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We consider the problem of recovering the superposition of R distinct complex exponential functions
from compressed non-uniform time-domain samples. Total variation (TV) minimization or atomic norm
minimization was proposed in the literature to recover the R frequencies or the missing data. However, it is
known that in order for TVminimization and atomic norm minimization to recover the missing data or the
frequencies, the underlying R frequencies are required to be well separated, even when the measurements
are noiseless. This paper shows that the Hankel matrix recovery approach can super-resolve the R complex
exponentials and their frequencies from compressed non-uniform measurements, regardless of how close
their frequencies are to each other. We propose a new concept of orthonormal atomic norm minimization
(OANM), and demonstrate that the success of Hankel matrix recovery in separation-free super-resolution
comes from the fact that the nuclear norm of a Hankel matrix is an orthonormal atomic norm. More
specifically, we show that, in traditional atomic norm minimization, the underlying parameter valuesmust
bewell separated to achieve successful signal recovery, if the atoms are changing continuouslywith respect
to the continuously valued parameter. In contrast, for the OANM, it is possible the OANM is successful
even though the original atoms can be arbitrarily close. As a byproduct of this research, we provide one
matrix-theoretic inequality of nuclear norm, and give its proof using the theory of compressed sensing.
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1. Introduction

In super-resolution, we are interested in recovering the high-end spectral information of signals from
observations of its low-end spectral components [5]. In one setting of super-resolution problems, one
aims to recover a superposition of complex exponential functions from time-domain samples. In fact,
many problems arising in science and engineering involve high-dimensional signals that can be modelled
or approximated by a superposition of a few complex exponential functions. In particular, if we choose
the exponential functions to be complex sinusoids, this superposition of complex exponentials models
signals in acceleration of medical imaging [25], analog-to-digital conversion [43] and array signal
processing [38]. Accelerated nuclear magnetic resonance (NMR) spectroscopy, which is a prerequisite
for studying short-lived molecular systems and monitoring chemical reactions in real time, is another
application where signals can be modelled or approximated by a superposition of complex exponential
functions [19, 22, 34]. How to recover the superposition of complex exponential functions or parameters
of these complex exponential functions is of critical importance in these applications.

In this paper, we consider the recovery of superpositions of complex exponentials from linear under-
sampled measurements. More specifically, let x ∈ C

2N−1 be an unknown vector (which we would like
to recover) whose j-th element satisfies

xj =
R∑
k=1

ckz
j
k, j = 0, 1, . . . , 2N − 2, (1.1)

where ck ∈ C are complex coefficients and zk ∈ C, k = 1, . . . ,R, are some unknown complex numbers
with 2R ≤ 2N−1 being a positive integer. In other words, x is a superposition of R complex exponential
functions. When zk = e2πıfk , with ı = √−1 and k = 1, . . . ,R, x is a superposition of complex
sinusoids. When zk = e−τk e2πıfk , with k = 1, . . . ,R, and τk > 0, x can model signals acquired by NMR
spectroscopy in monitoring real-time chemical reactions and studying short-lived molecular systems [3,
4]. The results of this paper apply to general τk > 0, but, to simplify presentations, we choose to restrict
certain theorems to τk = 0. More specifically, τk > 0 is allowed in Theorem 3.1 (we do not require
knowledge of τk to establish recovery guarantees), while τk’s are assumed to be equal to 0 (thus known)
in Theorems 4.1 and 4.3. In our simulations, we also set τk to be equal to 0, where we consider the
superposition of complex sinusoids.

Since 2R ≤ 2N − 1 and often 2R � 2N − 1, the degree of freedom to determine x is much less
than the ambient dimension 2N − 1. Therefore, one can still recover x by its undersampling [8, 16]. In
particular, in undersampling, we assume that x is unknown, and we consider recovering x from its linear
measurements

b = A(x), (1.2)

where A is a linear subsampling map from C
2N−1 to CM ,M < 2N− 1. After x is recovered, we can use

the single-snapshot MUSIC [24] or Prony’s method to recover the parameters zk.
The problem of recovering x from its linear measurements (1.2) can be solved using compressed

sensing[8], by discretizing the dictionary of basis vectors into grid points corresponding to discrete values
of zk. When the parameters fk’s in signals from spectral compressed sensing (or the parameters (fk, τk)’s
from signals in accelerated NMR spectroscopy) fall on the grid, compressed sensing is a powerful
tool to recover those signals even when the number of samples is far below its ambient dimension
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 3

(M � 2N−1) [8, 16]. Nevertheless, the parameters in our problem setting often take continuous values,
leading to a continuous dictionary, and may not exactly fall on a grid. The basis mismatch problem
between the continuously valued parameters and the grid-valued parameters degrades the performance
of conventional compressed sensing [14].

In two seminal papers [5, 41], the authors proposed using total variation (TV) minimization or atomic
norm minimization to recover x or to recover zk, when zk = eı2π fk with fk taking continuous values from
[0, 1). In these papers, the authors show that TV minimization or atomic norm minimization can recover
the continuously valued frequency fk’s in the noise free case. However, as shown in [5, 40, 41], for TV
minimization or atomic normminimization to recover spectrally sparse data or the associated frequencies
correctly, it is required that adjacent frequencies be sufficiently separated from each other. For example,
for complex exponentials with zk’s taking values on the complex unit circle, it is required that adjacent
frequencies fk ∈ [0, 1]’s be at least 2

(2N−1)×2π apart [40]. This separation condition is necessary for the
TV minimization, even if we observe all the (2N − 1) data samples, and even if the observations are
noiseless. Please notice that the tolerable noise in correctly identifying frequencies to a certain accuracy
depends on the frequency separation according to information-theoretic study [28].

This raises a natural question, ‘Can we super-resolve the superposition of complex exponentials
with continuously valued parameters zk, without requiring frequency separations, from compressed
measurements, in noiseless or low-noise measurements?’ In this paper, we answer this question in
the affirmative. More specifically, we show that a Hankel matrix recovery approach using nuclear
norm minimization can super-resolve the superposition of complex exponentials with continuously
valued parameters zk from compressed measurements, without requiring frequency separations. This
separation-free super-resolution result holds even when we only compressively observe x over a subset
M ⊆ {0, ..., 2N − 2} with cardinality |M| = M.

In this paper, we give the worst-case and average-case performance guarantees of Hankel matrix
recovery in recovering the superposition of complex exponentials. In establishing the worst-case
performance guarantees, we establish conditions under which Hankel matrix recovery can recover the
underlying complex exponentials, nomatter what values the coefficients ck’s of the complex exponentials
take. For the average-case performance guarantee, we assume that the phases of the coefficients ck are
uniformly distributed over [0, 2π). For both the worst and average cases, we establish that Hankel matrix
recovery can super-resolve complex exponentials with continuously valued parameters zk, no matter
how close they are to each other. We further introduce a new concept of orthonormal atomic norm
minimization (OANM), and discover that the success of Hankel matrix recovery in separation-free super-
resolution comes from the fact that the nuclear norm of the Hankel matrix is an orthonormal atomic norm.
In particular, we show that, in traditional atomic norm minimization, for successful signal recovery, the
underlying parameters must be well separated, if the atoms continuously depend on continuously valued
parameters; however, it is possible the OANM can succeed even if the original atoms are arbitrarily close.
As a byproduct of this research, we discover one interesting matrix-theoretic inequality of nuclear norm,
and give its proof using the theory of compressed sensing.

We remark that some of our results can require high percentage of all the samples for successful
recovery using Hankel matrix recovery. For example, in Theorem 3.1, we need |M| > 2N − 1− N

2R out
of 2N − 1 samples to successfully recover a signal consisting of R atoms. Similarly for Theorems 4.1
and 4.3, we assume the number of samples |M| = 2N−2. We are also only able to show the tightness of
Theorem 3.1, for a very special sampling scheme. Even for these special sampling schemes, to the best
of our knowledge, our results are the first to show that Hankel matrix recovery can successfully recover
superposition of complex exponentials regardless of their frequency or parameter separations. We also
want to point out that these theoretical bounds can be conservative, compared with numerical results.
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4 J. YI ET AL.

For example, in the experiments demonstrating how frequency separation can influence signal recovery
performance, even though we only use |M| ≈ 51% × (2N − 1) samples, the Hankel matrix recovery
approach can already recover faithfully the superposition of a large number of complex sinusoids which
have small frequency separations.

1.1 Comparisons with related works on Hankel matrix recovery and atomic norm minimization

Low-rank Hankel matrix recovery approaches have been used for recovering parsimonious models in
system identifications, control and signal processing. In [26], Markovsky considered low-rank approxi-
mations for Hankel structured matrices with applications in signal processing, system identifications and
control. Fazel et al. [17, 18] introduced low-rank Hankel matrix recovery via nuclear normminimization,
motivated by applications including realizations and identification of linear time-invariant systems, infer-
ring shapes (points on the complex plane) frommoments estimation (which is related to super-resolution
with zk from the complex plane), and moment matrix rank minimization for polynomial optimization.
Fazel et al. [18] further designed optimization algorithms to solve the nuclear norm minimization prob-
lem for low-rank Hankel matrix recovery. Chen and Chi [11] proposed to use multi-fold Hankel matrix
completion for spectral compressed sensing, studied the performance guarantees of spectral compressed
sensing via structured multifold Hankel matrix completion and derived performance guarantees of
structured matrix completion. However, the results in [11] require that the Dirichlet kernel associated
with underlying frequencies satisfies certain incoherence conditions, and these conditions require the
underlying frequencies to be well separated from each other. In [15, 44], the authors derived performance
guarantees for Hankel matrix completion in system identifications. However, the performance guarantees
in [15, 44] require a very specific sampling pattern of fully sampling the upper-triangular part of the
Hankel matrix. Moreover, the performance guarantees in [15, 44] require that the parameters zk be very
small (or smaller than 1) in magnitude. In our earlier work [3], we established performance guarantees
of Hankel matrix recovery for spectral compressed sensing under Gaussian measurements of x. By
comparison, this paper considers direct observations of x over a set M ⊆ {0, 1, 2, ..., 2N − 2}, which
is a more relevant sampling model in many applications. In the single-snapshot MUSIC algorithm [24],
the Prony’s method [33] or the matrix pencil approach [21], one would need the full (2N−1) consecutive
samples to perform frequency identifications, while the Hankel matrix recovery approach can work
with compressed measurements. When prior information of the locations of the frequencies is available,
one can use weighted atomic norm minimization to relax the separation conditions in successful signal
recovery [27].

In [39], the authors considered super-resolution without separation using atomic norm minimization,
but under the restriction that the coefficients are positive and for a particular set of atoms (point spread
functions) ψ(s, t) = e−(s−t)2 , where s represents the spatial location in an image and t is the location of
a point source of light (t’s are the parameters to be estimated). In contrast, the analysis in our paper deals
with complex-numbered coefficients, and does not require the coefficients to be positive. In addition, the
techniques used for establishing the recovery guarantees in [39] are quite different from ours. In [39],
the main idea for establishing the recovery guarantee is constructing a dual certificate, by applying the
machinery of Tchebycheff systems to Gaussian point spread functions. By comparison, in this paper, we
exploit the null space condition for nuclear-norm-minimization-based signal recovery. This machinery
of investigating the null space condition does not require constructing a dual certificate, thus making it
possible to show that the Hankel matrix recovery can reconstruct the signals without imposing separation
conditions on the underlying atoms.
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 5

Additionally, in previous research [30–32], Prony’s method and related modified algorithms were
studied to recover parameters of signals, which are expressed as sum of exponentials. Specifically, in [31],
the authors considered the recovery of signal parameters with equispaced sampled and real-valued data
through the approximate Prony’s method. In [32], the authors considered the signal parameter estimation
problem for the sum of non-increasing exponentials with equispaced sampled data, and introduced the
connections among various parameter estimate methods including the Prony’s method, the matrix pencil
method and the ESPRIT method. In [30], the authors considered the Prony’s method with equispaced
and non-equispaced sampled data for the signal parameter estimation. In particular, the considered non-
equispaced sampled data case in [30] is similar to our problem considered in this paper, which is about
signal parameter estimation with missing data. A major difference between [30] and ours is the different
methods used in recovering missing entries: in [30], the authors use the method based on interpolation,
while we use Hankel matrix completion in this paper. In [28], the author established a phase transition
on the cut-off frequency at which noisy super-resolution is possible, and showed that there exists pairs
of frequency component hypothesis that cannot be distinguished when the noise is big. However, the
results in [28] focus on recovering the frequencies, and do not apply to recovering missing data samples,
the recovery of which is shown in this paper to be robust against noises (please see Theorem 3.2).
Furthermore, the results in [28] focused on finding worst-case pairs of hard-to-distinguish frequency
component hypotheses under worst-case noises, but they do not exclude the possibility of recovering
missing data samples or frequencies from randomly distributed noises or magnitude noises with small
enough magnitudes.

1.2 Organization of this paper

The rest of the paper is organized as follows. In Section 2, we present the problem model, and introduce
the Hankel matrix recovery approach. In Section 3, we investigate the worst-case performance guarantees
of recovering spectrally sparse signals regardless of frequency separation, using the Hankel matrix
recovery approach. In Section 4, we study the Hankel matrix recovery’s average-case performance
guarantees of recovering spectrally sparse signals regardless of frequency separation. In Section 5,
we show that in traditional atomic norm minimization, for successful signal recovery, the underlying
parameters must be well separated, if the atoms depend on the continuously valued parameters. In
Section 6, we introduce the concept of OANM, and show that it is possible that atomic normminimization
is successful even though the original atoms are arbitrarily close. In Section 7, as a byproduct of this
research, we provide a new matrix-theoretic inequality of nuclear norm from the theory of compressed
sensing. Numerical results are given in Section 8 to validate our theoretical predictions. We conclude
our paper in Section 9. The proofs of the technical lemmas are in the appendix.

1.3 Notations

We denote the set of complex numbers and real number as C and R, respectively. We use calligraphic
uppercase letters to represent index sets, and use | · | to represent the cardinality of a set. When we use an
index set as the subscript of a vector, we refer to the part of the vector over the index set. For example, xΩ

is the part of vector x over the index set Ω . We use Cn1×n2
r to represent the set of matrices from C

n1×n2
with rank r. We denote the trace of a matrix X by Tr(X), and denote the real and imaginary parts of a
matrix X by Re(X) and Im(X), respectively. The superscripts T and ∗ are used to represent transpose,
and conjugate transpose of matrices or vectors. The Frobenius norm, nuclear norm and spectral norm of
a matrix are denoted by ‖ · ‖F , ‖ · ‖∗ and ‖ · ‖2 (or ‖ · ‖), respectively. The notation ‖ · ‖ represents the
spectral norm if its argument is a matrix, and represents the Euclidean norm if its argument is a vector.
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6 J. YI ET AL.

The probability of an event S is denoted by P(S). A vector or matrix with all its entries zero will be
denoted by 0. The inner product for matrices is defined as 〈M,N〉 = Tr(MTN) when M and N are real
valued, or 〈M,N〉 = Re(Tr(M∗N)) whenM,N are complex valued.

2. Problem statement

We consider the signal model in (1.1) with

zk = eı2π fk−τk , k = 1, 2, · · · ,R, (2.1)

where fk ∈ [0, 1) are normalized frequencies, τk > 0 are the damping terms and the observation set is
M ⊂ {0, 1, · · · , 2N − 2}.

