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Abstract— This paper presents an attention-based, deep
learning framework that converts robot camera frames with
dynamic content into static frames to more easily apply
simultaneous localization and mapping (SLAM) algorithms.
The vast majority of SLAM methods have difficulty in the
presence of dynamic objects appearing in the environment and
occluding the area being captured by the camera. Despite past
attempts to deal with dynamic objects, challenges remain to
reconstruct large, occluded areas with complex backgrounds.
Our proposed Dynamic-GAN framework employs a generative
adversarial network to remove dynamic objects from a scene
and inpaint a static image free of dynamic objects. The novelty
of our approach is in utilizing spatial-temporal attention to
encourage the generative model to focus on areas of the
image occluded by dynamic content as opposed to equally
weighting the whole image. The evaluation of Dynamic-GAN
was conducted both quantitatively and qualitatively by testing
it on benchmark datasets, and on a mobile robot in indoor
navigation environments. As people appeared dynamically in
close proximity to the robot, results showed that large, feature-
rich occluded areas can be accurately reconstructed in real-
time with our attention-based deep learning framework for
dynamic object removal. Through experiments we demonstrate
that our proposed algorithm has about 25% better performance
on average, under various circumstances, as compared to the
standard benchmark algorithms.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
essential task for robots operating in real-world scenarios. In
many applications with collaborative robots, dynamic objects
and people will frequently, but randomly appear in close
proximity to the robot. If the dynamic object covers a small
portion of the field of view (FOV), then traditional robust
estimation methods can efficiently eliminate such artifacts by
treating them as outliers. For example RANSAC has been
used as an outlier rejection algorithm for ORB-SLAM [1]
and robust cost function [2] for PTAM [3]. ORB or Oriented
FAST and Rotated BRIEF is a well-established algorithm for
determining such key features in an image [4].

However, if a large portion of the FOV is covered by
the dynamic object then many SLAM estimators tend to
fail [5] [6]. Recently, there have been attempts to address
the dynamic object problem more directly. Zhang et al.
[7] segmented dynamic objects using RGB optical flow
residuals. Due to recent advances in deep learning, semantic
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segmentation has been increasingly utilized. Yu ef al. [8]
proposed the DS-SLAM methodology that employs SegNet
[9] to segment the scene followed by a moving consistency
check method to filter out dynamic features. These types
of approaches filter out the dynamic content or only utilize
the static regions. Although they are beneficial for visual
SLAM systems [1], [10], they often require modifications to
traditional SLAM algorithms [11], [12], and the information
that is being occluded is not used during pose estimation.

Inpainting approaches [13] [14] have been shown to reduce
localization and mapping errors. The benefit of inpainting is
that it requires no modification to already existing SLAM
systems. However, a noted limitation of current inpainting
methods is that they are still unable to handle large, complex
occluded regions [13] [15]. These are sufficient for some
settings; however, indoor mobile robots require the ability
to remove large dynamic objects that are occluding an often
complex background [15].

Recently, numerous learning and non-learning method-
ologies for image inpainting have been proposed. Telea
et al. [16] used contextual information from neighboring
pixels to fill in the missing area, while Efros and Freeman
[17] proposed patch-based methods. However, patch-based
methods are prone to errors and computationally expensive.
Deep learning has also recently been employed to remove
dynamic objects and inpaint the static background within a
SLAM pipeline. Empty cities is a deep learning approach that
consists of a segmentation network followed by a generative
adversarial network (GAN)[13]. Additionally, another recent
method [14] attempts to handle large occlusion by utilizing
both high-level cues extracted from semantic segmentation
along with fine grained details from edge extraction. SECI-
GAN [18] uses multiple views and inpaints the area occluded
from the dynamic object based on contextual information.
SECI-GAN was motivated by using information from mul-
tiple views to eliminate the refinement network.

In summary, translating frames with large, complex oc-
cluded areas to static frames includes three notable chal-
lenges:

1) Large Occluded Area: Large occluded areas are
notoriously difficult [19]. This is in-part because there is less
spatial information to utilize when inpainting. Furthermore,
methods that discard dynamic regions of the image are not
effective when there is a large occluded area.

2) Occluded areas with complex features: The higher
the occluded feature density and complexity, the more
difficult it is to accurately reconstruct the occluded area [15].



