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We consider the problem of recovering the superposition of R distinct complex exponential functions
from compressed non-uniform time-domain samples. Total variation (TV) minimization or atomic norm
minimization was proposed in the literature to recover the R frequencies or the missing data. However, it is
known that in order for TV minimization and atomic norm minimization to recover the missing data or the
frequencies, the underlying R frequencies are required to be well separated, even when the measurements
are noiseless. This paper shows that the Hankel matrix recovery approach can super-resolve the R complex
exponentials and their frequencies from compressed non-uniform measurements, regardless of how close
their frequencies are to each other. We propose a new concept of orthonormal atomic norm minimization
(OANM), and demonstrate that the success of Hankel matrix recovery in separation-free super-resolution
comes from the fact that the nuclear norm of a Hankel matrix is an orthonormal atomic norm. More
specifically, we show that, in traditional atomic norm minimization, the underlying parameter values must
be well separated to achieve successful signal recovery, if the atoms are changing continuously with respect
to the continuously valued parameter. In contrast, for the OANM, it is possible the OANM is successful
even though the original atoms can be arbitrarily close. As a byproduct of this research, we provide one
matrix-theoretic inequality of nuclear norm, and give its proof using the theory of compressed sensing.
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1. Introduction

In super-resolution, we are interested in recovering the high-end spectral information of signals from
observations of its low-end spectral components [5]. In one setting of super-resolution problems, one
aims to recover a superposition of complex exponential functions from time-domain samples. In fact,
many problems arising in science and engineering involve high-dimensional signals that can be modelled
or approximated by a superposition of a few complex exponential functions. In particular, if we choose
the exponential functions to be complex sinusoids, this superposition of complex exponentials models
signals in acceleration of medical imaging [25], analog-to-digital conversion [43] and array signal
processing [38]. Accelerated nuclear magnetic resonance (NMR) spectroscopy, which is a prerequisite
for studying short-lived molecular systems and monitoring chemical reactions in real time, is another
application where signals can be modelled or approximated by a superposition of complex exponential
functions [19, 22, 34]. How to recover the superposition of complex exponential functions or parameters
of these complex exponential functions is of critical importance in these applications.

In this paper, we consider the recovery of superpositions of complex exponentials from linear under-
sampled measurements. More specifically, let x € C*Y~! be an unknown vector (which we would like
to recover) whose j-th element satisfies

R
X=> ¢z  j=0,1...2N-2, (1.1)
k=1

where ¢, € C are complex coefficients and z; € C, k = 1,..., R, are some unknown complex numbers
with 2R < 2N — 1 being a positive integer. In other words, x is a superposition of R complex exponential
functions. When z;, = 2™k with 1 = /=landk = 1,...,R, xis a superposition of complex
sinusoids. When z, = e ek withk =1,...,R, and 7, > 0, x can model signals acquired by NMR
spectroscopy in monitoring real-time chemical reactions and studying short-lived molecular systems [3,
4]. The results of this paper apply to general 7, > 0, but, to simplify presentations, we choose to restrict
certain theorems to 7, = 0. More specifically, 7, > 0 is allowed in Theorem 3.1 (we do not require
knowledge of 7, to establish recovery guarantees), while t;’s are assumed to be equal to 0 (thus known)
in Theorems 4.1 and 4.3. In our simulations, we also set 7, to be equal to 0, where we consider the
superposition of complex sinusoids.

Since 2R < 2N — 1 and often 2R <« 2N — 1, the degree of freedom to determine x is much less
than the ambient dimension 2N — 1. Therefore, one can still recover x by its undersampling [8, 16]. In
particular, in undersampling, we assume that x is unknown, and we consider recovering x from its linear
measurements

b = HAx), (1.2)

where .¢7is a linear subsampling map from C?V~! to CM, M < 2N — 1. After x is recovered, we can use
the single-snapshot MUSIC [24] or Prony’s method to recover the parameters z;,.

The problem of recovering x from its linear measurements (1.2) can be solved using compressed
sensing[8], by discretizing the dictionary of basis vectors into grid points corresponding to discrete values
of z;. When the parameters f;’s in signals from spectral compressed sensing (or the parameters (f}, 7;)’s
from signals in accelerated NMR spectroscopy) fall on the grid, compressed sensing is a powerful
tool to recover those signals even when the number of samples is far below its ambient dimension
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(M <« 2N —1) [8, 16]. Nevertheless, the parameters in our problem setting often take continuous values,
leading to a continuous dictionary, and may not exactly fall on a grid. The basis mismatch problem
between the continuously valued parameters and the grid-valued parameters degrades the performance
of conventional compressed sensing [14].

In two seminal papers [5, 41], the authors proposed using total variation (TV) minimization or atomic
norm minimization to recover x or to recover z;, when z; = &2 fi with Jf; taking continuous values from
[0, 1). In these papers, the authors show that TV minimization or atomic norm minimization can recover
the continuously valued frequency f;’s in the noise free case. However, as shown in [5, 40, 41], for TV
minimization or atomic norm minimization to recover spectrally sparse data or the associated frequencies
correctly, it is required that adjacent frequencies be sufficiently separated from each other. For example,
for complex exponentials with z;’s taking values on the complex unit circle, it is required that adjacent
frequencies f; € [0, 1]’s be at least m apart [40]. This separation condition is necessary for the
TV minimization, even if we observe all the (2N — 1) data samples, and even if the observations are
noiseless. Please notice that the tolerable noise in correctly identifying frequencies to a certain accuracy
depends on the frequency separation according to information-theoretic study [28].

This raises a natural question, ‘Can we super-resolve the superposition of complex exponentials
with continuously valued parameters z;, without requiring frequency separations, from compressed
measurements, in noiseless or low-noise measurements?’ In this paper, we answer this question in
the affirmative. More specifically, we show that a Hankel matrix recovery approach using nuclear
norm minimization can super-resolve the superposition of complex exponentials with continuously
valued parameters z; from compressed measurements, without requiring frequency separations. This
separation-free super-resolution result holds even when we only compressively observe x over a subset
M C {0, ...,2N — 2} with cardinality |.#] = M.

In this paper, we give the worst-case and average-case performance guarantees of Hankel matrix
recovery in recovering the superposition of complex exponentials. In establishing the worst-case
performance guarantees, we establish conditions under which Hankel matrix recovery can recover the
underlying complex exponentials, no matter what values the coefficients ¢, ’s of the complex exponentials
take. For the average-case performance guarantee, we assume that the phases of the coefficients c; are
uniformly distributed over [0, 277). For both the worst and average cases, we establish that Hankel matrix
recovery can super-resolve complex exponentials with continuously valued parameters z;, no matter
how close they are to each other. We further introduce a new concept of orthonormal atomic norm
minimization (OANM), and discover that the success of Hankel matrix recovery in separation-free super-
resolution comes from the fact that the nuclear norm of the Hankel matrix is an orthonormal atomic norm.
In particular, we show that, in traditional atomic norm minimization, for successful signal recovery, the
underlying parameters must be well separated, if the atoms continuously depend on continuously valued
parameters; however, it is possible the OANM can succeed even if the original atoms are arbitrarily close.
As a byproduct of this research, we discover one interesting matrix-theoretic inequality of nuclear norm,
and give its proof using the theory of compressed sensing.

We remark that some of our results can require high percentage of all the samples for successful
recovery using Hankel matrix recovery. For example, in Theorem 3.1, we need |.#] > 2N — 1 — éV—R out
of 2N — 1 samples to successfully recover a signal consisting of R atoms. Similarly for Theorems 4.1
and 4.3, we assume the number of samples |.#| = 2N —2. We are also only able to show the tightness of
Theorem 3.1, for a very special sampling scheme. Even for these special sampling schemes, to the best
of our knowledge, our results are the first to show that Hankel matrix recovery can successfully recover
superposition of complex exponentials regardless of their frequency or parameter separations. We also
want to point out that these theoretical bounds can be conservative, compared with numerical results.
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For example, in the experiments demonstrating how frequency separation can influence signal recovery
performance, even though we only use |.Z] =~ 51% x (2N — 1) samples, the Hankel matrix recovery
approach can already recover faithfully the superposition of a large number of complex sinusoids which
have small frequency separations.

1.1  Comparisons with related works on Hankel matrix recovery and atomic norm minimization

Low-rank Hankel matrix recovery approaches have been used for recovering parsimonious models in
system identifications, control and signal processing. In [26], Markovsky considered low-rank approxi-
mations for Hankel structured matrices with applications in signal processing, system identifications and
control. Fazel et al. [17, 18] introduced low-rank Hankel matrix recovery via nuclear norm minimization,
motivated by applications including realizations and identification of linear time-invariant systems, infer-
ring shapes (points on the complex plane) from moments estimation (which is related to super-resolution
with z; from the complex plane), and moment matrix rank minimization for polynomial optimization.
Fazel et al. [18] further designed optimization algorithms to solve the nuclear norm minimization prob-
lem for low-rank Hankel matrix recovery. Chen and Chi [11] proposed to use multi-fold Hankel matrix
completion for spectral compressed sensing, studied the performance guarantees of spectral compressed
sensing via structured multifold Hankel matrix completion and derived performance guarantees of
structured matrix completion. However, the results in [11] require that the Dirichlet kernel associated
with underlying frequencies satisfies certain incoherence conditions, and these conditions require the
underlying frequencies to be well separated from each other. In [15, 44], the authors derived performance
guarantees for Hankel matrix completion in system identifications. However, the performance guarantees
in [15, 44] require a very specific sampling pattern of fully sampling the upper-triangular part of the
Hankel matrix. Moreover, the performance guarantees in [15, 44] require that the parameters z;, be very
small (or smaller than 1) in magnitude. In our earlier work [3], we established performance guarantees
of Hankel matrix recovery for spectral compressed sensing under Gaussian measurements of x. By
comparison, this paper considers direct observations of x over a set . < {0, 1,2,...,2N — 2}, which
is a more relevant sampling model in many applications. In the single-snapshot MUSIC algorithm [24],
the Prony’s method [33] or the matrix pencil approach [21], one would need the full (2N — 1) consecutive
samples to perform frequency identifications, while the Hankel matrix recovery approach can work
with compressed measurements. When prior information of the locations of the frequencies is available,
one can use weighted atomic norm minimization to relax the separation conditions in successful signal
recovery [27].

In [39], the authors considered super-resolution without separation using atomic norm minimization,
but under the restriction that the coefficients are positive and for a particular set of atoms (point spread
functions) ¥ (s, 1) = e’(s”)z, where s represents the spatial location in an image and ¢ is the location of
a point source of light (#’s are the parameters to be estimated). In contrast, the analysis in our paper deals
with complex-numbered coefficients, and does not require the coefficients to be positive. In addition, the
techniques used for establishing the recovery guarantees in [39] are quite different from ours. In [39],
the main idea for establishing the recovery guarantee is constructing a dual certificate, by applying the
machinery of Tchebycheff systems to Gaussian point spread functions. By comparison, in this paper, we
exploit the null space condition for nuclear-norm-minimization-based signal recovery. This machinery
of investigating the null space condition does not require constructing a dual certificate, thus making it
possible to show that the Hankel matrix recovery can reconstruct the signals without imposing separation
conditions on the underlying atoms.
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Additionally, in previous research [30-32], Prony’s method and related modified algorithms were
studied to recover parameters of signals, which are expressed as sum of exponentials. Specifically, in [31],
the authors considered the recovery of signal parameters with equispaced sampled and real-valued data
through the approximate Prony’s method. In [32], the authors considered the signal parameter estimation
problem for the sum of non-increasing exponentials with equispaced sampled data, and introduced the
connections among various parameter estimate methods including the Prony’s method, the matrix pencil
method and the ESPRIT method. In [30], the authors considered the Prony’s method with equispaced
and non-equispaced sampled data for the signal parameter estimation. In particular, the considered non-
equispaced sampled data case in [30] is similar to our problem considered in this paper, which is about
signal parameter estimation with missing data. A major difference between [30] and ours is the different
methods used in recovering missing entries: in [30], the authors use the method based on interpolation,
while we use Hankel matrix completion in this paper. In [28], the author established a phase transition
on the cut-off frequency at which noisy super-resolution is possible, and showed that there exists pairs
of frequency component hypothesis that cannot be distinguished when the noise is big. However, the
results in [28] focus on recovering the frequencies, and do not apply to recovering missing data samples,
the recovery of which is shown in this paper to be robust against noises (please see Theorem 3.2).
Furthermore, the results in [28] focused on finding worst-case pairs of hard-to-distinguish frequency
component hypotheses under worst-case noises, but they do not exclude the possibility of recovering
missing data samples or frequencies from randomly distributed noises or magnitude noises with small
enough magnitudes.

1.2 Organization of this paper

The rest of the paper is organized as follows. In Section 2, we present the problem model, and introduce
the Hankel matrix recovery approach. In Section 3, we investigate the worst-case performance guarantees
of recovering spectrally sparse signals regardless of frequency separation, using the Hankel matrix
recovery approach. In Section 4, we study the Hankel matrix recovery’s average-case performance
guarantees of recovering spectrally sparse signals regardless of frequency separation. In Section 5,
we show that in traditional atomic norm minimization, for successful signal recovery, the underlying
parameters must be well separated, if the atoms depend on the continuously valued parameters. In
Section 6, we introduce the concept of OANM, and show that it is possible that atomic norm minimization
is successful even though the original atoms are arbitrarily close. In Section 7, as a byproduct of this
research, we provide a new matrix-theoretic inequality of nuclear norm from the theory of compressed
sensing. Numerical results are given in Section 8 to validate our theoretical predictions. We conclude
our paper in Section 9. The proofs of the technical lemmas are in the appendix.

