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a b s t r a c t

In this study, the mechanical responses of Tie6Ale4V alloy sheets at a high temperature

under multi-axial loading were investigated using a micromechanics-based damage model

within a continuum finite element (FE) framework. Tensile tests at three strain rates and a

high temperature were conducted to analyze the plastic and ductile damage properties of

the Tie6Ale4V alloy sheets. Additionally, hot Nakajima tests were conducted on speci-

mens with three different shapes to evaluate the improvement in formability at a high

temperature. Moreover, the dimples on the fractured surfaces of the experimental samples

were qualitatively analyzed. Simultaneously, corresponding FE simulations were con-

ducted to predict the ductile damage behavior of the Tie6Ale4V alloy sheets at a high

temperature using a modified Gurson�Tvergaard�Needleman model. The predicted re-

sults and the displacements at the onset of failure were compared with the corresponding

experimental data.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Titanium alloys have been used for producing structural parts

of aircraft for over a century owing to the corrosion resistance,

high strength, and low weight of these alloys [1]. More spe-

cifically, Tie6Ale4V alloy sheets have recently received

considerable attention for high-performance applications in

the aircraft industry [2]. However, the major drawbacks of

Tie6Ale4V alloy sheets are low formability and high spring

back at room temperature [3]. Therefore, high-temperature-
. Bong), Jinjin.Ha@unh.ed

s an open access article
assisted forming processes, such as hot forming (HF) and su-

perplastic forming (SPF) technologies, must be developed for

Tie6Ale4V alloy sheets [4]. Furthermore, SPF has been con-

ducted on Tie6Ale4V alloy sheets at high temperatures, such

as over 800 �C, to manufacture parts with substantially

improved formability. However, several technical obstacles,

such as high energy consumption to increase temperature

and low production speed, remain. The forming temperature

applied to Tie6Ale4V alloy sheets in the HF process (less than

800 �C) is lower than that applied in the SPF process and a

hydraulic press machine is used in the HF process, thereby
u (J. Ha).
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increasing productivity. Identifying the optimal forming

temperature used in the HF process and the corresponding

material behavior of Tie6Ale4V alloy sheets may improve the

quality of the product manufactured via this process.

A previous experimental study [5] revealed that the

microstructure of Tie6Ale4V alloys changed drastically when

they were heated to temperatures over 750 �C. Furthermore,

Tie6Ale4V alloy sheets are composed of an a-phase (hexag-

onal-closest-packed structure) and a b-phase (body-centered-

cubic structure) at room temperature [6]. After the HF process,

additional stresses, such as residual stress, in the Tie6Ale4V

alloys should be relieved at a temperature range of 480e650 �C
to reduce the amount of spring back and prevent stress-

induced corrosion and crack propagation [1,7]. However,

Tie6Ale4V alloys usually undergo oxidation at temperatures

exceeding 480 �C, thereby resulting in the formation of hard

and brittle oxygen-enriched layers, which are known as a-

case layers, on the surface [8]. The a-case layer results in poor

properties such as reduced formability and fatigue life of the

Tie6Ale4V alloy product. A thin a-case layer can be observed

when Tie6Ale4V alloys are heated for over 50 h at 650 �C
[9,10].

The dominant factors affecting the plastic deformation

and ductile damage behaviors of Tie6Ale4V alloys are tem-

perature, strain rate, and strain path under high-temperature

forming conditions [11e16]. Additionally, extensive studies

have been conducted to investigate the relationship between

the microstructures and mechanical behaviors of Tie6Ale4V

alloys at HF temperatures. Paghandeh et al. [17e20] analyzed

the flow stress behavior and corresponding microstructural

evolution of Tie6Ale4V alloys and the effect of the initial

microstructure on the ductility of these alloys. Tie6Ale4V

alloys can dynamically recrystallize during plastic deforma-

tion at low strain rates and a temperature range of 650e750 �C,
resulting in a flow softening behavior caused by microstruc-

tural changes [21]. Consequently, the optimal forming tem-

perature of Tie6Ale4V alloy sheets under the HF process is

approximately 650 �C, at which dynamic recrystallization is

not dominant but the good formability of the alloys is

maintained.