To estimate the continuous parameter fk in [5, 41], the authors proposed using TV minimization or
atomic norm minimization to recover x or to recover the parameter zk, when zk = eı2π fk with fk taking
continuous values from [0, 1). However, as shown in [5, 40, 41], in order for atomic norm minimization
to recover spectrally sparse data or the associated frequencies correctly, it is necessary that adjacent
frequencies be separated far enough from each other. As shown in [40], for complex exponentials with
zk’s taking values on the complex unit circle, it is required that adjacent frequencies fk ∈ [0, 1) be at least

2
2π(2N−1) apart. This separation condition is necessary, even if we observe the full (2N−1) data samples,
and even if the observations are noiseless. A formal statement of minimal separation of frequencies can
be found in Definition 2.1.

Definition 2.1. ([5]) For a frequency subsetF ⊂ [0, 1)with a group of points, the minimum separation
is defined as smallest distance between two arbitrary different elements in F, i.e.

dist(F) = inf
fi,fl∈F,fi 
=fl

d(fi, fl), (2.2)

where d(fi, fl) is the wrap around distance between two frequencies.

Following the idea of the matrix pencil method in [21] and Enhanced Matrix Completion (EMaC)
in [11], we construct a Hankel matrix based on signal x. More specifically, define the Hankel matrix
H(x) ∈ C

N×N by

Hjk(x) = xj+k−2, j, k = 1, 2, . . . ,N. (2.3)

The expression (1.1) and (2.3) lead to a rank-R decomposition:

H(x) =

⎡
⎢⎢⎢⎣

1 . . . 1
z1 . . . zR
...

...
...

zN−1
1 . . . zN−1

R

⎤
⎥⎥⎥⎦

⎡
⎢⎣
c1

. . .
cR

⎤
⎥⎦

⎡
⎢⎣
1 z1 . . . zN−1

1
...

...
...

1 zR . . . zN−1
R

⎤
⎥⎦ .

Instead of reconstructing x directly, we reconstruct the rank-RHankelmatrixH, subject to the observation
constraints. Low-rank matrix recovery has been widely studied in recovering a matrix from incomplete
observations [2, 6, 7, 9, 35]. It is well known that minimizing the nuclear norm can lead to a solution of
low-rank matrices. We therefore use the nuclear norm minimization to recover the low-rank matrix H.
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 7

More specifically, for any given x ∈ C
2N−1, let H(x) ∈ C

N×N be the corresponding Hankel matrix. We
solve the following optimization problem:

min
x

‖H(x)‖∗, subject to A(x) = b, (2.4)

where ‖ · ‖∗ is the nuclear norm which is the sum of all singular values of a matrix, and A and b are the
linear measurement operator and measurement results. More specifically, A is a linear undersampling
operator and b = xM is the set of elements from x with indices in M. When there is noise η contained
in the observation, i.e.

b = A(x) + η,

we solve

min
x

‖H(x)‖∗, subject to ‖A(x) − b‖2 ≤ δ, (2.5)

where δ = ‖η‖2 is the noise level. It is known that the nuclear norm minimization (2.4) can be
transformed into a semidefinite program

min
x,Q1,Q2

1

2
(Tr(Q1) + Tr(Q2))

s.t. A(x) = b,[
Q1 H(x)∗
H(x) Q2

]
� 0 (2.6)

which can be easily solved with existing convex program solvers such as interior point algorithms.
After successfully recovering all the time samples, we can use the single-snapshot MUSIC algorithm

(as discussed in [24]) to identify the underlying frequencies fk. For the recovered Hankel matrix H(x),
let its singular value decomposition (SVD) be

H(x) = [U1 U2]

[
Σ1 0
0 0

]
[V1 V2]

∗,U1,V1 ∈ C
N×R, (2.7)

and we define the vector φN(f ) and imaging function J(f ) as

φN(f ) = (1, eı2π f , ..., eı2π f (N−1))T , J(f ) = ‖φN(f )‖2
‖U∗

2φ
N(f )‖2

, f ∈ [0, 1). (2.8)

The single-snapshot MUSIC algorithm is given in Algorithm 1. In [24], the authors showed that the
MUSIC algorithm can exactly recover all the frequencies by finding the local maximal of J(f ). Namely,
for undamped signal (1.1) with the set of frequencies F and τk = 0, if N ≥ R, then ‘f ∈ F’ is equivalent
to ‘J(f ) = ∞.’

While it is true that when R < N
2 , one can use MUSIC to find the frequencies from the first N − 2

samples and then recover the signals. However, we focus on the nuclear norm for the following reasons:
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8 J. YI ET AL.

Algorithm 1 Single-Snapshot MUSIC algorithm 24

1: require: solution x, parameter R and N
2: form Hankel matrix Z ∈ C

N×N

3: SVD Z = [U1 U2]

[
Σ1 0
0 0

]
[V1 V2]

∗ with U1 ∈ C
N×R and Σ1 ∈ C

R×R

4: compute imaging function J(f ) = ‖φN (f )‖2
‖U∗

2φ
N (f )‖2 , f ∈ [0, 1)

5: get set F̂={ f : f corresponds to R largest local maxima of J(f )}

(1) MUSIC does not apply to the case where R > N
2 if we use the first N − 2 samples. However, the

nuclear norm minimization can be more powerful than MUSIC in that it can recover more frequencies.
For example, our results in Theorem 4.1 show that nuclear norm minimization can recover close to N
frequencies, while MUSIC can only recover up to N

2 if it uses only the first N − 2 samples.
(2) In addition, this paper focuses on using nuclear normminimization, rather thanMUSIC. So while

the MUSIC can recover the same number (N2 ) of frequencies in the worst case by taking the first N − 2
samples, our results can still be useful in understanding the power of nuclear norm minimization.

3. Worst-case performance guarantees of separation-free super-resolution

In this section, we provide the worst-case performance guarantees of Hankel matrix recovery for
recovering the superposition of complex exponentials. Namely, we provide the conditions under which
the Hankel matrix recovery can uniformly recover the superposition of every possible R complex
exponentials. Our results show that the Hankel matrix recovery can achieve separation-free super-
resolution, even if we consider the criterion of worst-case performance guarantees. Later, we further
show that our derived worst-performance guarantees are tight, namely we can find examples where
nuclear norm minimization fails to recover the superposition of complex exponentials for a larger R.
We start with introducing necessary notations and a few lemmas needed for proofs of our main results.

3.1 Notations and Useful Lemmas

Let wi be the number of elements in the i-th anti-diagonal of any N × N matrix like H, namely,

wi =
{
i, i = 1, 2, · · · ,N,
2N − i, i = N + 1, · · · , 2N − 1.

(3.1)

Here, we call the (2N − 1) anti-diagonals of H(x) from the left top to the right bottom as the first anti-
diagonal up to the (2N − 1)-th anti-diagonal. For example, consider a Hankel matrix

⎡
⎢⎢⎣
h1 h2 h3 h4
h2 h3 h4 h5
h3 h4 h5 h6
h4 h5 h6 h7

⎤
⎥⎥⎦ , (3.2)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 9

then correspondingly, w1 = 1,w2 = 2,w3 = 3,w4 = 4,w5 = 3,w6 = 2 and w7 = 1. We also define
wmin as

wmin = min
i∈{0,1,2,...,2N−2}\M

wi+1, (3.3)

where M is the observation set.
For a Hankel matrix

Hjk(x) = xj+k−2, j, k = 1, 2, · · · ,N, (3.4)

we define Ind(j) as the set of indices of rows which intersect with the j-th anti-diagonal of the Hankel
matrix, and define {j : i ∈ Ind(j)} as the set of indices of all non-zero anti-diagonals which intersect with
the i-th row. For example, consider the matrix in (3.2), we have

Ind(1) = {1}, Ind(2) = {1, 2}, Ind(3) = {1, 2, 3},
Ind(4) = {1, 2, 3, 4},
Ind(5) = {2, 3, 4}, Ind(6) = {3, 4}, Ind(7) = {4},

and

{j : 1 ∈ Ind(j)} = {1, 2, 3, 4},
{j : 2 ∈ Ind(j)} = {2, 3, 4, 5},
{j : 3 ∈ Ind(j)} = {3, 4, 5, 6},
{j : 4 ∈ Ind(j)} = {4, 5, 6, 7}.

With the setup above, we give the following Theorem 3.1 concerning the worst-case performance
guarantee of Hankel matrix recovery, the proof of which is based on the strong null space conditions
from [29, 36]. We will specifically use the following Lemma 3.1 from [29].

Lemma 3.1 is called the strong null space condition, and it characterizes the conditions under which
the nuclear norm minimization (3.5) can recover any matrix with rank at most R. We use this lemma to
show below that the recovery of H(x) from the observation setM is guaranteed by a condition that does
not mandate sufficient frequency separation.

Lemma 3.1. ([29]) Consider an N × N matrix X0 of rank at most R, and a linear mapping A(X0) = b.
Then the nuclear norm minimization (3.5)

min
X

‖X‖∗, subject to A(X) = A(X0), (3.5)

can uniquely and correctly recover every matrix X0 with rank no more than R if, for all non-zero Z ∈
N(A),

2‖Z‖∗R < ‖Z‖∗, (3.6)
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10 J. YI ET AL.

where ‖Z‖∗R is the sum of the largest R singular values of Z, and N(A) is the null space of A.

When there is noise in the observation data, we have the following results guaranteeing the robustness
of the nuclear norm minimization in recovering data.

Lemma 3.2. Consider an N×N matrix X0 of rank at most R, and a linear mapping B such that B(X0 +
E) = b, where E is a perturbation matrix with ‖E‖∗ ≤ ε. Then the nuclear norm minimization (3.7)

min
X

‖X‖∗, subject to B(X) = b, (3.7)

will output a X̂ such that ‖X0 − X̂‖∗ ≤ 3C+1
C−1 ε, if for all non-zero Z ∈ N(B),

(C + 1)‖Z‖∗R ≤ ‖Z‖∗, (3.8)

where C > 1 is a constant, ‖Z‖∗R is the sum of the largest R singular values of Z, and N(B) is the null
space of B.

Proof. We let X̂ = X0 + E+W, whereW is a non-zero matrix from the null space of B. Then

‖X0‖∗ + ‖E‖∗ (3.9)

≥ ‖X0 + E‖∗ (3.10)

≥ ‖X0 + E+W‖∗ (3.11)

≥ ‖X0 +W‖∗ − ‖E‖∗ (3.12)

≥
N∑
i=1

|σi(X0) − σi(W)| − ‖E‖∗ (3.13)

≥
R∑
i=1

(σi(X0) − σi(W)) +
N∑

i=R+1

σi(W) − ‖E‖∗ (3.14)

≥ ‖X0‖∗ + ‖W‖∗ − 2‖W‖∗R − ‖E‖∗ (3.15)

≥ ‖X0‖∗ + C − 1

C + 1
‖W‖∗ − ‖E‖∗, (3.16)

whereW is a matrix from the null space of B, σi(·) represents the i-th largest singular value of a matrix
and inequality (3.14) is due to X0’s rank being at most R and Lemma 3.3 as shown below. Thus, we have
2‖E‖∗ ≥ C−1

C+1‖W‖∗, implying that ‖X0 − X̂‖∗ = ‖W + E‖∗ ≤ ‖W‖∗ + ‖E‖∗ ≤ 3C+1
(C−1)‖E‖∗. �

Lemma 3.3. [29] Let X and Y be two N × N matrix, then

‖X − Y‖∗ ≥
N∑
i=1

|σi(X) − σi(Y)|,

where σi(X) and σi(Y) are, respectively, the i-th largest singular values of X and Y, respectively.
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 11

Because of the two lemmas above, we arrive at the following lemma particularly about the condition
for Hankel matrix recovery in super-resolution.

Lemma 3.4. Consider the signal model (1.1) with zk defined in (2.1), and the observation set M ⊆
{0, 1, 2, ..., 2N − 2}. Then the nuclear norm minimization (2.4) will uniquely recover H(x), regardless
of the (frequency) separation between the R continuously valued (frequency) parameters, if for every
non-zero element in the null space N(A) of the linear mapping A corresponding to the sampling set M
satisfies the condition in Lemma 3.1. Namely, every non-zero matrix in the set

N(A) = {Z ∈ C
N×N : Z is a Hankel matrix, Zj,k = 0 if j+ k − 2 ∈ M}

satisfies the null space condition in Lemma 3.1.

This lemma shows that the guarantee of recovering missing data via Hankel matrix recovery
essentially does not require frequency separations of frequencies, but instead depends on the sampling
pattern only.

3.2 Worst-case performance guarantees of separation-free super-resolution

We are now ready to introduce our main results.

Theorem 3.1. Consider the signal model (1.1) with zk defined in (2.1), and the observation set M ⊆
{0, 1, 2, ..., 2N − 2}. We further define wi of an N × N Hankel matrix H(x) as in (3.1), and define wmin
as in (3.3). Then the nuclear norm minimization (2.4) will uniquely recover H(x), regardless of the
(frequency) separation between the R continuously valued (frequency) parameters, if

R <
wmin

2(2N − 1 − |M|) . (3.17)

On the one hand, the performance guarantees given in Theorem 3.1 can be conservative: for average-
case performance guarantees, even when the number of complex exponentials R is bigger than predicted
by Theorem 3.1, the Hankel matrix recovery can still recover the missing data, even though the sinusoids
can be very close to each other. On the other hand, the bounds on recoverable sparsity level R given in
Theorem 3.1 is tight for worst-case performance guarantees, as shown in the next section. We will show
the tightness of recoverable sparsity guaranteed by Theorem 3.1, which is built on the developments in
Section 4.1.

Proof of Theorem 3.1:We can change (2.4) to the following optimization problem:

min
B,x

‖B‖∗, subject to B = H(x), A(x) = b. (3.18)

We can see (3.18) as a nuclear norm minimization problem, where the null space of the linear operator
(applied to (B,x)) in the constraints of (3.18) is given by (H(z), z) such that A(z) = 0.

Using Lemma 3.1, we can see that (3.18) or (2.4) can correctly recover x as a superposition of R
complex exponentials if 2‖H(z)‖∗R < ‖H(z)‖∗ holds true for every non-zero z from the null space
of A.
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12 J. YI ET AL.

