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ABSTRACT

Bacterial motility plays a key role in important cell processes such as chemotaxis and biofilm
formation, but is challenging to quantify due to the small size of the individual microorganisms
and the complex interplay of biological and physical factors that influence motility phenotypes.
Swimming, the first type of motility described in bacteria, still remains largely unquantified.
Light microscopy has enabled qualitative characterization of swimming patterns seen in different
strains, such as run and tumble, run-reverse-flick, run and slow, stop and coil, and push and pull,
which has allowed for elucidation of the underlying physics. However, quantifying these
behaviors (e.g., identifying run distances and speeds, turn angles and behavior by surfaces or
cell-cell interactions) remains a challenging task. A qualitative and quantitative understanding of
bacterial motility is needed to bridge the gap between experimentation, omics analysis, and
bacterial motility theory. In this review, we discuss the strengths and limitations of how phase
contrast microscopy, fluorescence microscopy, and digital holographic microscopy have been
used to quantify bacterial motility. Approaches to automated software analysis, including cell
recognition, tracking, and track analysis, are also discussed with a view to providing a guide for

experimenters to setting up the appropriate imaging and analysis system for their needs.

Keywords: Biological Optics; Cell Locomotion; Chemotaxis; Biological Movement
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1. INTRODUCTION

Since the development of a tracking microscope in 1971(Berg, 1971), researchers have
recognized the need for tools that would allow for both imaging and recording of microbial
motility. The ideal experimental apparatus would record images of cells in a 3D volume with high
signal to noise ratios and at high framerates. This would in turn allow cell tracking algorithms to
easily characterize cell motility quickly and effectively, preferably with minimal user input.
Advances over the past few decades have brought this ideal case closer to reality. Unfortunately,
despite numerous experimental setups and data analysis techniques, the holy grail of precise and
straightforward 3D tracking of bacteria remains elusive. That being said, progress has been made
in understanding motility phenotypes of various bacteria using a variety of imaging and software
techniques, which we will summarize here with the goal of making it easier for those planning
bacterial tracking experiments to choose hardware and software.

Acquisition and analysis software may be open-source or commercial. Choices are determined
by the project’s budget as well as any needs to re-tune available code to custom optical systems.
The platforms ImageJ (FIJI) (Schindelin et al., 2012) and ICY (de Chaumont et al., 2012) are
highly versatile, open source, and widely used by biologists, so in this review we will mention
when a FIJI or ICY package or plug-in exists for a particular technique. Many packages for
MATLAB are also available, as well as custom programs based in Python.

Several recent reviews of cell and particle motility exist, and we will focus on areas
complementary to those recently discussed. One thorough review covers tracking of more complex
cells, which largely applies to 2D processes such as cell migration as well as tracking of sub-
cellular organelles, and offers a comprehensive list of software for this application (Emami et al.,

2021). While there is significant overlap with bacterial tracking, the latter presents certain specific
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challenges, particularly fast speeds and 3D motion. It is also simpler in some respects, since
contouring is usually not necessary and subcellular features are neglected. Another recent review
focuses on ameboid motility to illustrate the steps required in motility quantification of complex
cells (Boquet-Pujadas et al., 2021). Single-molecule investigations of bacterial cells using high
resolution fluorescence techniques have been also well reviewed elsewhere (Gahlmann and
Moerner, 2014). Additionally, “microswimmers” may also refer to non-living particles. Many
studies have been conducted on microspheres (Lee et al., 2007, Lei et al., 2015, Zhang et al., 2017)
and other types of nonliving swimmers, and approaches to their tracking have been reviewed (Pané
et al., 2019). Although nonliving particles can be used to approximate bacteria in size, their lack
of self-motility and relatively slow speeds simplify data processing in ways that are not possible
for bacteria; in addition, they may be engineered to provide contrast for different imaging
techniques. We will limit the scope of the current review to tracking of unstained, self-motile
microorganisms on the order of 1-2 um in diameter and the unique challenges these present,
specifically complex, frequently overlapping tracks and speeds of up to hundreds of cell lengths

per second.

1.1. Bacterial motility
Motility is a crucial microbial phenotype that has evolved independently in Bacteria, Eukarya,
and Archaea. On the molecular level, 18 different motility types can currently be identified, with
more undoubtedly to be discovered in microorganisms that have not yet been cultured (Miyata et
al., 2020). Some bacteria use flagella for swimming motility, whereas archaea use the unrelated
archaellum (Albers et al., 2018, Albers and Jarrell, 2015). Directional motion allows
microorganisms to find nutrients, escape predators, waste products, and toxins, and assemble into

biofilms. The best studied microorganisms are Escherichia coli (E. coli) and Salmonella enterica
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serovar Typhimurium, and much of what we know about motility and chemotaxis come from these

organisms (Bardy et al., 2017).

Research into different microorganisms with different motility patterns has grown over the past
two decades, identifying new classes of motility, motility in new classes of microorganisms, and
elucidating the physics of swimming at the micron scale. Flagellins are highly conserved in
bacteria, but flagellar conformations of bacteria and archaea vary greatly, as do body shapes, as
shown in Fig. 1 (a), (b). At least six types of swimming patterns can be distinguished in low-
resolution microscopic recordings; these correspond to both flagellar arrangement and function.
The common gut and soil bacteria Escherichia coli and Bacillus subtilis have peritrichous flagella
and show a well-characterized pattern of motility involving “runs” (where all the flagella rotate
together in a bundle, turning counter-clockwise) and “tumbles” (where the flagella turn clockwise
and the bundle separates) (Fig. 1 (¢)). Bacteria with peritrichous flagella that only rotate clockwise
can show run-and-stop or run-and-slow patterns (Armitage and Schmitt, 1997) (Fig. 1 (d)).
Another pattern, the “run-reverse flick” pattern of aquatic microorganisms with a single polar
flagellum, such as Vibrio alginolyticus, is also known (Fig. 1 (e)) (Stocker, 2011). This pattern of
swimming, common in marine bacteria, involves 180-degree reversals, creating zig-zag tracks,
often at high speeds compared to bacteria with peritrichous flagella (up to 100 pm/s vs. 10-30
um/s). Another type of swimming seen with a single flagellum is the stop-and-coil motion of
microorganisms such as Rhodobacter sphaeroides, where the flagellum cannot reverse direction,
so it coils in order to allow the microorganism to change orientation (Armitage, 1999) (Fig. 1 (f)).
Motile magnetotactic cocci have been identified that have peritrichous flagella and swim in a
helical motion due to push-pull action of the flagella (Zhang et al., 2014) (Bente et al., 2020) (Fig.