1.3 Notations

We denote the set of complex numbers and real number as C and R, respectively. We use calligraphic
uppercase letters to represent index sets, and use | - | to represent the cardinality of a set. When we use an
index set as the subscript of a vector, we refer to the part of the vector over the index set. For example, x ,
is the part of vector x over the index set £2. We use C;'*" to represent the set of matrices from C"1*"
with rank r. We denote the trace of a matrix X by Tr(X), and denote the real and imaginary parts of a
matrix X by Re(X) and Im(X), respectively. The superscripts T and * are used to represent transpose,
and conjugate transpose of matrices or vectors. The Frobenius norm, nuclear norm and spectral norm of
a matrix are denoted by || - ||, || - I, and || - ||, (or || - ||), respectively. The notation || - || represents the
spectral norm if its argument is a matrix, and represents the Euclidean norm if its argument is a vector.
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The probability of an event S is denoted by P(S). A vector or matrix with all its entries zero will be
denoted by 0. The inner product for matrices is defined as (M,N) = Tr(M TNy when M and N are real
valued, or (M, N) = Re(Tr(M*N)) when M, N are complex valued.

2. Problem statement

We consider the signal model in (1.1) with
zk:elz”f"_”,k=1,2,--~,R, 2.D

where f; € [0, 1) are normalized frequencies, 7, > 0 are the damping terms and the observation set is
M {0,1,--- 2N —2}.

To estimate the continuous parameter f; in [5, 41], the authors proposed using TV minimization or
atomic norm minimization to recover x or to recover the parameter z;, when z;, = '™/ with £, taking
continuous values from [0, 1). However, as shown in [5, 40, 41], in order for atomic norm minimization
to recover spectrally sparse data or the associated frequencies correctly, it is necessary that adjacent
frequencies be separated far enough from each other. As shown in [40], for complex exponentials with
7, s taking values on the complex unit circle, it is required that adjacent frequencies f; € [0, 1) be at least
m apart. This separation condition is necessary, even if we observe the full (2N — 1) data samples,
and even if the observations are noiseless. A formal statement of minimal separation of frequencies can
be found in Definition 2.1.

DEFINITION 2.1. ([5]) For a frequency subset .# C [0, 1) with a group of points, the minimum separation

is defined as smallest distance between two arbitrary different elements in .%, i.e.

dist(#) = inf  d(f,.f), (2.2)
fufieF fif

where d(f;,f;) is the wrap around distance between two frequencies.

Following the idea of the matrix pencil method in [21] and Enhanced Matrix Completion (EMaC)
in [11], we construct a Hankel matrix based on signal x. More specifically, define the Hankel matrix
H(x) € CN*N by

ij(x) = j+k—2’ ],k = 1,2, e ,N. (23)

The expression (1.1) and (2.3) lead to a rank-R decomposition:

1.1 »
Zl ZR C] 1 Z]... ZIIV

111\]._1 z?{._l cr] L1 g zg !

Instead of reconstructing x directly, we reconstruct the rank-R Hankel matrix H, subject to the observation
constraints. Low-rank matrix recovery has been widely studied in recovering a matrix from incomplete
observations [2, 6, 7, 9, 35]. It is well known that minimizing the nuclear norm can lead to a solution of
low-rank matrices. We therefore use the nuclear norm minimization to recover the low-rank matrix H.
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More specifically, for any given x € C?V =1, let H(x) € CV*V be the corresponding Hankel matrix. We
solve the following optimization problem:

min ||Hx)|l,, subjectto .2/(x) = b, (2.4)
X

where || - ||, is the nuclear norm which is the sum of all singular values of a matrix, and .#'and b are the
linear measurement operator and measurement results. More specifically, <7 is a linear undersampling
operator and b = x_/is the set of elements from x with indices in .#Z. When there is noise 5 contained
in the observation, i.e.

b = o/x) + 1,
we solve
n&in I1H@)|,, subjectto || (x) —b|, <, (2.5)
where § = |5, is the noise level. It is known that the nuclear norm minimization (2.4) can be

transformed into a semidefinite program

milé2 %(Tr(Ql) + Tr(Q,))

x,0,,
s.t. . Ax) =b,
Q1 H(x)*
[H(x) 0, i| >0 (2.6)

which can be easily solved with existing convex program solvers such as interior point algorithms.

After successfully recovering all the time samples, we can use the single-snapshot MUSIC algorithm
(as discussed in [24]) to identify the underlying frequencies f;. For the recovered Hankel matrix H(x),
let its singular value decomposition (SVD) be

2 0 * X
H(x) = [U, U,] [ 0 0} [V, V,]*,U,,V, € CN*§ (2.7)

and we define the vector ¢” (f) and imaging function J(f) as

™ (I

N _ 12nf 12nf(N—1)\T _
) — (I?e yeenn € ) ) J ) — e N
vy v 156" ()1l

felo). (2.8)

The single-snapshot MUSIC algorithm is given in Algorithm 1. In [24], the authors showed that the
MUSIC algorithm can exactly recover all the frequencies by finding the local maximal of J(f). Namely,
for undamped signal (1.1) with the set of frequencies .% and t, = 0, if N > R, then ‘f € .% is equivalent
to ‘J(f) = o0

While it is true that when R < %’ one can use MUSIC to find the frequencies from the first N — 2
samples and then recover the signals. However, we focus on the nuclear norm for the following reasons:

€202 1sNBNY 6z UO 1SN eMmo] JO AlSISAUN AG 80ZEYZ.L/EEOPEEYE/Z /B0 /IBIBWI/LIO0Y"dNO"0ILSPEOE//:SARY WO} PAPEOIUMOQ



8 J.YIETAL.

Algorithm 1 Single-Snapshot MUSIC algorithm 24

1: require: solution x, parameter R and N
2. form Hankel matrix Z € CN*N

3: SVDZ = [U, U,] [ 201 8 } [V, V,]* with U, € CN*R and ¥, € CR*R
4: compute imaging function J(f) = BAGIE fel0, 1)
U3 ()2 ’

5. get set 3?:{ f: f corresponds to R largest local maxima of J(f)}

(1) MUSIC does not apply to the case where R > %’ if we use the first N — 2 samples. However, the
nuclear norm minimization can be more powerful than MUSIC in that it can recover more frequencies.
For example, our results in Theorem 4.1 show that nuclear norm minimization can recover close to N
frequencies, while MUSIC can only recover up to % if it uses only the first N — 2 samples.

(2) In addition, this paper focuses on using nuclear norm minimization, rather than MUSIC. So while
the MUSIC can recover the same number (%’) of frequencies in the worst case by taking the first N — 2
samples, our results can still be useful in understanding the power of nuclear norm minimization.

3. Worst-case performance guarantees of separation-free super-resolution

In this section, we provide the worst-case performance guarantees of Hankel matrix recovery for
recovering the superposition of complex exponentials. Namely, we provide the conditions under which
the Hankel matrix recovery can uniformly recover the superposition of every possible R complex
exponentials. Our results show that the Hankel matrix recovery can achieve separation-free super-
resolution, even if we consider the criterion of worst-case performance guarantees. Later, we further
show that our derived worst-performance guarantees are tight, namely we can find examples where
nuclear norm minimization fails to recover the superposition of complex exponentials for a larger R.
We start with introducing necessary notations and a few lemmas needed for proofs of our main results.

3.1 Notations and Useful Lemmas

Let w; be the number of elements in the i-th anti-diagonal of any N x N matrix like H, namely,

,i=1,2,---,N,
wy= 40T G.1)
2N —i,i=N+1,.--- ,2N — 1.

Here, we call the (2N — 1) anti-diagonals of H(x) from the left top to the right bottom as the first anti-
diagonal up to the (2N — 1)-th anti-diagonal. For example, consider a Hankel matrix

(3.2)
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then correspondingly, w; = 1,w, = 2,w; = 3,w, = 4,ws = 3,ws = 2 and w; = 1. We also define

Wiin a8

Wonin = min Wiils 3.3)
i€{0,1,2,.. 2N—2\.A

where ./ is the observation set.
For a Hankel matrix

Hy(x0) =x; 5. j.k=1,2,--- N, (3.4)

we define Ind(j) as the set of indices of rows which intersect with the j-th anti-diagonal of the Hankel
matrix, and define {j : i € Ind(j)} as the set of indices of all non-zero anti-diagonals which intersect with
the i-th row. For example, consider the matrix in (3.2), we have

Ind(1) = {1},Ind(2) = {1,2},Ind(3) = {1,2,3},

Ind(4) = {1,2,3,4},

Ind(5) = {2,3,4},Ind(6) = (3,4}, Ind(7) = {4],

and
{i:1emd(h)} =1{1,2,3,4},
{j:2elnd(j)} ={2,3,4,5},
{j:3elnd(j)} =1{3,4,5,6},
{j:4end()} ={4,5,6,7}.

With the setup above, we give the following Theorem 3.1 concerning the worst-case performance
guarantee of Hankel matrix recovery, the proof of which is based on the strong null space conditions
from [29, 36]. We will specifically use the following Lemma 3.1 from [29].

Lemma 3.1 is called the strong null space condition, and it characterizes the conditions under which
the nuclear norm minimization (3.5) can recover any matrix with rank at most R. We use this lemma to
show below that the recovery of H(x) from the observation set M is guaranteed by a condition that does
not mandate sufficient frequency separation.

LeEMMA 3.1. ([29]) Consider an N x N matrix X, of rank at most R, and a linear mapping <AX,) = b.
Then the nuclear norm minimization (3.5)

n}}n X1, subject to  AX) = HAX), (3.5)

can uniquely and correctly recover every matrix X, with rank no more than R if, for all non-zero Z €

M),

2|Zl,g < IZ11, (3.6)
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where || Z|| . is the sum of the largest R singular values of Z, and .#(.2) is the null space of <.

When there is noise in the observation data, we have the following results guaranteeing the robustness
of the nuclear norm minimization in recovering data.

LeEMMA 3.2. Consider an N x N matrix X, of rank at most R, and a linear mapping % such that (X, +
E) = b, where E is a perturbation matrix with ||E||, < €. Then the nuclear norm minimization (3.7)

rr}}n 1X1l,, subject to  A(X) = b, 3.7

will output a X such that 1Xo — X I, < 3 C+1 ¢, if for all non-zero Z € M AB),
(C+ DIZl g = IZ],. (3.8)

where C > 1 is a constant, ||Z||, is the sum of the largest R singular values of Z, and /(%) is the null
space of A.

Proof. We let X=X o+ E + W, where W is a non-zero matrix from the null space of . Then

1Xoll, + I1EI, (3.9)
> || Xy + Ell, (3.10)
> | Xy +E+ W], (3.11)
> [1X, + Wi, — IE, (3.12)
N
> D loy(Xy) — o;(W)| — |IE], (3.13)
i=1
lR N
> D (0,Xp) — o (W) + > o(W) — |IE], (3.14)
i=1 i=R+1
> Xl + WL, = 21 Wllg — IEI, (3.15)
C—
> || X w E|,, 3.16
> || 0||*+C+]|| I, — IEI, (3.16)

where W is a matrix from the null space of %, 0;(-) represents the i-th largest singular value of a matrix
and inequality (3.14) is due to X)’s rank being at most R and Lemma 3.3 as shown below. Thus, we have

20El, = &1IWI,, implying that X, — X, = |W +Ell, < W], + |El, < ZEHIEL. O

LEmMA 3.3. [29] Let X and Y be two N x N matrix, then
N
IX =Y, = D 1o,(X) — 0,(V)],
i=1

where o;(X) and 0;(Y) are, respectively, the i-th largest singular values of X and Y, respectively.
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 11

Because of the two lemmas above, we arrive at the following lemma particularly about the condition
for Hankel matrix recovery in super-resolution.

LEmMMA 3.4. Consider the signal model (1.1) with z;, defined in (2.1), and the observation set .#Z C
{0,1,2,...,2N — 2}. Then the nuclear norm minimization (2.4) will uniquely recover H (x), regardless
of the (frequency) separation between the R continuously valued (frequency) parameters, if for every
non-zero element in the null space .#(.27) of the linear mapping .27 corresponding to the sampling set .#
satisfies the condition in Lemma 3.1. Namely, every non-zero matrix in the set

M) ={Z € CV*N : Z is a Hankel matrix, Z;; = 0if j+k—2 € .2}

satisfies the null space condition in Lemma 3.1.

This lemma shows that the guarantee of recovering missing data via Hankel matrix recovery
essentially does not require frequency separations of frequencies, but instead depends on the sampling
pattern only.

3.2 Worst-case performance guarantees of separation-free super-resolution
We are now ready to introduce our main results.