From the sampling set M ⊆ {0, 1, 2, ..., 2N − 2}, the null space of the sampling operator A is
composed of (2N − 1) × 1 vectors z’s such that zi+1 = 0 if i ∈ M. For such a vector z, let us denote the
element across the i-th anti-diagonal ofH(z) as ai, and thus Q = H(z) is a Hankel matrix with its (i+ 1)
anti-diagonal element equal to 0 if i ∈ M. Let σ1, · · · , σN be the N singular values of H(z) arranged in
a descending order. To verify the null space condition for nuclear norm minimization, we would like to
find the largest R such that

σ1 + · · · + σR < σR+1 + · · · + σN , (3.19)

for every non-zero z in the null space of A.
Towards this goal, we first obtain an upper bound for its largest singular value (for a matrix Q, we

use Qi,: to denote its i-th row vector):

σ1 = max
u∈CN ,‖u‖2=1

‖Qu‖2

= max
u∈CN ,‖u‖2=1

√√√√ N∑
i=1

|Qi,:u|2

= max
u∈CN ,‖u‖2=1

√√√√√ N∑
i=1

∣∣∣∣∣∣
∑

j∈{j: i∈Ind(j),aj 
=0}
ajuj−i+1

∣∣∣∣∣∣ 2, (3.20)

where Ind(j) is the set of indices of rows which intersect with the j-th anti-diagonal, {j : i ∈
Ind(j), aj 
= 0} is the set of all non-zero anti-diagonals intersecting with the i-th row and (3.20)
is obtained by looking at the N rows. Note that in the calculations above, we only need to pay
attention to the non-zero entries in the i-th row of Q. From the Cauchy–Schwarz inequality,
we have

σ1 ≤ max
u∈CN ,‖u‖2=1

√√√√√ N∑
i=1

⎛
⎝ ∑
j∈{j:i∈Ind(j),aj 
=0}

|aj|2
⎞
⎠

⎛
⎝ ∑
j∈{j:i∈Ind(j),aj 
=0}

|uj−i+1|2
⎞
⎠

= max
u∈CN ,‖u‖2=1

√√√√√2N−1∑
j1=1

|aj1 |2
N∑

i=1,i∈Ind(j1)

⎛
⎝ ∑
j2∈{j:i∈Ind(j),aj 
=0}

|uj2−i+1|2
⎞
⎠ (3.21)

≤ max
u∈CN ,‖u‖2=1

√√√√√2N−1∑
j1=1

⎡
⎣|aj1 |2

⎛
⎝ ∑
i∈Ind(j1)

∑
j2∈{j:i∈Ind(j),aj 
=0}

|uj2−i+1|2
⎞
⎠
⎤
⎦.
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 13

Because ‖u‖2 = 1 and, for each i, |ui|2 appears in
(∑

i∈Ind(j1)
∑

j2∈{j:i∈Ind(j),aj 
=0} |uj2−i+1|2
)
for no

more than (2N − 1 −M) times, we have

σ1 ≤ max
u∈CN ,‖u‖2=1

√√√√√2N−1∑
j1=1

[
|aj1 |2(2N − 1 −M)

]

=
√ ∑
j∈{0,1,...,2N−2}\M

|aj+1|2(2N − 1 −M).

Furthermore, summing up the energy of the matrix Q, we have

N∑
i=1

σ 2
i =

∑
i∈{0,1,...,2N−2}\M

|ai+1|2wi+1. (3.22)

Since σi
σ1

≥
(

σi
σ1

)2
, then for any integer k ≤ N, we have

∑N
i=1 σi∑k
i=1 σi

≥
∑N

i=1 σi

kσ1

≥
∑N

i=1 σ 2
i

kσ 2
1

≥
∑

i∈{0,1,...,2N−2}\M |ai+1|2wi+1

k
∑

j∈{0,1,...,2N−2}\M |aj+1|2(2N − 1 −M)

≥
(
mini∈{0,1,...,2N−2}\M wi+1

)
· ∑i∈{0,1,...,2N−2}\M |ai+1|2

k(2N − 1 −M) · ∑j∈{0,1,...,2N−2}\M |aj+1|2

= mini∈{0,1,...,2N−2}\M wi+1

k(2N − 1 −M)

= wmin
k(2N − 1 −M)

. (3.23)

So if

mini∈{0,1,...,2N−2}\M wi+1

R(2N − 1 −M)
> 2, (3.24)
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14 J. YI ET AL.

then for every non-zero vector z in the null space of A, and the corresponding Hankel matrix Q = H(z),

N∑
i=1

σi > 2
R∑
i=1

σi. (3.25)

It follows that, for any superposition of R < wmin
2(2N−1−M)

complex exponentials, we can correctly
recover x over the whole set {0, 1, ..., 2N − 2} using the incomplete sampling set M, regardless of
the separations between different frequencies (or between the continuously valued parameters zk’s for
damped complex exponentials). �

3.3 Robustness of Hankel matrix recovery in super-resolution regardless of frequency separation

We further have the following results of the robustness of the Hankel matrix recovery in super-resolution.

Theorem 3.2. Consider a ground-truth signal model (1.1) with zk defined in (2.1), and the observation
set M ⊆ {0, 1, 2, ..., 2N − 2}. Suppose that the ground-truth signal is given by

x0j =
R∑
k=1

ckz
j
k, j = 0, 1, . . . , 2N − 2, (3.26)

and we denote the ground-truth vector x0 = [x00, x
0
1, ..., x

0
2N−2]

T . We further represent the noise-corrupted
signal by

xj =
R∑
k=1

ckz
j
k + ej, j = 0, 1, . . . , 2N − 2, (3.27)

where e = [e0, e1, ..., e2N−2]
T is the noise vector. We define a partial-observation error vector ẽ ∈ C

2N−1

such that ẽM = eM and ẽ{0,1,2,...,2N−2}\M = 0. We define ε = N‖ẽ‖1, and denote the measurement

results by A(x0) + ẽM = b or A(x0 + e) = b.
Then the optimization formulation

min
x

‖H(x)‖∗, subject to A(x) = b, (3.28)

will output a x̂ such that

‖H(x̂) −H(x0)‖∗ ≤ 3C + 1

(C − 1)
ε,

and

‖x̂− x0‖2 ≤ 3C + 1

(C − 1)
ε,
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 15

where C > 1, regardless of the (frequency) separation between the R continuously valued (frequency)
parameters, if

R <
wmin

(C + 1)(2N − 1 − |M|) . (3.29)

Proof. The proof is similar to the proof of Theorem 3.1. Instead of using Lemma 3.1, we use
Lemma 3.2.

First of all, we observe that the nuclear norm of the error matrix E = H(ẽ) is upper bounded by
N × ‖ẽ‖1. This is because the Hankel matrix, which has non-zero elements only in the i-th (1 ≤ i ≤
2N − 1) anti-diagonal and zeros elsewhere, has its nuclear norm bounded by the number of non-zero
elements (which is upper bounded by N) times the magnitude of that non-zero element. By the triangle
inequality, we have the nuclear norm of the error matrix E = H(ẽ) upper bounded by N × ‖ẽ‖1.

We let X0 = H(x0) and E = H(ẽ). Then the optimization formulation

min
x

‖H(x)‖∗, subject to A(x) = b, (3.30)

is equivalent to

min
X∈CN×N

‖X‖∗, subject to B(X) = B(X0 + E), (3.31)

where B(·) is a linear mapping such that its null space is {H(x) : A(x) = 0, x ∈ C
2N−1}.

Then we can apply Lemma 3.2 to obtain the error bounds as in this theorem. In fact, following similar
proofs as in the proof of Theorem 3.1, we have, if

mini∈{0,1,...,2N−2}\M wi+1

R(2N − 1 −M)
≥ C + 1, (3.32)

then for every non-zero vector z in the null space of A, and the corresponding Hankel matrix Q = H(z),
we have

N∑
i=1

σi ≥ (C + 1)
R∑
i=1

σi. (3.33)

Applying Lemma 3.2, we immediately have

‖H(x̂) −H(x0)‖∗ ≤ 3C + 1

(C − 1)
ε.

Because

‖x̂− x0‖2 ≤ ‖H(x̂) −H(x0)‖F ≤ ‖H(x̂) −H(x0)‖∗,
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16 J. YI ET AL.

where ‖ · ‖ denotes the Frobenius norm, we have

‖x̂− x0‖2 ≤ 3C + 1

C − 1
ε.

�

3.4 Implications for robustness in recovering frequencies using recovered data samples

Let us now consider the recovery of the underlying frequencies. In fact, the robustness of recovering
missing data samples translates into the robustness of recovering the frequencies. When the observations
are noiseless, for the first time, we have shown that the nuclear norm minimization method can recover
the data correctly regardless of frequency separation, and moreover, using the recovered data samples
and the Prony’s method (or the single snapshot MUSIC algorithm), we can even exactly recover the
frequency accurately regardless of frequency separation. When the observations are noisy, the Hankel
matrix recovery method can guarantee recovering the missing data samples with robustness: regardless
of frequency separations, the norms of the recovery error are nicely bounded by the norms of the noise
vector, as proved by Theorem 3.2 in this paper. According to theorems 3 and 4 in [24], we know that
when the error in the recovered data samples goes to zero, using the single-snapshot MUSIC algorithm,
the error in the noise-space correlation function used in the single-snapshot algorithm also goes to
zero; and, moreover, there exist local minimizers of the noise-space correlation function converging
to the true underlying frequencies. Of course, the ratio of the magnitude of frequency recovery error
to the magnitude of noise depends on frequency separations; however, at least this method is robust
against noises in the sense that the magnitude of frequency recovery error goes to zero as the noise’s
magnitude goes to zero. This is very different from atomic norm minimization, which will identify
wrong frequencies even with noiseless and complete data if the separation of two frequencies is below a
certain threshold [40]. Our results in this paper demonstrate that Hankel matrix recovery method exhibits
very different behaviours than the atomic norm minimization, even though both reduce to a semidefinite
programming problem for minimizing the nuclear norm of a matrix.

4. Average-case performance guarantees

In this section, we study the performance guarantees for Hankel matrix recovery, when the phases of
the coefficients of the R sinusoids are i.i.d. and uniformly distributed over [0, 2π). For average-case
performance guarantees, we show that we can recover the superposition of a larger number of complex
exponentials than Theorem 3.1 offers. We introduce Lemmas 4.1 and 4.2 first, which are used in the
derivations of the average-case recovery guarantee stated in Theorems 4.1 and 4.3.

Lemma 4.1. ([42]) For a sequence of i.i.d. random matrices M1, · · · ,MK with dimension d1 × d2 and
their sumM = ∑K

i=1Mi, ifMi satisfies

E[Mi] = 0, ‖Mi‖ ≤ L,∀i = 1, · · · ,K, (4.1)

and

ν(M) := max

{∣∣∣∣∣
∣∣∣∣∣
K∑
i=1

E[MiM
∗
i ]

∣∣∣∣∣
∣∣∣∣∣ ,

∣∣∣∣∣
∣∣∣∣∣
K∑
i=1

E[M∗
iMi]

∣∣∣∣∣
∣∣∣∣∣
}
, (4.2)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 17

then

P(‖M‖ ≥ t) ≤ (d1 + d2) · exp
( −t2/2
v(M) + Lt/3

)
,∀t ≥ 0. (4.3)

Lemma 4.1, called the Matrix Bernstein Inequality, characterizes the tail behaviour of the spectral
norm of a random matrix.

Lemma 4.2. Let X0 be anyM×N matrix of rank R inCM×N , and we observe it through a linear mapping
A(X0) = b. We also assume that X0 has an SVD X0 = UΣV∗, where U ∈ C

M×R, V ∈ C
N×R, and

Σ ∈ C
R×R is a diagonal matrix. Then the nuclear norm minimization (4.4)

min
X

‖X‖∗, subject to A(X) = A(X0), (4.4)

correctly and uniquely recovers X0 if, for every non-zero element Q ∈ N(A),

−|Tr(U∗QV)| + ‖Ū∗
QV̄‖∗ > 0, (4.5)

where Ū and V̄ are such that [U Ū] and [V V̄] are unitary.

We use Lemma 4.2 as the condition for successful signal recovery through nuclear norm minimiza-
tion. This lemma is an extension of lemma 13 in [29]. The key difference is that Lemma 4.2 deals with
complex-numbered matrices. Moreover, Lemma 4.2 gets rid of the ‘iff’ claim for the null space condition
in lemma 13 of [29], because we find that the condition in lemma 13 of [29] is a sufficient condition for
the success of nuclear norm minimization, but not a necessary condition for the success of nuclear norm
minimization [46]. We give the proof of Lemma 4.2 in Appendix.

4.1 Average-case performance guarantees for orthogonal frequency atoms

Theorem 4.1. Let us consider the signal model of the superposition of R complex exponentials (1.1)
with zk defined in (2.1) where τk = 0. We assume that the R frequencies f1, f2,..., and fR are such that
the atoms (1, eı2π fi , ..., eı2π fi(N−1))T , 1 ≤ i ≤ R, are orthogonal to each other. We let the observation set
be M = {0, 1, 2, ..., 2N − 2} \ {N − 1}. We assume the phases of coefficients c1, · · · , cR in signal model
(1.1) are independent and uniformly distributed over [0, 2π). Then the nuclear norm minimization (2.4)
will successfully and uniquely recover H(x) and x, with probability approaching 1 as N → ∞ if

R = N − c
√

log(N)N, (4.6)

where c > 0 is a constant.

Proof of Theorem 4.1:We can change (2.4) to the following optimization problem

min
B,x

‖B‖∗, subject to B = H(x), A(x) = b. (4.7)

We can think of (4.7) as a nuclear normminimization, where the null space of the linear operator (applied
to B and x) in the constraints of (3.18) is given by (H(z), z) such that A(z) = 0.
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18 J. YI ET AL.

Then we can see that (4.7) or (2.4) can correctly recover x as a superposition of R complex
exponentials if

|Tr(VU∗H(z))| < ‖Ū∗
H(z)V̄‖∗, (4.8)

hold true for any z which is a non-zero vector from the null space of A, where H(x) = UΣV∗ is the
SVD of H(x) with U ∈ C

N×R and V ∈ C
N×R, and Ū and V̄ are such that [U, Ū] and [V, V̄] are unitary.

Without loss of generality, let fk = sk
N for 1 ≤ k ≤ R, where sk’s are distinct integers between 0 and

N − 1. Then

U = 1√
N

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

eı2π
s1
N eı2π

s2
N · · · eı2π

sR
N

...
...

. . .
...

eı2π
s1
N (N−1) eı2π

s2
N (N−1) · · · eı2π

sR
N (N−1)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
e−ıθ1 0 · · · 0
0 e−ıθ2 · · · 0
...

...
. . .

...
0 0 · · · e−ıθR

⎤
⎥⎥⎥⎦ , (4.9)

and

V = 1√
N

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

e−ı2π
s1
N e−ı2π

s2
N · · · e−ı2π sR

N

...
...

. . .
...

eı−2π
s1
N (N−1) e−ı2π

s2
N (N−1) · · · e−ı2π sR

N (N−1)

⎤
⎥⎥⎥⎥⎦ , (4.10)

and

Σ = N

⎡
⎢⎢⎢⎣

|c1| 0 · · · 0
0 |c2| · · · 0
...

...
. . .

...
0 0 · · · |cR|

⎤
⎥⎥⎥⎦ , (4.11)

where θk’s (1 ≤ k ≤ R) are i.i.d. random variables uniformly distributed over [0, 2π).
When the observation set M = {0, 1, 2, ..., 2N − 2} \ {N − 1}, any Q = H(z) with z from the null

space of A takes the following form:

Q = a

⎡
⎢⎣
0 · · · 1
...

...
...

1 · · · 0

⎤
⎥⎦ , a ∈ C. (4.12)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 19

Thus

|Tr(VU∗Q)| =

∣∣∣∣∣∣∣aTr
⎛
⎜⎝U∗

⎡
⎢⎣
0 · · · 1
...

...
...