1 (g)). Swimming patterns of spiral-shaped cells are characterized more by the appearance of the
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cells themselves rather than the track of movement. In Spirochetes such as Borrelia and
Treponema, pairs of flagella rotate within the periplasm, generating a helical wave (Tahara et al.,
2018). In spirochaetes, two “run” modes and two non-translational modes have been identified. In
general, changes in flagellar number, arrangement, hook length, or other parameters profoundly
(Zhu et al., 2022) affect motility and chemotaxis patterns (Najafi et al., 2018).

Other types of swimming continue to be elucidated. Synechococcus is a cyanobacterium that
swims without flagella (Waterbury et al., 1985). Other types of non-swimming motility are also
seen but are less understood. Type IV pili are used by many species for motility on surfaces,
usually called twitching motility (Piepenbrink et al., 2016). Gliding refers to a surface mechanism
used by a heterogeneous group of bacteria, powered by ion channels and secretory mechanisms
independent of flagella (Nan and Zusman, 2016). Sliding is a type of surface motility that requires
no active motor (Holscher, 2017). Staphylococci, previously considered non-motile, have been
shown to have means of locomotion that include spreading, darting, and comet formation (Pollitt
and Diggle, 2017). In this review we focus on motility that is tracked in liquid medium, thus
restricting our discussion to swimming and to some extent gliding.

Much less is known about swimming in archaea, although it has been known for some time that
swimming is induced by rotation of the archaellum. Much of the difficulty in studying these
microorganisms arises from the need to observe them under extremophilic conditions: anaerobic,
temperature extremes, and/or very high salt. A systematic study of the swimming patterns of
several types of archaea was performed in 2012 (Herzog and Wirth, 2012). Some archaea show
the fastest movement relative to body size of any known organism on Earth. The patterns of fast-
swimming archaea were characterized as “run and seek,” with different behaviors (slower zig-

zagging) near the surface of the slide. The tracks are closest to the bacterial “run and flick” pattern,
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but many archaea are distinguished by their remarkable speeds. Some microscopy systems
designed to accommodate the needs of archaea will be specifically mentioned in this paper.
High-resolution recordings permit observation of detailed features of tracks rather than
characterizing all forward motion as simply “runs.” These studies have led to an increasing
appreciation of the importance of cell body shape in swimming. The cell body is often considered
to be a source of passive drag, but non-rod-shaped cell bodies may contribute to motility. Many
marine motile bacteria are curved rods falling within a relatively narrow range of elongation and
curvature. Detailed models of swimming speeds and chemotaxis efficiencies have identified
shapes that are optimized across a panel of selective parameters (Schuech et al., 2019). Even more
recently, helical motion of a crescent-scaped bacterial cell, Caulobacter crescentus, was observed

to affect swimming patterns in this singly flagellated cell (Yuan et al., 2021).

1.2. Imaging challenges

Understanding motility phenotypes provides a framework of what quantities might be of
interest to characterize and quantify bacterial motility. For instance, the length of a bacterium’s
“run” could change based on environmental factors such as viscosity. Rapid characterization of
run length for numerous cells would give good statistics and provide a sound basis of comparison.
However, quantification of bacterial motility remains challenging due to the technological
difficulty of imaging live, active microorganisms on the order of the size of 2A of visible light that
can move tens or even hundreds of cell lengths per second. For any imaging system, a variety of
trade-offs must be made according to the specific goals of the experiment. Increased spatial
resolution usually leads to decreased field of view, unless cameras with very high sensor sizes are
used. High frame rates are necessary to capture fast processes but lead to extremely large datasets

if carried out over long times. Fluorescent labels increase signal to noise of imaging, but dyes may



155

156

157

158

159

160

161

162

163

164

affect microorganism behavior. Finally, data may be analyzed cell by cell, which optimizes
accuracy but limits the number of cells considered; or statistical analyses may treat hundreds to
thousands of cells at a time but fall prey to false positive and false negative identification of tracks.

The purpose of this review is to identify the recent breakthroughs in bacterial motility analysis
and identify what parameters of an imaging system are necessary to study the identified
phenomena and what the limiting technological factors are in each case. Summary tables are
provided that should assist researchers in choosing imaging and tracking techniques that are
appropriate for the systems studied, or in developing custom systems that can push the limits of
what is currently known. Both hardware and software are considered, with particular attention to

automated identification and tracking algorithms.
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FIG. 1. Cell morphologies and swimming patterns. (a) Both bacteria and archaea show a variety of body shapes that
can be classified as cocci (spherical), bacilli (rods), curved rods, or spirals. (b) Flagella and archaella may be
attached to the cell in a variety of patterns. A rod-shaped body is shown for simplicity, but the different flagellar
patterns are seen across body types. From top to bottom are monotrichous (a single flagellum, which may be lateral
or polar), lophotrichous (multiple flagella attached at a single point), amphitrichous (flagella on each end),
peritrichous (multiple flagella attached at different points all over the surface), and periplasmic (flagella enclosed in
the periplasmic space). (c) Run-and tumble pattern as exemplified by E. coli. (d) Run-and slow pattern as
exemplified by Sinorhizobium melioti. (¢) Reverse and flick as exemplified by V. alginolyticus. (f) Stop and coil as
exemplified by R. sphaeroides. (g) Push and pull as identified by the eukaryote Chlamydomonas.



176

177

178

179

180

181
182

183

184

185

186

187

188

189
190

191
192

193

2. MICROSCOPY TECHNIQUES

Throughout the years, a variety of imaging techniques have been employed with the goal of
bacterial tracking. These include phase contrast microscopy, darkfield microscopy, fluorescence
microscopy, and digital holographic microscopy (both in-line and off-axis). Each system has

tradeoffs; the most commonly used in recent studies are discussed in detail below.

2.1. Phase contrast microscopy
Phase contrast microscopy is a standard technique found in most microbiology laboratories and
easily implemented on all commercial microscopes. Depending upon the objective lens chosen, it
is capable of either high resolution or fairly large depth of field. Diffraction-limited lateral (XY)
resolution is given by A/NA, where A is the wavelength of illuminating light and NA is the
numerical aperture of the objective. Depth of field d is the sum of two terms, a wave term and a

geometrical optical term (Davidson and Spring):

d ni + ne (1)

- (NA2Z ~ M(NAY
where n is index of refraction of the medium between the lens and the coverslip (air or

immersion oil), e is the smallest resolvable element, and M is the magnification. (Fig. 2).
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FIG 2. Tradeoff between resolution and depth of field for 550 nm illumination and air objectives. The non-linear
relationship can be appreciated by observing that for bacterial cells on the order of 1 um, the ability to resolve the
cells will lead to a depth of field of < 10 um, whereas a decrease of resolution for 2.5 pm will permit a depth of field
of > 50 pm.

Phase contrast microscopy represents one of the most established and successful methods of
bacterial tracking. It has been used for some significant recent results, such as tracking a variety
of swimming archaea, including hyperthermophiles (Herzog and Wirth, 2012) and discovery of
the importance of cell body motion in swimming of Caulobacter (Liu et al., 2014).

