise techniques such as brightfield and DHM, cell 518 

detection may be the most challenging aspect of the data analysis. A recent review provided a 519 

detailed overview of techniques and software for microbial image analysis, including both single 520 

cell and community analysis (Jeckel and Drescher, 2021). For most tracking purposes, cells must 521 
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be accurately identified frame by frame; thus, the detection step is independent of, but necessary 522 

to, the tracking step. 523 

4.2.1. Detection by thresholding 524 
Because of the presence of Airy rings, phase contrast and DHM images cannot be thresholded 525 

readily (Fig. 7 (a)-(c)). The edges of the Airy rings are detected more easily by particle detection 526 

algorithms than the in-focus cells. Reconstructions of median-subtracted holograms, phase 527 

derivatives, or projections across multiple Z planes all permit thresholding for some datasets (with 528 

no general rule applicable to all). Projections across Z planes may be sums of all slices, maximum 529 

projections, or minimum projections, again depending upon the dataset. Thresholding based upon 530 

maximum entropy yields the best results for most brightfield images (Figure 7 (d)-(f)). 531 

 532 

 533 
Fig. 7. Thresholding DHM images of the bacterium Shewanella putrefaciens. (a) Amplitude reconstruction on a 534 
single focal plane. (b) Thresholding using the “default” algorithm in Fiji. (c) Thresholding using the “Max Entropy” 535 
algorithm in Fiji. (d) Sum of multiple Z planes from the same field of view. (e) Thresholding using the “default” 536 
algorithm. (f) Thresholding using Max Entropy identifies the majority of the cells and can be used for tracking. 537 
 538 
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4.2.2. Other methods 539 
Features other than simple grayscale contrast may be used to distinguish cells from background. 540 

Some features that can be used are edge, texture, gradient, and structure. Depending on the 541 

algorithm, several features may be combined.  542 

Despite the availability of these tools, optimizing parameters can be time-consuming or even 543 

futile. Differences in noise or cell density from frame to frame, and changes in bacterial appearance 544 

with tumbling or other motions, can lead to poor classification. Machine learning approaches can 545 

help to optimize the many parameters needed for effective tracking; the machine learning package 546 

in MATLAB has been used to detect Bacillus subtilis (Manuel et al., 2018). The training can be 547 

extensive and highly dataset-dependent (Deter et al., 2019, O'Connor et al., 2022) (Meacock and 548 

Durham, 2021), and a recent paper proposed an adaptive kernel model for addressing these 549 

challenges and applied it to E. coli (Xie et al., 2008). For all of these methods, generalizability is 550 

challenging; what works for E. coli often does not work with smaller, faster microorganisms, such 551 

as Vibrio. 552 

Convolutional neural networks (CNNs) are a type of machine learning algorithm that learns 553 

directly from image data. MATLAB includes a Deep Learning Toolbox that can be used to design, 554 

train, and apply CNNs. New software packages have also recently been reported for submicron 555 

particle tracking which have been shown to recognize non-spherical cells such as Salmonella 556 

(Newby et al., 2018). 557 

4.3. Cell tracking 558 

After particle identification, tracking still poses a challenge. While excellent tools exist for 559 

analyzing passive motion, such as Brownian motion, simple techniques such as nearest neighbor 560 

linking over the smallest Euclidean distance cannot be used for particle tracking with partly fast-561 

moving, strongly accelerating microbes. Particle tracks intersect and overlap, and velocity vectors 562 
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are unpredictable. Therefore, the linking step is often done using a cost (or energy) function that 563 

takes into account velocity aspects (such as smoothness of the trajectory segment, smoothness of 564 