1 · · · 0

⎤
⎥⎦V

⎞
⎟⎠
∣∣∣∣∣∣∣

= |a|
(

1√
N

)2
∣∣∣∣∣
R∑
i=1

N−1∑
t=0

eıθi e−ı2π
si(N−1−t)

N × e−ı2π
sit
N

∣∣∣∣∣ (4.13)

= |a|
N

∣∣∣∣∣
R∑
i=1

N−1∑
t=0

eıθi e−ı2π
si(N−1)

N

∣∣∣∣∣ (4.14)

= |a|
∣∣∣∣∣
R∑
i=1

eıθi e−ı2π
si(N−1)

N

∣∣∣∣∣ . (4.15)

Notice that random variable eıθi e−ı2π
si(N−1)

N are mutually independent random variables uniformly
distributed over the complex unit circle. We will use the concentration lemma (see for example, [42]) to

provide a concentration of measure result for the summation of eıθi e−ı2π
si(N−1)

N .

Applying Lemma 4.1 to the 1×2 matrix composed of the real and imaginary parts of eıθi e−ı2π
si(N−1)

N ,
with ν = max(R,R) = R, L = 1, d1 + d2 = 3, we have

P
(|Tr(VU∗Q)| ≥ |a|t) ≤ 3e−

t2/2
ν+Lt/3 = 3e−

t2/2
R+t/3 ,∀t > 0. (4.16)

We further notice that, Ū’s ( V̄’ s) columns are normalized orthogonal frequency atoms (or their complex
conjugates) with frequencies li

N , with integer li’s different from the integers sk’s of those R complex
exponentials. Thus,

‖Ū∗
QV̄‖∗ = |a|(N − R) (4.17)

since we can always find two unitary matrices Q1 and Q2 such that Q1QQ2 becomes an identity matrix
without changing the nuclear norm, i.e. ‖Ū∗

QV̄‖∗ = ‖Ū∗
Q1QQ2V̄‖∗, allowing us to get (4.17).

Pick t = N − R, and let (N−R)2/2
R+(N−R)/3 = c log(N) with c being a positive constant. Solving for R, we

obtain R = N−
(

2
3 log(N) +

√
4
9c

2 log2(N) + 2c log(N)N

)
, which implies (4.8) holds with probability

approaching 1 if N → ∞. This proves our claims. �

4.2 Tightness of Theorem 3.1

Building on the discussions above, we now discuss some results on the tightness of the bounds in
Theorem 3.1.

We first show that the recoverable sparsity R provided by Theorem 3.1 is tight for M =
{0, 1, 2, ..., 2N − 2} \ {N − 1}. For such a sampling set, wmin = N, and Theorem 3.1 provides a bound
R < wmin

2 = N
2 .
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In fact, we can show that if R ≥ N
2 , we can construct signal examples where the Hankel matrix

recovery approach cannot recover the original signal x. Consider the signal in Theorem 4.1. We choose

the coefficients ci’s such that eıθi e−ı2π
si(N−1)

N = 1, then

|Tr(VU∗Q)| = |a|
∣∣∣∣∣
R∑
i=1

eıθi e−ı2π
si(N−1)

N

∣∣∣∣∣ = |a|R, (4.18)

and we also have

‖Ū∗
QV̄‖∗ = |a|(N − R). (4.19)

Thus, |Tr(VU∗Q)| ≥ ‖Ū∗
QV̄‖∗ for everyQ = H(z)with z in the null space of the sampling operator.

Thus, the Hankel matrix recovery cannot recover the ground truth x. This shows that the prediction by
Theorem 3.1 is tight.

According to Theorem 3.1, in the worst case, we need a very large number of samples to guarantee
successful recovery of signal comprising a small number of atoms. We have established the tightness of
Theorem 3.1 for a special sampling scheme, i.e. M = {0, 1, · · · , 2N − 1} \ {N − 1}, and even under the
restricted sampling patterns considered in this paper, these are the first results in the literature that show
successful recovery is guaranteed regardless of frequency separation using nuclear norm minimization
in the setting of noiseless measurements.

In fact, we have the following general results suggesting that the tightness of the results in
Theorem 3.1 in terms of recovering a low-rank matrix.

Theorem 4.2. Consider the signal model (1.1) with zk defined in (2.1), and the observation set M ⊆
{0, 1, 2, ..., 2N − 2}. We further define wi of an N × N Hankel matrix H(x) as in (3.1), and define wmin
as in (3.3). Let A(·) be a linear mapping of a vector from C

2N−1 to C
|M| as defined by the sampling

pattern M.
Then there is a non-zero vector u ∈ C

2N−1 ∈ such that A(u) = 0 and the corresponding Hankel
matrix H(u) has a rank of wmin; moreover, there is a matrix Q ∈ C

N×N of rank �wmin/2� such that
‖H(u) + Q‖∗ ≤ ‖Q‖∗.

In other words, let B be linear mapping from C
N×N to C

|M| such that its null space is the same as
the set {H(u) | A(u) = 0}, then there exists a low-rank matrix Q of rank �wmin/2� such that it is not the
unique solution to the following nuclear norm minimization problem:

min
X∈CN×N

‖X‖∗, subject to B(X) = B(Q). (4.20)

Proof. We consider the index i, 0 ≤ i ≤ (2N − 2) such that wi+1 = wmin. Then we take the low-rank
matrix Q which has �wmin/2� 1’s in its (i + 1)-th anti-diagonal, and all the other elements in Q are 0.
We take u ∈ C

N such that ui = −1 at index i but equal to 0 at all the other indices. Then H(u) +Q will
be a matrix having wmin − �wmin/2� ‘-1’s at its (i + 1)-th diagonal, and have a no bigger nuclear norm
than Q, proving this theorem. �

We also want to emphasize that while results in our theorems are conservative, and the practical
performance can still be quite encouraging. For example, in Theorem 4.3, the sampling scheme can
hardly be regarded as undersampling since we need 2N−2

2N−1 = 126
127 ≈ 99% of the samples for successful
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 21

recovery. But in the experiments, we actually used about 51% of samples. The experimental results
actually imply the possibility of improving the bounds in the recovery guarantees.

4.3 Average-case performance analysis with arbitrarily close frequency atoms

In this section, we further show that the Hankel matrix recovery can successfully recover the superpo-
sition of complex exponentials with arbitrarily close frequency atoms. In particular, we give average
performance guarantees on recoverable sparsity R when frequency atoms are arbitrarily close, and show
that the Hankel matrix recovery can deal with much larger recoverable sparsityR for average-case signals
than predicted by Theorem 3.1. For the tractability of our theoretical analysis, our results assume that
certain frequency atoms are orthogonal to each other; however, in our results, there are always frequency
atoms which are arbitrarily close to each other, enforcing small frequency separation in this research
problem. We note that in the literature the separation requirement is often defined as the smallest circular
separation between frequency atoms. Following this definition, the frequency separations used in this
section are still consistent with the definition of small frequency separation, even though some of the
frequency atoms are orthogonal to each other. Numerical results suggest that the assumptions that some
of the frequency atoms are orthogonal to each other are not necessarily needed; however, removing such
assumptions would require some future work.

We consider a signal x composed ofR complex exponentials. Among them,R−1 orthogonal complex
exponentials (without loss of generality, we assume that these R − 1 frequencies take values li

N , where
li’s are integers). The other complex exponential ccle

ı2π fclj has a frequency arbitrarily close to one of the
R− 1 frequencies, i.e.

xj =
R−1∑
k=1

cke
ı2π fkj + ccle

ı2π fclj, j ∈ {0, 1, · · · , 2N − 2}, (4.21)

where fcl is arbitrarily close to one of the first (R− 1) frequencies. For this set-up with arbitrarily close
atoms, we have the following average-case performance guarantee.

Theorem 4.3. Consider the signal model (4.21) with R complex exponentials, where the phases of the
coefficients in these complex exponentials are i.i.d. uniformly randomly distributed over [0, 2π). The
first (R− 1) of the complex exponentials are such that the corresponding atom vectors

(1, eı2π fi , ..., eı2π fi(N−1))T

are mutually orthogonal, while the R-th exponential has a frequency arbitrarily close to one of the first
(R− 1) frequencies (in wrap-around distance). Let cmin = min{|c1|, |c2|, ..., |cR−1|}, and define

drel = |ccl|
cmin

+ 1. (4.22)

If we have the observation set M = {0, 1, 2, ..., 2N − 2} \ {N − 1}, and for any constant c > 0, if

R = N − 4
√
Ndrel +

2

3
c log(N) −

√
2cN log(N) − 8c

√
Ndrel log(N) + 4

9
c2 log2(N), (4.23)
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22 J. YI ET AL.

then we can recover the true signal x via Hankel matrix recovery

min
x

‖H(x)‖∗, subject to A(x) = b

with high probability as N → ∞, regardless of frequency separations.

Remarks: 1. We can extend this result to cases where neither of the two arbitrarily close frequencies
has on-the-grid frequencies, and the Hankel matrix recovery method can recover a similar sparsity; 2.
Under a similar number of complex exponentials, with high probability, the Hankel matrix recovery can
correctly recover the signal x, uniformly over every possible phases of the two complex exponentials
with arbitrarily close frequencies; 3. We can extend our results to other sampling sets, but for clarity of
presentations, we choose M = {0, 1, 2, ..., 2N − 2} \ {N − 1}.

The proof of Theorem 4.3 depends on Lemma 4.3, a perturbation result on the polar decomposition of
a matrix, which we will present first before introducing the formal proof of Theorem 4.3. Let us consider
two matrices X and X̃ from C

m×n
r such that X = X̃ + E, where E ∈ C

m×n. Suppose that the matrix X
has SVD

X = UΣV∗,U = [U1 U2] ∈ C
m×m,Σ =

[
Σ1 0
0 0

]
∈ C

m×n,V = [V1 V2] ∈ C
n×n, (4.24)

where U1 ∈ C
m×r, V1 ∈ C

n×r and Σ1 ∈ C
r×r. The polar decomposition of X is given by

X = PH,P = U1V
∗
1,H = V1Σ1V∗

1, (4.25)

and the matrix P is the unitary polar factor. Similarly for X̃, we have

X̃ = ŨΣ̃V∗, Ũ = [Ũ1 Ũ2] ∈ C
m×m, Σ̃ =

[
Σ̃1 0
0 0

]
∈ C

m×n, Ṽ = [Ṽ1 Ṽ2] ∈ C
n×n, (4.26)

and the polar decomposition of X̃

X̃ = P̃H̃, P̃ = Ũ1Ṽ
∗
1, H̃ = Ṽ1Σ̃1Ṽ

∗
1. (4.27)

Lemma 4.3. ([23]) For matrices X ∈ C
m×n
r and X̃ ∈ C

m×n
r with SVD defined as (4.24) and (4.26), let

σr and σ̃r be the smallest non-zero singular values of X and X̃, respectively, then

|||P− P̃||| ≤
(

2

σr + σ̃r
+ 2

max{σr, σ̃r}
)

|||X − X̃|||, (4.28)

where ||| · ||| is any unitary invariant norm, and the matrices P and P̃ are defined in (4.25) and (4.27).

Proof of Theorem 4.3: To prove this theorem, we consider a perturbed signal x̃. The original signal
x and the perturbed x̃ satisfy

xj = x̃j + ccle
ı2π fclj − crme

ı2π frmj, j ∈ {0, 1, · · · , 2N − 2}, (4.29)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 23

where xj is the same as in (4.21), and x̃ is defined as

x̃j = crme
ı2π frmj +

R−1∑
k=1

cke
ı2π fkj, (4.30)

with frm being a frequency such that its corresponding frequency atom is mutually orthogonal with the
atoms corresponding to f1,..., and fR−1. We further define

dmin = min{|c1|, · · · , |cR−1|, |crm|}. (4.31)

Let us define X̃ = H(x̃), X = H(x), and the error matrix E such that

X = X̃ + E, (4.32)

where

E =
⎡
⎢⎣

ccl − crm · · · ccle
ı2π fcl·(N−1) − crme

ı2π frm·(N−1)

...
. . .

...
ccle

ı2π fcl·(N−1) − crme
ı2π frm·(N−1) · · · ccle

ı2π fcl·(2N−2) − crme
ı2π frm·(2N−2)

⎤
⎥⎦ . (4.33)

Both X and X̃ are rank-R matrices. For the error matrix E, we have

‖E‖F =
⎛
⎝ ∑
i,k∈{0,··· ,N−1}

|ccleı2π fcl·(i+k) − crme
ı2π frm·(i+k)|2

⎞
⎠

1/2

≤
⎛
⎝ ∑
i,k∈{0,··· ,N−1}

(|ccl| + |crm|)2
⎞
⎠

1/2

=
(
N2 (|ccl| + |crm|)2)1/2

= N
(|ccl| + |crm|) . (4.34)

Following the derivations in Theorem 4.1, X̃ has the following SVD

X̃ = ŨΣ̃Ṽ
∗
, Ũ = [Ũ1 Ũ2] ∈ C

N×N , Ṽ = [Ṽ1 Ṽ2] ∈ C
N×N , Σ̃ =

[
Σ̃1 0
0 0

]
∈ C

N×N , (4.35)

where Ũ1 ∈ C
N×R, Σ̃1 ∈ C

R×R and Ṽ1 ∈ C
N×R are defined as in (4.9), (4.10) and (4.11). The polar

decomposition of X̃ using its SVD is given by

X̃ = P̃H̃, P̃ = Ũ1Ṽ
∗
1, H̃ = Ṽ1Σ̃1Ṽ

∗
1, (4.36)
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24 J. YI ET AL.

and the matrix P̃ is called the unitary polar factor. Similarly, for X, we have

X = UΣV,U = [U1 U2] ∈ C
N×N ,V = [V1 V2] ∈ C

N×N ,Σ =
[

Σ1 0
0 0

]
, (4.37)

and its polar decomposition for X,

X = PH,P = U1V
∗
1,H = V1Σ1V

∗
1. (4.38)

Suppose that we try to recover x through the following nuclear norm minimization:

min
x

‖H(x)‖∗

s.t. A(x) = b. (4.39)

As in the proof of Theorem 4.1, we analyse the null space condition for successful recovery using Hankel
matrix recovery. Towards this, we first bound the unitary polar factor ofX through the perturbation theory
for polar decomposition.