For example, removing a dynamic object that is covering a
wall is an easier task than if the object is occluding a desk
full of objects.

3) Unable to utilize sequential information: There are
many approaches that rely heavily on the sequential image
components to remove dynamic objects. If portions of the
sequential information is not available, these approaches fail
and deep learning approaches must be employed [13].

In this paper we propose a generative model with a spatial-
temporal attention mechanism to address these challenges.
Traditional convolutional neural networks (CNN) treat each
area of an image, or series of images, with equal weights.
Transformers [20], on the other hand, have garnered in-
creased popularity due to their performance in natural lan-
guage processing tasks [21], [22] as well as computer vision
[23], [24]. Transformers have a similar encoder-decoder
approach similar to Recurrent Neural Networks (RNN) [25].
Recently, there has been increased research attention using
transformers instead of traditional convolution-based GANs
[26], [27], [28]. As opposed to convolutional neural net-
works, transformers weight certain spatial and temporal areas
of input. This is advantageous for dynamic object removal
because the algorithm can weigh areas of the image with
dynamic content higher than areas without. The underlying
hypothesis of our work is that using an attention mechanism
will improve large dynamic object removal with complex
backgrounds. This will in turn improve the performance of
SLAM algorithms that are affected by dynamic entities.

The contribution of the paper is to present Dynamic-
GAN, an end-to-end deep learning system for the removal of
dynamic content in indoor static scenes using transformers in
conjunction with Generative Adversarial Networks (GAN).
We demonstrate that the proposed approach is robust to large,
complex occluded areas where other methods fall short. Our
approach builds on recent work on spatial and temporal
transformers [27] [26] to develop a transformer-based GAN
in PyTorch. The GAN was implemented on a mobile robot
using ROS, and we compared our approach to both state-of-
the-art geometric [12] and learning [38] inpainting methods.
The localization and inpainting performance was measured
using the TUM dataset [29] and with a mobile robot in
our lab. The paper is organized as follows: in section II we
introduce the Dynamic-GAN methodology, in section III we
discuss the experiments and their results. Finally, in section
IV we present conclusions and discuss future work.

II. ALGORITHM FORMULATION

An overview of the generative model is shown in Fig. 1.
First, pixel level segmentation on the dynamic RGB image is
performed in order to segment dynamic objects in the input
image. Then, the input image and the segmented dynamic
mask is passed to the frame level encoder which trans-
forms the segmented image and original image into feature
representations. Spatial and temporal transformers are then
applied in the encoding space. These transformers jointly
learn spatio-temporal transformations in a lower dimensional
space. Then images are then given to the decoder which takes

the features and decodes them to output frames. The output
produced are static images that can be used for robotics
tasks such as visual odometry. In the encoding space, the
transformers operate as multi-headed spatial and temporal
transformers, which means they operated in parallel attention
layers also known as heads [20].

A. Generative Model

A Generative Adversarial Network (GAN) [30] is a gen-
erative model that maps a random noise vector z to an
output vector gy, G : z — ¢. This mapping is learned
through a training procedure framed as a supervised learning
problem. The training procedure consists of two sub-models:
a generator, G, and a discriminator, D.

The loss function of the GAN can be expressed as [31]:

Loan = Eoflog(D(z))] + Ez[log(1 — D(G(2)))], (1)

where G and D represent the two functions for the generator
and discriminator respectively. Function G minimizes the
given objective, where as function D acts as adversarially
and tries to maximize it. Here, x is the input image vector
and z is the random noise vector as defined above. Therefore,
G(z) would be equal to g.

B. Spatial-Temporal Attention

Instead of traditional convolutions, we propose utilizing
transformers during training. One of the key components in
transformers is their self-attention mechanism. The attention
mechanism operates under the assumption that not all pixels
should be weighted equally. The attention mechanism in this
work captures dependencies both spatially and temporally.
A multi-head patch-based attention module was utilized.
Different heads of the transformers computes attentions
on different patches at different scales. Transformers differ
from traditional RNNs by replacing recurrence with multi-
head self-attention mechanism. Multi-head attention enables
jointly attending information from different representations
at different positions. We utilize the attention mechanism of
transformer along both the spatial and temporal dimensions.
The temporal attention mechanism uses a set of dynamic
object embeddings, hY = {hi.hs,...,hx} as input and
outputs a set of updated embeddings, h} N = {h}.hL, ..., b\ }
considering each dynamic object independently. Here h
represents the encoder level feature vector with ¢ representing
the i-th input frame out of N number of frames. Also, I’ are
updated embeddings which are the output of transformers.
The self-attention block learns query matrices {Q*}Y ;, key
matrices {K'}Y ,, and value matrices {V*}¥ ;. Therefore
for the i-th frame we have:

Q' = fo({hi},{ha}, ... {hn 1), 2
K' = fx({m1},{h2}, ... {hn}), 3)
Vi = fV({hl}a{hQ}v“'v{hN})a (4)

where fq, fx, fv are the corresponding query, key, and
value functions respectively [20]. Multihead attention for k
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Fig. 1. An overview of Dynamic-GAN. The input frames are given to a convolution based encoder. In lower dimensional space, the encoded representations
are given to a multi-head spatial and temporal transformer. An decoder then reconstructs the occluded background and removes dynamic content.

heads is then calculated as:

MultiHead(Q', K*, V') = fo([headj]?:l), (5)
head; = Att;(Q°, K', V'), (6)

where fo is a fully connected layer that merges the &k heads
and Att; indexes at head j using a scaling factor d; as:
i i i Soft KT
Aty (@ rcr v = SN RD) )
Vd;

In eq. (7) KT is the transpose of matrix K* [20], while
the Softmax function normalizes a vector to its probability
distribution as defined in [32].

C. Loss Function

The loss function used to train the generative model
is a weighted combination loss function consisting of an
adverserial spatial-temporal loss and L1 loss. The spatial-
temporal loss is adopted from [27]. The spatial-temporal loss
uses a Temporal Patch GAN as the discriminator. This loss
has shown to improve reconstruction quality and spatial-
temporal coherence. The Temporal Patch GAN learns to
distinguish each spatial-temporal feature as real or fake so the
spatial-temporal features can be captured by the generative
model. The optimization function of the Temporal Patch
Generator is defined by eq.(1).

Previous studies have found it advantageous to combine
the traditional adversarial loss with a L1 or L2 distance [13]
[33]. Therefore, the generative model not only is encouraged
to learn spatial temporal features but also to reconstruct
backgrounds as close as possible to the actual background
measured by L1 distance. We define the L1 term as:

Ly = E.f[ly = G(2)]]],

. 8)
— Ly =E.lly - Il (

where y is the ground truth image that we wish to generate
for the occluded space and ¢ is the output of the generator
which is an estimation of y. These loss terms are weighted
and combined which gives us the resulting loss function:

L =M XLgan + A2 x Lpy, 9

where A\; and A, are the weights of the respective loss terms.

D. Dynamic-to-Static Translation

Given a series X, with frames containing dynamic objects
O, and corresponding masks P; with frame index ¢ ranging
from 1 — N, we wish to produce a corresponding series Y
of frames with the dynamic objects removed. Therefore, we
want to learn a mapping f : X — Y where the conditional
distribution of the real data can be estimated by the generated
data. The inpainting task is formulated as [27]:

p(Y1X) = I p(VAT XA, X ),

1—7r?

(10)

where r is the temporal radius defining the number of frames
and v is the number of uniformly sampled frames.

The transformer-based GAN was trained on the YouTube
VOS dataset. YouTube VOS [34] is a large-scale video
dataset that contains multiple dynamic objects per frame
with over 4,000 videos. The transformer requires an input
image along with a mask. To create the mask, we segment
the dynamic objects in the training set and compute a mask
for the dynamic object. This dataset was used because it is
representative of many indoor scenes with large, complex
regions occluded.

E. Dynamic Object Segmentation

Finally, the transformer network requires a mask of the
segmented dynamic objects along with the RGB image
as input. This is a challenging perception task for indoor
mobile robots. Deep learning based methods have excelled
at semantic segmentation. They can be trained in an end-to-
end manner to classify pixels belonging to multiple object
categories. Recently, there has been significant work creating
deep learning segmentation methods that run at high frame
rates which is important for real-time robotic applications
[35], [36]. We utilized a deep learning approach to segment
dynamic objects at the pixel level. To acquire the dynamic
mask, the SegNet [9] segmentation network is utilized due its
accuracy and efficiency in terms of both speed and memory.
In our case, the network segments humans in the FOV and
returns the segmented mask.