Coupled plasticity-damage models constructed via

micromechanics-based damage modeling have been widely

used in metal-forming processes [22e24]. Particularly, the

series of Gurson�Tvergaard�Needleman (GTN) models

[25e27] has provided valuable physical insights into the

ductile damage behaviors of metals in terms of void growth,

nucleation, and coalescence. GTN models assume a uniform

distribution of spherical voids in metals and use the volume

fraction of these voids as an internal damage variable.

Although these models can reproduce the mechanical be-

haviors of polycrystalline metals at high-stress triaxiality

[28e34], they cannot address damage behaviors at low-stress

triaxiality [35,36]. Therefore, in the last few decades, several

studies have been conducted to overcome the aforementioned
Table 1 e Chemical composition of the Tie6Ale4V alloy sheets

Al V C N O

5.5e6.75 3.5e4.5 �0.08 �0.05 �0
limitations and improve the applicability of GTN models. For

example, additional state variables have been implemented

[37e41], and arbitrary elliptical voids have been considered in

ductile metals, leading to improved predictive accuracy at

low-stress triaxiality [42e48]. Alternatively, the uncoupled

phenomenological ductile fracture model has also been

applied to predict material failure regardless of the micro-

structural evolution during plastic deformation [49].

To date, few attempts have been made to model the me-

chanical behaviors of Tie6Ale4V alloy sheets at high tem-

peratures under multi-axial loading conditions. Previous

studies mostly focused on the mechanical responses of

Tie6Ale4V alloys atmoderate temperatures undermonotonic

loading [4,11,50e53]. Bong et al. [54] conducted multi-axial

loading experiments on Tie6Ale4V alloy sheets at high tem-

peratures and systematically characterized the mechanical

responses of these sheets. The authors observed improved

formability at high temperatures. Furthermore, previous

studies [54] revealed that GTN models can capture the hot

deformation behaviors under the monotonic tension and

balanced biaxial stretch deformation modes of Tie6Ale4V

alloy sheets; however, large deviations were observed be-

tween the simulated and experimental uniaxial stretch and

plane strain stretch deformation modes under high-

temperature conditions. To the best of the authors' knowl-

edge, there has been a lack of comprehensive research on

material modeling of Tie6Ale4V alloy sheets at high tem-

peratures. Therefore, the complex deformation behavior of

Tie6Ale4V alloy sheets must be rigorously modeled to

improve the prediction accuracy under high-temperature

conditions.

The objective of this study is to improvematerial modeling

using finite element (FE) simulations in to accurately capture

the ductile damage behavior of Tie6Ale4V alloy sheets that

are subjected to various loading conditions at high tempera-

tures. The formability and damage behavior at high temper-

atures were evaluated by performing hot uniaxial tension

tests and hot Nakajima tests under multi-axial loading con-

ditions. FE simulations, including plasticity and

micromechanics-based damage models, were implemented.

Subsequently, the simulation results were compared with the

experimental results. Section 2 presents the experimental

results of the hot uniaxial tension and hot Nakajima tests. The

hot Nakajima tests evaluated the plastic deformation of three

sample specimens subjected to different deformation modes

under multi-axial loading conditions. In Section 3, the

modeled plasticity and ductile damage behaviors of the ma-

terials are described. The plasticity model was proposed to

capture flow softening and isotropic plastic-yielding proper-

ties. The Gurson-type micromechanics-based damage model

was used to perform the numerical simulations. Section 4

presents the comparison between the numerical and experi-

mental results obtained from the hot uniaxial tension and hot

Nakajima tests. Furthermore, the fractographic analysis of the
(unit: wt%).