For our problem, we have m = n = N, r = R. Let σR be the R-th singular value of X. From (4.11)
and (4.31), an explicit form for σR is

σR = Ndmin. (4.40)

Then Lemma 4.3 implies that

‖P− P̃‖F ≤ 4

σR
‖X − X̃‖F . (4.41)

From the null space condition for nuclear norm minimization (4.39), we can correctly recover x if

|Tr(V1U
∗
1Q)| < ‖Ū∗

1QV̄1‖∗, (4.42)

for every non-zero Q = H(z) with z ∈ N(A), where Ū1 and V̄1 are such that [U1 Ū1] and [V1 V̄1] are
unitary, i.e. Ū1 = U2 and V̄1 = V2. Since the observation set M = {0, 1, 2, ..., 2N − 2} \ {N − 1}, Q
takes the form in (4.12) with a ∈ C, and

‖Ū∗
1QV̄1‖∗ = |a|(N − R). (4.43)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 25

Let us define ΔP = P̃− P = Ũ1Ṽ
∗
1 − U1V

∗
1, and we have

|Tr(V1U
∗
1Q)| = | < Q,U1V

∗
1 > |

≤ | < Q, P̃ > | + | < Q,ΔP > |
= |Tr(Ṽ1Ũ

∗
1Q)| + | < Q,ΔP > |

≤ |Tr(Ṽ1Ũ
∗
1Q)| + (‖Q‖2F‖‖ΔP‖2F)1/2

≤ |Tr(Ṽ1Ũ
∗
1Q)| + |a|√N‖ΔP‖F , (4.44)

where we used the Cauchy–Schwartz inequality. Notice that E = X− X̃, and then it follows from (4.41)
and (4.34) that

|Tr(V1U
∗
1Q)| ≤ |Tr(Ṽ1Ũ

∗
1Q)| + |a|4

√
N

σ̃R
‖E‖F

≤ |Tr(Ṽ1Ũ
∗
1Q)| + |a| 4

√
N

Ndmin
· N (|ccl| + |crm|)

≤ |Tr(Ṽ1Ũ
∗
1Q)| + 4|a|√N · |ccl| + |crm|

dmin
. (4.45)

Thus if

|Tr(Ṽ1Ũ
∗
1Q)| + 4|a|√N · |ccl| + |crm|

dmin
< |a|(N − R), (4.46)

namely,

|Tr(Ṽ1Ũ
∗
1Q)| < |a|

(
N − R− 4

√
N · drel

)
, (4.47)

where drel is defined as |ccl|+|crm|
dmin

, then solving (4.39) will correctly recover x.
The proof of Theorem 4.1 leads to the concentration inequality:

P

(
|Tr(ṼŨ∗

Q)| ≥ |a|t
)

≤ 3e−
t2/2
R+t/3 ,∀ t > 0.

Taking t = N − R− 4
√
Ndrel, we have

t2/2

R+ t/3
= (N − R− 4

√
Ndrel)

2/2

R+ (N − R− 4
√
Ndrel)/3

= 3

2
· N

2 + R2 + 16Nd2rel − 2NR− 8N
√
Ndrel + 8R

√
Ndrel

3R+ N − R− 4
√
Ndrel

. (4.48)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/iaad033/7243208 by U
niversity of Iow

a user on 29 August 2023



26 J. YI ET AL.

To have successful signal recovery with high probability, we let

3

2
· N

2 + R2 + 16Nd2rel − 2NR− 8N
√
Ndrel + 8R

√
Ndrel

3R+ N − R− 4
√
Ndrel

= c log(N), (4.49)

where c > 0 is a constant. So we have

R2 + sR+ r = 0, (4.50)

where

s = 8
√
Ndrel − 2N − 2c1 log(N), (4.51)

r = N2 + 16Nd2rel − 8
√
NNdrel − c1N log(N) + 4c1

√
Ndrel log(N), (4.52)

and c1 = 2
3c.

Since

s2 − 4r = (8
√
Ndrel − 2N − 2c1 log(N))2

− 4
(
N2 + 16Nd2rel − 8

√
NNdrel − c1N log(N) + 4c1

√
Ndrel log(N)

)
=

(
64Nd2rel + 4N2 + 4c21 log2(N) − 32

√
NNdrel − 32c1

√
Ndrel log(N)

)
−

(
4N2 + 64Nd2rel − 32

√
NNdrel − 4c1N log(N) + 16c1

√
Ndrel log(N)

)
= 12c1N log(N) − 48c1

√
Ndrel log(N) + 4c21 log2(N),

solving the quadratic equation leads to

R = 1

2
(−s±

√
s2 − 4r)

= 1

2

(
−8Ndrel + 2N + 2c1 log(N) ±

√
12c1N log(N) − 48c1

√
Ndrel log(N) + 4c21 log2(N)

)

= N − 4
√
Ndrel + c1 log(N) ±

√
3c1N log(N) − 12c1Ndrel log(N) + c21 log2(N).

Plugging in c1 = 2
3c, we have

R = N − 4
√
Ndrel +

2

3
c log(N) +

√
2cN log(N) − 8c

√
Ndrel log(N) + 4

9
c2 log2(N), (4.53)
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and

R = N − 4
√
Ndrel +

2

3
c log(N) −

√
2cN log(N) − 8c

√
Ndrel log(N) + 4

9
c2 log2(N). (4.54)

Notice that we can only take (4.54) since (4.53) can give a R which is greater than N, which is not
acceptable.

Since we can freely choose the coefficient crm, we choose crm such that

|crm| = cmin = min{|c1|, |c2|, ..., |cR−1|}.

Under such a choice for |crm|, dmin = |crm| = cmin, leading to drel = |ccl|+|crm|
dmin

= |ccl|+cmin
cmin

. This
concludes the proof of Theorem 4.3. �

5. Separation is always necessary for the success of atomic norm minimization

In the previous sections, we have shown that the Hankel matrix recovery can recover the superposition of
complex exponentials, even though the frequencies of the complex exponentials can be arbitrarily close.
In this section, we show that, broadly, the atomic norm minimization must obey a non-trivial resolution
limit. This is very different from the behaviour of Hankel matrix recovery. Our results in this section
also greatly generalize necessity of resolution limit results in [40], to general continuously parametered
dictionary, beyond the dictionary of frequency atoms. Moreover, this new lower bound can work for non-
uniform sampling, where some samples at certain time indices can be missing, while the lower bound
from [40] applies to uniform sampling. Our new lower bound further applies to samples obtained at non-
integer time indices, while the lower bound from [40] does not apply to sampling at non-integer time
indices. In terms of technical tools used, our analysis of using matrix analysis is very different from the
derivations in [40], which used the Markov–Bernstein type inequalities for finite-degree polynomials.

Theorem 5.1. Let us consider a dictionary with its atoms parameterized by a continuous-valued
parameter τ ∈ C. We also assume that each atom a(τ ) belongs to C

N , where N is a positive integer.
We assume that the set of all the atoms spans a Q-dimensional subspace in CN .

Suppose the signal is the superposition of several atoms:

x =
R∑
k=1

cka(τk), (5.1)

with non-zero ck ∈ C for each k, and R is a positive integer representing the number of active atoms.
Consider any active atoms a(τk1) and a(τk2). With the other (R−2) active atoms and their coefficients

fixed (this includes the case R = 2, namely there are only two active atoms in total), if the atomic norm
minimization can always identify the two active atoms, and correctly recover the coefficients for a(τk1)
and a(τk2), then the two atoms a(τk1) and a(τk2) must be well separated such that

‖a(τk1) − a(τk2)‖2 ≥ 2max
S≥Q max

A∈MS

σmin(A)√
S

, (5.2)
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28 J. YI ET AL.

where S is a positive integer,MS is the set of matrices with S columns and with each of these S columns
corresponding to an atom, and σmin(·) is the smallest singular value of a matrix.

Proof of Theorem 5.1: Define the sign of a coefficient ck as

sign(ck) = ck
|ck|

. (5.3)

Then according to [41], a necessary condition for the atomic norm to identify the two active atoms, and
correctly recover their coefficients is that there exists a dual vector q ∈ C

N such that

{
a(τk1)

∗q = sign(ck1), a(τk2)
∗q = sign(ck2)

|a(τ )∗q|≤1,∀τ /∈ {τk1 , τk2}.
(5.4)

We pick ck1 and ck2 such that |sign(ck1) − sign(ck2)| = 2. Then

‖sign(ck1) − sign(ck2)‖ = ‖a(τk1)∗q− a(τk2)
∗q‖2 ≤ ‖q‖2‖a(τk1) − a(τk2)‖2, (5.5)

Thus

‖q‖2 ≥ 2

‖a(τk1) − a(τk2)‖2
. (5.6)

Now we take a group of S atoms, denoted by aselect,1,..., and aselect,S, and use them to form the S
columns of a matrix A. Then

σmin(A)‖q‖2 ≤ ‖A∗q‖2

=

√√√√√ S∑
j=1

|a∗
select,jq|2

≤ √
S, (5.7)

where the last inequality comes form (5.4). It follows that

‖q‖2 ≤
√
S

σmin(A)
. (5.8)

Define β as the maximal value of σmin(A)√
S

among all the choices for A and S, namely,

β = max
S≥Q max

A∈MS

σmin(A)√
S

. (5.9)
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Table 1 Comparison between [40] and ours in lower bounds on frequency separations

N 2 3 4 5 6 7 8 9 10

[40] 0.1592 0.0796 0.0531 0.0398 0.0318 0.0265 0.0227 0.0199 0.0177
Our bound 0.1667 0.0628 0.0351 0.0232 0.0167 0.0128 0.0102 0.0084 0.0071

Combining (5.6) and (5.8), we have

‖a(τk1) − a(τk2)‖2 ≥ 2β, (5.10)

proving this theorem. �
Wewould like to remark that, besides applications to frequency atoms, our bounds from Theorem 5.1

on atom separations are quite general, and can be applied to any dictionary of atoms with continuous
parameters. The derivations in [40] apply only to dictionary of frequency atoms under complete (without
missing samples) uniform sampling at integer time indices. When applied to frequency atoms, our bound
from Theorem 5.1 works for non-uniform sampling, where some samples are missing at certain time
indices, and works for sampling at non-integer time indices (for example, sampling at time indices j =√
1,

√
2,

√
3,...,

√
2N − 2; sampling at non-integer times indices may happen because of sampling time

jittering), where the bound in [40] does not apply. When further restricted to uniformly sampled-at-
integer-time-index frequency atoms, our calculations show that Theorem 5.1 provides similar or even
tighter lower bounds on frequency separations than in [40]. In addition, our derivations are novel, and
do not resort to the Markov–Bernstein-type inequalities for polynomials as used in [40]. It is possible to
further tighten our method of deriving lower bound using matrices, and we will leave it for future work.

In the following calculations, we consider frequency atoms given in the following form (atoms will
change for non-uniform sampling or sampling at non-integer time indices),

a(f ) = [1 ei2π f · · · ei2π f (2N−2)]T ∈ C
2N−1. (5.11)

For two frequencies fa and fb, we call ‖a(fa) − a(fb)‖ the atom separation (Theorem 5.1 can directly
produce a lower bound on atom separation, while [40] works with frequency separation), and call |fa −
fb|wrap (wrap-around distance) the frequency separation. We note that, in [40], the author established a

lower bound of 2
(2N−2)∗2π for frequency separation (see Theorem 3 in [40]).

5.1 Uniform sampling (no sample is missing) at integer indices

In this case, the samples are observed at time indices j = 0, 1, 2, ..., (2N − 2). For this sampling pattern,
under small N, our bound can be tighter than the lower bound given in [40], and, under large N, the lower
bound in [40] is tighter.

Table 1 shows comparison result between [40] and ours on lower bound on frequency separation for
N = 2, ..., 10.

Lower bound from [40] when 2N − 2 = 2: In this case (three time-domain samples in total), the
lower bound on frequency separation in [40] is 0.159. We construct two atoms with frequencies fa = 0
and fb = 0.159, and then calculate the atom separation. This gives an atom separation of 1.94.
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30 J. YI ET AL.

New lower bound when 2N − 2 = 2: To calculate our own lower bound, we consider a set
of orthogonal atoms (any set of linearly independent atoms will give us a valid lower bound). The
frequencies of these atoms are taken to be f1 = 0, f2 = 1

3 and f3 = 2
3 . Our Theorem 5.1 gives a lower

bound of 2.00 for ‖a(fa) − a(fb)‖. To obtain this lower bound based on Theorem 5.1, we take matrix
A = [a(f1) a(f2) a(f3)], and S = 3 since the three atoms span a three-dimensional linear space. Using
these parameters Theorem 5.1 gives ‖a(fa) − a(fb)‖ ≥ 2.00. This corresponds to a frequency separation
|fa − fb|wrap = 0.167. In this case, the bound given by Theorem 5.1 is indeed tighter than the frequency
separation bound (0.159) from [40].

Lower bound from [40] when 2N − 2 = 62:When 2N − 2 = 62 (totally 63 time-domain samples
respectively), the frequency separation requirement in [40] will be 0.0051. We construct two atoms with
frequencies fa = 0 and fb = 0.0051, and then calculate the atom distance. This gives an atom distance
of 8.31.

New lower bound when 2N − 2 = 62: To calculate our own lower bound, we consider a set
of orthogonal atoms (any set of linearly independent atoms will give us a valid lower bound). The
frequencies of these atoms are taken to be f1 = 0, f2 = 1

63 , f3 = 2
63 , · · · , f63 = 62

63 . Our Theorem 5.1
gives a bound of 2.00 for ‖a(fa) − a(fb)‖. To obtain this lower bound based on Theorem 5.1, we
take matrix A = [a(f1) a(f2) · · · a(f63)], and S = 63 since the 63 atoms span a 63-dimensional
linear space. Theorem 5.1 gives ‖a(fa) − a(fb)‖ ≥ 2.00. This corresponds to a frequency separation
|fa − fb|wrap = 1.1× 10−3, which is less tight than, but comparable with the frequency separation bound
from [40].

Lower bound from [40] when 2N − 2 = 126: When 2N − 2 = 126 (totally 2N − 1 = 127 time-
domain samples, respectively), the frequency separation required [40] is 0.0025. We simply construct
two atoms with frequency fa = 0 and fb = 0.0025, and then calculate the distance between these two
atoms. This gives atom distance of 11.78.

New lower bound when 2N − 2 = 126: To calculate our own lower bound, we consider a set
of orthogonal atoms (any set of linearly independent atoms will give us a valid lower bound). The
frequencies of these atoms are taken to be f1 = 0, f2 = 1

127 , f3 = 2
127 , · · · , f127 = 126

127 . Our Theorem 5.1
gives a bound of 2.00 for ‖a(fa) − a(fb)‖. We take matrix A = [a(f1) a(f2) · · · a(f127)], take S = 127
since the 127 atoms form a 127-dimensional space, and Theorem 5.1 gives ‖a(fa) − a(fb)‖ ≥ 2.00.
This corresponds to a frequency separation |fa − fb|wrap = 4 × 10−4, which is less tight than, but still
comparable with the frequency separation bound from [40].

5.2 Non-uniform sampling (with missing samples) at integer indices

Theorem 5.1 can still provide valid lower bounds on frequency or atom separations for non-uniform
sampling. The lower bound from [40] does not apply to non-uniform sampling directly, but a simple
modification can yield a lower bound 2

Nmax×2π on frequency separation, where Nmax is the largest
observed time index.

As one example, we consider N = 256 corresponding to 2N − 1 = 511 total time indices, and we
assume that samples are taken at only five time indices: j = 0, 1, 2, 3 and 124. In this case, the atom at a
certain frequency f ∈ [0, 1) is given by

a(f ) = [1 ei2π f ei4π f ei6π f ei2π f (124)]T ∈ C
5. (5.12)

Lower bound (modified or unmodified for non-uniform sampling) from [40]: The modified
frequency separation 2

Nmax×2π required by [40] is 2.6 ∗ 10−3, where Nmax = 124. We simply construct
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 31

Fig. 1. Comparisons of lower bounds on frequency separations and atom separations

two atoms with frequency fa = 0 and fb = 0.0026, and then calculate the distance between these two
atoms. This gives an atom distance of 1.68. A direct application of lower bound 2

(2N−2)×2π will give a

frequency separation of 6 × 10−4, and an atom separation of 0.4817.
Our lower bound from Theorem 5.1: to calculate our own lower bound, we consider a set of atoms

(any set of linearly independent atoms will give us a valid lower bound) at frequencies f1 = 0, f2 =
1
5 , f2 = 2

5 , f3 = 3
5 , f5 = 4

5 . Our Theorem 5.1 gives a lower bound of 2.00 for ‖a(fa) − a(fb)‖2 by
taking matrix A = [a(f1) a(f2) a(f3) a(f4) a(f5)], and S = 5. This corresponds to a frequency separation
|fa − fb|wrap = 3.9 × 10−3.