THEOREM 3.1. Consider the signal model (1.1) with z, defined in (2.1), and the observation set .# C
{0,1,2,...,2N — 2}. We further define w; of an N x N Hankel matrix H(x) as in (3.1), and define w,,;,
as in (3.3). Then the nuclear norm minimization (2.4) will uniquely recover H(x), regardless of the
(frequency) separation between the R continuously valued (frequency) parameters, if

Wmin (3' 17)

R<san—1—1a

On the one hand, the performance guarantees given in Theorem 3.1 can be conservative: for average-
case performance guarantees, even when the number of complex exponentials R is bigger than predicted
by Theorem 3.1, the Hankel matrix recovery can still recover the missing data, even though the sinusoids
can be very close to each other. On the other hand, the bounds on recoverable sparsity level R given in
Theorem 3.1 is tight for worst-case performance guarantees, as shown in the next section. We will show
the tightness of recoverable sparsity guaranteed by Theorem 3.1, which is built on the developments in
Section 4.1.

Proof of Theorem 3.1: We can change (2.4) to the following optimization problem:

rgin 1Bl subjectto B = H(x), «/x)="b. (3.18)
X

We can see (3.18) as a nuclear norm minimization problem, where the null space of the linear operator
(applied to (B,x)) in the constraints of (3.18) is given by (H(z),z) such that @/(z) = 0.

Using Lemma 3.1, we can see that (3.18) or (2.4) can correctly recover x as a superposition of R
complex exponentials if 2||H(2)|,r < [[H@)|, holds true for every non-zero z from the null space
of .
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12 J.YIET AL.

From the sampling set .# < {0,1,2,...,2N — 2}, the null space of the sampling operator .27 is
composed of (2N — 1) x 1 vectors z’s such that z;, | = 0if i € .. For such a vector z, let us denote the
element across the i-th anti-diagonal of H(z) as a;, and thus Q = H (z) is a Hankel matrix with its (i + 1)
anti-diagonal element equal to 0 if i € .#. Let o, - - - , o) be the N singular values of H(z) arranged in
a descending order. To verify the null space condition for nuclear norm minimization, we would like to
find the largest R such that

o'l+...+o'R<o'R+l+...+o'N’ (319)

for every non-zero z in the null space of <.
Towards this goal, we first obtain an upper bound for its largest singular value (for a matrix Q, we
use @; . to denote its i-th row vector):

o= max |Qu
DT ke Jul=t
N
= max Z |Ql-,:u|2
ue(CN,IIuIIz=1\ o1

N
=  max > > aj; ;|2 (3.20)

N —
ueC =T =T ey ieid(.a20)

where Ind(j) is the set of indices of rows which intersect with the j-th anti-diagonal, {j : i €
Ind(j),aj # 0} is the set of all non-zero anti-diagonals intersecting with the i-th row and (3.20)
is obtained by looking at the N rows. Note that in the calculations above, we only need to pay
attention to the non-zero entries in the i-th row of Q. From the Cauchy—Schwarz inequality,
we have

N
o1 = (Cglnax -1 Z Z |aj|2 Z |uj_[+1|2
uet = \ =1 \jeliielnd(.a;#0} jej:ieind(),aj£0}
-1 N
P DYDY > il (3:21)
TERTILi=t i=1ielnd(y) \joe{j:iclnd().aj#0)
V-1
g P> 2. ?
- ueC%nﬁl)L:l Z |a]1| |ujz—l+1|
, \| =1 ielnd(j1) jrejiclnd(j).aj#0)
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 13

Because |[ul, = 1 and, for each i, |u;|*> appears in (Ziemd(h) ije{]‘;ielnd(]‘)’aj#o} |uj2—i+1|2) for no
more than 2N — 1 — M) times, we have

2N—1
o < max [a< 22N -1 —M)]
' e Julb=1 Z_‘; %]
J1=
= > la;, 122N — 1 — M).

jef0.1,.. 2N—2\A

Furthermore, summing up the energy of the matrix Q, we have

> ot = > a1 Pwipr- (3.22)

i=1 i€{0,1,.. 2N=2\.A

2
Since ;’—i > (g—;) , then for any integer k < N, we have

N N
Din1 0 . Din10;
k p—
210 ko
N 2
Zi:l 0;
kolz

2
- 2 (0.1, aN—2p 2 i1 Wiy
T ko, ov—op a1 PQN — 1 = M)

_ 2
_ (mlnie{o,1,.“’2N_2}\,///Wi+1) ’ Zie{O,l,..‘,ZN—Z}\.//ﬂaiJr] |
= k2N —-1-—-M) - Zje{o,l,...,2N72}\%|aj+l|2

Mile o1 an—2p 2 Wit
k(2N — 1 — M)

Winin
=_mn 3.23
k2N — 1 — M) (3-23)

So if

Mile o an—op 2/ Wit
RQ2N—-1-M)

> 2, (3.24)
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14 J.YIET AL.

then for every non-zero vector z in the null space of .7, and the corresponding Hankel matrix Q = H(z),
N R

Zai > ZZ o;. (3.25)
i=1 i=1

It follows that, for any superposition of R < m complex exponentials, we can correctly
recover x over the whole set {0, 1,...,2N — 2} using the incomplete sampling set .#, regardless of
the separations between different frequencies (or between the continuously valued parameters z;’s for

damped complex exponentials). (|
3.3 Robustness of Hankel matrix recovery in super-resolution regardless of frequency separation

We further have the following results of the robustness of the Hankel matrix recovery in super-resolution.

THEOREM 3.2. Consider a ground-truth signal model (1.1) with z; defined in (2.1), and the observation
set 4 < {0, 1,2,...,2N — 2}. Suppose that the ground-truth signal is given by

R
N=>"¢g. j=01,....2N-2, (3.26)
k=1

and we denote the ground-truth vector xV = [xg, x(l), ey xg N72]T' We further represent the noise-corrupted

signal by

R .
X, =Y g te  j=0.1,....2N-2, (3.27)
k=1

where e = [e, e, ...,e,y_,]" is the noise vector. We define a partial-observation error vector & € C*N~!
such thate , = e , and E{o 12, AN-2\M = 0. We define € = N|e||,, and denote the measurement
results by <#/(x°) + € y=bor Ax° +e) =b.

Then the optimization formulation

n}in 1Hx)|,, subjectto Ax) = b, (3.28)

will output a X such that

3C+1
HE) —HXY|, < :
IHGE) — Ol < o=
and
. 3C+1
a0, < oo,

(c-D
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AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 15

where C > 1, regardless of the (frequency) separation between the R continuously valued (frequency)
parameters, if

Winin
feCrhay -1y 02

Proof. The proof is similar to the proof of Theorem 3.1. Instead of using Lemma 3.1, we use
Lemma 3.2.

First of all, we observe that the nuclear norm of the error matrix E = H(e) is upper bounded by
N X |le||;. This is because the Hankel matrix, which has non-zero elements only in the i-th (1 < i <
2N — 1) anti-diagonal and zeros elsewhere, has its nuclear norm bounded by the number of non-zero
elements (which is upper bounded by N) times the magnitude of that non-zero element. By the triangle
inequality, we have the nuclear norm of the error matrix E = H(e) upper bounded by N x ||e]|;.

WeletX, =H (xY) and E = H(&). Then the optimization formulation

min [|H®)],, subjectto A(x) = b, (3.30)
X
is equivalent to
min || X|,, subjectto  BX) = BX, + E), (3.31)
XE(CNXN

where Z(-) is a linear mapping such that its null space is {H(x) : /(x) = 0,x € C2N _1}.
Then we can apply Lemma 3.2 to obtain the error bounds as in this theorem. In fact, following similar
proofs as in the proof of Theorem 3.1, we have, if

Ml on—op. 2 Wit
RQN —1—M)

>C+1, (3.32)

then for every non-zero vector z in the null space of .27, and the corresponding Hankel matrix Q = H(z),
we have

N R
D= (C+ DD o (3.33)
i=1 i=1

Applying Lemma 3.2, we immediately have

3C+1

Sy Hx?
1H(X) —Hx), < - D¢

Because

1% —x°ll, < IH@) — H&O) | < |IHGE — HEO)|,,
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16 J.YIET AL.

where || - || denotes the Frobenius norm, we have

3C+1

s 0
% —x0, <
I =77

€.

3.4 Implications for robustness in recovering frequencies using recovered data samples

Let us now consider the recovery of the underlying frequencies. In fact, the robustness of recovering
missing data samples translates into the robustness of recovering the frequencies. When the observations
are noiseless, for the first time, we have shown that the nuclear norm minimization method can recover
the data correctly regardless of frequency separation, and moreover, using the recovered data samples
and the Prony’s method (or the single snapshot MUSIC algorithm), we can even exactly recover the
frequency accurately regardless of frequency separation. When the observations are noisy, the Hankel
matrix recovery method can guarantee recovering the missing data samples with robustness: regardless
of frequency separations, the norms of the recovery error are nicely bounded by the norms of the noise
vector, as proved by Theorem 3.2 in this paper. According to theorems 3 and 4 in [24], we know that
when the error in the recovered data samples goes to zero, using the single-snapshot MUSIC algorithm,
the error in the noise-space correlation function used in the single-snapshot algorithm also goes to
zero; and, moreover, there exist local minimizers of the noise-space correlation function converging
to the true underlying frequencies. Of course, the ratio of the magnitude of frequency recovery error
to the magnitude of noise depends on frequency separations; however, at least this method is robust
against noises in the sense that the magnitude of frequency recovery error goes to zero as the noise’s
magnitude goes to zero. This is very different from atomic norm minimization, which will identify
wrong frequencies even with noiseless and complete data if the separation of two frequencies is below a
certain threshold [40]. Our results in this paper demonstrate that Hankel matrix recovery method exhibits
very different behaviours than the atomic norm minimization, even though both reduce to a semidefinite
programming problem for minimizing the nuclear norm of a matrix.

4. Average-case performance guarantees

In this section, we study the performance guarantees for Hankel matrix recovery, when the phases of
the coefficients of the R sinusoids are i.i.d. and uniformly distributed over [0, 2). For average-case
performance guarantees, we show that we can recover the superposition of a larger number of complex
exponentials than Theorem 3.1 offers. We introduce Lemmas 4.1 and 4.2 first, which are used in the
derivations of the average-case recovery guarantee stated in Theorems 4.1 and 4.3.

LEmMMA 4.1. ([42]) For a sequence of i.i.d. random matrices M, - - - , M with dimension d; x d, and
their sum M = Zszl M;, if M, satisfies

EM;] =0,|M;| =L,Vi=1,--- K, 4.1

and

K K
V(M) == max { || D EMM;]||. || D EIMM,]|| ¢ . (4.2)

i=1 i=1

€202 1sNBNY 6z UO 1SN eMmo] JO AlSISAUN AG 80ZEYZ.L/EEOPEEYE/Z /B0 /IBIBWI/LIO0Y"dNO"0ILSPEOE//:SARY WO} PAPEOIUMOQ



AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 17

then

—2/2

Lemma 4.1, called the Matrix Bernstein Inequality, characterizes the tail behaviour of the spectral
norm of a random matrix.

LEmMMA 4.2. Let X, be any M x N matrix of rank R in CM*V and we observe it through a linear mapping
AX,) = b. We also assume that X, has an SVD X, = UXV*, where U € CM*R 'y ¢ CN*R and
¥ e CR*Riga diagonal matrix. Then the nuclear norm minimization (4.4)

Ir}}n X1, subjectto  AX) = AX,), 4.4)
correctly and uniquely recovers X, if, for every non-zero element Q € .M 7),
—[TeU* Q)| + U" @V, > 0, (4.5)

where U and V are such that U U ]land [V V] are unitary.

We use Lemma 4.2 as the condition for successful signal recovery through nuclear norm minimiza-
tion. This lemma is an extension of lemma 13 in [29]. The key difference is that Lemma 4.2 deals with
complex-numbered matrices. Moreover, Lemma 4.2 gets rid of the ‘iff” claim for the null space condition
in lemma 13 of [29], because we find that the condition in lemma 13 of [29] is a sufficient condition for
the success of nuclear norm minimization, but not a necessary condition for the success of nuclear norm
minimization [46]. We give the proof of Lemma 4.2 in Appendix.

4.1 Average-case performance guarantees for orthogonal frequency atoms

THEOREM 4.1. Let us consider the signal model of the superposition of R complex exponentials (1.1)
with z; defined in (2.1) where 7, = 0. We assume that the R frequencies f, f5,..., and f are such that
the atoms (1,e'>i, ..., e?"iN=IYT "1 < j < R, are orthogonal to each other. We let the observation set
be # =1{0,1,2,..,2N — 2} \ {N — 1}. We assume the phases of coefficients ¢, - - - , cp in signal model
(1.1) are independent and uniformly distributed over [0, 277). Then the nuclear norm minimization (2.4)
will successfully and uniquely recover H (x) and x, with probability approaching 1 as N — oo if

R =N — ¢\/log(N)N, (4.6)

where ¢ > 0 is a constant.

Proof of Theorem 4.1: We can change (2.4) to the following optimization problem

Igin I1B]] subjectto B = H(x), «/x)=0b. 4.7)
X

We can think of (4.7) as a nuclear norm minimization, where the null space of the linear operator (applied
to B and x) in the constraints of (3.18) is given by (H(z),z) such that @/z) = 0.
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18 J.YIET AL.