3D velocity, smoothness, and upper bound conditions on accelerations) or morphological 565 

characteristics (cell size, shape, aspect). That means it requires a priori information about the 566 

microbes. However, the correct weighting of all the different features of the cost function is often 567 

highly dependent on the used set-up and requires a lot of fine-tuning. 568 

 569 
4.3.1. Manual tracking 570 

Manual tracking was the only possible approach before the development of high-performance 571 

computers (Berg and Brown, 1972, Schneider and Doetsch, 1974). Even with modern 572 

computation, it is still in widespread use, either as a stand-alone technique or to “ground truth” 573 

automated methods. Computational tools can assist with manual tracking by annotating and saving 574 

tracks. The technique is tedious and is frequently outsourced to data analysts or assigned to 575 

undergraduate students. Throughput is low. 576 

 577 
4.3.2. Automated tracking 578 

Automated tracking greatly decreases the workload and improves statistics. Common 579 

algorithms are discussed below. 580 

 The Linear Assignment Problem (LAP) tracker, published in 2008, helps solve the problems 581 

of trajectory overlap, particle disappearance from frame to frame, and trajectory merging and 582 

splitting(Jaqaman et al., 2008).  Identified particles are linked frame to frame, then segments are 583 

linked to create trajectories. In order to determine whether segments belong to the same trajectory, 584 

a “cost matrix” is used representing all of the possibilities for spots in one frame to be linked to 585 

spots in the next. The matrix is minimized to create the most probable set of trajectories. In most 586 

software implementations, the user can fine-tune the algorithm by specifying the maximum 587 
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number of frames across which to link, and the maximum number of pixels traveled by a 588 

microorganism between frames. These parameters are obviously highly dependent upon the speed 589 

of the microorganism relative to the camera frame rate. For a heterogeneous mix of 590 

microorganisms of different speeds, the tracker may need to be re-run with different parameters to 591 

optimize linking for each cell type. The ability of the detection algorithm to find the cell in each 592 

frame will also influence the gap-closing parameter. 593 

A second approach relies on a Kalman filter, reported in the same paper as the LAP tracker 594 

(Jaqaman, Loerke, Mettlen, Kuwata, Grinstein, Schmid and Danuser, 2008), to predict the most 595 

probable position of a particle assuming that it moves with a constant velocity. The same cost 596 

matrix is used as for LAP tracking, using the square distance as cost; the software should allow 597 

manual input of test values for this initial distance. The predicted positions are linked against the 598 

actual positions of particles in each successive frame.  599 

Even for a homogeneous culture of a single bacterial species, there are some trajectories that 600 

are better captured with a LAP tracker (e.g., those with turns or spirals), and those better captured 601 

with the Kalman tracker (long runs) (Fig. 8). In all cases, several iterations will likely be necessary 602 

to optimize gap-closing distances, and manual editing and stitching/cutting of tracks can further 603 

improve results after the automated detection. 604 
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 605 
Fig. 8. Kalman vs. LAP tracker for DHM data using the microorganism Shewanella putrefaciens. (a) Large field of 606 
view indicating how it is possible to tell at a glance that the Kalman filter detects more long runs than the LAP 607 
tracker. (b) 2-fold zoom of upper right of image, showing circuitous tracks that were captured as single tracks by the 608 
LAP tracker but not the Kalman filter (red arrows), vs. long runs that were successfully captured by the Kalman 609 
filter but broken in the LAP tracker (white arrowheads). (c) 2-fold zoom of lower left corner showing a long track 610 
apparent in the Kalman filter (turquoise) that was entirely missed by the LAP tracker. The accuracy of the 611 
assignments must be checked by eye (see Supplementary Videos 1 and 2 for animations of Panel (a)). 612 
 613 
Software packages of particular relevance to all steps of data processing, bacterial identification 614 

and tracking are tabulated in Table III. 615 

4.4. Considerations for 3D 616 

3D tracking of microbial motility can lead to more accurate velocity measurements as well as 617 

reveal features that are obscured by 2D projections, especially dynamic surface behavior (Bianchi 618 

et al., 2019) (Taute, Gude, Tans and Shimizu, 2015). However, 3D tracking poses particular 619 

difficulties, and so full 3D tracked datasets of micron-sized organisms are sparse. The two biggest 620 

issues with 3D tracking are (1) poorer axial resolution vs XY resolution with most microscopic 621 

techniques; and (2) large dataset size. The use of supercomputers and software/file types 622 
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specifically designed for handling large datasets can permit tracking of full resolution 623 

(2048x2048x100 XYZ) data, but usually either downsampling, cropping, or truncation of time 624 

series is necessary. Truncation or cropping may be designed to isolate a specific cell. Stitching 625 

may be done in spatial or time coordinates depending upon which is easier for the given data. 626 