As we can see, for this non-uniform sampling example, our new lower bound is tighter than the lower
bounds (both unmodified or modified for non-uniform sampling ) from [40] for N = 256.

We further consider the same set-up for N = 256 + 4 × k, where 1 ≤ k ≤ 50 is an integer, and
the corresponding observation index is j = 0, 1, 2, 3 and 124 + 4 × k. In this case, the atom at a certain
frequency f ∈ [0, 1) is given by

a(f ) = [1 ei2π f ei4π f ei6π f ei2π f (124+4×k)]T ∈ C
5. (5.13)

Then Fig. 1 shows the lower bound on the frequency separation obtained from [40] and Theorem 5.1,
and also shows the lower bound on the atom separation obtained from [40] and Theorem 5.1.

5.3 Sampling at non-integer indices

For general sampling at non-integer indices, the lower bound from [40] does not apply, since the proof
of the lower bound therein depends on the Markov–Bernstein-type inequalities for (integer-exponent)
polynomials. In that case, a trivial lower bound 0 exists for frequency separation.

On the other hand, our lower bound from Theorem 5.1 can still be easily calculated for sampling at
non-integer indices. Let us considerN = 4, and we observe 2N−1 = 7 samples. The corresponding time
index j for these samples are 0, 1, 21.5,..., and 61.5. To use Theorem 5.1, instead of optimizing over seven
frequencies, we simply randomly selected seven frequencies between 0 and 1 to be frequency atoms for
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32 J. YI ET AL.

matrix A, and obtained a lower bound 0.1947 for atom separation (notice any matrix A consisting of
atoms can give a lower bound in Theorem 5.1). This corresponds to a non-trivial frequency separation
of 0.0015. To the best of knowledge, this is the first approach in the literature being able to give a lower
bound on frequency separation for such sampling patterns.

6. OANM: Hankel matrix recovery can be immune from atom separation requirements

Our results in the previous sections naturally raise the following question: why can Hankel matrix
recovery work without requiring separations between the underlying atoms while it is necessary for
the atomic norm minimization to require separations between the underlying atoms? In this section, we
introduce the concept of orthonormal atomic norm and its minimization, which explains the success
of Hankel matrix recovery in recovering the superposition of complex exponentials regardless of the
separations between frequency atoms.

Let us consider a vector w ∈ C
N , where N is a positive integer. We denote the set of atoms by

AMSET, and assume that each atom a(τ ) (parameterized by τ ) belongs to CN . Then the atomic norm
is given by [5, 10, 41]

‖w‖Atomic = inf
s,τk ,ck

{
s∑

k=1

|ck| : w =
s∑

k=1

cka(τk)

}
. (6.1)

We say the atomic norm ‖w‖ATOMIC is an orthonormal atomic norm if, for every w,

‖w‖Atomic =
s∑

k=1

|ck|, (6.2)

where w = ∑s
k=1 cka(τk), ‖a(τk)‖2 = 1 for every k, and a(τk)’s are mutually orthogonal to each other.

In the Hankel matrix recovery, the atom set AMSET is composed of all the rank-1 matrices in the
form uv∗, where u and v are unit-norm vectors in C

N [10, 12]. Let us assume x ∈ C
2N−1. We can see

that the nuclear norm of a Hankel matrix is an orthonormal atomic norm of H(x):

‖H(x)‖∗ =
R∑
k=1

|ck|, (6.3)

where H(x) = ∑R
k=1 ckukv

∗
k , H(x) = UΣV∗ is the SVD of H(x), uk is the k-th column of U, and vk is

the k-th column of V. This is because the matrices ukv
∗
k ’s are orthogonal to each other and each of these

rank-1 matrices has unit energy.
Let us now further assume that x ∈ C

2N−1 is the superposition of R complex exponentials with
R ≤ N, as defined in (1.1). Then H(x) is a rank-R matrix, and can be written as H(x) = ∑R

k=1 ckukv
∗
k ,

whereH(x) = UΣV∗ is the SVD ofH(x), uk is the k-th column ofU and vk is the k-th column ofV. Even
though the original R frequency atoms a(τk)’s for x can be arbitrarily close, we can always writeH(x) as
a superposition of R orthonormal atoms ukv

∗
k ’s from the SVD ofH(x). Because the original R frequency

atoms a(τk)’s for x can be arbitrarily close, they can violate the necessary separation condition set forth
in (5.2). However, for H(x), its composing atoms can be R orthonormal atoms ukv

∗
k ’s from the SVD of

H(x). These atoms ukv
∗
k ’s are of unit energy, and are orthogonal to each other. Thus, these atoms are well
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 33

separated and have the opportunity of not violating the necessary separation condition set forth in (5.2).
This explains why the Hankel matrix recovery approach can break free from the separation condition
which is required for traditional atomic norm minimizations.

7. A matrix-theoretic inequality of nuclear norms and its proof from the theory of compressed
sensing

In this section, we present a new matrix-theoretic inequality of nuclear norms, and give a proof of it from
the theory of compressed sensing (using nuclear norm minimization). To the best of our knowledge, we
have not seen the statement of this inequality of nuclear norms, or its proof elsewhere in the literature.

Theorem 7.1. Let A ∈ C
m×n, and t = min(m, n). Let σ1, σ2,..., and σt be the singular values of A

arranged in descending order, namely

σ1 ≥ σ2 ≥ · · · ≥ σt.

Let k be any integer such that

σ1 + · · · + σk < σk+1 + · · · + σt.

Then for any orthogonal projector P onto k-dimensional subspaces in Cm, and any orthogonal projector
Q onto k-dimensional subspaces in C

n, we have

‖PAQ∗‖∗ ≤ ‖(I − P)A(I − Q)∗‖∗. (7.1)

In particular,

‖A1:k,1:k‖∗ ≤ ‖A(k+1):m,(k+1):n‖∗, (7.2)

where A1:k,1:k is the submatrix of A with row indices between 1 and k and column indices between 1 and
k, and A(k+1):m,(k+1):n is the submatrix of A with row indices between k + 1 and m and column indices
between k + 1 and n.

Before giving the proof of Theorem 7.1, we will state Lemmas 7.1, 7.2 and 7.3 which will be used
in the proof of Theorem 7.1.

Lemma 7.1. ([29]) Let G and H be two matrices of the same dimension in C
m×n. Then

∑t
i=1 |σi(G) −

σi(H)| ≤ ‖G−H‖∗, where t = min(m, n).

Lemma 7.1 actually provides a lower bound for the nuclear norm of the difference between two
matrices, and the lower bound is just the sum of the differences of singular values.

Lemma 7.2. ([1; 20]) For arbitrary matrices X,Y and Z = X − Y ∈ C
m×n. Let σ1, σ2,..., and σt (t =

min{m, n}) be the singular values of a matrix A ∈ C
m×n arranged in descending order, namely σ1 ≥

σ2 ≥ · · · ≥ σt. Let si(X,Y) be the distance between the i-th singular value of X and Y, namely,

si(X,Y) = |σi(X) − σi(Y)|, i = 1, 2, · · · , t. (7.3)
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34 J. YI ET AL.

Let s[i](X,Y) be the i-th largest value of sequence s1(X,Y), s2(X,Y), · · · , st(X,Y), then

k∑
i=1

s[i](X,Y) ≤ ‖Z‖k,∀k = 1, 2, · · · , t, (7.4)

where ‖Z‖k is defined as
∑k

i=1 σi(Z).

Different from Lemma 7.1, Lemma 7.2 considers the partial sum of singular values of the difference
between two matrices, and similarly, this partial sum can be lower bounded by the partial sum of the
difference of singular values.

Lemma 7.3. Suppose a rank-R matrix X ∈ C
M×N admits an SVD X = UΣV∗, where Σ ∈ R

R×R is a
diagonal matrix, and U ∈ C

M×R and V ∈ C
N×R satisfy U∗U = V∗V = I.

Define S ⊆ C
M×N as

S =
{
UV∗ +W | U∗W = 0, WV = 0, ‖W‖2 ≤ 1, W ∈ C

M×N} , (7.5)

and define

F

([
Re(X)

Im(X)

])
= ‖X‖∗.

Then we have

H ≡
{[

α

β

] ∣∣∣ α + ıβ ∈ S

}
= ∂F

([
Re(X)

Im(X)

])
. (7.6)

Remarks: 1. Lemma 7.3 gives the subdifferential of the nuclear norm of a general complex-numbered
matrix (including non-square matrix and non-symmetric matrix); 2. To find the subdifferential of ‖X‖∗,
we need to derive

∂F

(
Re(X)

Im(X)

)
,

for which we have Lemma 7.3. Note that in our earlier work [3], we have already shown one direction
of (7.6), namely

H =
{[

α

β

] ∣∣∣ α + ıβ ∈ S

}
⊆ ∂F

([
Re(X)

Im(X)

])
.

Now we show the two sets are indeed equal. The proof of Lemma 7.3 is given in Appendix.
Proof of Theorem 7.1: We first consider the case where all the elements of A are real numbers.

Without loss of generality, we consider

P =
[

Ik×k 0k×(m−k)
0(m−k)×k 0(m−k)×(m−k)

]
, (7.7)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 35

and

Q =
[

Ik×k 0k×(n−k)
0(n−k)×k 0(n−k)×(n−k)

]
. (7.8)

Then

PAQ∗ =

⎡
⎢⎢⎢⎣
⎡
⎢⎣
A1,1 · · · A1,k
...

. . .
...

Ak,1 · · · Ak,k

⎤
⎥⎦ 0

0 0

⎤
⎥⎥⎥⎦ , (7.9)

and

(I − P)A(I − Q)∗ = A− PA− AQ∗ + PAQ∗

=

⎡
⎢⎢⎢⎣
0 0

0

⎡
⎢⎣
Ak+1,k+1 · · · Ak+1,n

...
. . .

...
Am,k+1 · · · Am,n

⎤
⎥⎦
⎤
⎥⎥⎥⎦ . (7.10)

Thus,

‖PAQ∗‖∗ = ‖A1:k,1:k‖∗, ‖(I − P)A(I − Q)∗‖∗ = ‖Ak+1:m,k+1:n‖∗. (7.11)

We will prove this theorem by contradiction. We first show that if σ1 + · · · + σk < σk+1 + · · · + σt
holds for A, then for any matrix X ∈ C

m×n with rank no more than k, for any positive number l > 0, we
have

‖X + lA‖∗ > ‖X‖∗ (7.12)

The proof of (7.12) follows similar arguments as in [29]. Since X has a rank at most k, then σi(X) =
0,∀i > k. Then we have

‖X + lA‖∗ ≥
t∑

i=1

|σi(X) − σi(lA)|

=
k∑
i=1

|σi(X) − σi(lA)| +
t∑

i=k+1

|σi(X) − σi(lA)|

≥
k∑
i=1

(σi(X) − σi(lA)) +
t∑

i=k+1

|σi(X) − σi(lA)|
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36 J. YI ET AL.

≥
k∑
i=1

(σi(X) − σi(lA)) +
t∑

i=k+1

|σi(lA)|

≥
k∑
i=1

σi(X) +
(

t∑
i=k+1

σi(lA) −
k∑
i=1

σi(lA)

)

>

k∑
i=1

σi(X) = ‖X‖∗,

where, for the first inequality, we used the Lemma 7.2.
We next show that if ‖A1:k,1:k‖∗ > ‖A(k+1):m,(k+1):n‖∗, one can construct a matrix X with rank at

most k such that

‖X + lA‖∗ ≤ ‖X‖∗

for a certain l > 0. We divide this construction into two cases: when A1:k,1:k has rank equal to k, and
when A1:k,1:k has rank smaller than k.

When A1:k,1:k has rank k, we denote its SVD as

A1:k,1:k = U1ΣV1
∗.

Then the SVD of

[
A1:k,1:k 0

0 0

]
is given by

[
A1:k,1:k 0

0 0

]
=

[
U1
0

]
Σ

[
V1
0

]∗
(7.13)

We now construct

X = −
[
U1
0

] [
V1
0

]∗
.

Let us denote

U2 =
[
U1
0

]

and

V2 =
[
V1
0

]
,

then the subdifferential of ‖ · ‖∗ at X is given by

∂‖X‖∗ = {Z : Z = −U2V
∗
2 +M, where ‖M‖2 ≤ 1,M∗X = 0,XM∗ = 0}. (7.14)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 37

For any Z ∈ ∂‖X‖∗,

〈Z,A〉 = −I1 + I2, (7.15)

where

I1 = Tr(V2U
∗
2A), I2 = Tr(M∗A). (7.16)

Let us partition the matrix A into four blocks:

[
A11 A12
A21 A22

]
, (7.17)

where A11 ∈ R
k×k, A12 ∈ R

k×(n−k), A21 ∈ R
(m−k)×k and A21 ∈ R

(m−k)×(n−k). Then we have

I1 = Tr(V2U2
∗A)

= Tr

( [
V1
0

] [
U∗
1 0

] [
A11 A12
A21 A22

] )

= Tr

( [
V1U

∗
1 0

0 0

] [
A11 A12
A21 A22

] )

= Tr(V1U
∗
1A11) = Tr(V1U

∗
1U1ΣV∗

1)

=
k∑
i=1

σi(A11)

= ‖A11‖∗. (7.18)

SinceM∗X = 0, XM∗ = 0, ‖M‖2 ≤ 1 and X is a rank-k left top corner matrix, we must have

M =
[
0 0
0 M22

]
,

whereM22 is of dimension (m− k) × (n− k), and ‖M22‖2 ≤ 1.
Then

I2 = Tr(M∗A) (7.19)

= Tr

( [
0 0
0 M∗

22

] [
A11 A12
A21 A22

] )
(7.20)

= Tr
(
M∗

22A22

) ≤ ‖A22‖∗, (7.21)

where the last inequality is from the fact that the nuclear norm is the dual norm of the spectral norm, and
‖M22‖2 ≤ 1.
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38 J. YI ET AL.

Thus, we have

〈Z,A〉 = −I1 + I2 ≤ −‖A11‖∗ + ‖A22‖∗ < 0, (7.22)

because we assume that ‖A1:k,1:k‖∗ > ‖A(k+1):m,(k+1):n‖∗. From Theorem 23.4 in [37], we have

f ′(X;A) = sup
Z∈∂‖X‖∗

〈Z,A〉 < 0,

where f ′(X;A) is defined as the one-sided directional derivative in [37]

f ′(X;A) = inf
l>0

‖X + lA‖∗ − ‖X‖∗
l

.