III. EXPERIMENT SETUP AND RESULTS

A. Inpainting Evaluation

In this section we present experimental results to evaluate
the proposed methodology. First, we performed experiments
on benchmark datasets available in the public domain to test
the performance of our proposed algorithm. Afterwards, we
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Qualitative comparison of our method to other inpainting methods for the Frieburg dataset and our mobile robot experiments.
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Fig. 2.
also implemented and evaluated Dynamic-GAN on a mobile
robot in our lab. Our approach is compared to two state-of-
the-art approaches namely, Telea [16] and AOT [37]. Telea
is a geometric based approach that uses information from
neighboring pixels to inpaint the occluded area. OpenCV’s
[38] implementation of Telea was used for the purposes
of this study. AOT is a generative learning-based approach
that uses a form of spatial attention. AOT differs from our
method, which combines spatio-temporal attention, and is
one of the best publicly available model for inpainting large
regions to the best of our knowledge. For the purposes of
testing, the publicly released AOT model was used. Telea
was chosen to compare our approach to a non-learning based
approach and AOT was chosen to compare it to a learning-
based approach for dynamic object removal. All methods
implemented were provided with the same mask obtained
by SegNet.

Due to many alternatives, choosing a metric to mea-
sure inpainting quality is challenging [15]. In this work
we utilized L1 error which is a metric commonly used
for a fair comparison [15] [13], along with four dynamic
sequences from the TUM dataset to evaluate our approach
[29]. The L1 error is measured for each frame and then
averaged over all the frames. The four sequences consist
of two high-dynamic walking and two low-dynamic sit-
ting sequences. The low-dynamic sequences are fr3/sit_static
and fr3/sit_halfsphere[29]. The high-dynamic sequences are
fr3/walk _static and fr3/walk_halfsphere[29]. We choose these

(c) AOT [38 (d) Dynamic-GAN

sequences to evaluate the approach’s performance on differ-
ent levels of dynamic content. For a fair comparison, we
computed the L1 error only in the masked region of the
image since the outer regions remain unchanged.

In our experiments, we set the value of N and v as 10 in
eq. (10). Furthermore, A\; and A, constants in eq. (9) were
assigned the values 1.0 and 0.01, respectively. The size of
the input image z in eq. (1) was 256 x 256 pixels, while the
spatial feature size of h in eq. (2) was 64 x 64.

Table 1 shows the results for inpainting averaged over
200 frames of the TUM benchmark dataset [29] from each
dynamic sequence. We also recorded the number of ORB
keypoints in the occluded region. The purpose of these
records was to compare the inpainting error with the number
of ORB keypoints in Fig. 3. Our qualitative results are
shown in Fig. 2. We observe that Telea is unable to inpaint
the fine details of large, occluded areas. AOT can better
inpaint the occluded area, however, some regions are blurry.
Furthermore, Dynamic-GAN is the clearest out of the three
methods. Although the background is accurately inpainted
by our method, there are a few finer details that are missed
such as the drink bottle on the desk.

B. Benchmark Dataset Experiments

The next two sub-sections discuss the experiments con-
ducted to measure localization error. We use ORB-SLAM as
the SLAM system for these two experiments. Our method
removes the dynamic content and then ORB-SLAM is used
to localize the robot’s pose. The ROS ORB-SLAM repository



was used for ORB-SLAM implementation [39] [1], while we
evaluated our approach on the TUM RGB-D dynamic object
dataset [29]. This dataset contains the ground truth camera
trajectory which allows us to measure localization error due
to dynamic objects. TUM contains multiple sequences with
dynamic content (e.g. humans walking around and sitting).
The dynamic objects occlude simple backgrounds such as
walls and more complex backgrounds such as a cluttered
desk. The dynamic objects in the dataset can exceed 50% of
the FOV at times. This makes it useful to measure how well
our algorithm does with large, occluded areas. We measured
localization error using both absolute trajectory error (ATE),
and relative pose error (RPE). ATE measures the accuracy
of the trajectory globally and RPE measures the drift [29].

TABLE 1
QUANTITATIVE RESULTS FOR THE INPAINTING TASK.