The primary disadvantage of phase contrast microscopy is that cells are lost as they swim in X
and Y, or out of focus in the Z plane. Manual manipulation or digital tracking stages may be used
to follow cells. Methods to follow single cells include the use of scanning stages (Berg and Brown,
1974, Frymier et al., 1995, Yang et al., 2015) or scanning objectives (Corkidi et al., 2008). These
methods are limited by their scanning speed. Most recently, a technique has been proposed for
determining Z depth in out-of-focus microorganisms by fitting the Airy ring pattern to calibrated
patterns from test cells (Taute et al., 2015).

In some experiments, it is not necessary to permit the cells to swim freely in Z. In this case,
sample chambers or flow cells may be constructed that restrict the cells to a single focal plane.

This is useful when only 2D motion is necessary, such as to determine the fraction of motile cells

10
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or a general idea of the swimming speed. This may be useful for determining cell health or growth
phase (Ziegler et al., 2015).

The typical light microscopes used for phase contrast (or related techniques such as differential
interfererence contrast [DIC]) may be modified for use with extremophiles. The low-temperature
swimming record seen in the bacterium Colwellia psychrerythrea, -15 °C, was determined using a
laboratory microscope customized by the vendor for use at subzero temperatures. The entire
instrument and its operator were then located in an adjustable-temperature cold room (Junge et al.,
2003). At the other extreme, a heated indium tin oxide (ITO) chamber heated to 75 °C, with the
microscope objectives heated to 65 °C, was used for imaging hyperthermophilic archaea (Charles-
Orszag et al., 2021).

2.2. Digital holographic microscopy

Digital holographic microscopy (DHM) is a volumetric technique based upon interferometry,
where a volume of view is captured in a single snapshot (hologram). The hologram appears as a
pattern of Airy rings indicating out-of-focus objects throughout the focal depth. The typical
approach to analyzing DHM data is to reconstruct the optical field through a chosen Z depth and
spacing based upon the hologram. Reconstruction methods depend upon the DHM geometry used,
namely “off-axis”, where object and reference beams interfere at an angle (Fig. 3 (a)), or “inline”
imaging (DIHM) where a single beam serves as both object and reference (Fig. 3 (b)). The different
approaches to geometry and reconstruction have been reviewed in (Xiao et al., 2014) and (Myung,
2010).

Off-axis holography separates the spatial frequencies from the unscattered “direct term” as well
as separating the real and virtual images from one another, facilitating ease of reconstruction into

both amplitude and quantitative phase images (Schnars and Jiiptner, 2002). Amplitude images are

11
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equivalent to transmission light microscopy. Quantitative phase images have no direct counterpart
in ordinary light microscopy and are related to the product of the cell thickness / and the difference
in refractive index between the medium (n,) and cell (n.), with the phase shift A¢ given by
(Marquet et al., 2005, Rappaz et al., 2005) (Marquet, Rappaz, Magistretti, Cuche, Emery, Colomb
and Depeursinge, 2005)

Ap =ZTh(n, — 1) (2).

where A is the wavelength of illumination. This value is modulo 2w, so complications arise
when A¢ exceeds 2. However, for experiments involving bacteria, this is rarely an issue. Instead,
the challenge lies in resolving any phase shift, as n, — n,, is on the order of 0.03-0.05 (Wyatt,
1970), and methods such as frame averaging to reduce noise cannot be performed on rapidly
moving cells.

The lateral resolution of DHM is equivalent to that of brightfield microscopy. Reconstruction
of DIHM images is more complicated, since the direct term is not readily filtered out, leading to
“ghost” images. Nonetheless, many algorithms have been developed for reconstruction and phase
retrieval from these images (Galande et al., 2021, Latychevskaia and Fink, 2009, Mic¢ et al., 2011,

Wang et al., 2018, Zhang et al., 2003).
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FIG. 3. Off-axis DHM and DIHM. (a) Off-axis holography uses the interference of two coherent beams of light from
a single source to record the complete sample volume in each captured frame. The “object” beam passes through the
sample, while the “reference” beam takes an identical-length unperturbed path to the detector. The two beams are
interfered at the detector array and the resulting interference pattern records a pattern of interference fringes which,
in Fourier space, yield the real image (O*R), the virtual image (R*O), and the so-called “direct” term Io+Ir. Either
the real or virtual image is selected in Fourier space (as indicated by the red circle) and reconstructed using a chosen
algorithm; numerical refocusing allows reconstruction of phase and amplitude images through the depth of the
sample. (b) Digital in-line holographic microscopy (DIHM) uses a single beam which is assumed to be slightly
perturbed by the object and interferes with itself. The resulting hologram does not capture information as fringes.
The illustrated reconstruction method shows a dark-field-like reconstruction that works for phase, amplitude, and
phase-amplitude objects (hologram and reconstruction are adapted from
(https://www.sciencedirect.com/science/article/pii/S0143816620300762) under terms of the Creative Commons
license; the images were cropped).

The limit to the depth that can be reconstructed from DHM results from a degradation of spatial
resolution as the reconstruction propagator extends outside the focal plane. For typical bacterial
imaging experiments with ~1 um spatial resolution, the depth of the sample is limited to ~1 mm
(Kiihn et al., 2014), which is very large compared with other microscopic techniques and which
represents the biggest advantage of this imaging technique, allowing a simultaneous snapshot of
essentially an unconstrained volume. Acquisition rates are limited by the camera frame rate. As a
result of this major advantage, a large number of recent papers have reported prokaryotic tracking

using DHM. The optics of DHM are also simple and the hardware is low in cost.
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The disadvantage of DHM is a generally low resolution (Peng and Caojin, 2022), and the
intrinsic low contrast of most prokaryotic cells in amplitude and phase. Some dyes may increase
contrast for DHM, but this is an area that has not been well explored (Nadeau et al., 2016). The
development of agents for specific enhancement of phase contrast has also been little studied,
though it is possible through labeling techniques such as genetically encoded air-filled vesicles
which provide substantial change in refractive index relative to aqueous medium (Farhadi et al.,
2020).

DHM leads to large datasets and its analysis is computationally intensive. A 30 second dataset
at 15 frames/s and 4 Mpx yields 1.8 GB of images before reconstruction. Depending upon the z-
spacing selected for reconstruction, a full reconstructed dataset may be upwards of 1 Tb. Few
software packages are available for analysis. Commercial software is usually tied to a specific
instrument. Open-source Fiji for both in-line and off-axis DHM have recently been reported
(Buitrago-Duque and Garcia-Sucerquia, 2022) (Cohoe et al., 2019).