This means that, whenA11 has rank equal to k, we can always find l > 0 such that ‖X+lA‖∗−‖X‖∗ < 0,
or we can reduce the nuclear norm along direction specified by A. Thus, there exists a positive number
l > 0, such that

‖X + lA‖∗ ≤ ‖X‖∗.

Let us suppose instead that A11 has rank b < k. We can write the SVD of A11 as

A11 = [
U1 U3

] [
Σ 0
0 0

] [
V1 V3

]∗ . (7.23)

Then we construct

X = −
[
U1 U3
0 0

] [
V1 V3
0 0

]∗
.

By going through similar arguments as above (except for taking care of extra terms involving U3 and
V3), one can obtain that 〈Z,A〉 < 0 for every Z ∈ ∂‖X‖∗.

In summary, no matter whether A11 has rank equal to k or smaller to k, there always exists a
positive number l > 0, such that‖X + lA‖∗ ≤ ‖X‖∗. However, this contradicts (7.12), and we conclude
‖A1:k,1:k‖∗ ≤ ‖A(k+1):m,(k+1):n‖∗, when A has real-numbered elements.

We further consider the case when A is a complex-numbered matrix. We first derive the subdiffer-
ential of ‖X‖∗ for any complex-numbered matrix m × n X. For any α ∈ R

m×n and any β ∈ R
m×n, we

define F : R
2m×n �→ R as

F

([
α

β

])
= ‖(α + ıβ)‖∗. (7.24)

For a complex-numbered matrix A, we will similarly show that, if ‖A1:k,1:k‖∗ > ‖A(k+1):m,(k+1):n‖∗,
one can construct a matrix X with rank at most k such that

‖X + lA‖∗ ≤ ‖X‖∗
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 39

for a certain l > 0. We divide this construction into two cases: when A1:k,1:k has rank equal to k, and
when A1:k,1:k has rank smaller than k.

When A1:k,1:k has rank k, we denote its SVD as

A1:k,1:k = U1ΣV1
∗.

Then the SVD of

[
A1:k,1:k 0

0 0

]
is given by

[
A1:k,1:k 0

0 0

]
=

[
U1
0

]
Σ

[
V1
0

]∗
. (7.25)

We now construct

X = −
[
U1
0

] [
V1
0

]∗
.

We denote

U2 =
[
U1
0

]
, and V2 =

[
V1
0

]
,

then by Lemma 7.3, the subdifferential of ‖ · ‖∗ at X is given by

∂‖X‖∗ = {Z : Z = −U2V
∗
2 +M, where ‖M‖2 ≤ 1,M∗X = 0,XM∗ = 0}. (7.26)

Since we define 〈M,N〉 = Re(Tr(M∗N)) for complex valued matrices M,N, then for any Z ∈ ∂‖X‖∗,
we have

〈Z,A〉 = −I1 + I2, (7.27)

where

I1 = Re
(
Tr(V2U

∗
2A)

)
, I2 = Re

(
Tr(M∗A)

)
. (7.28)

Similar to the real-numbered case, let us partition the matrix A into four blocks:

[
A11 A12
A21 A22

]
, (7.29)
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where A11 ∈ C
k×k, A12 ∈ C

k×(n−k), A21 ∈ C
(m−k)×(n−k) and A21 ∈ C

(m−k)×(n−k). We still have

Tr(V2U2
∗A) = Tr

( [
V1
0

] [
U∗
1 0

] [
A11 A12
A21 A22

] )

= Tr

( [
V1U

∗
1 0

0 0

] [
A11 A12
A21 A22

] )

= Tr(V1U
∗
1A11) = Tr(V1U

∗
1U1ΣV∗

1) =
k∑
i=1

σi(A11) = ‖A11‖∗. (7.30)

So

I1 = Re
(
Tr(V2U2

∗A)
) = ‖A11‖∗.

SinceM∗X = 0, XM∗ = 0, ‖M‖2 ≤ 1 and X is a rank-k left top corner matrix, we must have

M =
[
0 0
0 M22

]
,

whereM22 is of dimension (m− k) × (n− k), and ‖M22‖2 ≤ 1. Then we have

I2 = Re
(
Tr(M∗A)

)
(7.31)

= Re

(
Tr

( [
0 0
0 M∗

22

] [
A11 A12
A21 A22

] ))
(7.32)

= Re
(
Tr

(
M∗

22A22

)) ≤ ‖A22‖∗, (7.33)

where the last inequality is because the nuclear norm is the dual norm of the spectral norm, and ‖M22‖2 ≤
1.

Thus, we have

〈Z,A〉 = −I1 + I2 ≤ −‖A11‖∗ + ‖A22‖∗ < 0, (7.34)

because we assume that ‖A1:k,1:k‖∗ > ‖A(k+1):m,(k+1):n‖∗. Following the same arguments in the real
numbered case, there exists a positive number l > 0, such that

‖X + lA‖∗ ≤ ‖X‖∗.

Let us suppose instead that A11 has rank b < k. We can write the SVD of A11 as

A11 = [
U1 U3

] [
Σ 0
0 0

] [
V1 V3

]∗ . (7.35)
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Then we construct

X = −
[
U1 U3
0 0

] [
V1 V3
0 0

]∗
.

By going through similar arguments as above (except for taking care of extra terms involving U3 and
V3), one can obtain that 〈Z,A〉 < 0 for every Z ∈ ∂‖X‖∗.

In summary, no matter whether complex-numbered A11 has rank equal to k or smaller to k, there
always exists a positive number l > 0, such that‖X + lA‖∗ ≤ ‖X‖∗. However, this contradicts (7.12),
and we conclude ‖A1:k,1:k‖∗ ≤ ‖A(k+1):m,(k+1):n‖∗. �

8. Numerical results

In this section, we perform numerical experiments to demonstrate the empirical performance of Hankel
matrix recovery, and show its robustness to the separations between atoms. We use superpositions
of complex sinusoids as test signals. But we remark that Hankel matrix recovery can also work for
superpositions of complex exponentials. We consider the non-uniform sampling of entries studied in [11,
41], where we uniformly randomly observeM entries (without replacement) of x from {0, 1, . . . , 2N−2}.
By non-uniform sampling, we refer to the following procedure: we randomly select |M|=M distinct
entries of x whose locations are uniformly distributed over {0, 1, · · · , 2N − 2}. We note that the ‘non-
uniform sampling’ is in contrast to ‘uniform sampling’ where every entry of x in {0, 1, · · · , 2N − 2} is
observed. We also consider two signal (frequency) reconstruction algorithms: the Hankel nuclear norm
minimization and the atomic norm minimization.

8.1 Phase transition comparisons between Hankel matrix recovery and atomic norm minimization

We fix N = 64, i.e. the dimension of the ground truth signal x is 127. We conduct experiments under
different M and R for different approaches. For each approach with a fixed M and R, we test 100 trials,
where each trial is performed as follows. We first generate the true signal x = [x0, x1, . . . , x126]

T with
xj = ∑R

k=1 cke
ı2π fkj for j = 0, 1, . . . , 126, where fk are frequencies drawn from the interval [0, 1)

uniformly at random, and ck are complex coefficients satisfying the model ck = (1+100.5mk)ei2πθk with
mk and θk uniformly randomly drawn from the interval [0, 1]. Let the reconstructed signal be represented

by x̂. If ‖x̂−x‖2‖x‖2 ≤ 10−3, then we regard it as a successful reconstruction. We also provide the simulation
results under the Gaussian measurements of x as in [3].

We plot in Fig. 2 the rate of successful reconstruction with respect to different M and R for
different approaches. The black and white regions indicate a 0% and 100% of successful reconstruction,
respectively, and the grey regions represent successful recovery rate between 0% and 100%. From
this figure, we see that the atomic norm minimization still suffers from non-negligible probability of
failure even if the number of measurements approach the full 127 samples. The reason is that, since
the underlying frequencies are randomly chosen, there is a sizable probability that some frequencies are
close to each other. When the frequencies are close to each other violating the atom separation condition,
the atomic norm minimization can still fail even if we observe the full 127 samples. By comparison, the
Hankel matrix recovery approach experiences a sharper phase transition, and is robust to the frequency
separations. We also see that under both the Gaussian projection and the non-uniform sampling models,
the atomic norm minimization and the Hankel matrix recovery approach have similar performance.
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42 J. YI ET AL.

Fig. 2. Performance comparisons between atomic norm minimization and Hankel matrix recovery

8.2 Robustness of Hankel matrix recovery to small frequency separations

We further demonstrate the robustness of theHankel matrix recovery approach to the separations between
frequency atoms, as we vary the separations between frequencies. In our first set of experiments, we take
N = 64, |M| = M = 65 (≈ 51% sampling rate) and R = 8, and consider noiseless measurements.
Again we generate the magnitude of the coefficients as 1 + 100.5p, where p is uniformly randomly
generated from [0, 1), and the realized magnitudes are 3.1800, 2.5894, 2.1941, 2.9080, 3.9831, 4.0175,
4.1259, 3.6182 in this experiment. The corresponding phases of the coefficients are randomly generated
as 2πs, where s is uniformly randomly generated from [0, 1). In this experiment, the realized phases are
4.1097, 5.4612, 5.4272, 4.7873, 1.0384, 0.4994, 3.1975 and 0.5846. The first R − 1 = 7 frequencies
of exponentials are generated uniformly randomly over [0, 1), and then the last frequency is added
in the proximity of the third frequency. In our six experiments, the eighth frequency is chosen such
that the frequency separation between the eighth frequency and the third frequency is, respectively,
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 43

0.03, 0.01, 0.003, 0.001, 0.0003 and 0.0001. Specifically, in our six experiments, the locations of the eight
frequencies are, respectively, {0.3923, 0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3737}, {0.3923,
0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3537}, {0.3923, 0.9988, 0.3437, 0.9086, 0.6977,
0.0298, 0.4813, 0.3467}, {0.3923, 0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3447}, {0.3923,
0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3440} and {0.3923, 0.9988, 0.3437, 0.9086, 0.6977,
0.0298, 0.4813, 0.3438}. Hankel matrix recovery approach gives relative error ‖x̂−x‖2‖x‖2 = 8.2556×10−9,

1.6709×10−9, 2.9204×10−9, 8.9444×10−9, 8.6000×10−9 and 2.5026×10−9, respectively. With the
recovered data x̂, we use the MUSIC algorithm to identify the frequencies. The recovered frequencies
for these six cases are, respectively, {0.0298, 0.3437, 0.3737, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988},
{0.0298, 0.3437, 0.3537, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988}, {0.0298, 0.3437, 0.3467, 0.3923,
0.4813, 0.6977, 0.9086, 0.9988}, {0.0298, 0.3437, 0.3447, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988},
{0.0298, 0.3437, 0.3440, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988} and {0.0298, 0.3437, 0.3438, 0.3923,
0.4813, 0.6977, 0.9086, 0.9988}. We illustrate these six cases in Fig. 3, where the peaks of the imaging
function J(f ) are the locations of the recovered frequencies and the red cross marks indicate where the
true frequencies are. We can see the Hankel matrix recovery successfully recovers the missing data and
correctly locates the frequencies.

8.3 Comparisons of Hankel matrix recovery and atomic norm minimization alongside each other:
noiseless and noisy observations

Below, we demonstrate the performance of these two different approaches, i.e. Hankel matrix recovery
approach and atomic norm minimization, alongside each other. In both the noiseless-observation case
and noisy-observation case (other formulations for noisy cases yield similar results), the atomic norm
minimization is modelled as

min
x

‖x‖Atomic, s.t. A(x) = b, (8.1)

where ‖ · ‖Atomic is the atomic norm.
Let us first consider noiseless observations. When the frequency separations are 10−2, 3 × 10−2,

10−3, 3× 10−3, 10−4 and 3 × 10−4, respectively, the performance of frequency identification is shown
in Fig 3 and 4. For atomic normminimization, we have used the commonly used dual polynomial method
to identify frequency atoms at the frequency locations where the magnitude of the dual polynomial is
equal to 1. This means that we only need to identify the locations where the dual polynomial achieves a
magnitude of 1 to recover the frequencies.

From the results in Fig. 4, we can see that when the frequency separation is big, e.g. 0.03 or 0.01,
the atomic norm can identify the frequencies accurately, and the dual polynomial has exactly the same
number of peaks as that of the underlying frequencies. Once the frequency separation is below a certain
threshold, e.g. when the frequency separation is 0.003, the atomic norm minimization can fail to identify
not only the frequencies that are close to each other, but also the frequencies which are far apart. In
addition, there are many spurious peaks of the dual polynomial which do not identify the locations of
the true frequencies. However, from the results in Fig. 3, the Hankel matrix recovery approach performs
much better than the atomic norm minimization. The Hankel matrix recovery approach can still identify
frequency atoms even if they are very close to each other, e.g. when the frequency separation is 0.0001
which is much smaller than 0.003.

We also provide quantitative results of signal recovery errors in Table 2, which clearly shows the
advantages of Hankel matrix completion when frequency separation is small. We would also like to
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44 J. YI ET AL.

Fig. 3. Frequency identification performance with noiseless measurements: Hankel matrix recovery method is used.
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 45

Fig. 4. Frequency identification performance with noiseless measurements: atomic norm minimization is used. According to [41],
the frequencies identified by the atomic norm minimization are the locations where the dual polynomial achieves magnitude 1.
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Table 2 Reconstruction performance via Hankel matrix recovery approach (HMC) and atomic norm
minimization (ANM).

Frequencies HMC ‖x̂−x‖2‖x‖2 ANM ‖x̂−x‖2‖x‖2

Exp. 1 0.3923, 0.3437, 0.0298, 0.3737, 0.6977, 0.4813,
0.9988, 0.9086

8.2556 × 10−9 8.2777 × 10−7

Exp. 2 0.4813, 0.0298, 0.3923, 0.9988, 0.3537, 0.6977,
0.3437, 0.9086

1.6709 × 10−9 5.6747 × 10−6

Exp. 3 0.4813, 0.0298, 0.3923,0.9988, 0.6977, 0.9086,
0.3467, 0.3437

2.9204 × 10−9 2.6958 × 10−3

Exp. 4 0.4813, 0.0298, 0.9086, 0.3923, 0.9988, 0.6977,
0.3447, 0.3437

8.9444 × 10−9 8.5770 × 10−4

Exp. 5 0.0298, 0.4813, 0.9086, 0.6977, 0.3923, 0.9988,
0.3440, 0.3437

8.6000 × 10−9 2.5235 × 10−4

Exp. 6 0.0298, 0.4813, 0.9086, 0.6977, 0.9988, 0.3923,
0.3438, 0.3437

2.5026 × 10−9 9.3546 × 10−5

mention that when the separation is 3 × 10−3, the atomic norm minimization achieves a reconstruction
error ‖x̂− x‖2 of 0.2763 and a relative reconstruction error ‖x̂−x‖2‖x‖2 of 2.6958 × 10−3, while the Hankel

matrix recovery can achieve a reconstruction error of 2.993× 10−7 and a relative reconstruction error of
2.9204 × 10−9.