Alternatives to tracking of full 3D datasets include: 627 

• 2D tracking of Z-projections followed by manual extraction of Z coordinates (Fig. 9 (a), 628 

Supplementary Video 3) (Acres and Nadeau, 2021). 629 

• 2D tracking of Z-projections followed by automated extraction of Z coordinates by 630 

fitting or measuring Airy rings; may be done for phase contrast and DHM (Fig. 9 (b), 631 

Supplementary Video 4). For DHM, a simulated PSF may be created by angular 632 

spectrum propagation of a single-pixel spot (Piedrahita-Quintero et al., 2015) (Fig. 9 633 

(c), (d)), and then used to match experimental data (Fig. 9 (e)). 634 

• Tracking of XY and XZ or YZ projections, then matching corresponding coordinates to 635 

obtain full XYZ information. However, the overlapping coordinates to obtain full tracks 636 

can be challenging; this approach is much more efficient with passive motion, where 637 

corresponding X or Y coordinates can be readily mapped (Rouzie and Lindensmith, 638 

2021). 639 

Note that none of these approaches are high throughput. All require substantial cropping of the 640 

datasets to make them manageable in size, as well as user input to ensure that the correct cell is 641 

tracked throughout the length of its appearance in the volume of view. 642 
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 643 

Fig. 9. Obtaining Z coordinates from DHM reconstructions. (a) Minimum intensity projection of 30 frames of a 644 
single cell, choosing the z plane at which the cell is in best focus (all slices shown in Supplementary Video 3). (b) 645 
Minimum plus maximum intensity projection for the same cell from a reconstruction at a single focal plane (all 646 
slices shown in Supplementary Video 4). (c) Simulated Airy rings in the XY plane for a point source projected over 647 
30 µm in Z, using angular spectrum propagation with the same optical parameters as the instrument used to collect 648 
the experimental data. (d) Simulated Airy rings in the YZ plane; the red line indicates the area that was used to 649 
estimate depth for the cell at each time point. (e) Depth obtained with time for the tracked cell, comparing the 650 
refocusing and Airy ring approaches. 651 

4.5. Analyzing tracks 652 

Unlike simple physical motion such as Brownian motion, active motility displays both physical 653 

and physiological features that have not been fully elucidated. To mention a few examples, the 654 

run-reverse-flick swimming pattern of bacteria with a single polar flagellum was not described 655 

until 2011 (Stocker, 2011). Persistence in tracks was first reported in 2013 (Rosser et al., 2013). 656 

Tumbling frequencies near a surface, suggesting chemotactic behavior, were reported in 2020 657 

(Lemelle et al., 2020). The biophysics underlying bacterial motility can be lost if tracks are 658 

fragmented, spurious, or if they miss key features such as reorientation events. There is no 659 

established standard for quantifying bacterial reorientations. Because of the different possible 660 
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motility patterns as shown in Fig. 1, such analysis must be strain-dependent. This becomes 661 

increasingly challenging if the culture represents a mix of species. All tracking methods lead to 662 

some degree of false negative and false positive detection, and all require manual editing to stitch 663 

fragmented tracks or separate spuriously joined tracks. In some cases, this will require almost as 664 

much work as full manual tracking. 665 

Parameters that may need to be quantified include run lengths, tumbles and/or reversals, turn 666 

angles, velocity, acceleration, and correlation coefficients. All of these parameters, if they are 667 

reported as averages over individual tracks, can be highly misleading if the tracks are spuriously 668 

truncated, joined, or split. Another aspect that must be considered is that bacterial cultures contain 669 

some fraction of non-motile cells, and the extent to which these should be analyzed or excluded 670 

from analysis depends upon the experiments and the hypotheses being tested. The degree to which 671 

false negatives/positives and broken tracks can be tolerated also depends upon what is being 672 

studied.  673 

When tracks are correctly identified and exported as XYT or XYZT coordinates, parameters 674 

such as velocities and accelerations may be readily calculated from their definitions. However, 675 

evaluation of complex behaviors such as chemotaxis (Pohl et al., 2017) and tumbling (Liang et al., 676 