H Fe Y Ti

.2 �0.0125 �0.3 �0.005 Bal.
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Fig. 1 e (a) OM and (b) SEM images, (c) X-ray diffraction patterns, and (d) EDS analysis of as-received Tie6Ale4V alloy sheets

[54,56].
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fracture surface is discussed. Finally, in Section 5, the sum-

mary and conclusions of this study are presented.
2. Experimental procedure

2.1. Material

Sheets of mill-annealed Tie6Ale4V alloy with a thickness of

1.27 mm (0.05 in) were used in this study. The chemical
Fig. 2 e (a) Universal testing machine with a furnace heating sy

under monotonic loading at a high temperature [56].
composition of thematerial is provided in Table 1. The optical

microscope (OM, MA200, Nikon, Japan) image of the as-

received material is shown in Fig. 1 (a), and the material

consists of an a-phase matrix and a small volume fraction of

b-phase particles [6,55]. A scanning electronmicroscope (SEM)

(JS-7600F, FE-SEM, JEOL, Japan) was used to analyze the mi-

crostructures of the samples, as shown in Fig. 1 (b). The SEM

image reveals that the average grain size of the a-phase ma-

trix was 10 mm, and the b-phase particles were positioned at

the grain boundaries of the a-phase matrix [54,56]. The X-ray
stem, and the (b) shape and dimensions of the specimens
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https://doi.org/10.1016/j.jmrt.2023.06.059


Fig. 3 e (a) Schematic view of the hot Nakajima test, and (b) temperature history of the specimen sample during the hot

Nakajima tests [54].
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diffraction patterns, and the EDS analysis obtained from the

as-received material are displayed Fig. 1 (c) and (d), respec-

tively. Furthermore, the representative fracture surfaces after

the mechanical tests were observed using the SEM.

2.2. Monotonic loading tests at high temperatures

Uniaxial tension experiments were performed in accordance

with ASTM E21 [57] using a universal testing machine (UTM,

MINOS-100, MTDI, Korea) equipped with a furnace heating

system. Fig. 2 (a) displays the UTM, which consists of a load

cell, furnace heating system, and heatproof plate between the

load cell and furnace. The air temperature inside the furnace

was increased up to the target temperature of 650 �C, the

tensile specimenswere placed inside the furnace for 1 h, and a

uniform temperature distribution was maintained in the

specimens. The specimen geometry is shown in Fig. 2 (b) with

a gauge length of 10mm.A cross-head speed of 5� 10�2mm/s,

equivalent to a strain rate of 5 � 10�3/s, was applied. The load

wasmeasured using the load cell, and the displacement of the

specimen was assumed to be equivalent to the cross-head

stroke of the UTM [56]. At least three tests were conducted

to confirm the repeatability of the results, and the samples

were placed along the rolling direction under high-

temperature conditions during the uniaxial tension tests.
Fig. 4 e Specimen geometries and dimensions used in the hot Na

(b) plane-strain (W75), and (c) biaxial-stretch (W150) deformatio
2.3. Multiaxial loading tests at a high temperature

The hot Nakajima tests on the Tie6Ale4V alloy sheets under

multiaxial deformations were conducted in accordance with

ISO 12004e2 [58]. The testing tools consisted of a die, punch,

and holder and were installed in the UTM, which is capable of

measuring a maximum load of 10 kN [54]. In addition, the

electric furnace heating system was equipped to maintain a

uniform temperature distribution, and all tools were placed

inside it. The temperature inside the furnace was raised to

650 �C and maintained for one day before conducting the ex-

periments. Fig. 3 (a) illustrates the detailed dimensions of the

equipment used in the hot Nakajima tests. A hemispherical

punchwith a radius of 37.5mmwas used, and the diameters of

the holder and diewere 76 and 80mm, respectively. A lock bead

with a diameter of 104mmwas built into the holder to hold the

specimen samples during the test. The specimen samples were

placed on the die for 30 min and then clamped by the holder

with aholding pressure of 8MPa. The punch speedwas 0.5mm/

s under an approximately quasi-static condition. Additionally,

a boron nitride lubricant was used on the sample surfaces in

contact with the tools to eliminate friction. The punch load and

displacement were recorded during the test, and the temper-

ature history of the sample is shown in Fig. 3 (b).
kajima test at 650 �C subjected to (a) uniaxial-stretch (W40),