An alternative to reconstruction is to extract Z information directly from the holograms. If the
form of the diffraction pattern or the Z-position of the object are known, the Airy pattern may be
easily fit to a function based upon Lorenz-Mie theory (Cheong et al., 2009, Lee et al., 2007,
Ruffner et al., 2018). For more complex shapes, a discrete dipole approximation must be used
(Wang et al., 2014). Open-source software is available to perform these fits, but this approach is
highly complex and computationally intensive when neither the exact shape and size nor the axial
depth are known. Good signal to noise is also essential to permit accurate fitting of the patterns.
This approach has been used to track runs and tumbles in E. coli (Wang et al., 2016) (Fig. 4).

DHM instruments are simple and robust and readily adapted to imaging at cold temperatures.

We have performed in situ recordings at air temperatures down to -13 °C (Lindensmith et al.,
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2016). For imaging thermophiles, we have created a low-cost system where the microscope is
submerged in a pot of boiling water with the optics protected by a plastic bag. Imaging
temperatures of >90 °C can be obtained using this setup (Dubay et al., 2022).

A summary of the hardware and software parameters in recent DHM studies of bacteria is given

in Table 1.

Data Best fit 3D rendering

Fig. 4. Holograms of freely swimming E. coli in a time series. Two frames are shown in the left column, where the
asymmetry in the fringes is noticeably different between the frames. The best-fit holograms are shown in the middle,
and three-dimensional renderings from the best-fit holograms are shown on the right using the discrete dipole
approximation and the software HoloPy (http://manoharan.seas.harvard.edu/holopy/). (Image from: Anna Wang,
Rees F. Garmann, Vinothan N. Manoharan, “Tracking runs and tumbles with scattering solutions and digital
holographic microscopy,” Opt. Express 24, 23719-23725 (2016); © 2016 Optica Publishing Group under the terms
of the Open Access license. Image not edited).
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Microorganism | Software Objective(s) A (nm) Camera
Studied
E. coli® HoloPy 60x 660 Photon Focus
NA=1.2 MVD-1024E-
In-line 160, 100fps
E. coli® Trajectories linked by 40x 455 sCMOS
home-made Python NA=0.6 20Hz for 2min
code In-line
S. marcescens® Manual Tracking / NA=0.3 405 170ms intervals
2D WTMM Off-axis for 3min
segmentation method
E. coli? No tracking 40x NA=0.6 455 sCMOS
100x NA=1.4 450
In-line
E. coli Coordinates from 40x NA=0.6 455 sCMOS
Pseudomonas® Rayleigh-Sommerfeld In-line 201fps

propagation/Trajectories
from homemade

program

P. aeruginosd’ Bacterial trajectory: 60x NA=1.4 685 CMOS
bespoke Matlab scripts: | n-line 41.6Hz
DHMTracking and
StackMaster

E. coli# Image recognition 3D 40x NA=0.6 505 sCMOS
tracking method In-line 50fps/2min

E. coli Median division 20x NA=0.5 515 Mikrotron MC-
followed by 642 1362 CMOS
reconstruction; 50 fps

projection and tracking
in XY and manual
extraction of Z

Pseudomonas Median subtraction; 20x NA 0.4 532 pco.imaging
aeruginosa' reconstruction and In-line CMOS
projection into XY, XZ, 5 fps

and YZ; polynomial
regression smoothing
B. subtilis’ Custom open source NA 0.3 aspheres | 405 Allied Prosilica

reconstruction and GT 15 fps
tracking software

Table I. Imaging parameters in recent bacterial motility studies using holographic microscopy.

* Wang et al. Optics Express 2016, 24, (21), 23719-23725.

b Qi et al. Langmuir 2017, 33, (14), 3525-3533.

¢ Marin et al. Methods 2018, 136, 60-65.

4 Huang et al. Optics Express 2018, 26, (8), 9920-9930.

¢ Peng et al. Langmuir 2019, 35, (37), 12257-12263.

fHook, et al. Msystems 2019, 4, (5).

¢ Wang et al. Optics Express 2020, 28, (19), 28060-28071.

b Farthing et al. Optics Express 2017, 25, (23), 28489-28500.

1Vater et al. PLoS One 2014, 9, (1), e87765.

i Dubay et al. Frontiers in Microbiology 2022 https://doi.org/10.3389/fmicb.2022.836808
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2.3. Fluorescence microscopy

Fluorescence microscopy has the highest signal-to-noise of any of the discussed microscopic
techniques. It has a higher effective resolution than other techniques because of reduced noise as
well as the ability of targeted probes to highlight small structures, such as flagella, that are
ordinarily below the diffraction limit. What we mean by “effective resolution” is that the centroid
of a high signal-to-noise image can be localized to nanometer precision even if the object’s size
appears inaccurate. This phenomenon has been used to image individual fluorescent nanoparticles
<5 nm in diameter as well as to develop superresolution techniques such as PALM and STORM,
where centroids of different objects are separated temporally (Waters and Wittmann, 2014).

While some dyes might affect motility (Martin and Logsdon, 1987, Wainwright et al., 1997),
the advantages of fluorescence make it essential whenever high resolution or high signal-to-noise
are needed. Membrane dyes have been shown to have less effect on motility and cell division than
DNA-targeting dyes (Charles-Orszag, Lord and Mullins, 2021). When studying extremophiles, it
is important to note that many commonly used dyes do not fluoresce under extremes of
temperature, salt concentration, and/or pH, and that cell-wall or membrane-targeting dyes that
work in bacteria may not work in archaea. Fluorescent probes that work in thermophiles,
halophiles, and at pH extremes have been reported (Leuko et al., 2004) (Rastadter et al., 2022)
(Maslov et al., 2018).

At the whole-cell level, the ability to genetically modify bacteria to express fluorescent proteins
(FPs) such as green fluorescent protein (GFP) and its variants has enabled numerous tracking
experiments in both simple and complex milieux. FPs have little effect on physiology and
demonstrate low phototoxicity, permitting them to be used for long-term recordings, although care

should be taken to use green light rather than blue or violet for excitation, as the shorter
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wavelengths affect cell growth (El Najjar et al., 2020). Green excitation corresponds to Yellow
Fluorescent Protein (YFP) emission; YFP is very commonly used in microbial studies. The GFP
family of proteins requires oxygen for maturation and thus cannot be used in anaerobes; a variety
of oxygen-independent alternatives have emerged recently (Chia et al., 2019, Chia et al., 2020, Ko
et al., 2020).

For observation of flagella, fluorescence microscopy with labeling is essential. Fluorescence
has been used to observe correlate flagellar movements with tumbles in E. coli, B. subtilis, and
motile Enterococcus (Turner et al., 2016). Cells were labeled with the dye Alexa Fluor 532, and
an overlay of phase contrast and fluorescence was used to visualize the cell bodies and flagella
(Fig. 5 (a)). Fluorescent labeling of flagella may also be used to provide complementary
information for cells tracked by other means. One study examining the distribution of flagellar
filaments FlaA and FlaB used fluorescent labeling of inserted cysteine residues to visualize the
flagella in individual cells, then used DHM without labeling for high-throughput tracking (Fig. 5
(b)) (Kuhn et al., 2018).