Then we can see that (4.7) or (2.4) can correctly recover x as a superposition of R complex
exponentials if

ITe(VU*H(z))| < |U'H@)V |, 4.8)

hold true for any z which is a non-zero vector from the null space of o, where Hx) = UX V* is the
SVD of H(x) with U € CN*R and V € C¥*R, and U and V are such that [U, U] and [V, V] are unitary.

Without loss of generality, let f, = Sﬁk for 1 < k < R, where s;’s are distinct integers between 0 and
N — 1. Then

1 1 1 e~ 0 ... 0
1 61271%l 61271%2 elZJTSWR 0 e—l@z 0
U=_ . . . . . . B (4'9)
VN : : : : Do
AN W=D 2nFWN-D) a2 FN-D) 0 0 --. ¢ 10R
and
1 1 1
1 e—lZJTXWl 6—1271%2 . e—zZnSWR
V=— , (4.10)
PN WN=D m2r RN i2n N1
and
le;] 0 --- 0
0 Jeyl --- 0
X=N| . . . .| (4.11)
0 0 - |cgl

where 6,’s (1 < k < R) are i.i.d. random variables uniformly distributed over [0, 27).
When the observation set .# = {0, 1,2,...,2N — 2} \ {N — 1}, any Q = H(z) with z from the null
space of o7 takes the following form:

Q=al: . :|.acC (4.12)
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Thus
0 -1
ITe(VU*Q)| = |aTe | U* | : .- 1|V
1 0
iN 1 v(N 1-1)
= |al (— e (4.13)
JN)] |4
i=1 =0
R N-— Y(N
ZZ 2y (4.14)
R 0, 2 SiN=D
=lal| > e%e N (4.15)
i=1

si(N=1) . . .
Notice that random variable ¢'%e™'2" "~ are mutually independent random variables uniformly

distributed over the complex unit circle. We will use the concentration lemma (see for example, [42]) to

si(N=1)
provide a concentration of measure result for the summation of ¢'%ie ™27 "~
S (N 1)
Applying Lemma 4.1 to the 1 x 2 matrix composed of the real and imaginary parts of ¢'%e ™27 5
with v = max(R,R) =R,L =1,d, +d, = 3, we have
_ 2 _ 2
P (ITe(VU*Q)| = |alt) < 3e” L7 =3¢ &3Vt > 0. (4.16)

We further notice that, U’s ( V’ s) columns are normalized orthogonal frequency atoms (or their complex
conjugates) with frequencies llT[/’ with integer /;’s different from the integers s;’s of those R complex
exponentials. Thus,

IU*QV|, = lal(N — R) (4.17)

since we can always find two unitary matrices Q; and @, such that 0,00, becomes an identity matrix
without changing the nuclear norm, i.e. ||I_J*Q‘7||* = ||l_]*Q1QQ2‘7||*, allowing us to get (4.17).

Pickt = N — R, and let I;J]rv(N—% = clog(N) with ¢ being a positive constant. Solving for R, we

obtainR = N — (% log(N) + \/ 49_162 log (N) 4+ 2¢ log(N)N), which implies (4.8) holds with probability

approaching 1 if N — oo. This proves our claims. ]

4.2 Tightness of Theorem 3.1

Building on the discussions above, we now discuss some results on the tightness of the bounds in
Theorem 3.1.

We first show that the recoverable sparsity R provided by Theorem 3.1 is tight for .#Z =
{0,1,2,..,2N — 2} \ {N — 1}. For such a sampling set, w,,;,, = N, and Theorem 3.1 provides a bound

Wmin __ IV
R< =5 =3.
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In fact, we can show that if R > %’, we can construct signal examples where the Hankel matrix
recovery approach cannot recover the original signal x. Consider the signal in Theorem 4.1. We choose

5;(N—1)
the coefficients c;’s such that e%ie™? N~ =1, then
R 6: 2 si(N=1)
[T (VU*Q)| = |a| | D> &%e™> " | = |alR, (4.18)
i=1
and we also have
1U*QV |, = lal(N — R). (4.19)

Thus, |Tr(VU*Q)| > || U *Q‘_/H* for every Q = H(z) with z in the null space of the sampling operator.
Thus, the Hankel matrix recovery cannot recover the ground truth x. This shows that the prediction by
Theorem 3.1 is tight.

According to Theorem 3.1, in the worst case, we need a very large number of samples to guarantee
successful recovery of signal comprising a small number of atoms. We have established the tightness of
Theorem 3.1 for a special sampling scheme, i.e. .# = {0,1,--- ,2N — 1} \ {N — 1}, and even under the
restricted sampling patterns considered in this paper, these are the first results in the literature that show
successful recovery is guaranteed regardless of frequency separation using nuclear norm minimization
in the setting of noiseless measurements.

In fact, we have the following general results suggesting that the tightness of the results in
Theorem 3.1 in terms of recovering a low-rank matrix.

THEOREM 4.2. Consider the signal model (1.1) with z; defined in (2.1), and the observation set .# C
{0,1,2,...,2N — 2}. We further define w; of an N x N Hankel matrix H(x) as in (3.1), and define w,,;,
as in (3.3). Let o/(-) be a linear mapping of a vector from C*N~! to CV//'
pattern ..

Then there is a non-zero vector u € C*¥~! & such that .2Au) = 0 and the corresponding Hankel
matrix H(u) has a rank of w,,,,; moreover, there is a matrix Q € CN*V of rank [w,,;,/2] such that
IHW) + Qll,, < Q-

In other words, let 28 be linear mapping from C¥>*V to Cl such that its null space is the same as
the set {H(u) | «/(u) = 0}, then there exists a low-rank matrix Q of rank [w_. /2] such that it is not the
unique solution to the following nuclear norm minimization problem:

as defined by the sampling

min

min

min | X|l,,  subjectto ZBX) = BQ). (4.20)

XcCNxN

Proof. We consider the index i, 0 < i < (2N — 2) such that w;, ; = w,,;.. Then we take the low-rank
matrix Q which has [w,,;,/2] 1’s in its (i 4+ 1)-th anti-diagonal, and all the other elements in Q are 0.

We take u € CV such that u; = —1 at index i but equal to O at all the other indices. Then H(u) + Q will
be a matrix having w, ;. — [w,,;,, /2] *-1’s atits (i + 1)-th diagonal, and have a no bigger nuclear norm
than Q, proving this theorem. O

We also want to emphasize that while results in our theorems are conservative, and the practical

performance can still be quite encouraging. For example, in Theorem 4.3, the sampling scheme can

hardly be regarded as undersampling since we need %%j = % ~ 99% of the samples for successful
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recovery. But in the experiments, we actually used about 51% of samples. The experimental results
actually imply the possibility of improving the bounds in the recovery guarantees.

4.3  Average-case performance analysis with arbitrarily close frequency atoms

In this section, we further show that the Hankel matrix recovery can successfully recover the superpo-
sition of complex exponentials with arbitrarily close frequency atoms. In particular, we give average
performance guarantees on recoverable sparsity R when frequency atoms are arbitrarily close, and show
that the Hankel matrix recovery can deal with much larger recoverable sparsity R for average-case signals
than predicted by Theorem 3.1. For the tractability of our theoretical analysis, our results assume that
certain frequency atoms are orthogonal to each other; however, in our results, there are always frequency
atoms which are arbitrarily close to each other, enforcing small frequency separation in this research
problem. We note that in the literature the separation requirement is often defined as the smallest circular
separation between frequency atoms. Following this definition, the frequency separations used in this
section are still consistent with the definition of small frequency separation, even though some of the
frequency atoms are orthogonal to each other. Numerical results suggest that the assumptions that some
of the frequency atoms are orthogonal to each other are not necessarily needed; however, removing such
assumptions would require some future work.

We consider a signal x composed of R complex exponentials. Among them, R—1 orthogonal complex
exponentials (without loss of generality, we assume that these R — 1 frequencies take values L where
[;’s are integers). The other complex exponential ccle’znfc’j has a frequency arbitrarily close to one of the
R — 1 frequencies, i.e.

R—1
X, = e 4 e je (0,1, 2N -2}, 4.21)
k=1

where f,, is arbitrarily close to one of the first (R — 1) frequencies. For this set-up with arbitrarily close
atoms, we have the following average-case performance guarantee.

THEOREM 4.3. Consider the signal model (4.21) with R complex exponentials, where the phases of the
coefficients in these complex exponentials are i.i.d. uniformly randomly distributed over [0, 27r). The
first (R — 1) of the complex exponentials are such that the corresponding atom vectors

(1,el27'[ﬁ’ ey elzﬂﬁ(N—l))T

are mutually orthogonal, while the R-th exponential has a frequency arbitrarily close to one of the first
(R — 1) frequencies (in wrap-around distance). Let c,,;, = min{|c,|, |c5], ..., |cg_; |}, and define

g =l g (4.22)

rel —
min

If we have the observation set .#Z = {0, 1,2,...,2N — 2} \ {N — 1}, and for any constant ¢ > 0, if

2 4
R=N—4V/Nd,, + §clog(N) — \/ 2¢N log(N) — 8¢v/Nd, ,; log(N) + §c2 log?(N), (4.23)
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then we can recover the true signal x via Hankel matrix recovery

min |[H(x)||,, subjectto eAx) =b
P

with high probability as N — oo, regardless of frequency separations.

Remarks: 1. We can extend this result to cases where neither of the two arbitrarily close frequencies
has on-the-grid frequencies, and the Hankel matrix recovery method can recover a similar sparsity; 2.
Under a similar number of complex exponentials, with high probability, the Hankel matrix recovery can
correctly recover the signal x, uniformly over every possible phases of the two complex exponentials
with arbitrarily close frequencies; 3. We can extend our results to other sampling sets, but for clarity of
presentations, we choose .Z = {0,1,2,....,2N — 2} \ {N — 1}.

The proof of Theorem 4.3 depends on Lemma 4.3, a perturbation result on the polar decomposition of
a matrix, which we will present first before introducing the formal proof of Theorem 4.3. Let us consider
two matrices X and X from C"*” such that X = X + E, where E € C"™*". Suppose that the matrix X
has SVD

X=USV*U=[U Uy eC™" ¥ = [ o o

] e C"™M Y = [V, V,] € C™, (4.24)

where U; € C"*", V| € C"" and ¥ | € C"™". The polar decomposition of X is given by
X=PH,P=UV,H=V 5V} (4.25)

and the matrix P is the unitary polar factor. Similarly for X, we have

X OEV 0 = (0, 0y e v 5 = [201 g] cCmN S [7, Ty e T (426)
and the polar decomposition of X
X=PHP=UV H=V,X,V|. (4.27)

LeEmMa 4.3. ([23]) For matrices X € C"*" and Xe C™" with SVD defined as (4.24) and (4.26), let
o, and &, be the smallest non-zero singular values of X and X, respectively, then

|||P—i’|||§( )|||X—5f|||, (4.28)

— + =
o.+0, max{o,,o0,

where ||| - ||| is any unitary invariant norm, and the matrices P and P are defined in (4.25) and (4.27).
Proof of Theorem 4.3: To prove this theorem, we consider a perturbed signal ¥. The original signal

x and the perturbed X satisfy

X, =X+ c e —c, &I je (0,1, 2N -2}, (4.29)
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where X; is the same as in (4.21), and x is defined as

R—1
;= 7+ e, (4.30)
k=1

with f,,, being a frequency such that its corresponding frequency atom is mutually orthogonal with the
atoms corresponding to fi,..., and fp_ ;. We further define

iy = minfley ], gyl Il (431)

min

Let us define X = H (X¥), X = H(x), and the error matrix E such that

where
Cc‘l — Crm e Cclelznfcr(N*l) — crmelznfrm'(Nfl)
E = : g . (4.33)
Ccleﬂnfcp(Nfl) —c,, & 2 (N=1) || cu o1 2fe2N=2) _ ¢, o/ 2frm(2N=2)

Both X and X are rank-R matrices. For the error matrix E , we have

12

1Bl = S fege D o202

i,ke{0,--- N—1}

172
2
|CCZ| + |Crm|)
tke{O -N—1}
N 1/2
= ( |Ccl| + |Crm|) )

=N lleal *leml) (4.34)

Following the derivations in Theorem 4.1, X has the following SVD

X=0zV",

=0, Uy € VN 7 = [, 7] e CVN 5 = [21 0

0 0} e CN*N, (4.35)

where U, € CV*R 5 e CR*R and V| € CN*R are defined as in (4.9), (4.10) and (4.11). The polar
decomposition of X using its SVD is given by

X=PHP=UV H , (4.36)
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and the matrix P is called the unitary polar factor. Similarly, for X, we have

X=UZV,U=[U, U, eCVN V=[V,V,]eCVN ¥ = [201 g] , (4.37)

and its polar decomposition for X,

X=PHP=UV,H=VX V.. (4.38)

Suppose that we try to recover x through the following nuclear norm minimization:

min [|H@)|,

s.t. oAx) =b. (4.39)

As in the proof of Theorem 4.1, we analyse the null space condition for successful recovery using Hankel
matrix recovery. Towards this, we first bound the unitary polar factor of X through the perturbation theory
for polar decomposition.