n modes (Unit: mm).
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Specimen samples with various shapes were used in the

hot Nakajima tests under multiaxial loading, as shown in

Fig. 4. Three geometries with different minimum specimen

widths were used, and the specimens correspond to the uni-

axial stretch (W40), plane-strain (W75), and biaxial stretch

(W150) deformations. The deformation path of each specimen

was confirmed via FE simulations [56]. The rolling direction

was used as the major loading direction of the specimen

sample. A 1-mm-diameter circular grid pattern at 2-mm in-

tervals between the centers of adjacent grids was chemically

etched onto the surfaces of the specimen samples [59e61],

and the strain distributions on these surfaces were measured

using the ARGUS optical strain measuring system after con-

ducting the experiments.
3. Numerical simulations e constitutive
models and finite element modeling

3.1. Constitutive modeling of plastic deformation

The plastic flow curves, including the strain-rate sensitivity

effect, were reproduced according to the following empirical

equation [62,63]:

sIH ¼sðε; _εÞ¼sfðεÞ$sgð _εÞ (1)

where sIH, ε, and _ε represent the monotonic stress, equivalent

plastic strain, and strain rate, respectively. Additionally, func-

tions sf and sg represent the strain hardening at a reference

strain rate and strain-rate dependent hardening, respectively.

In this study, the Voce hardening law and power law-type

function were adopted to construct the reference flow curve.

Additionally, sfðεÞ was modeled using either Voce hardening

or the power law-type function as follows [56]:

sfðεÞ¼Aþ B
�
1� e�Cε

�
(2)

sgð_εÞ¼
�

_ε

_ε0

�m

(3)

where A, B, C, and m are material constants to be fitted using

the plastic flow curves under uniaxial tension and _ε0 is the

reference strain rate.

In addition, the flow stress softening of the Tie6Ale4V

alloy sheets, resulting from dynamic recrystallization at a

high temperature, was described using a softening factor

added in the following exponential form [64,65]:

ssðεÞ¼pþ ð1�pÞe�qεr (4)

where p, q, and r are the material coefficients fitted using the

hardening deterioration behavior under uniaxial tension.

Material constant p is assumed to be linear with respect to the

strain rate as follows:

pð _εÞ¼p0$ð _ε� _ε0Þ þ p1 (5)

where p0 and p1 are material coefficients. As reported in the

literature [65,66], the flow stress deterioration is affected by

the temperature and loading rate associated with dynamic

recrystallization; therefore, the relationship between the
softening factor and strain rate can be reasonably assumed to

be linear.

Consequently, the plastic flow stress sIH was reproduced

based on the following empirical equation:

sIH ¼sðε; _εÞ¼sfðεÞ$sgð _εÞ$ssðε; _εÞ (6)

3.2. Constitutive modeling of ductile damage

In this study, the Gurson-type damage model was applied to

describe the ductile damage and fracture behavior at a high

temperature undermulti-axial loading. Originally, Gurson [25]

developed a constitutive equation of a porous material that

consisted of spherical voids surrounded by a material matrix,

and the model could reproduce the nucleation and growth of

these voids during inelastic deformation by changing the

volume fraction of the voids. Later, Tvergaard and Needleman

[26] reformulated the Gurson model to include the coales-

cence of voids during plastic deformation. The basic equation

of the Gurson-type model is expressed as:

FðsÞ¼
�

s

sIH

�2

� 1

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Plasticity

þ2q1f* cosh

�
q2

3p
2sIH

�
� q3f

2
*|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Effect of voids

¼0 (7)

where s is the von-Mises effective stress; sIH is the flow stress

of the fully dense matrix material defined in Eq. (6); p is a

hydrostatic pressure; f* is a function of the void volume frac-

tion f; and q1, q2, and q3 are material coefficients. The rec-

ommended values of the material coefficients of metals are

q1 ¼ 1:0e1:5, q2 ¼ 1:0, and q3 ¼ ðq1Þ2 [26]. The values applied

for the Tie6Ale4V alloy sheets in this study were q1 ¼ 1:5,

q2 ¼ 1:0, and q3 ¼ 2:25 investigated in this study. The function

f* accounts for the loss of stiffness during plastic deformation

and is expressed as:

f* ¼

8>>>><
>>>>:

f

fc þ fu � fc
ff � fc

�
f � fc

�
fu

if
f � fc

fc � f � ff
ff � f

(8)

where fc is the critical volume fraction of the voids, ff is the

volume fraction of the voids at the onset of material failure,

and fu is the value of the function when the stiffness of the

material completely disappears and is computed as

fu ¼q1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
1 � q3

p
q3

(9)

The total volume fraction of the voids evolves as follows:

df ¼ dfn þ dfg þ dfs (10)

where dfn and dfg are the increments of the void volume due to

new void nucleation and growth, respectively. The additional

factor, dfs, is the increment of the void volume depending on

the loading direction.

The change in void volume owing to the void growth dur-

ing plastic deformation is proposed based on the law of mass

conservation, as follows:

https://doi.org/10.1016/j.jmrt.2023.06.059
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Fig. 5 e Finite element model with the prescribed boundary conditions used for the (a) hot uniaxial tension and (b) hot

Nakajima tests [54,56].
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dfg ¼ð1� fÞdεp : I (11)
where dεp is a tensor of the plastic strain increment in the

matrix, I is the second-order identity tensor, and the symbol

“:” denotes the double dot product of the two tensors. As

discussed in previous studies [37,38,67,68], the original evo-

lution laws of the changes in void volume obtained from the

GTN models could not capture the damage behaviors of

metals at low triaxialities, such as under shear loading. In this

study, the additional contribution of dfs proposed by Nahshon

and Hutchinson [37] is considered, and the evolution law is as

follows:

dfs ¼kw$f$uðsÞ$s : dεp
s

(12)

where kw is the material constant, s is the deviatoric stress

tensor from the Cauchy stress s, and uðsÞ is the function of

the Lode angle q defined as

uðsÞ¼1�ðcos 3qÞ2 and cos 3q¼ 3
ffiffiffi
3

p
J3

2J2
ffiffiffiffi
J2

p (13)

where J2 and J3 are the second and third invariants of the

deviatoric stress, respectively. Note that under uniaxial ten-

sion, the value of the Lode angle functionuðsÞ is zero, and this

value becomes unity and zero under plane strain and

balanced biaxial tensions, respectively.
In addition, Nielsen and Tvergaard [40] proposed

an improved model to reduce the strong influence of shear-

induced failure under a high triaxiality condition as follows:

u0 ¼uðsÞ$UðTÞ with UðTÞ¼
8<
:

1
ðT� T2Þ=ðT1 � T2Þ

0
for

T<T1

T1 � T<T2

T>T2

(14)

where T is the stress triaxiality and T1 and T2 are material

coefficients. Subsequently, the evolution law of dfs is refor-

mulated as follows:

dfs ¼kw$f$u0$
s : dεp

s
(15)

The nucleation of the new voids is assumed to obey the

strain-controlled nucleation rule and Gaussian distribution

function as follows:

dfn ¼A$ðdεmÞ (16)

A¼ fN
SN

ffiffiffiffiffiffi
2p

p e

"
�1
2

�
εm�εN

SN

�2
#

(17)

where εm is the effective strain in the matrix, dεm is the in-

cremental form of the effective strain, fN is the new volume

fraction of the voids owing to nucleation, εN is the average

https://doi.org/10.1016/j.jmrt.2023.06.059
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Table 2 e Finite element simulation conditions.