The biggest drawback for long-term fluorescence microscopy is photobleaching.
Photobleaching may be reduced by limiting light intensity and/or exposure times or by the addition
of antioxidants to the medium (or the removal of oxygen if possible) (Bernas et al., 2004, Boudreau

et al., 2016, Giloh and Sedat, 1982).
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Fig. 5. Use of fluorescence microscopy and flagellar labeling to elucidate the role of flagella in swimming. (a) Track
of a typical untreated E. coli cell (upper panel) with combined phase-contrast and fluorescence images (dark and
light, respectively, lower-left panel). Runs are shown in blue, tumbles are in red, and runs with the laser on are in
green. Each data point along the trajectory corresponds to one video frame (30/s). At the start, image 1 (lower-left
panel), the phase-contrast image shows the cell moving parallel to the X-Y image plane. Cell-body measurements
were made from this image. At image 68, the cell is seen end-on while moving along the Z axis at track point 68.
The overview (right panel) shows the track in the X-Y plane from points 100-200, and includes laser illumination
points 157-191. The cell was running with a tight bundle in image 161. A tumble occurred during points 168—177.
In image 177, as the tumble ended, the bundle started to reform, a process that was completed at point 188 (not
shown). A tightly formed bundle is evident in image 191. After this point, another tumble began. The scale bar is 2
pm (FromBiophys J. 2016 Aug 9; 111(3): 630-639. doi: 10.1016/j.bpj.2016.05.053, © 2016 Biophysical Society,
used with permission). (b) Micrographs of cells with fluorescently labeled flagellar filaments displaying the outcome
of the genetic editing of the flagellin genes (from Kuhn et al, 2018, under terms of the Creative Commons license).

Parameters of recent bacterial tracking studies using fluorescence microscopy are

summarized in Table II.
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Microorganism | Objective(s) Fluorophore Camera Tracking Method
Studied

E. coli* 100x/ NA 0.9 | Yellow fluorescent | ANDOR iXon 897 | Lagrangian tracker (motorized

protein YFP EMCCD stage, photobleaching
(30 fps at 512x512) | correction)

E. coli® 60x/NA 1.27 Red fluorescent Hamamatsu Orca Custom software, confined
protein mRFP1 Flash 4.0 (50 fps) channels

E. coli 40x, NA 1.0 Vybrant Dyecycle | Zeiss, 80 ms Segmentation and LAP

P. aeruginosa® Green exposure tracking

E. coli 25x LWD/ Alexa Fluor 532 KPC-650BH Tracking microscope

B. subtilis NA 1.1 maleimide (30 fps)

Enterococcus (flagellar labeling)

Table II. Parameters used in some recent bacterial tracking studies using fluorescence microscopy.
2 Figueroa-Morales et al. Physical Review X 2020, 10, (2), 021004.

"Vizsnyiczai et al Nat Commun 2020, 11, (1), 2340.

¢ Khong et al. bioRxiv 2020, 2020.05.03.075507.

4 Turner et al. Biophysical Journal 2016, 111, (3), 630-639.

2.4. Differential dynamic microscopy

Differential dynamic microscopy (DDM) is a recent method (introduced in 2008 and developed
for bacteria in 2011-2012 (Martinez et al., 2012, Wilson et al., 2011)) that allows critical motility
parameters such as velocities and fraction of motile particles to be extracted from recordings with
low signal to noise ratios. DDM uses successive images to characterize the motility of a population
by calculating the temporal fluctuations of the number density over different length scales. The
key parameter is the differential image correlation function (DICF), g(q, 7), which is the modulus
of the difference of two Fourier-space images over a time step

9(q,7) = (1(g,t + ) = 1(q, O)|*). 3)

The DICEF is related to the intermediate scattering function (ISF), f(g, 7), by

g(q, 1) = A(9)[1 — flg, D] + B(q), (4)

where A(q) depends on the optics, particle shape, and mutual arrangement, and B(g) represents
the camera noise. For a mixed population of motile- and non-motile cells with motile fraction a,
the ISF consists of a part due to Brownian motion, represented by the diffusion coefficient D, and

a part due to swimming;:
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f(q,7) = (1 — a)e™9°DT 4 ge=a°Dt fooo dvP(v) %::T), (5)

where P(v) is the velocity distribution function. The term due to swimming decorrelates much
more quickly than that due to Brownian motion, resulting in a two-phase f that may be fit to a
multi-parameter function to extract the diffusion coefficient, mean swimming speed, and fraction
swimming. The advantages of this method are rapid, tracking-free determination of these key
motility parameters. The disadvantages are lack of visualization, so that spurious results are
difficult to identify; some comparison with manual tracking is needed. In addition, a form for the
velocity distribution function needs to be specified, so some advance knowledge of swimming
characteristics is needed. The technique also requires a large data volume, approximately 1000

frames at 50 frames/s for cells swimming at typical run-and-tumble speeds (10-50 pm/s).
3. RECORDING APPARATUS AND SOFTWARE

3.1. Cameras

Commercially available cameras require trade-offs between field of view and framerate. Until
recently, obtaining full 2048x2048 or even 1024 x 1024 pixel images at >50 frames/s required
highly specialized and costly instrumentation. Although fast cameras are becoming more readily
available, obtaining frame rates >50 fps usually requires some downsampling as well as limiting
any simultaneous data imaging. Cameras for fluorescence represent a special category, as they
must be extremely sensitive and have low background; most are cooled. If specialized wavelengths
such as ultraviolet or infrared are imaged, this imposes additional demands upon the camera.
Because of the complexity of the trade-offs, we have identified the camera model in all of the
studies identified in Tables I and II.

The effect of framerate on analysis of bacterial tracks has been discussed in the context of a

velocity jump process model, where identification of re-orientation events is key to accurate
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parameter estimation. As the sampling rate becomes so slow that multiple re-orientation events
between frames become probable, there is a rapid breakdown in analysis accuracy (Harrison and
Baker, 2018).
3.2. Acquisition software

Acquisition software is dependent on the microscopy technique chosen. For most applications,
the camera software is sufficient; a software development kit (SDK) is usually provided with
camera purchase. Manufacturers often sell software separately, but the cost of the software
sometimes exceeds that of the camera. The open-source package MicroManager (Edelstein et al.,
2010) has been developed to interface with a large number of commercial cameras, microscopes,
and accessories in order to minimize costs associated with software.

For specialized techniques such as DHM, software is usually custom. Several research groups,
including our own, have made their DHM software openly available (Fregoso et al., 2020, Zhang

etal., 2015).