For our problem, we have m = n = N,r = R. Let oy be the R-th singular value of X. From (4.11)
and (4.31), an explicit form for oy, is

or = Nd, ;. (4.40)

Then Lemma 4.3 implies that

- 4 .
IP—Plp < —IIX—X]pg. (4.41)
Or

From the null space condition for nuclear norm minimization (4.39), we can correctly recover x if
IT(V,UFQ)| < U0V 1, (4.42)

for every non-zero Q = H(z) withz € M), where U, and V, are such that [U; U,] and [V, V] are
unitary, i.e. U; = U, and V| = V,. Since the observation set .#Z = {0,1,2,...,.2N — 2} \ {N — 1}, O
takes the form in (4.12) with a € C, and

IUTQV, I, = lal(N — R). (4.43)
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Let us define AP =P —P =0, V| — U,V7, and we have
ITt(V,UiQ)| = | < Q. U,V > |
<|<QP>|+|<0Q, AP > |
= Te(V,U,Q)| + | < Q, AP > |
< |Te(V,T,0)| + (1QI3 111 AP %)/
< |Te(V,T70Q)| + lalVN| AP, (4.44)

where we used the Cauchy—Schwartz inequality. Notice that E = X — X, and then it follows from (4.41)
and (4.34) that

4N
&R

44/N

N dmin

~ o~
ITe(V,UT Q)| < [Te(V U, Q)] + lal IEl

< |Te(V, U, Q)| + la| N (legl + ley)

< [Te(V, U, Q)| + 4lalV/N - W (4.45)

min

Thus if

ccl' + |crm|

ITe(V,U,0Q)] + 4lalV/N - | < |a|(N —R), (4.46)

min
namely,

ITe(V, U Q)| < lal (N —R—4VN. dre,) , (4.47)

where d,,; is defined as lectl Hleml | hen solving (4.39) will correctly recover x.

The proof of Theorem 41 leads to the concentration inequality:

2

-~ ~ _ 172
P (|Tr(VU*Q)| > |a|t) <3¢ KBV 1> 0.

Takingt =N — R — 4«/Ndrel, we have

?/2  (N—R-4VNd,)*/2
R+1t/3 R+ (N—-R—4/Nd,)/3
_ 3 N?+4+R*+16Nd%, — 2NR — 8N+/Nd,,, + 8R/Nd,,,
2 3R+N—R—4/Nd '

rel

(4.48)
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To have successful signal recovery with high probability, we let

3 N?+R%+ 16Nd2, — 2NR — 8N+/Nd,,; + 8R+/Nd,,, log(V)
— . =clo s
2 3R+N —R—4+/Nd ®

rel

where ¢ > 0 is a constant. So we have

R4+ sR+r= 0,
where
s = 8v/Nd,,; — 2N — 2c; log(N),
r = N? + 16Nd%, — 8/NNd,,; — ¢;N log(N) + 4¢,v/Nd,,,, 1og(N),
andc| = %c.
Since

s? —4r = (8/Nd.,; — 2N — 2¢; log(N))?
—4 (N2 + 16Nd2, — 8+/NNd,,, — ¢,N log(N) + 4c,~/Nd.,, log(N))

rel

= (64N, + 4N* + 4} 10g>(N) — 32VNNd,; — 32¢,v/Nd, log (V) )

- (4N2 + 64Nd%, — 32+/NNd,,; — 4c,N log(N) + 16¢,/Nd,,, log(N))

= 12¢;Nlog(N) — 48¢;V/Nd,,; 1og(N) + 4¢3 log?(N),

solving the quadratic equation leads to

1
R= 5(—s:t\/s2 —4r)

(4.49)

(4.50)

4.51)

(4.52)

1
=3 (—8Nd,€l + 2N + 2¢; log(N) + \/ 12¢,N log(N) — 48¢,+/Nd,,; 1og(N) + 4¢3 log? (N))

=N —4/Nd,,, + ¢ log(N) + \/ 3¢, Nlog(N) — 12¢,Nd,,; log(N) + c? log*(N).

Plugging in ¢; = %c, we have

2 4
R=N—4VNd,, + 5clog(zv) + \/ 2¢N log(N) — 8¢v/Nd, ; log(N) + §c2 log?(N),

(4.53)
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and

2 4
R=N —4VNd,, + Zclog(V) — \/ 2¢N log(N) — 8¢v/Nd,,,; log(N) + 5¢ log?(N). (4.54)

Notice that we can only take (4.54) since (4.53) can give a R which is greater than N, which is not
acceptable.

Since we can freely choose the coefficient c,,,, we choose c,,, such that

rm?

[Com| = Cppiy = min{|cq, [cal, ...y [cp_q1}.
. . Cell+le Cell+Comi :
Under such a choice for |c,,|. d,;,, = |¢,,| = ¢, leading to d,,, = 1 ‘mJn’”’l = "’lmin”””. This
concludes the proof of Theorem 4.3. (]

5. Separation is always necessary for the success of atomic norm minimization

In the previous sections, we have shown that the Hankel matrix recovery can recover the superposition of
complex exponentials, even though the frequencies of the complex exponentials can be arbitrarily close.
In this section, we show that, broadly, the atomic norm minimization must obey a non-trivial resolution
limit. This is very different from the behaviour of Hankel matrix recovery. Our results in this section
also greatly generalize necessity of resolution limit results in [40], to general continuously parametered
dictionary, beyond the dictionary of frequency atoms. Moreover, this new lower bound can work for non-
uniform sampling, where some samples at certain time indices can be missing, while the lower bound
from [40] applies to uniform sampling. Our new lower bound further applies to samples obtained at non-
integer time indices, while the lower bound from [40] does not apply to sampling at non-integer time
indices. In terms of technical tools used, our analysis of using matrix analysis is very different from the
derivations in [40], which used the Markov—Bernstein type inequalities for finite-degree polynomials.

THEOREM 5.1. Let us consider a dictionary with its atoms parameterized by a continuous-valued
parameter 7 € C. We also assume that each atom a(t) belongs to CV, where N is a positive integer.
We assume that the set of all the atoms spans a Q-dimensional subspace in CV.

Suppose the signal is the superposition of several atoms:

R
x=> car), (5.1)
k=1

with non-zero ¢, € C for each k, and R is a positive integer representing the number of active atoms.

Consider any active atoms a(7y, ) and a(zy, ). With the other (R—2) active atoms and their coefficients
fixed (this includes the case R = 2, namely there are only two active atoms in total), if the atomic norm
minimization can always identify the two active atoms, and correctly recover the coefficients for a(ty, )
and a(rkz), then the two atoms a(tkl) and a(tkz) must be well separated such that

A
la(ty,) — a(z)lly > 2 max max Oin(A) (5.2)

520 AeM’ ﬁ ’
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where S is a positive integer, M" is the set of matrices with S columns and with each of these S columns
corresponding to an atom, and o,,;,,(-) is the smallest singular value of a matrix.

Proof of Theorem 5.1: Define the sign of a coefficient ¢, as

_ c
sign(c;) = ﬁ (5.3)
k

Then according to [41], a necessary condition for the atomic norm to identify the two active atoms, and
correctly recover their coefficients is that there exists a dual vector ¢ € CV such that

[a(r,q)*q = sign(cy,). a(7,)"q = sign(cy,) 54
la()*ql<1,¥T ¢ {5, 7, ).
We pick ¢;, and ¢, such that [sign(cy,) — sign(c¢y,)| = 2. Then
Isign(cy,) — sign(cy) |l = lla(z,)*q — a(r,)*qll, < ligllla(zy) —az)l,, (5.5)
Thus
2 (5.6)

lqll, > :
27 a(ry) —a(t,)l,

Now we take a group of S atoms, denoted by a ,and a and use them to form the §

columns of a matrix A. Then

select,12*** select,S>

A

Omin@lgll, < 1A%gll

S
* 2
Z |aselect,jq|
j=1

< S, (5.7)

where the last inequality comes form (5.4). It follows that

lgll, = . (5.8)
2 Gmin(A)
Define $ as the maximal value of % among all the choices for A and S, namely,
(A
B = max max U’"L(). (5.9)

520 AeM’ \/§

€202 1sNBNY 6z UO 1SN eMmo] JO AlSISAUN AG 80ZEYZ.L/EEOPEEYE/Z /B0 /IBIBWI/LIO0Y"dNO"0ILSPEOE//:SARY WO} PAPEOIUMOQ



AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 29

TABLE 1  Comparison between [40] and ours in lower bounds on frequency separations

N 2 3 4 5 6 7 8 9 10

[40] 0.1592 0.0796 0.0531 0.0398 0.0318 0.0265 0.0227 0.0199 0.0177
Our bound 0.1667 0.0628 0.0351 0.0232 0.0167 0.0128 0.0102 0.0084 0.0071

Combining (5.6) and (5.8), we have

||a(fk]) - a(sz)llz > 28, (5.10)

proving this theorem. U

We would like to remark that, besides applications to frequency atoms, our bounds from Theorem 5.1
on atom separations are quite general, and can be applied to any dictionary of atoms with continuous
parameters. The derivations in [40] apply only to dictionary of frequency atoms under complete (without
missing samples) uniform sampling at integer time indices. When applied to frequency atoms, our bound
from Theorem 5.1 works for non-uniform sampling, where some samples are missing at certain time
indices, and works for sampling at non-integer time indices (for example, sampling at time indices j =
V1,v2,3/3,...., 2N = 2; sampling at non-integer times indices may happen because of sampling time
jittering), where the bound in [40] does not apply. When further restricted to uniformly sampled-at-
integer-time-index frequency atoms, our calculations show that Theorem 5.1 provides similar or even
tighter lower bounds on frequency separations than in [40]. In addition, our derivations are novel, and
do not resort to the Markov—Bernstein-type inequalities for polynomials as used in [40]. It is possible to
further tighten our method of deriving lower bound using matrices, and we will leave it for future work.

In the following calculations, we consider frequency atoms given in the following form (atoms will
change for non-uniform sampling or sampling at non-integer time indices),

For two frequencies f, and f,, we call |la(f,) — a(f;,)|l the atom separation (Theorem 5.1 can directly
produce a lower bound on atom separation, while [40] works with frequency separation), and call |f, —
fb|wmp (wrap-around distance) the frequency separation. We note that, in [40], the author established a

lower bound of m for frequency separation (see Theorem 3 in [40]).

5.1  Uniform sampling (no sample is missing) at integer indices

In this case, the samples are observed at time indices j = 0, 1,2, ..., (2N — 2). For this sampling pattern,
under small N, our bound can be tighter than the lower bound given in [40], and, under large N, the lower
bound in [40] is tighter.

Table 1 shows comparison result between [40] and ours on lower bound on frequency separation for
N=2,..,10.

Lower bound from [40] when 2N — 2 = 2: In this case (three time-domain samples in total), the
lower bound on frequency separation in [40] is 0.159. We construct two atoms with frequencies f, = 0
and f;, = 0.159, and then calculate the atom separation. This gives an atom separation of 1.94.
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New lower bound when 2N — 2 = 2: To calculate our own lower bound, we consider a set
of orthogonal atoms (any set of linearly independent atoms will give us a valid lower bound). The
frequencies of these atoms are taken to be f; = 0,f, = % and f3 = % Our Theorem 5.1 gives a lower
bound of 2.00 for ||la(f,) — a(f;)|l. To obtain this lower bound based on Theorem 5.1, we take matrix
A = [a(f)) a(f;) a(f3)], and S = 3 since the three atoms span a three-dimensional linear space. Using
these parameters Theorem 5.1 gives [la(f,) — a(f;,) || = 2.00. This corresponds to a frequency separation
[fa = fplwrap = 0-167. In this case, the bound given by Theorem 5.1 is indeed tighter than the frequency
separation bound (0.159) from [40].

Lower bound from [40] when 2N — 2 = 62: When 2N — 2 = 62 (totally 63 time-domain samples
respectively), the frequency separation requirement in [40] will be 0.0051. We construct two atoms with
frequencies f, = 0 and f}, = 0.0051, and then calculate the atom distance. This gives an atom distance
of 8.31.

New lower bound when 2N — 2 = 62: To calculate our own lower bound, we consider a set
of orthogonal atoms (any set of linearly independent atoms will give us a valid lower bound). The
frequencies of these atoms are taken to be fj = 0,f, = %, = %, o fes = %. Our Theorem 5.1
gives a bound of 2.00 for |la(f,) — a(f,)|. To obtain this lower bound based on Theorem 5.1, we
take matrix A = [a(f}) a(f,) --- a(fs3)], and S = 63 since the 63 atoms span a 63-dimensional
linear space. Theorem 5.1 gives |la(f,) — a(f,)|l = 2.00. This corresponds to a frequency separation
Vo = folwrap = 1.1 X 1073, which is less tight than, but comparable with the frequency separation bound
from [40].

Lower bound from [40] when 2N — 2 = 126: When 2N — 2 = 126 (totally 2N — 1 = 127 time-
domain samples, respectively), the frequency separation required [40] is 0.0025. We simply construct
two atoms with frequency f, = 0 and f, = 0.0025, and then calculate the distance between these two
atoms. This gives atom distance of 11.78.