We further demonstrate the performance of Hankel matrix recovery under noisy measurements.
Again, we consider N = 64, |M| = 65 and R = 8. The magnitudes of the coefficients of the complex
sinusoids is obtained by 1 + 100.5p, where p is uniformly randomly generated from [0, 1). The realized
magnitudes are 3.1800, 2.5894, 2.1941, 2.9080, 3.9831, 4.0175, 4.1259 and 3.6182, respectively, in our
experiment. The phase of the coefficients are obtained by 2πs, where s is uniformly randomly generated
from [0, 1). In this example, the realized phases are 4.1097, 5.4612, 5.4272, 4.7873, 1.0384, 0.4994,
3.1975 and 0.5846, respectively. The first R−1 = 7 frequencies of exponentials are generated uniformly
randomly from [0, 1), and then the last frequency is added with frequency separation 5× 10−3 from the
third frequency. The locations of the realized frequencies are 0.3923, 0.9988, 0.3437, 0.3487, 0.9086,
0.6977, 0.0298 and 0.4813.

We generate the noise vector v ∈ C
2N−1 as s1 + ıs2 where each element of s1 ∈ R

2N−1 and s2 ∈
R
2N−1 is independently generated from the zero-mean unit-variance standard Gaussian distribution. And

we further normalize v such that ‖v‖2 = 0.1. In this noisy case, we solve the problem

min
x

‖H(x)‖∗

subject to A(x) = b, (8.2)

and

min
x

‖x‖Atomic, s.t. A(x) = b, (8.3)
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to get the recovered signal x̂. For ANM, the relative reconstruction error is 5.7905 × 10−3, and the
reconstruction error is 6.0706× 10−1. For HMC, the relative reconstruction error is 1.0666× 10−3, and
the reconstruction error is 1.1182 × 10−1.

We illustrate the locations of the recovered frequencies in Fig. 5. We can see that the Hankel matrix
recovery can also provide robust data and frequency recovery under noisy measurements. Similar to
the noiseless situation, the separation 5 × 10−3 can be too small for the atomic norm to identify the
frequencies successfully, and there are many spurious peaks with magnitude 1. However, the Hankel
matrix recovery approach can give relatively accurate identification of frequencies. For noise level
‖v‖2 = 0.5 and 1, the recovery performance of ANM and HMC is demonstrated in Fig. 5.

8.4 Exploring the tightness of proposed theorems

Wenow provide empirical evidence for the tightness of the proposed theorems. Although it is challenging
to analytically prove the tightness of the bounds in these theorems at this moment, we provide empirical
results to show the tightness or the sharpness of our results. We point out that even showing empirically
the tightness of Theorem 3.1 (which establish worst-case performance guarantees) is difficult, since there
are an infinite number of elements in the null space of the linear mapping for measurements. Hence, in
this subsection, we only provide empirical evidences for the tightness of Theorems 4.1 and 4.3.

In this new set of experiments, we considerN = 64, and the number of atoms R is taken to be ranging
from 2 to 64. The magnitude of the coefficient is 1+ 100.5p, where p is uniformly generated from [0, 1),
and its phase is 2πs where s is generated uniformly from [0, 1). For each choice of R, we do 100 trials
and calculate the corresponding successful recovery rate. A trial is regarded as a success if the decoding
algorithm can achieve ‖x̂−x‖2‖x‖2 ≤ 10−6. We consider the case where only the middle sample of the signal
vector of length (2N − 1) is missing, and this is the sampling pattern which appears in Theorems 4.1
and 4.3.

In the first set of experiments, all the frequencies are chosen with frequency separations as non-zero
integer multiples of 1

127 , and the corresponding frequency atoms are orthogonal. The decoder observes
all the samples except for the middle one, i.e. |M| = 126. The results are presented in Part (a) of Fig. 6.
As we can see, the HMC approach achieves far better performance than the ANM when the number of
atoms increases and the separations between frequencies become smaller.When the number of frequency
atoms is 30, the ANM achieves a successful recovery rate of almost 0, while the HMC approach achieves
a successful rate of almost 1. Besides, the curve of HMC is quite sharp in the sense that the success rate
drops quickly once the number of atoms exceeds a certain threshold. In Theorem 4.1, we predict that
the recoverable number R of atoms approaches N, when N is large enough. The empirical results indeed
show that the recoverable number R is around 60, which is very close toN = 64. This set of experimental
results provide empirical evidence for the sharpness of Theorem 4.1.

In the second set of experiments, all but one frequencies are chosen such that the corresponding atoms
are orthogonal, while the last frequency is chosen such that it is away from the first frequency with a
distance of 10−4. All the other configurations are the same as in the experiments for orthogonal atoms.
The numerical results for the second set of experiments are shown in Part (b) of Fig. 6. On the one hand,
compared with numerical results for orthogonal atoms, we notice that the frequency separations greatly
affect the performance of ANM: for example, when the number of frequency atoms is 10, the success
rate of ANM under frequency separation 0.0001 is less than 0.5, while the success rate of ANM under
separation 1

127 is about 1. On the other hand, we notice that frequency separations do not affect much
the successful recovery rate of the HMC approach, as predicted by our theoretical analysis. In Theorem
3, we analytically showed that the number R of recoverable atoms approaches N asymptotically under
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Fig. 5. Frequency identification performance with noisy measurements. Left column: Hankel matrix recovery. Right column:
atomic norm minimization.
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Fig. 6. Successful recovery rate when N = 64, and the middle sample of the signal vector of length 2N−1 = 127 is not observed.
The left figure is for orthogonal atoms with minimum frequency separation no smaller than 1

127 ; the right figure is for cases where

there are two atoms very close to each other with frequency separation at most 10−4.

the HMC approach, when only the middle sample of the signal vector is missing. The empirical results
indeed show that the recoverable number R of frequencies is around 60, which is very close to N = 64,
even when the frequency separation is small. This set of experimental results provide empirical evidence
for the sharpness of Theorem 4.3.

9. Conclusions and future works

In this paper, we have shown, theoretically and numerically, that the Hankel matrix recovery can be robust
to frequency separations in super-resolving the superposition of complex exponentials. By comparison,
the TV minimization and atomic norm minimization require the underlying frequencies to be well-
separated to super-resolve the superposition of complex exponentials even when the measurements
are noiseless. In particular, we show that Hankel matrix recovery approach can super-resolve the R
frequencies, regardless of how close the frequencies are to each other, from compressed non-uniform
measurements. We presented a new concept of OANM, and showed that this concept helps us understand
the success of Hankel matrix recovery in separation-free super-resolution. We further show that, in
traditional atomic normminimization, the underlying parametersmust bewell separated so that the signal
can be successfully recovered if the atoms are changing continuously with respect to the continuously
valued parameters; however, for OANM, it is possible the atomic normminimization are successful even
when the original atoms are arbitrarily close. As a byproduct of this research, we also provide one matrix-
theoretic inequality of nuclear norm, and give its proof from the theory of compressed sensing. In future
works, it would be interesting to extend the results in this paper to super-resolving the superposition of
complex exponentials with higher dimensional frequency parameters [11, 13, 45].
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Appendix

Proof of Lemma 4.2

Any solution to the nuclear norm minimization must be X0 + Q, where Q is from the null space of A.
Suppose that the SVD of X0 is given by

X0 = UΛV∗,

where U ∈ C
M×R, Λ ∈ C

R×R and V ∈ C
N×R.

From Lemma 7.3, we know the subdifferential of ‖ · ‖∗ at the point X0 is given by

{Z |Z = UV∗ + ŪMV̄
∗
, where ‖M‖2 ≤ 1,U∗Ū = 0, Ū

∗
Ū = I,V∗V̄ = 0, V̄

∗
V̄ = I}.

Then from the property of subdifferential of a convex function, for any Z = UV∗+ŪMV̄
∗
(with ‖M‖2 ≤

1) from the subdifferetial of ‖ · ‖∗ at the point X0, we have

‖X0 + Q‖∗
≥ ‖X0‖∗ + 〈Z,Q〉
= ‖X0‖∗ + Re

(
Tr

(
U∗QV

)) + Re
(
Tr

(
Ū

∗
QV̄M∗))

≥ ‖X0‖∗ − |Tr (U∗QV
) | + Re

(
Tr

(
Ū

∗
QV̄M∗)) .

Because we can take anyM with ‖M‖2 ≤ 1, when Q 
= 0, we have

‖X0 + Q‖∗ ≥ ‖X0‖∗ − |Tr (U∗QV
) | + ‖Ū∗

QV̄‖∗
> ‖X0‖∗,

where we used the fact that the dual norm of the spectral norm is the nuclear norm (which also holds for
complex-numbered matrices). Thus, X0 is the unique solution to the nuclear norm minimization.

Proof of Lemma 7.3

Proof. We write
U = Θ1 + ıΘ2, V = Ξ1 + ıΞ2, (9.1)

where Θ1 ∈ R
M×R,Θ2 ∈ R

M×R,Ξ1 ∈ R
N×R, and Ξ2 ∈ R

N×R. Then, by direct calculation,

Θ ≡
[
Θ1 −Θ2
Θ2 Θ1

]
∈ R

2M×2R, Ξ ≡
[
Ξ1 −Ξ2
Ξ2 Ξ1

]
∈ R

2N×2R (9.2)

satisfy ΘTΘ = ΞTΞ = I. Moreover, if we define Ω̂ =
[
Re(X) −Im(X)

Im(X) Re(X)

]
, then

Ω̂ = Θ

[
Σ 0
0 Σ

]
ΞT (9.3)
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is an SVD of the real-numbered matrix Ω̂ , and the singular values Ω̂ are those of X, each repeated twice.
Therefore,

F

([
Re(X)

Im(X)

])
= ‖Σ‖∗ = 1

2
‖Ω̂‖∗. (9.4)

Define a linear operator E : R
2M×N �→ R

2M×2N by

E

([
α

β

])
=

[
α −β

β α

]
, with α,β ∈ R

M×N .

By (9.4) and the definition of Ω̂ , we obtain

F

([
Re(X)

Im(X)

])
= 1

2

∣∣∣∣
∣∣∣∣E

([
Re(X)

Im(X)

])∣∣∣∣
∣∣∣∣ ∗

.

From convex analysis and Ω̂ = E

([
Re(X)

Im(X)

])
, the subdifferential of F is given by

∂F

([
Re(X)

Im(X)

])
= 1

2
E∗∂

∣∣∣∣∣∣Ω̂∣∣∣∣∣∣ ∗, (9.5)

where E∗ is the adjoint of the linear operator E.

On the one hand, the adjoint E∗ is given by, for any Δ =
[
Δ11 Δ12
Δ21 Δ22

]
∈ R

2M×2N with each block in

R
M×N ,

E∗Δ =
[
Δ11 + Δ22
Δ21 − Δ12

]
. (9.6)

On the other hand, since (9.3) provides an SVD of Ω̂ ,

∂‖Ω̂‖∗ =
{
ΘΞT + Δ | ΘTΔ = 0, ΔΞ = 0, ‖Δ‖2 ≤ 1

}
. (9.7)

Combining (9.5), (9.6), (9.7) and (9.2) yields the subdifferential of F(·) at
[
Re(X)

Im(X)

]
:

∂F

([
Re(X)

Im(X)

])

=
⎧⎨
⎩
⎡
⎣
(
Θ1Ξ

T
1 + Θ2Ξ

T
2 + Δ11+Δ22

2

)
(
Θ2Ξ

T
1 − Θ1Ξ

T
2 + Δ21−Δ12

2

)
⎤
⎦ ∣∣∣ Δ =

[
Δ11 Δ12
Δ21 Δ22

]
, ΘTΔ = 0, ΔΞ = 0, ‖Δ‖2 ≤ 1

⎫⎬
⎭ .

(9.8)

We are now ready to show (7.6).
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Firstly, we show that any element in H ≡
{[

α

β

] ∣∣∣ α + ıβ ∈ S

}
must also be in ∂F

([
Re(X)

Im(X)

])
,

namely (9.8). In fact, for anyW = Δ1 + ıΔ2 satisfying U
∗W = 0,WV = 0 and ‖W‖2 ≤ 1, we choose

Δ =
[
Δ1 −Δ2
Δ2 Δ1

]
. This choice of Δ satisfies the constraints on Δ in (9.8). Furthermore, UV∗ + W =

(Θ1Ξ
T
1 + Θ2Ξ

T
2 + Δ1) + ı(Θ2Ξ

T
1 − Θ1Ξ

T
2 + Δ2). Thus,

H ⊆ ∂F

([
Re(X)

Im(X)

])
. (9.9)

Secondly, we show that

∂F

([
Re(X)

Im(X)

])
⊆ H. (9.10)

We let Δ =
[
Δ11 Δ12
Δ21 Δ22

]
be any matrix satisfying the the constraints on Δ in (9.8). We claim that

W
.= Δ11+Δ22

2 + ı Δ21−Δ12
2 satisfies U∗W = 0,WV = 0 and ‖W‖2 ≤ 1.

In fact, from ΘT
[
Δ11 Δ12
Δ21 Δ22

]
= 0, we have

+ ΘT
1Δ11 + ΘT

2Δ21 = 0 (9.11)

+ ΘT
1Δ12 + ΘT

2Δ22 = 0 (9.12)

− ΘT
2Δ11 + ΘT

1Δ21 = 0 (9.13)

− ΘT
2Δ12 + ΘT

1Δ22 = 0 (9.14)

Thus, we obtain

U∗W = (ΘT
1 − ıΘT

2 )(
Δ11 + Δ22

2
+ ı

Δ21 − Δ12

2
) (9.15)

= ΘT
1
Δ11 + Δ22

2
+ ΘT

2
Δ21 − Δ12

2
+ ı

(
ΘT

1
Δ21 − Δ12

2
− ΘT

2
Δ11 + Δ22

2

)
(9.16)

= 0 + ı0 = 0, (9.17)

where the last two equalities come from adding up (9.11) and (9.14), and subtracting (9.12) from (9.13),
respectively.

Similarly from

[
Δ11 Δ12
Δ21 Δ22

]
Ξ = 0, we can verify that

WV = 0.
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Moreover,

‖W‖2 =
∣∣∣∣
∣∣∣∣
[

Δ11+Δ22
2

Δ12−Δ21
2

Δ21−Δ12
2

Δ11+Δ22
2

]∣∣∣∣
∣∣∣∣ 2

=
∣∣∣∣
∣∣∣∣12

[
Δ11 Δ12
Δ21 Δ22

]
+ 1

2

[
Δ22 −Δ21−Δ12 Δ11

]∣∣∣∣
∣∣∣∣ 2

≤ 1

2

∣∣∣∣
∣∣∣∣
[
Δ11 Δ12
Δ21 Δ22

]∣∣∣∣
∣∣∣∣ 2 + 1

2

∣∣∣∣
∣∣∣∣
[

Δ22 −Δ21−Δ12 Δ11

]∣∣∣∣
∣∣∣∣ 2

≤ 1

2
+ 1

2

= 1,

where we used the Jensen’s inequality for the spectral norm, and the fact that 1 ≥
∣∣∣∣
∣∣∣∣
[

Δ22 −Δ21−Δ12 Δ11

]∣∣∣∣
∣∣∣∣ 2 =∣∣∣∣

∣∣∣∣
[
Δ11 Δ12
Δ21 Δ22

]∣∣∣∣
∣∣∣∣ 2 (which comes from using the variational characterization of spectral norm). This

concludes the proof of (9.10).
Combining (9.9) and (9.10), we arrive at (7.6). �
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