Material property Parameters used in the hot uniaxial tension tests

Density Elastic modulus Element type Average mesh size Refined mesh size

4.512 g/cm3 110 GPa C3D8R 1 mm � 1 mm 0.1 mm � 0.1 mm

Parameters used in the hot Nakajima tests

Element type Punching speed Friction coefficient Average mesh size Refined mesh size

C3D8R 0.5 mm/s 0.4 1 mm � 1 mm 0.5 mm � 0.5 mm
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value of the normal distribution of nucleation strain, and SN is

the standard deviation of the Gaussian distribution.

In this study, the nucleation of a new void is assumed to be

linearly dependent on strain rates; therefore, the material

constant fN in Eq. (17) can be expressed as [28,69].

fNð _εÞ¼ l0$ð _ε� _ε0Þ þ l1 (18)

where l0 and l1 are material constants to be fitted using the

experimental data. As mentioned in previous studies [28,69],

the number of newly nucleated voids increase gradually as

temperature and loading rates increase; therefore, the pro-

posed assumption is fairly plausible.

Note that the model considered in this study is known as

the “GTN-shear” model.

3.3. Finite element modeling

In this study, FE modeling was conducted using commercial

FE software, namely, ABAQUS/Explicit (Dassault Systemes)

[70]. The three-dimensional FE models of the specimen sam-

ples used in the hot uniaxial tension tests were generated

using the element type C3D8R (solid element with an eight-

node brick and reduced integration point). Fig. 5 (a) shows

the FE model under monotonic loading at a high temperature.

The average element size of the sheet sample was

1 mm � 1 mm (length � width), and a refined mesh with a

mesh size of 0.1 mm � 0.1 mm was used in the gauge length

area. Five elements along the thickness direction were deter-

mined after mesh-size sensitivity tests [71]. As shown in the

figure, half the specimen sample was used considering the

symmetric condition, and this reduced computation time. The

simulations were conducted under boundary conditions that

were similar to those applied in the experiments. To compare

the experimental and simulated results, the load and

displacement in the gauge length area were extracted from

the FE simulation results. Notably, when the failure condition

obtained from the GTN-shear model satisfies the overall

integration points in the FEmodel, the corresponding element

is removed in the FE model.

Fig. 5 (b) describes the three-dimensional FE model used

for the hot Nakajima tests. The model is composed of a

punch, die, and sheet sample. To improve computational

efficiency, all directions of the displacement and rotation of

the outer edge of the sheet sample were constrained along

the bead line instead of only by the holder system, which is

denoted as the fixed assumption in the figure. Similar to the

experiment, the punch moved to the sheet sample at a con-

stant speed of 0.5 mm/s. To reduce computation time and

increase accuracy, the tools were set as analytical rigid
bodies and only a quarter of a sheet sample was modeled.

The average mesh size of the sheet sample with C3D8R was

1 mm � 1 mm (length � width), and a refined mesh with

dimensions of 0.5 mm� 0.5 mmwas used in the contact area

with the punch. Five elements along the thickness direction

were determined after mesh-size sensitivity tests [72,73]. A

friction coefficient of 0.4 was set between the sheet sample

and the tools [74].

The simulated Tie6Ale4V alloy sheets were assigned a

density of 4.512 g/cm3, Young's modulus of 110 GPa, and

Poisson's ratio of 0.33 to model linear isotropic elasticity. The

FE simulation conditions are summarized in Table 2.