New lower bound when 2N — 2 = 126: To calculate our own lower bound, we consider a set
of orthogonal atoms (any set of linearly independent atoms will give us a valid lower bound). The
frequencies of these atoms are taken to be f; = 0,f, = %, f3= %, L flr = %. Our Theorem 5.1
gives a bound of 2.00 for ||la(f,) — a(f;)||. We take matrix A = [a(f}) a(f;) --- a(fj,7)], take § = 127
since the 127 atoms form a 127-dimensional space, and Theorem 5.1 gives |la(f,) — a(f,)|| = 2.00.
This corresponds to a frequency separation |f, — fl,yyqp = 4 X 10~4, which is less tight than, but still
comparable with the frequency separation bound from [40].

5.2 Non-uniform sampling (with missing samples) at integer indices

Theorem 5.1 can still provide valid lower bounds on frequency or atom separations for non-uniform
sampling. The lower bound from [40] does not apply to non-uniform sampling directly, but a simple
modification can yield a lower bound Nz ©On frequency separation, where N, is the largest
observed time index.

As one example, we consider N = 256 corresponding to 2N — 1 = 511 total time indices, and we
assume that samples are taken at only five time indices: j = 0, 1,2, 3 and 124. In this case, the atom at a
certain frequency f € [0, 1) is given by

a(f) = [1 &2 47f o67f G2nf (12T ¢ 5. (5.12)

Lower bound (modified or unmodified for non-uniform sampling) from [40]: The modified
frequency separation ﬁ required by [40] is 2.6 % 1073, where N0 = 124. We simply construct

max
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FiG. 1. Comparisons of lower bounds on frequency separations and atom separations

two atoms with frequency f, = 0 and f;, = 0.0026, and then calculate the distance between these two
atoms. This gives an atom distance of 1.68. A direct application of lower bound m will give a

frequency separation of 6 x 10™*, and an atom separation of 0.4817.

Our lower bound from Theorem 5.1: to calculate our own lower bound, we consider a set of atoms
(any set of linearly independent atoms will give us a valid lower bound) at frequencies f; = 0,f, =
%,fz = %,f3 = %’fs = %. Our Theorem 5.1 gives a lower bound of 2.00 for |la(f,) — a(f;)]l, by
taking matrix A = [a(f}) a(f,) a(f3) a(fy) a(f5)], and S = 5. This corresponds to a frequency separation
sy = fylorap = 3.9 x 1072,

As we can see, for this non-uniform sampling example, our new lower bound is tighter than the lower
bounds (both unmodified or modified for non-uniform sampling ) from [40] for N = 256.

We further consider the same set-up for N = 256 4+ 4 x k, where 1 < k < 50 is an integer, and
the corresponding observation index is j = 0, 1,2,3 and 124 + 4 x k. In this case, the atom at a certain
frequency f € [0, 1) is given by

a(f) = ei27rf ei47rf eiﬁnf ei2nf(124+4><k)]T c (CS. (5.13)

Then Fig. 1 shows the lower bound on the frequency separation obtained from [40] and Theorem 5.1,
and also shows the lower bound on the atom separation obtained from [40] and Theorem 5.1.

5.3 Sampling at non-integer indices

For general sampling at non-integer indices, the lower bound from [40] does not apply, since the proof
of the lower bound therein depends on the Markov—Bernstein-type inequalities for (integer-exponent)
polynomials. In that case, a trivial lower bound O exists for frequency separation.

On the other hand, our lower bound from Theorem 5.1 can still be easily calculated for sampling at
non-integer indices. Let us consider N = 4, and we observe 2N — 1 = 7 samples. The corresponding time
index j for these samples are 0, 1,2',.... and 6. To use Theorem 5.1, instead of optimizing over seven
frequencies, we simply randomly selected seven frequencies between 0 and 1 to be frequency atoms for
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matrix A, and obtained a lower bound 0.1947 for atom separation (notice any matrix A consisting of
atoms can give a lower bound in Theorem 5.1). This corresponds to a non-trivial frequency separation
of 0.0015. To the best of knowledge, this is the first approach in the literature being able to give a lower
bound on frequency separation for such sampling patterns.

6. OANM: Hankel matrix recovery can be immune from atom separation requirements

Our results in the previous sections naturally raise the following question: why can Hankel matrix
recovery work without requiring separations between the underlying atoms while it is necessary for
the atomic norm minimization to require separations between the underlying atoms? In this section, we
introduce the concept of orthonormal atomic norm and its minimization, which explains the success
of Hankel matrix recovery in recovering the superposition of complex exponentials regardless of the
separations between frequency atoms.

Let us consider a vector w € CV, where N is a positive integer. We denote the set of atoms by
A MSET, and assume that each atom a(t) (parameterized by 7) belongs to CV. Then the atomic norm
is given by [5, 10, 41]

N N
Wllgiomic = inf 1D legl:w= > cra(z)t. (6.1)
8,TksCk =1 =1

We say the atomic norm [|W|| ,s5¢ 4 #¢ 1s an orthonormal atomic norm if, for every w,

N

Wl aromic = D, I, 6.2)

k=1

where w = >3 c,a(ty), lla(ty)|l, = 1 for every k, and a(t;)’s are mutually orthogonal to each other.

In the Hankel matrix recovery, the atom set &7.Z.76.7 is composed of all the rank-1 matrices in the
form uv*, where u and v are unit-norm vectors in CV [10, 12]. Let us assume x € C2¥—1, We can see
that the nuclear norm of a Hankel matrix is an orthonormal atomic norm of H(x):

R
IH@, = D legl, 6.3)
k=1

where H(x) = Zle cuvi, H(x) = UXV* is the SVD of H(x), u, is the k-th column of U, and v is
the k-th column of V. This is because the matrices u;v;’s are orthogonal to each other and each of these
rank-1 matrices has unit energy.

Let us now further assume that x € is the superposition of R complex exponentials with
R < N, as defined in (1.1). Then H(x) is a rank-R matrix, and can be written as H(x) = Zf: | CRUVEs
where H(x) = UXV* is the SVD of H(x), u,, is the k-th column of U and v, is the k-th column of V. Even
though the original R frequency atoms a(7;)’s for x can be arbitrarily close, we can always write H (x) as
a superposition of R orthonormal atoms u;v;’s from the SVD of H (x). Because the original R frequency
atoms a(t;)’s for x can be arbitrarily close, they can violate the necessary separation condition set forth
in (5.2). However, for H(x), its composing atoms can be R orthonormal atoms u kvz’s from the SVD of
H(x). These atoms u;v’s are of unit energy, and are orthogonal to each other. Thus, these atoms are well

(CZN—I

€202 1sNBNY 6z UO 1SN eMmo] JO AlSISAUN AG 80ZEYZ.L/EEOPEEYE/Z /B0 /IBIBWI/LIO0Y"dNO"0ILSPEOE//:SARY WO} PAPEOIUMOQ



AN OANM APPROACH FOR SEPARATION-FREE SUPER-RESOLUTION 33

separated and have the opportunity of not violating the necessary separation condition set forth in (5.2).
This explains why the Hankel matrix recovery approach can break free from the separation condition
which is required for traditional atomic norm minimizations.

7. A matrix-theoretic inequality of nuclear norms and its proof from the theory of compressed
sensing

In this section, we present a new matrix-theoretic inequality of nuclear norms, and give a proof of it from
the theory of compressed sensing (using nuclear norm minimization). To the best of our knowledge, we
have not seen the statement of this inequality of nuclear norms, or its proof elsewhere in the literature.

THEOREM 7.1. Let A € C"™*", and t = min(m, n). Let 0, 0,,..., and o, be the singular values of A
arranged in descending order, namely

012022"'>Ut.

Let & be any integer such that
o+ 0o <0pyy o ton

Then for any orthogonal projector P onto k-dimensional subspaces in C”, and any orthogonal projector
0 onto k-dimensional subspaces in C", we have

IPAQ™|l, < I — P)AT — Q)" (7.1)

In particular,

A ekl = IA Gty ket 1) o (7.2)

where A .. is the submatrix of A with row indices between 1 and k and column indices between 1 and
k, and A 4 1) (k4-1):n 18 the submatrix of A with row indices between k + 1 and m and column indices
between k + 1 and n.

Before giving the proof of Theorem 7.1, we will state Lemmas 7.1, 7.2 and 7.3 which will be used
in the proof of Theorem 7.1.

LEMMA 7.1. ([29]) Let G and H be two matrices of the same dimension in C"*", Then Zf»:l lo;(G) —
o;(H)| < |G — H||,,, where t = min(m, n).

Lemma 7.1 actually provides a lower bound for the nuclear norm of the difference between two
matrices, and the lower bound is just the sum of the differences of singular values.

LeEMMA 7.2. ([1; 20]) For arbitrary matrices X,Y and Z = X — Y € C™". Let 0|, 05,..., and 0, (t =
min{m, n}) be the singular values of a matrix A € C™*" arranged in descending order, namely o; >
0, > -+ > 0,. Let 5;(X, Y) be the distance between the i-th singular value of X and Y, namely,

5;X.Y) = |0;(X) —o;(V)|,i=1,2,--- ,1. (7.3)
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Let S(i] (X, Y) be the i-th largest value of sequence s;(X,Y), s,(X,Y),---,5,(X,Y), then

k
D s Y) < NZN Yk =1,2,- 1, (7.4)

i=1

where || Z|,, is defined as Zf:l 0,(Z).

Different from Lemma 7.1, Lemma 7.2 considers the partial sum of singular values of the difference
between two matrices, and similarly, this partial sum can be lower bounded by the partial sum of the
difference of singular values.

LEMMA 7.3. Suppose a rank-R matrix X € CM*N admits an SVD X = UXV*, where ¥ € RR*R isa
diagonal matrix, and U € CM*R and V € CV*R satisfy U*U = V*V = I.
Define & € CM*N a5

S = {UV*+W|U*W=0, WV =0, W[, <1, We(CMXN}, (1.5)

~(TReT _

§= ([Z] ‘ a+1B e 6] - aﬁ([ﬁ‘jgﬂ) . (1.6)

Remarks: 1. Lemma 7.3 gives the subdifferential of the nuclear norm of a general complex-numbered
matrix (including non-square matrix and non-symmetric matrix); 2. To find the subdifferential of | X]|,,
we need to derive

and define

Then we have

_(Re(X)
9.7 (Im(X)) ’

for which we have Lemma 7.3. Note that in our earlier work [3], we have already shown one direction

of (7.6), namely
H= H:Z] ‘ ati1f e 6] C 83“([5322}) .

Now we show the two sets are indeed equal. The proof of Lemma 7.3 is given in Appendix.
Proof of Theorem 7.1: We first consider the case where all the elements of A are real numbers.
Without loss of generality, we consider

1 0
P= |: 0 kxk 0 kx (m—k) i| , (77)
(m—k)xk V(m—k)x(m—k)
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and
Q — [ Ik><k 0k><(n—k) ] . (78)
0(n—k)><k O(n—k)x(n—k)
Then
All : Al,k
N oo 0
PAQ* = S , (7.9)
Ak 1 7 Ak,k
0 0
and
(I —P)A(I — Q)* =A — PA — AQ* + PAQ*
0 0
Ak P . Ak
_ +?, +1 —f—l,n (7.10)
0 : . :
Am,k—H e Am,n
Thus,
I1PAQ* |, = lA 4 1llr 1 = P)AT — Q)" [, = I1Ai 1 1mis 104 (7.11)

We will prove this theorem by contradiction. We first show thatif oy +---+ o0}, <03, +---+ 0,
holds for A, then for any matrix X € C™*" with rank no more than &, for any positive number / > 0, we
have

I1X + Al > [1X11, (7.12)

The proof of (7.12) follows similar arguments as in [29]. Since X has a rank at most k, then o,;(X) =
0,Vi > k. Then we have

t
IX+ A, = D loyX) — 0,(14))|

i=1

k t
=D lo;X) — ;1) + D lo;(X) — 5;(1A)|
i=1

i=k+1

k t
> D (0;(X) = 0,(14) + D loy(X) — 0,(1A)]

i=1 i=k+1
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k t
> D (0,(X) — 0;(1A) + D lo;(1A)]

i=1 i=k+1
k t k
> oi(X) +( > o) - Zai(lA))
i=1 i=k+1 i=1
k
> > 0,(X) = |IX]l,,
i=1

where, for the first inequality, we used the Lemma 7.2.
We next show that if |A . 1.l > A gt 1)gm,k+1):ll«> OnE can construct a matrix X with rank at
most k such that

X + Al < 1X]l,

for a certain / > 0. We divide this construction into two cases: when A ., ., has rank equal to k, and
when A ., has rank smaller than k.
When A ., has rank k, we denote its SVD as
A =U ZV,"
A]k lk 0 . .
Then the SVD of o o | iseiven by
Al:k,l:k 0 — Ul Vl i
|: o ol =10 X 0 (7.13)

We now construct

Let us denote
and

then the subdifferential of || - ||, at X is given by

X\, ={Z:Z = —U,V5 + M, where [M|, < 1, M*X = 0,XM* = 0}. (7.14)
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Forany Z € 9| X||,,
(Z,A) = —1, + 1, (7.15)
where
I, = Tr(V,U3A), I, = Tr(M*A). (7.16)

Let us partition the matrix A into four blocks:

All A12 i|
, (7.17)
|:A21 A22

where A;; € RPK A, e REX(=0 4, ¢ RI-Oxkand A, € ROK*"=h) Then we have

— Vl * All A12
=[] e er [ 2

—Tr VUi 0 Ay Ap
0 o Ay Ay

k
=D oA
i=1

= A4yl (7.18)

Since M*X = 0, XM* = 0, |M||, < 1 and X is a rank-k left top corner matrix, we must have

0 0
M= [0 M5, ] |
where M, is of dimension (m — k) x (n — k), and |[M,, |, < L.
Then
I, = Tr(M*A) (7.19)
0 0 A A

=Tr 11 412 ] ) (7.20)

( [0 M?z} |:A21 Axn
=Tr (M3A) = lAxl,. (721)

where the last inequality is from the fact that the nuclear norm is the dual norm of the spectral norm, and
1My, < 1.
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Thus, we have

(Z,A) = -1, +1, < —|A |, + llAnl, <O, (7.22)

because we assume that [|A . 1.l > 14 t1y:m,(k+1):n |- From Theorem 23.4 in [37], we have

Il

f'(X;A) = sup (Z,A) <0,
Zed|X|l.

where f'(X;A) is defined as the one-sided directional derivative in [37]

. NIX AL = 1X]
"(X;A) = inf * *
f&A) = I

This means that, when A || has rank equal to k, we can always find / > O such that | X+IA ||, — X, <O,
or we can reduce the nuclear norm along direction specified by A. Thus, there exists a positive number
[ > 0, such that

X + Al < 1X1],.