2018) require models and model-based parameters, and their analysis can be assisted by 677 

specialized software packages as indicated in Table III. 678 

  679 
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Software Task Platform Availability 
TrackMatea Particle identification and tracking Fiji  Open 

source 
Arivis Vision 4Db Many filters and tracking algorithms; 

handles large 4D stacks 
Win Commercial 

MOSAICSuitec Particle detection and tracking Fiji  Open 
source 

Ilastikd 
 

Machine learning for segmentation Fiji Open 
source 

MorphoLibJe Morphology analysis Fiji Open 
source 

SuperSeggerf Cell segmentation (fluorescence) MATLAB Free 
MicrobeJg Cell detection and analysis; large 

datasets 
Fiji Open 

source 
DeepBacsh Deep learning segmentation for 

fluorescence & brightfield 
Jupyter  

Zcellsi Machine-learning based segmentation MATLAB Free 
TumbleScorej Bacterial tracking and track analysis MATLAB Free 
Your Software for Motility 
Recognitionk 
 

High-throughput bacterial identification 
and tracking 

Python  Open 
source 

Bacterial swarmingl Swarming segmentation and analysis MATLAB Free 
AI Tracking solutionsm CNN-based tracking Cloud-based Commercial 
Machine Learning Object 
Tracking (MLOT)n 

Machine learning based identification MATLAB Free 

TaxisPyo Chemotaxis analysis Python Free 
DHMp DHM reconstruction/simulation Fiji Open 

source 
DHM Utilitiesq DHM reconstruction with reference 

hologram options 
Fiji  Open 

source 
KOALAr DHM reconstruction with reference 

hologram options 
Win Commercial 

Iterative Deconvolve 3Ds Deconvolution Fiji  Open 
source 

DeconvolutionLab2t 
 

Deconvolution Fiji  Open 
source 

Huygensu Deconvolution Cross-platform 
(Win, Mac, Linux) 

Commercial 

Table III. Selected software packages for image processing, bacterial detection, and tracking. 680 
a D. Ershov et al., Nat Methods 19, 829 (2022) 681 
b https://www.arivis.com/solutions/vision4d 682 
c I. F. Sbalzarini and P. Koumoutsakos, Journal of Structural Biology 151, 182 (2005) 683 
d S. Berg et al., Nat Methods 16, 1226 (2019) 684 
e D. Legland et al., Bioinformatics 32, 3532 (2016) 685 
f S. Stylianidou et al., Mol Microbiol 102, 690 (2016) 686 
g A. Ducret et al., Nat Microbiol 1, 16077 (2016) 687 
h C. Spahn et al., Commun Biol 5, 688 (2022) 688 
i https://lab513.github.io/Zcells/ 689 
j A. E. Pottash et al., Biotechniques 62, 31 (2017) 690 
k J. Schwanbeck et al., BMC Bioinformatics 21, 166 (2020) 691 
l A. Be’er et al., Communications Physics 3, 66 (2020) 692 
m https://aitracker.net/ 693 
n https://github.com/mbedross/MachineLearningObjectTracking 694 
o M. A. Valderrama-Gomez et al., J Microbiol Methods 175, 105918 (2020) 695 
p https://github.com/unal-optodigital/DHM/blob/master/README.md 696 
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q https://github.com/sudgy 697 
r https://www.lynceetec.com/koala-acquisition-analysis/ 698 
s https://imagej.net/plugins/iterative-deconvolve-3d 699 
t Sage et al. Methods 115, 28-41, doi:10.1016/j.ymeth.2016.12.015 (2017) 700 
u https://svi.nl/Huygens-Software 701 
 702 
 703 

5. Conclusion 704 

Tracking bacteria still represents a challenge, especially in 3D or under extreme conditions such 705 

as high or low temperature, high cell speed, or dense or inhomogeneous cultures (mixed species 706 

or phenotypes). Each experimental type, or even each dataset, will require customized methods 707 

and ground-truthing to eliminate false negatives and false positives. Manual tracking remains a 708 

necessary task for many applications, since the human eye and brain can identify cells and motion 709 

in noisy environments where even the most sophisticated algorithms fail. Modeling the physics of 710 

motility can be influenced by false positives, false negatives, and broken tracks. Improvements in 711 

3D tracking will lead to new discoveries in the physics of microbial motility. 712 
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