4. CELL IDENTIFICATION AND TRACKING

Creating and finding tools for cell tracking is an ongoing area of development. In 2012 a “Cell
Tracking Challenge” was hosted by the IEEE International Symposium on Biomedical Imaging
(ISBI). The results were published in 2014 (Chenouard et al., 2014) with the statement “at present,
there exists no universally best method for particle tracking,” and this is still valid today, nearly a
decade later.

Large datasets are generated from imaging and recording samples. One of the primary
challenges for bacterial tracking relates to its low signal to noise ratios. There are a variety of both
in-house and commercially available software packages that attempt to solve this problem.

However, there is currently no “black box™ solution that works for any bacterial dataset. Cell
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tracking in 2D and 3D consists of 1) preprocessing the images, 2) detecting the cells and 3) cell
tracking by linking them correctly in successive video frames. Step 1 is usually semi-automated,

whereas steps 2 and 3 can be done manually or automatically.

4.1. Preprocessing

The preprocessing necessary is highly dependent upon the technique used. For most brightfield
and phase contrast techniques, some sort of background subtraction using different denoising
approaches (rolling ball algorithm, median, Gaussian filter) is necessary. Such filters are found in
all common image-processing software packages, both open-source and commercial.

For DHM, aberration correction is essential. A large amount of research has gone into
development of experimental and software techniques for improvement of DHM contrast. The
denoising approaches to amplitude and phase images are different. While amplitude images are
generally noisier than phase images, especially with respect to speckle noise, approaches to de-
noising are simpler. If the fringes are temporally stable, the hologram may be median subtracted
before reconstruction in amplitude (Bedrossian et al., 2020) (Fig. 6 (a)-(c)). Alternatively,
amplitude images may be median subtracted plane-by-plane after reconstruction. For motile
objects, this usually results in sufficient de-noising for particle detection. Additional signal-to-
noise may be obtained using frame-to-frame subtraction, a method which is frequently used for
DIHM. These techniques remove motionless objects, which can be an advantage or a disadvantage
depending upon the experiment.

Quantitative phase retrieval presents specific challenges; approaches to phase aberration
correction have been recently reviewed (Sirico et al., 2022). Digital aberration correction is usually

performed using a reference hologram (Colomb et al., 2006), but this reference must be chosen
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carefully. If objects are moving, a good reference hologram may be the median of the entire image
stack, provided that the fringes are stable (Fig. 6 (d)). For long acquisitions or when fringes are
not stable, a “rolling mean” of a selected number of images may serve as a reference hologram.
Obtaining an empty reference from a chamber without cells is usually not possible, since many of
the aberrations arise from the precise sample chamber and area of the chamber being imaged. Thus,
even microscopic changes in the slide position can alter the aberrations.

An advantage of phase reconstructions is the Gouy phase anomaly, where an object switches
from light to dark across the focal plane (Fig. 6 (e)). This means that the Z-derivative has a
maximum at that point, so the axial derivative of a phase reconstruction reduces noise in Z (Fig. 6

() and in XY (Fig. 6 (g)). The choice of reconstruction spacing for the derivative depends upon

the dataset (Gibson et al., 2021).

Fig. 6. Appearance of bacteria (in this case, the marine microorganism Collwellia psychrerythraea 34H)
under DHM with and without denoising. (a) Raw hologram of part of the microscopic field of view. (b)
Median subtracted hologram (as in (Bedrossian, Wallace, Serabyn, Lindensmith and Nadeau, 2020)) showing
individual cells whose Airy patterns overlap in Z. (¢) Reconstruction on a single focal plane in amplitude.
Cells in focus (arrow) are reduced to 1-2 pixels, while cells not in focus in that plane retain large diffraction
patterns. (d) Phase reconstruction on a single Z plane, with an example cell indicated by an arrow, using a
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reference hologram that is the mean of the entire stack. (e) YZ image through a stack of phase images
reconstructed every 1 um, showing the Gouy phase anomaly. (f) Derivative image of cell in the YZ plane.
(g) Derivative image of the same plane in XY with arrow indicating the same cell as in Panel (d).

For 3D datasets of all types, deconvolution may be necessary to improve axial resolution, which
is lower than lateral resolution for all microscopic techniques. Deconvolution is based upon
knowing the shape of the point-spread function (PSF) for the microscope system, and reducing
each PSF in the image to a point based upon this input. Exact algorithms depend upon the particular
parameters of the PSF and the noise, and so are specific to each microscopy technique.
Comprehensive, practical reviews are available for brightfield microscopy and fluorescence
microscopy (Goodwin, 2014, Swedlow, 2013), as well as for more specialized techniques such as
light sheet microscopy (Becker et al., 2019). The PSF may be experimentally measured by imaging
unresolved point particles, or may be theoretically calculated based upon the optics of the
microscope. Theoretical modeling of the PSF is done within the software with the user supplying
values such as the objective lens, immersion medium, and illumination wavelength. Commercial
packages and open-source plug-ins are available for deconvolution of fluorescence and brightfield
images (Table III).

4.2. Cell detection

Cell detection consists of recognizing pixel clusters of a defined size, which stand out from the
background in a way that may be identified by an algorithm. Frequently, but not always, images
are thresholded and converted to binary before tracking. Thresholding of fluorescence images is
fairly straightforward, but for low signal-to-noise techniques such as brightfield and DHM, cell
detection may be the most challenging aspect of the data analysis. A recent review provided a
detailed overview of techniques and software for microbial image analysis, including both single

cell and community analysis (Jeckel and Drescher, 2021). For most tracking purposes, cells must
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be accurately identified frame by frame; thus, the detection step is independent of, but necessary

to, the tracking step.

4.2.1. Detection by thresholding
Because of the presence of Airy rings, phase contrast and DHM images cannot be thresholded

readily (Fig. 7 (a)-(c)). The edges of the Airy rings are detected more easily by particle detection
algorithms than the in-focus cells. Reconstructions of median-subtracted holograms, phase
derivatives, or projections across multiple Z planes all permit thresholding for some datasets (with
no general rule applicable to all). Projections across Z planes may be sums of all slices, maximum
projections, or minimum projections, again depending upon the dataset. Thresholding based upon

maximum entropy yields the best results for most brightfield images (Figure 7 (d)-(f)).

)

Fig. 7. Thresholding DHM images of the bacterium Shewanella putrefaciens. (a) Amplitude reconstruction on a
single focal plane. (b) Thresholding using the “default” algorithm in Fiji. (¢) Thresholding using the “Max Entropy”
algorithm in Fiji. (d) Sum of multiple Z planes from the same field of view. (¢) Thresholding using the “default”
algorithm. (f) Thresholding using Max Entropy identifies the majority of the cells and can be used for tracking.
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4.2.2. Other methods
Features other than simple grayscale contrast may be used to distinguish cells from background.