Let us suppose instead that A || has rank b < k. We can write the SVD of A, as

>0 *
A, = [0 U3][00}[V1 Vil (7.23)

Then we construct
%
X = U, U; Vivs
0 0 0 0 '
By going through similar arguments as above (except for taking care of extra terms involving U5 and
V3), one can obtain that (Z,A) < O for every Z € 9| X],.

In summary, no matter whether A, has rank equal to k or smaller to k, there always exists a
positive number [ > 0, such that||X 4 [A||, < ||X||,. However, this contradicts (7.12), and we conclude
A g1l < ||A(k+1):m,(k+1):n||*, when A has real-numbered elements.

We further consider the case when A is a complex-numbered matrix. We first derive the subdiffer-

ential of || X||, for any complex-numbered matrix m x n X. For any & € R"*" and any § € R™*", we
define .Z : R¥™" > R as

ﬁ‘(m) = [l +1B)l,. (7.24)

For a complex-numbered matrix A, we will similarly show that, if [|[A 1. .1l > A gt 1)yum ks1)m s
one can construct a matrix X with rank at most k such that

I1X + Al < IX1,
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for a certain [ > 0. We divide this construction into two cases: when A, ;. has rank equal to k, and
when A ;. has rank smaller than k.
When A | has rank k, we denote its SVD as

A =U ZV™

Then the SVD of |:A1:k’1:k g ] is given by

0
A 0 _ U | 5[V :
[ 0 0}_[01} [01} . 7.2

‘We now construct

We denote
U 1%
U, = |: 01:|,andV2: |: 01:|,
then by Lemma 7.3, the subdifferential of || - ||, at X is given by

X|, = {Z:Z= —U,V + M, where |[M|, < 1, M*X = 0,XM* = 0}. (7.26)

Since we define (M, N) = Re(Tr(M*N)) for complex valued matrices M, N, then for any Z € 9| X]|,,
we have

(Z,A) = —1, + I,, (7.27)
where
I, =Re (Tr(V,U3A)) , I, = Re (Tr(M*A)) . (7.28)

Similar to the real-numbered case, let us partition the matrix A into four blocks:

Ay A12:|
, (7.29)
|:A21 Ay
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where A, € Ck A, € CK*=b A, e Cm=R*0=k and A,, € CI—0>*1=h We still have

Tr(V2U2*A)=Tr(|:‘:)1i| [UF 0] [fx“ 312})

21 22
—Tr ViU 0 Ay Ap
k
=Te(V\UiA,)) = Te(V\UTU ZV) = D 0,(Ay) = Ay, (7.30)

i=1
So

Il = Re (Tr(VzUz*A)) - ”A]] ”*

Since M*X = 0, XM* = 0, ||M||, < 1 and X is a rank-k left top corner matrix, we must have

0 0
M_[0M22:|’

where M, is of dimension (m — k) x (n — k), and [|M,, I, < 1. Then we have

I, = Re (Tr(M*A)) (7.31)
0 0 A, A

=re(1r([§ 0z, ][22 42 ]))

= Re (Tr (M3,A5)) < llA5 |, (7.33)

where the last inequality is because the nuclear norm is the dual norm of the spectral norm, and [|M,, ||, <
1.
Thus, we have

because we assume that |4 ..y lle > 1A gy1)9m @t1):nll4- Following the same arguments in the real
numbered case, there exists a positive number / > 0, such that

X + Al < I1IX1],

Let us suppose instead that A | has rank b < k. We can write the SVD of A, as

X0 *
A, =[U, U3]|:00:|[V1 Vil (7.35)
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Then we construct
o [ U] [V V]
0 0 0 0 )

By going through similar arguments as above (except for taking care of extra terms involving U; and
V3), one can obtain that (Z,A) < 0 for every Z € 9| X||,.

In summary, no matter whether complex-numbered A ; has rank equal to k or smaller to k, there
always exists a positive number / > 0, such that||X + [A], < | X||,. However, this contradicts (7.12),
and we conclude (|44 ylls < 1A et 1yom ket 1yl O

8. Numerical results

In this section, we perform numerical experiments to demonstrate the empirical performance of Hankel
matrix recovery, and show its robustness to the separations between atoms. We use superpositions
of complex sinusoids as test signals. But we remark that Hankel matrix recovery can also work for
superpositions of complex exponentials. We consider the non-uniform sampling of entries studied in [11,
41], where we uniformly randomly observe M entries (without replacement) of x from {0, 1, ...,2N —2}.
By non-uniform sampling, we refer to the following procedure: we randomly select |.#|=M distinct
entries of x whose locations are uniformly distributed over {0, 1,--- ,2N — 2}. We note that the ‘non-
uniform sampling’ is in contrast to ‘uniform sampling’ where every entry of x in {0, 1,--- ,2N — 2} is
observed. We also consider two signal (frequency) reconstruction algorithms: the Hankel nuclear norm
minimization and the atomic norm minimization.

8.1 Phase transition comparisons between Hankel matrix recovery and atomic norm minimization

We fix N = 64, i.e. the dimension of the ground truth signal x is 127. We conduct experiments under
different M and R for different approaches. For each approach with a fixed M and R, we test 100 trials,
where each trial is performed as follows. We first generate the true signal x = [x, X, ..., X 5]’ with
X, = Zf: 1 cke’znfkj forj = 0,1,...,126, where f; are frequencies drawn from the interval [0, 1)
uniformly at random, and ¢;, are complex coefficients satisfying the model ¢;, = (1 + 100574 0127 0% with
my, and 0;, uniformly randomly drawn from the interval [0, 1]. Let the reconstructed signal be represented

by x. If % < 1073, then we regard it as a successful reconstruction. We also provide the simulation
results under the Gaussian measurements of x as in [3].

We plot in Fig. 2 the rate of successful reconstruction with respect to different M and R for
different approaches. The black and white regions indicate a 0% and 100% of successful reconstruction,
respectively, and the grey regions represent successful recovery rate between 0% and 100%. From
this figure, we see that the atomic norm minimization still suffers from non-negligible probability of
failure even if the number of measurements approach the full 127 samples. The reason is that, since
the underlying frequencies are randomly chosen, there is a sizable probability that some frequencies are
close to each other. When the frequencies are close to each other violating the atom separation condition,
the atomic norm minimization can still fail even if we observe the full 127 samples. By comparison, the
Hankel matrix recovery approach experiences a sharper phase transition, and is robust to the frequency
separations. We also see that under both the Gaussian projection and the non-uniform sampling models,
the atomic norm minimization and the Hankel matrix recovery approach have similar performance.
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FIG. 2. Performance comparisons between atomic norm minimization and Hankel matrix recovery

8.2 Robustness of Hankel matrix recovery to small frequency separations

We further demonstrate the robustness of the Hankel matrix recovery approach to the separations between
frequency atoms, as we vary the separations between frequencies. In our first set of experiments, we take
N = 64,|.#) = M = 65 (= 51% sampling rate) and R = 8, and consider noiseless measurements.
Again we generate the magnitude of the coefficients as 1 + 10°7, where p is uniformly randomly
generated from [0, 1), and the realized magnitudes are 3.1800, 2.5894, 2.1941, 2.9080, 3.9831, 4.0175,
4.1259, 3.6182 in this experiment. The corresponding phases of the coefficients are randomly generated
as 2w s, where s is uniformly randomly generated from [0, 1). In this experiment, the realized phases are
4.1097, 5.4612, 5.4272, 4.7873, 1.0384, 0.4994, 3.1975 and 0.5846. The first R — 1 = 7 frequencies
of exponentials are generated uniformly randomly over [0, 1), and then the last frequency is added
in the proximity of the third frequency. In our six experiments, the eighth frequency is chosen such
that the frequency separation between the eighth frequency and the third frequency is, respectively,
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0.03,0.01,0.003,0.001, 0.0003 and 0.0001. Specifically, in our six experiments, the locations of the eight
frequencies are, respectively, {0.3923, 0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3737}, {0.3923,
0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3537}, {0.3923, 0.9988, 0.3437, 0.9086, 0.6977,
0.0298, 0.4813, 0.3467}, {0.3923, 0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3447}, {0.3923,
0.9988, 0.3437, 0.9086, 0.6977, 0.0298, 0.4813, 0.3440} and {0.3923, 0.9988, 0.3437, 0.9086, 0.6977,
0.0298, 0.4813, 0.3438}. Hankel matrix recovery approach gives relative error lE=xl> _ 8 2556 x 1079,

[lxll2

1.6709 x 1072,2.9204 x 107, 8.9444 x 1072, 8.6000 x 10~ and 2.5026 x 10~?, respectively. With the
recovered data X, we use the MUSIC algorithm to identify the frequencies. The recovered frequencies
for these six cases are, respectively, {0.0298, 0.3437, 0.3737, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988},
{0.0298, 0.3437, 0.3537, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988}, {0.0298, 0.3437, 0.3467, 0.3923,
0.4813, 0.6977, 0.9086, 0.9988}, {0.0298, 0.3437, 0.3447, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988},
{0.0298, 0.3437, 0.3440, 0.3923, 0.4813, 0.6977, 0.9086, 0.9988} and {0.0298, 0.3437, 0.3438, 0.3923,
0.4813, 0.6977, 0.9086, 0.9988}. We illustrate these six cases in Fig. 3, where the peaks of the imaging
function J(f) are the locations of the recovered frequencies and the red cross marks indicate where the
true frequencies are. We can see the Hankel matrix recovery successfully recovers the missing data and
correctly locates the frequencies.

8.3  Comparisons of Hankel matrix recovery and atomic norm minimization alongside each other:
noiseless and noisy observations

Below, we demonstrate the performance of these two different approaches, i.e. Hankel matrix recovery
approach and atomic norm minimization, alongside each other. In both the noiseless-observation case
and noisy-observation case (other formulations for noisy cases yield similar results), the atomic norm
minimization is modelled as

min [l gopies St Ax) = b, (8.1)

where || - || 4;omic 18 the atomic norm.

Let us first consider noiseless observations. When the frequency separations are 1072, 3 x 1072,
1073,3 x 1073, 10™* and 3 x 1074, respectively, the performance of frequency identification is shown
in Fig 3 and 4. For atomic norm minimization, we have used the commonly used dual polynomial method
to identify frequency atoms at the frequency locations where the magnitude of the dual polynomial is
equal to 1. This means that we only need to identify the locations where the dual polynomial achieves a
magnitude of 1 to recover the frequencies.

From the results in Fig. 4, we can see that when the frequency separation is big, e.g. 0.03 or 0.01,
the atomic norm can identify the frequencies accurately, and the dual polynomial has exactly the same
number of peaks as that of the underlying frequencies. Once the frequency separation is below a certain
threshold, e.g. when the frequency separation is 0.003, the atomic norm minimization can fail to identify
not only the frequencies that are close to each other, but also the frequencies which are far apart. In
addition, there are many spurious peaks of the dual polynomial which do not identify the locations of
the true frequencies. However, from the results in Fig. 3, the Hankel matrix recovery approach performs
much better than the atomic norm minimization. The Hankel matrix recovery approach can still identify
frequency atoms even if they are very close to each other, e.g. when the frequency separation is 0.0001
which is much smaller than 0.003.

We also provide quantitative results of signal recovery errors in Table 2, which clearly shows the
advantages of Hankel matrix completion when frequency separation is small. We would also like to
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. 3. Frequency identification performance with noiseless measurements: Hankel matrix recovery method is used.
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45

F1G. 4. Frequency identification performance with noiseless measurements: atomic norm minimization is used. According to [41],
the frequencies identified by the atomic norm minimization are the locations where the dual polynomial achieves magnitude 1.
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TABLE 2 Reconstruction performance via Hankel matrix recovery approach (HMC) and atomic norm
minimization (ANM).