RGB-D Method
Sequence Telea [16] AOT [37] Dynamic-GAN
fr3/sit_static 423 44.7 353
fr3/walk_static 46.7 453 39.2
fr3/sit_halfsphere 32.2 31.1 24.7
fr3/walk_halfsphere 39.5 329 29.8

L1% was reported for four dynamic sequences in the TUM dataset.

The ORB keypoints in the occluded areas were also
recorded for later comparison as shown in Fig. 3. The top
two rows in Fig. 2 show the qualitative results for the
benchmark dataset. We observe that our method obtains a
better reconstruction of the occluded area compared to the
other approaches. The finer details are better reconstructed,
and it indeed appears to better handle large, occluded areas.
Table II summarizes the results for six dynamic object
sequences. The top row in Fig. 3 depicts the L1 error, ATE,
and RPE as a function of ORB feature percentage. ORB
feature percentage was measured as the number of ORB
keypoints in the occluded area divided by the total number
of occluded pixels.

TABLE II
QUANTITATIVE RESULTS FROM THE BENCHMARK DATASET
EXPERIMENTS.
RGB-D Method
Sequence Telea [16] AOT [37] Dynamic-GAN
fr3/sit_static 2.9 33 23
fr3/walk_static 17.9 18.2 14.6
fr3/sit_halfsphere 19.8 19.1 12.2
fr3/walk_halfsphere 71.3 78.4 47.9
(a) Absolute Trajectory Error RMSE (cm)
RGB-D Method
Sequence Telea [16] AOT [37] Dynamic-GAN
fr3/sit_static 2.3 2.7 1.5
fr3/walk_static 12.9 13.2 11.1
fr3/sit_halfsphere 15.6 14.8 8.7
fr3/walk_halfsphere 37.7 45.1 29.4

(b) Relative Pose Error RMSE (cm/s)
C. Mobile Robot Experiments
We also evaluated our proposed approach on a mobile
robot developed in our lab, ARNA [40]. The Adaptive
Robotic Nursing Assistant (ARNA) is an indoor mobile
manipulator designed for hospital assistance, such as patient

walking and patient sitting. The robot consists of an omnidi-
rectional base with an instrumented handlebar, and a 7-DOF
robotic arm. It includes an Intel Realsense D455i RGB-D
camera attached to the base of the robot. The Dynamic-GAN
algorithm was deployed on the robot’s Nvidia GeForce GTX
1080 8 GB GPU. In three additional robotic experiments, we
used the Realsense® camera on the base of ARNA, and the
wheel odometry as the ground truth trajectory to compare the
performance of dynamic object removal methods. The robot
used a prebuilt map to localize itself within a room. A human
sporadically walked through and gesticulated in the FOV of
the camera while the robot was moving around the room.
The dynamic object covered as much as 60% of the FOV at
times. The dynamic content in the image was removed by an
inpainting method and ORB-SLAM used the static frame to
localize the robot. We measured the localization error when
the dynamic object is present in the frame, while the ground
truth odometry was calculated using wheel ticks.

TABLE III
QUANTITATIVE RESULTS FROM THE MOBILE ROBOT EXPERIMENTS.

RGB-D Method
Sequence Telea [16] AOT [37] Dynamic-GAN
seql 13.1 14.5 9.7
seq2 19.0 22.6 13.2
seq3 13.2 16.7 9.3
(a) Absolute Trajectory Error RMSE (cm)
RGB-D Method
Sequence Telea [16] AOT [37] Dynamic-GAN
seql 9.8 12.2 7.9
seq2 14.9 11.3 10.6
seq3 10.4 14.5 6.2
(b) Relative Pose Error RMSE (cm/s)
RGB-D Method
Sequence Telea [16] AOT [37] Dynamic-GAN
seql 39.8 41.9 34.1
seq2 443 46.1 41.2
seq3 34.1 36.9 30.4