3.4. Numerical implementation

A stress-integration procedure was implemented on the pro-

posed constitutivemodels by following the general backward-

Euler return mapping algorithm [38,75] and executed using

ABAQUS/Explicit via VUMAT [70]. For a total strain increment,

Dε, the stress and evolutionary state variables should be

updated at time t þ Dt. The total strain increment is decom-

posed into two strain increments as

Dε¼Dεe þ Dεp (19)

where Dεe and Dεp represent the elastic and plastic strain in-

crements, respectively.

For an isotropic elastic material, the relationship between

the stress and strain tensors is given as

Ds¼C∶Dεe (20)

C¼ 2GI4 þ
�
K�2

3
G

�
I⨂I (21)

where C is the linear isotropic elasticity tensor and G and K are

the shear and bulk moduli, respectively. Additionally, I4 and I

are the fourth and second-order identity tensors, respectively.

According to the associated flow rule, the plastic strain

increment is expressed as

Dεp ¼Dl
vF

vs
¼ Dla (22)

where F is defined in Eq. (7). Additionally, Dl and vF
vs ð¼ aÞ are

the plastic multiplier and the flow direction tensor,

respectively.

The numerical integration algorithm is based on a trial

predictor stress sT ð¼ s þ C∶DεÞ, and subsequently, the new

current stress state sc is updating when FðsTÞ>0 as follows:

sc ¼sT � DlC∶ac (23)
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The initial estimate of ac is equal to the normal direction

under a trial predictor stress. To satisfy the consistency con-

dition at the new current stress, further iterations are

required. Residual tensor r is calculated as follows:

r¼s�sc ¼s� �
sT �DlC∶ac

�
(24)

where s is the backward Euler stress. Taylor's expansion is

applied to the residual of Eq. (24) such that

rnew ¼ rold þdsc þðdDlÞC∶ac þ DlC∶
vac

vs
dsc (25)

where dsc is the incremental stress, dDl is the change in

the plastic multiplier, rold is the residual stress from

the previous step, and vac
vs is the second derivative of F.

Assuming that the present residual is equal to zero, Eq. (25)

provides

dsc ¼ �
�
Iþ DlC∶

vac

vs

��1

∶ðrold þðdDlÞC∶acÞ¼ �Q∶rold

� ðdDlÞQ∶C∶ac (26)

In addition, Taylor's expansion on the Gurson-type model, F,

in Eq. (7) is expressed as

Fnew ¼Fold þ vF

vs
dsþ vF

vf*

vf*
vf

df þ vF

vsIH
dsIH (27)

where

vF

vf*
¼2q1 cosh

�
q2

3p
2sIH

�
� 2q3f* (28)

vf*
vf

¼

8>>>><
>>>>:

1

fu � fc
ff � fc

0

if
f � fc

fc � f � ff
ff � f

(29)

vF

vsIH
¼ � 2ðsÞ2

ðsIHÞ3
� 3q1q2f*p

ðsIHÞ2
sinh

�
q2

3p
2sIH

�
(30)

df ¼
�
ð1� fÞac∶Iþkw$f$u0$

s
s
∶ac þA$

s∶ac

ð1� fÞsIH

	
ðdDlÞ (31)

dsIH ¼ vsIH

vε
dεþ vsIH

v _ε
d_ε¼

�
vsIH

vε
þ 1
Dt

vsIH

v_ε

�
s : ac

ð1� fÞsIH
dDl

�
�
vsIH

v_ε

�
_εold (32)

In Eq. (32), Dt is the time increment and _εold is the strain rate

from the previous step.

After setting the yield conditionFnew to zero, the increment

in the plastic multiplier is derived as

dDl¼ Fold � Lh1 _εold � ac∶Q∶rold
ac∶Q∶ac � vF

vf*

vf*
vf df � vF

vsIH
Lh

(33)

where

L¼ s∶ac

ð1� fÞsIH
;h1 ¼ vsIH

v_ε
;h¼ vsIH

vε
þ 1
Dt

vsIH

v _ε
(34)

When the updated value of F is within a specified tolerance,

e.g., 10�6, the iteration is terminated.
4. Results and discussion

4.1. Fractographic observations

To identify the physical frame of the observed mechanical

behaviors under high-temperature conditions, microscopic

observations were supplemented. The fractographic images

of the specimenswere captured using an SEM. Fig. 6 shows the

representative fractographic images along the rolling plane

under uniaxial tension at a strain rate of 5 � 10�3/s, including

under uniaxial-stretch (W40), plane-strain (W75), and biaxial-

stretch (W150) deformation modes, obtained from the hot

Nakajima tests.