Frequencies HMC ”'e”;ﬂlz ANM ”JTI;I'\VzHZ

Exp. 1 0.3923, 0.3437, 0.0298, 0.3737, 0.6977, 0.4813, 8.2556 x 1077 8.2777 x 1077
0.9988, 0.9086

Exp. 2 0.4813, 0.0298, 0.3923, 0.9988, 0.3537, 0.6977, 1.6709 x 10~ 5.6747 x 1076
0.3437, 0.9086

Exp. 3 0.4813, 0.0298, 0.3923,0.9988, 0.6977, 0.9086, 2.9204 x 107 2.6958 x 1073
0.3467, 0.3437

Exp. 4 0.4813, 0.0298, 0.9086, 0.3923, 0.9988, 0.6977, 8.9444 x 10~° 8.5770 x 10~
0.3447, 0.3437

Exp. 5 0.0298, 0.4813, 0.9086, 0.6977, 0.3923, 0.9988, 8.6000 x 10~ 2.5235 x 1074
0.3440, 0.3437

Exp. 6 0.0298, 0.4813, 0.9086, 0.6977, 0.9988, 0.3923, 2.5026 x 1077 9.3546 x 107

0.3438, 0.3437

mention that when the separation is 3 x 1073, the atomic norm minimization achieves a reconstruction

error ||X — x||, of 0.2763 and a relative reconstruction error ”?;ﬁ;”z of 2.6958 x 1073, while the Hankel

matrix recovery can achieve a reconstruction error of 2.993 x 10~ and a relative reconstruction error of
2.9204 x 107°.

We further demonstrate the performance of Hankel matrix recovery under noisy measurements.
Again, we consider N = 64, |.#] = 65 and R = 8. The magnitudes of the coefficients of the complex
sinusoids is obtained by 1 + 10%7, where p is uniformly randomly generated from [0, 1). The realized
magnitudes are 3.1800, 2.5894, 2.1941, 2.9080, 3.9831, 4.0175, 4.1259 and 3.6182, respectively, in our
experiment. The phase of the coefficients are obtained by 27 s, where s is uniformly randomly generated
from [0, 1). In this example, the realized phases are 4.1097, 5.4612, 5.4272, 4.7873, 1.0384, 0.4994,
3.1975 and 0.5846, respectively. The first R— 1 = 7 frequencies of exponentials are generated uniformly
randomly from [0, 1), and then the last frequency is added with frequency separation 5 x 10~3 from the
third frequency. The locations of the realized frequencies are 0.3923, 0.9988, 0.3437, 0.3487, 0.9086,
0.6977, 0.0298 and 0.4813.

We generate the noise vector v € C?¥~! as s, + 15, where each element of s; € R?Y~! and s, €
R2N—1 is independently generated from the zero-mean unit-variance standard Gaussian distribution. And
we further normalize v such that ||v], = 0.1. In this noisy case, we solve the problem

min [H)],

subject to </(x) = b, 8.2)

and

min [ gopics st Ax) = b, (8.3)
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to get the recovered signal . For ANM, the relative reconstruction error is 5.7905 x 1073, and the
reconstruction error is 6.0706 x 10~!. For HMC, the relative reconstruction error is 1.0666 x 1073, and
the reconstruction error is 1.1182 x 1071,

We illustrate the locations of the recovered frequencies in Fig. 5. We can see that the Hankel matrix
recovery can also provide robust data and frequency recovery under noisy measurements. Similar to
the noiseless situation, the separation 5 x 10~ can be too small for the atomic norm to identify the
frequencies successfully, and there are many spurious peaks with magnitude 1. However, the Hankel
matrix recovery approach can give relatively accurate identification of frequencies. For noise level
Ivll, = 0.5 and 1, the recovery performance of ANM and HMC is demonstrated in Fig. 5.

8.4 Exploring the tightness of proposed theorems

We now provide empirical evidence for the tightness of the proposed theorems. Although it is challenging
to analytically prove the tightness of the bounds in these theorems at this moment, we provide empirical
results to show the tightness or the sharpness of our results. We point out that even showing empirically
the tightness of Theorem 3.1 (which establish worst-case performance guarantees) is difficult, since there
are an infinite number of elements in the null space of the linear mapping for measurements. Hence, in
this subsection, we only provide empirical evidences for the tightness of Theorems 4.1 and 4.3.

In this new set of experiments, we consider N = 64, and the number of atoms R is taken to be ranging
from 2 to 64. The magnitude of the coefficient is 1 + 10957, where p is uniformly generated from [0, 1),
and its phase is 27 s where s is generated uniformly from [0, 1). For each choice of R, we do 100 trials
and calculate the corresponding successful recovery rate. A trial is regarded as a success if the decoding
algorithm can achieve % < 1075. We consider the case where only the middle sample of the signal
vector of length (2N — 1) is missing, and this is the sampling pattern which appears in Theorems 4.1
and 4.3.

In the first set of experiments, all the frequencies are chosen with frequency separations as non-zero
integer multiples of %, and the corresponding frequency atoms are orthogonal. The decoder observes
all the samples except for the middle one, i.e. |.#| = 126. The results are presented in Part (a) of Fig. 6.
As we can see, the HMC approach achieves far better performance than the ANM when the number of
atoms increases and the separations between frequencies become smaller. When the number of frequency
atoms is 30, the ANM achieves a successful recovery rate of almost 0, while the HMC approach achieves
a successful rate of almost 1. Besides, the curve of HMC is quite sharp in the sense that the success rate
drops quickly once the number of atoms exceeds a certain threshold. In Theorem 4.1, we predict that
the recoverable number R of atoms approaches N, when N is large enough. The empirical results indeed
show that the recoverable number R is around 60, which is very close to N = 64. This set of experimental
results provide empirical evidence for the sharpness of Theorem 4.1.

In the second set of experiments, all but one frequencies are chosen such that the corresponding atoms
are orthogonal, while the last frequency is chosen such that it is away from the first frequency with a
distance of 10™*. All the other configurations are the same as in the experiments for orthogonal atoms.
The numerical results for the second set of experiments are shown in Part (b) of Fig. 6. On the one hand,
compared with numerical results for orthogonal atoms, we notice that the frequency separations greatly
affect the performance of ANM: for example, when the number of frequency atoms is 10, the success
rate of ANM under frequency separation 0.0001 is less than 0.5, while the success rate of ANM under
separation 11T is about 1. On the other hand, we notice that frequency separations do not affect much
the successful recovery rate of the HMC approach, as predicted by our theoretical analysis. In Theorem
3, we analytically showed that the number R of recoverable atoms approaches N asymptotically under
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FI1G. 6. Successful recovery rate when N = 64, and the middle sample of the signal vector of length 2N — 1 = 127 is not observed.
The left figure is for orthogonal atoms with minimum frequency separation no smaller than ﬁ ; the right figure is for cases where

there are two atoms very close to each other with frequency separation at most 1074,

the HMC approach, when only the middle sample of the signal vector is missing. The empirical results
indeed show that the recoverable number R of frequencies is around 60, which is very close to N = 64,
even when the frequency separation is small. This set of experimental results provide empirical evidence
for the sharpness of Theorem 4.3.

9. Conclusions and future works

In this paper, we have shown, theoretically and numerically, that the Hankel matrix recovery can be robust
to frequency separations in super-resolving the superposition of complex exponentials. By comparison,
the TV minimization and atomic norm minimization require the underlying frequencies to be well-
separated to super-resolve the superposition of complex exponentials even when the measurements
are noiseless. In particular, we show that Hankel matrix recovery approach can super-resolve the R
frequencies, regardless of how close the frequencies are to each other, from compressed non-uniform
measurements. We presented a new concept of OANM, and showed that this concept helps us understand
the success of Hankel matrix recovery in separation-free super-resolution. We further show that, in
traditional atomic norm minimization, the underlying parameters must be well separated so that the signal
can be successfully recovered if the atoms are changing continuously with respect to the continuously
valued parameters; however, for OANM, it is possible the atomic norm minimization are successful even
when the original atoms are arbitrarily close. As a byproduct of this research, we also provide one matrix-
theoretic inequality of nuclear norm, and give its proof from the theory of compressed sensing. In future
works, it would be interesting to extend the results in this paper to super-resolving the superposition of
complex exponentials with higher dimensional frequency parameters [11, 13, 45].
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Appendix
Proof of Lemma 4.2

Any solution to the nuclear norm minimization must be X, + @, where Q is from the null space of 2.
Suppose that the SVD of X is given by

where U € CM*R A € CRXR and v e CN*R,
From Lemma 7.3, we know the subdifferential of || - ||, at the point X, is given by

(Z|Z=UV*+UMV", where M|, < 1,U*U=0,U0U=1,VV=0VV=I.

Then from the property of subdifferential of a convex function, for any Z = UV*+ uMvV* (with |[M]|, <

1) from the subdifferetial of || - ||, at the point X|;, we have

Xy + @Il
= [ Xolly + (Z,0)

= |IX,l, + Re (Tr (U*QV)) + Re (Tr (iJ*QVM*))
> X, |, — ITr (U*@V) | + Re (Tr (U*QVM*)) .
Because we can take any M with ||[M|, < 1, when Q # 0, we have
1Xo + Qll, = I1X,ll, — ITr (U*QV) | + 1T QV|,
> [ Xolls

where we used the fact that the dual norm of the spectral norm is the nuclear norm (which also holds for
complex-numbered matrices). Thus, X, is the unique solution to the nuclear norm minimization.
Proof of Lemma 7.3
Proof. We write
U=@1+l@2, V=El+l52, (91)

where @, € RM*R 0, c RM*R Z e RVN*R and E, e RN*R Then, by direct calculation,

|:@l _@2] e RZMXZR

© @2 @1

[II
)
[II

. o _ ~  [Re(X) —Im(X)
T =575 = =
satisfy @' @ = E' E = I. Moreover, if we define 2 = |:Im(X) Re(X) :|, th

. [x 0]
"—@[o E}_ 93)
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is an SVD of the real-numbered matrix 2, and the singular values 2 are those of X, each repeated twice.

Therefore,
a (| ReX |\ _ _ 1 -
7 ([Im(X)D =121, = 3121, ©94)

Define a linear operator & : R?M*N 5 R2MX2N py

ol [« —PB . MxN
g([ﬂ])_[ﬂ a:|, with a,f € R .
By (9.4) and the definition of fl, we obtain
Re(X) |\ _ 1 Re(X)
(i) =2 (e

Re(X)
Im(X)

07 ([inin]) = 372 1@

where &* is the adjoint of the linear operator &

*

From convex analysis and R=¢ (|: i|) , the subdifferential of .% is given by

9.5)

L)

On the one hand, the adjoint &* is given by, for any A = [311 312:| € R?M>*2N ith each block in
21 22
RMXN
_|An+A4xn
EA = |:A21 — ALl (9.6)

On the other hand, since (9.3) provides an SVD of fl,

3821, = { ET 1 A10TA=0, AZ =0, |A], < 1}. 9.7)

Combining (9.5), (9.6), (9.7) and (9.2) yields the subdifferential of .7(-) at [

Re(X)

ar

q(bd)
e ET+@ ET—|— A +Ay»

_[[ (e Lo 2, ‘A:[i“ 312},@%:0,45:0,”4"251
(@251—@152+%) 21 A2

(9.8)

Re(X)
Im(X)

We are now ready to show (7.6).
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B Im(X)
namely (9.8). In fact, forany W = A, + 1 A, satisfying U*W = 0, WV = 0 and ||W||, < 1, we choose
A= [31 _AAZ]. This choice of A satisfies the constraints on A in (9.8). Furthermore, UV* + W =

2 1
0,ET + 0,81 + A) +1(0,ET —0,E] + A,). Thus,

_(TRe(X)
HCIF ([Im(X)]) . (9.9)

Firstly, we show that any element in §) = { |:oc] ‘ a+1f e 6} must also be in 9.% ([RG(X) i|)

Secondly, we show that

Re(X)
89([Im(x):|) c 9. (9.10)
All A12 . . . . . .
We let A = A be any matrix satisfying the the constraints on A in (9.8). We claim that
21 422
W= Auddn o Az Al gagisfies UFW = 0, WV = 0 and ||W]|, < 1.
In fact, from @7 |:A” 3‘2] = 0, we have
21 422
+07A,+0%14,, =0 .11
+07A,+6014,=0 (9.12)
—-0TA,,+074,, =0 9.13)
2411 1421 = .
_ T T _

Thus, we obtain

11+ A4y " A —Ap

A
U'w = @07 —101)(

1
f2 g, St 615
—0+:0=0, ©9.17)

where the last two equalities come from adding up (9.11) and (9.14), and subtracting (9.12) from (9.13),
respectively.
Ay Ap

Similarly from |:
21 A22

] E =0, we can verify that

WV =0.
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Moreover,

2

An+A» Ap—A4r
Wi, = [ }

2 2
Ay —Ap Apt+A4xp
2 2

=H1|:All 412}+1[A22 _A21i|
24y Ay 2[-4A, Ay
Al i, 21
- Ay Ay 21|41 A4

+

2

2

IA
SN ST
N =

Il
_

where we used the Jensen’s inequality for the spectral norm, and the fact that 1 > 5 =

|:A11 A12
Ay Ay
concludes the proof of (9.10).

Combining (9.9) and (9.10), we arrive at (7.6). [l

|:A22 _A21:|
_A12 All

]Hz (which comes from using the variational characterization of spectral norm). This
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