Some features that can be used are edge, texture, gradient, and structure. Depending on the
algorithm, several features may be combined.

Despite the availability of these tools, optimizing parameters can be time-consuming or even
futile. Differences in noise or cell density from frame to frame, and changes in bacterial appearance
with tumbling or other motions, can lead to poor classification. Machine learning approaches can
help to optimize the many parameters needed for effective tracking; the machine learning package
in MATLAB has been used to detect Bacillus subtilis (Manuel et al., 2018). The training can be
extensive and highly dataset-dependent (Deter et al., 2019, O'Connor et al., 2022) (Meacock and
Durham, 2021), and a recent paper proposed an adaptive kernel model for addressing these
challenges and applied it to E. coli (Xie et al., 2008). For all of these methods, generalizability is
challenging; what works for E. coli often does not work with smaller, faster microorganisms, such
as Vibrio.

Convolutional neural networks (CNNs) are a type of machine learning algorithm that learns
directly from image data. MATLAB includes a Deep Learning Toolbox that can be used to design,
train, and apply CNNs. New software packages have also recently been reported for submicron
particle tracking which have been shown to recognize non-spherical cells such as Salmonella
(Newby et al., 2018).

4.3. Cell tracking

After particle identification, tracking still poses a challenge. While excellent tools exist for
analyzing passive motion, such as Brownian motion, simple techniques such as nearest neighbor
linking over the smallest Euclidean distance cannot be used for particle tracking with partly fast-

moving, strongly accelerating microbes. Particle tracks intersect and overlap, and velocity vectors
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are unpredictable. Therefore, the linking step is often done using a cost (or energy) function that
takes into account velocity aspects (such as smoothness of the trajectory segment, smoothness of
3D velocity, smoothness, and upper bound conditions on accelerations) or morphological
characteristics (cell size, shape, aspect). That means it requires a priori information about the
microbes. However, the correct weighting of all the different features of the cost function is often
highly dependent on the used set-up and requires a lot of fine-tuning.
4.3.1. Manual tracking

Manual tracking was the only possible approach before the development of high-performance
computers (Berg and Brown, 1972, Schneider and Doetsch, 1974). Even with modern
computation, it is still in widespread use, either as a stand-alone technique or to “ground truth”
automated methods. Computational tools can assist with manual tracking by annotating and saving
tracks. The technique is tedious and is frequently outsourced to data analysts or assigned to

undergraduate students. Throughput is low.

4.3.2. Automated tracking
Automated tracking greatly decreases the workload and improves statistics. Common

algorithms are discussed below.

The Linear Assignment Problem (LAP) tracker, published in 2008, helps solve the problems
of trajectory overlap, particle disappearance from frame to frame, and trajectory merging and
splitting(Jagaman et al., 2008). Identified particles are linked frame to frame, then segments are
linked to create trajectories. In order to determine whether segments belong to the same trajectory,
a “cost matrix” is used representing all of the possibilities for spots in one frame to be linked to
spots in the next. The matrix is minimized to create the most probable set of trajectories. In most

software implementations, the user can fine-tune the algorithm by specifying the maximum
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number of frames across which to link, and the maximum number of pixels traveled by a
microorganism between frames. These parameters are obviously highly dependent upon the speed
of the microorganism relative to the camera frame rate. For a heterogeneous mix of
microorganisms of different speeds, the tracker may need to be re-run with different parameters to
optimize linking for each cell type. The ability of the detection algorithm to find the cell in each
frame will also influence the gap-closing parameter.

A second approach relies on a Kalman filter, reported in the same paper as the LAP tracker
(Jagaman, Loerke, Mettlen, Kuwata, Grinstein, Schmid and Danuser, 2008), to predict the most
probable position of a particle assuming that it moves with a constant velocity. The same cost
matrix is used as for LAP tracking, using the square distance as cost; the software should allow
manual input of test values for this initial distance. The predicted positions are linked against the
actual positions of particles in each successive frame.

Even for a homogeneous culture of a single bacterial species, there are some trajectories that
are better captured with a LAP tracker (e.g., those with turns or spirals), and those better captured
with the Kalman tracker (long runs) (Fig. 8). In all cases, several iterations will likely be necessary
to optimize gap-closing distances, and manual editing and stitching/cutting of tracks can further

improve results after the automated detection.
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Fig. 8. Kalman vs. LAP tracker for DHM data using the microorganism Shewanella putrefaciens. (a) Large field of
view indicating how it is possible to tell at a glance that the Kalman filter detects more long runs than the LAP
tracker. (b) 2-fold zoom of upper right of image, showing circuitous tracks that were captured as single tracks by the
LAP tracker but not the Kalman filter (red arrows), vs. long runs that were successfully captured by the Kalman
filter but broken in the LAP tracker (white arrowheads). (c) 2-fold zoom of lower left corner showing a long track
apparent in the Kalman filter (turquoise) that was entirely missed by the LAP tracker. The accuracy of the
assignments must be checked by eye (see Supplementary Videos 1 and 2 for animations of Panel (a)).

Software packages of particular relevance to all steps of data processing, bacterial identification

and tracking are tabulated in Table III.
4.4. Considerations for 3D

3D tracking of microbial motility can lead to more accurate velocity measurements as well as
reveal features that are obscured by 2D projections, especially dynamic surface behavior (Bianchi
et al., 2019) (Taute, Gude, Tans and Shimizu, 2015). However, 3D tracking poses particular
difficulties, and so full 3D tracked datasets of micron-sized organisms are sparse. The two biggest
issues with 3D tracking are (1) poorer axial resolution vs XY resolution with most microscopic

techniques; and (2) large dataset size. The use of supercomputers and software/file types
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specifically designed for handling large datasets can permit tracking of full resolution

(2048x2048x100 XYZ) data, but usually either downsampling, cropping, or truncation of time

series is necessary. Truncation or cropping may be designed to isolate a specific cell. Stitching

may be done in spatial or time coordinates depending upon which is easier for the given data.

Alternatives to tracking of full 3D datasets include:

2D tracking of Z-projections followed by manual extraction of Z coordinates (Fig. 9 (a),
Supplementary Video 3) (Acres and Nadeau, 2021).

2D tracking of Z-projections followed by automated extraction of Z coordinates by
fitting or measuring Airy rings; may be done for phase contrast and DHM (Fig. 9 (b),
Supplementary Video 4). For DHM, a simulated PSF may be created by angular
spectrum propagation of a single-pixel spot (Piedrahita-Quintero et al., 2015) (Fig. 9
(¢), (d)), and then used to match experimental data (Fig. 9 (e)).