(c) L1% error

Absolute trajectory error and relative pose error were
calculated to measure the localization performance. We also
calculated L1 error for the occluded region using 200 frames.
The number of ORB keypoints in the occluded area were
recorded to measure how each method performs with high
feature occlusion. The bottom row in Fig. 3 shows the
L1 error, APE, and RPE as a function of ORB feature
percentage. ORB feature percentage was calculated by taking
the number of ORB keypoints in the occluded region divided
by the total number of occluded pixels. Fig. 3 shows that
our method degrades less than other methods when there
are many occluded ORB keypoints. This could be attributed
to the combination of spatial and temporal attention. Table
IIT shows the absolute trajectory error and relative pose
error. Fig. 4 shows the attention map from the transformer.
This shows that the transformer is weighing the area of the
dynamic object more than other areas. Fig. 2 also shows the
qualitative results in the bottom two rows. We observe that
our qualitative results for the mobile robot experiment are
even better than the benchmark experiment. This could be



160

140

120

L1 Error

100

o

80

Relative Pose Error (cm/s)

o

T
0 10 20 30 40 10

o

150

100

L1 Error

50 A

@

Orb Features Per Pixel (%)

(3
Absolute Trajectory Error (cm)
s

T T T
0 10 20 30 40
Orb Features Per Pixel (%)

T T
20 30 40

Relative Pose Error (cmis)

Absolute Trajectory Error (cm)

T
0 10 20 30 40
Orb Features Per Pixel (%)

Fig. 3.

Orb Features Per Pixel (%)

T T T
20 30 40 0 10 20 30 40
Orb Features Per Pixel (%)

Lo . 4~ Dynamic-GAN -#- AOT [38] -e- Telea[12] . .
Quantitative comparison of our proposed approach to other inpainting methods for the TUM dataset and our mobile robot experiment. Top: The

top shows the results from the experiments of the TUM dataset. The graphs show L1 error, RPE, and ATE as a function of feature density. Bottom:The
bottom shows the experiment with the mobile robot using the same metrics as a function of feature density. The shows that as the background becomes
more complex, attention based inpainting degrades less compared to non-attention based counterparts.

in part due to the fact the person is walking across the frame.
Therefore, information from the previous frames can be used
to inpaint the occluded area of the current frame, while for
the benchmark data, there is a person sitting down moving
their leg. In this case, the information from prior frames
is not as useful. Results demonstrate that Dynamic-GAN
achieves better results when information from the previous
frames is used. However, even when this information is not
available, the results are still outperform the methods we
compared it to. Our method is also able to perform well
under different parameters such as lighting conditions, size of
person, and camera since the image parameters are different
in the benchmark data and the mobile robot experiments, yet
the performance is consistent.

Fig. 4. The top row shows images of a human walking across the frame and
the bottom row shows the corresponding attention maps from the spatial-
temporal transformers.

D. Timing Analysis

Being able to run at a high frame rate is essential for
visual SLAM applications on mobile robots. We tested the
time of inference of our proposed approach. To optimize
the generative model, we converted it to the ONNX format
and further to TensorRT. ONNX stands for Open Neural

Network Exchange and is used as a standardized saved
model representation [41]. ONNX models can be used with
TensorRT to optimize inference on Nvidia hardware. This is
opposed to the PyTorch or TensorFlow representations that
are not standardized.

The time taken from when a frame is received by the
transformer network to when the frame is fully processed
with the dynamic object removed was measured. In our study,
an image of size 256 x 256 ran at 32 fps.

IV. CONCLUSION AND FUTURE WORK

In this paper we presented Dynamic-GAN, an end-to-end
deep learning framework that takes a RGB image as input
and removes dynamic content to produce a purely static
frame free of dynamic objects. Our algorithm uses attention-
based deep learning to inpaint areas of an image occluded
by dynamic content after the dynamic content is segmented.
Comparison against other state of the art geometric and
learning approaches shows that our approach performs bet-
ter, especially with large, occluded areas with complex
occluded areas. We observe that our proposed algorithm
performed better by about 25% on average as compared to
the benchmark Telea and AOT algorithms. The attention-
based mechanism allows the approach to focus on certain
parts of the image that are more difficult to reconstruct
making it robust to complex backgrounds commonly found
in indoor environments. Experiments demonstrate that our
method improves visual based localization systems such as
ORB-SLAM. Importantly, our method is able to improve
these systems by removing the dynamic content completely
rather than filtering or excluding this content.

Future directions include removing the segmentation step,
improving efficiency of Dynamic-GAN in terms of both
speed and memory, and testing the algorithm’s performance
with more dynamic content such as other mobile robots, and
several humans in the environment.
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