Tracking of XY and XZ or YZ projections, then matching corresponding coordinates to
obtain full XYZ information. However, the overlapping coordinates to obtain full tracks
can be challenging; this approach is much more efficient with passive motion, where
corresponding X or Y coordinates can be readily mapped (Rouzie and Lindensmith,

2021).

Note that none of these approaches are high throughput. All require substantial cropping of the

datasets to make them manageable in size, as well as user input to ensure that the correct cell is

tracked throughout the length of its appearance in the volume of view.
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Fig. 9. Obtaining Z coordinates from DHM reconstructions. (a) Minimum intensity projection of 30 frames of a
single cell, choosing the z plane at which the cell is in best focus (all slices shown in Supplementary Video 3). (b)
Minimum plus maximum intensity projection for the same cell from a reconstruction at a single focal plane (all
slices shown in Supplementary Video 4). (c) Simulated Airy rings in the XY plane for a point source projected over
30 um in Z, using angular spectrum propagation with the same optical parameters as the instrument used to collect
the experimental data. (d) Simulated Airy rings in the YZ plane; the red line indicates the area that was used to
estimate depth for the cell at each time point. (¢) Depth obtained with time for the tracked cell, comparing the
refocusing and Airy ring approaches.

4.5. Analyzing tracks

Unlike simple physical motion such as Brownian motion, active motility displays both physical
and physiological features that have not been fully elucidated. To mention a few examples, the
run-reverse-flick swimming pattern of bacteria with a single polar flagellum was not described
until 2011 (Stocker, 2011). Persistence in tracks was first reported in 2013 (Rosser et al., 2013).
Tumbling frequencies near a surface, suggesting chemotactic behavior, were reported in 2020
(Lemelle et al., 2020). The biophysics underlying bacterial motility can be lost if tracks are
fragmented, spurious, or if they miss key features such as reorientation events. There is no

established standard for quantifying bacterial reorientations. Because of the different possible
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motility patterns as shown in Fig. 1, such analysis must be strain-dependent. This becomes
increasingly challenging if the culture represents a mix of species. All tracking methods lead to
some degree of false negative and false positive detection, and all require manual editing to stitch
fragmented tracks or separate spuriously joined tracks. In some cases, this will require almost as
much work as full manual tracking.

Parameters that may need to be quantified include run lengths, tumbles and/or reversals, turn
angles, velocity, acceleration, and correlation coefficients. All of these parameters, if they are
reported as averages over individual tracks, can be highly misleading if the tracks are spuriously
truncated, joined, or split. Another aspect that must be considered is that bacterial cultures contain
some fraction of non-motile cells, and the extent to which these should be analyzed or excluded
from analysis depends upon the experiments and the hypotheses being tested. The degree to which
false negatives/positives and broken tracks can be tolerated also depends upon what is being
studied.

When tracks are correctly identified and exported as XYT or XYZT coordinates, parameters
such as velocities and accelerations may be readily calculated from their definitions. However,
evaluation of complex behaviors such as chemotaxis (Pohl et al., 2017) and tumbling (Liang et al.,
2018) require models and model-based parameters, and their analysis can be assisted by

specialized software packages as indicated in Table III.
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(Win, Mac, Linux)

Software Task Platform Availability
TrackMate® Particle identification and tracking Fiji Open
source
Arivis Vision 4D° Many filters and tracking algorithms; Win Commercial
handles large 4D stacks
MOSAICSuite® Particle detection and tracking Fiji Open
source
Tastik¢ Machine learning for segmentation Fiji Open
source
MorphoLibJ® Morphology analysis Fiji Open
source
SuperSegger’ Cell segmentation (fluorescence) MATLAB Free
MicrobelJ® Cell detection and analysis; large Fiji Open
datasets source
DeepBacs" Deep learning segmentation for Jupyter
fluorescence & brightfield
Zcells! Machine-learning based segmentation MATLAB Free
TumbleScore’ Bacterial tracking and track analysis MATLAB Free
Your Software for Motility High-throughput bacterial identification | Python Open
Recognition* and tracking source
Bacterial swarming' Swarming segmentation and analysis MATLAB Free
Al Tracking solutions™ CNN-based tracking Cloud-based Commercial
Machine Learning Object Machine learning based identification MATLAB Free
Tracking (MLOT)"
TaxisPy° Chemotaxis analysis Python Free
DHMP DHM reconstruction/simulation Fiji Open
source
DHM Utilities? DHM reconstruction with reference Fiji Open
hologram options source
KOALA' DHM reconstruction with reference Win Commercial
hologram options
Iterative Deconvolve 3D? Deconvolution Fiji Open
source
DeconvolutionLab2" Deconvolution Fiji Open
source
Huygens" Deconvolution Cross-platform Commercial

Table III. Selected software packages for image processing, bacterial detection, and tracking.
2 D. Ershov et al., Nat Methods 19, 829 (2022)
® https://www.arivis.com/solutions/vision4d

¢ 1. F. Sbalzarini and P. Koumoutsakos, Journal of Structural Biology 151, 182 (2005)
4S. Berg et al., Nat Methods 16, 1226 (2019)

¢D. Legland et al., Bioinformatics 32, 3532 (2016)
f'S. Stylianidou et al., Mol Microbiol 102, 690 (2016)
¢ A. Ducret et al., Nat Microbiol 1, 16077 (2016)

b C. Spahn et al., Commun Biol 5, 688 (2022)

Thttps://lab513.github.io/Zcells/

J A. E. Pottash et al., Biotechniques 62, 31 (2017)
kJ. Schwanbeck et al., BMC Bioinformatics 21, 166 (2020)
'A. Be’er et al., Communications Physics 3, 66 (2020)

™ https://aitracker.net/

" https://github.com/mbedross/MachinelearningObjectTracking

° M. A. Valderrama-Gomez et al., ] Microbiol Methods 175, 105918 (2020)

P https://github.com/unal-optodigital/DHM/blob/master/README.md
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9 https://github.com/sudgy

" https://www.lynceetec.com/koala-acquisition-analysis/

$ https://imagej.net/plugins/iterative-deconvolve-3d

' Sage et al. Methods 115, 28-41, doi:10.1016/j.ymeth.2016.12.015 (2017)
Y https://svi.nl/Huygens-Software

5. Conclusion

Tracking bacteria still represents a challenge, especially in 3D or under extreme conditions such
as high or low temperature, high cell speed, or dense or inhomogeneous cultures (mixed species
or phenotypes). Each experimental type, or even each dataset, will require customized methods
and ground-truthing to eliminate false negatives and false positives. Manual tracking remains a
necessary task for many applications, since the human eye and brain can identify cells and motion
in noisy environments where even the most sophisticated algorithms fail. Modeling the physics of
motility can be influenced by false positives, false negatives, and broken tracks. Improvements in

3D tracking will lead to new discoveries in the physics of microbial motility.
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