The fractographic images shown in Fig. 6 (a) and (d) reveal

that the densities of the dimples on the fractured surfaces

under uniaxial tension and the balanced-biaxial deformation

mode is higher than those under uniaxial-stretch and plane-

strain deformation modes obtained from the hot Nakajima

tests (refer to Fig. 6 (b) and (c)). The fractographic images ob-

tained under uniaxial tension and the biaxial deformation

modes show that the formation of round dimples is the main

mechanism of failure; therefore, the significant plastic defor-

mation during fracture can be explained. The plastic de-

formations at these loads increase the growth and

coalescence of voids, and the corresponding dimples appear

parallel to the loading direction [76]. In contrast, the fracto-

graphic images under the uniaxial-stretch and plane-strain

deformation modes in Fig. 6 (b) and (c) show elongated dim-

ples that are termed inter-void shearing dimples. More spe-

cifically, more inter-void shearing dimples are observed in the

fractographic images of the uniaxial-stretch sample in com-

parison with those observed in the fractography of the plane-

strain deformation sample. Under these loading conditions,

voids cannot sufficiently grow for coalescing; therefore, fail-

ure occurs owing to shear localization in the thickness direc-

tion [77]. These observations highlight the importance of the

shearing effect in FE simulations; however, this effect was not

considered in previous studies [54].

As discussed in the previous section, the original GTN

model could capture the damage behaviors of metals owing to

voids but could not predict themechanical behaviors owing to

inter-void shearing. The GTNmodelmodified by Nahshon and

Hutchinson [37] described the damage behavior owing to the

inter-void shearing effect; however, the model has a limita-

tion, i.e., the material damage owing to shearing evolves

rapidly even under high triaxiality. The proposed GTN-shear

model could determine the effect of inter-void shearing on

damage evolution with respect to the loading path, as

observed from the fractographic images obtained after the hot

Nakajima tests. The corresponding results will be discussed

later.

4.2. Monotonic loading at a high temperature

The material constants related to strain hardening and the

original GTN damage models were identified by applying

uniaxial tension at various strain rates, as reported in the

authors’ previous study [54]; these constants are listed in

Table 3. Notably, the stress triaxiality of uniaxial tension,

https://doi.org/10.1016/j.jmrt.2023.06.059
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Fig. 6 e Fractographic images (1000 £ ) owing to (a) the hot uniaxial tension tests at a strain rate of 5 £ 10¡3/s and those

obtained from the (b) uniaxial-stretch (W40), (c) plane-strain (W75), and (d) biaxial-stretch (W150) deformation modes under

the hot Nakajima tests at 650 �C [54].
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corresponding to T ¼ 1
3, does not affect the damage evolution

owing to inter-void shearing in the GTN-shear model. There-

fore, the corresponding parameters related to the evolution of

shear damage, as per Eqs. (14) and (15), can be calibrated using

the experimental data obtained from the hot Nakajima tests

in the next section.

Fig. 7 shows the comparison between the engineering

stress�strain curves obtained from experimental and
Table 3 e Material constants used in the proposed constitutive

Voce hardening law expressed in Eq. (2)

A B

130.32 97.83

Softening law expressed in Eq. (4)�(5)

q r

15 1.9

Original GTN model expressed in Eq. (8), (12), (17), and (20)

fc ff εN

0.10 0.13 0.45

GTN-shear model expressed in Eq. (14)

kw T1

26.8 0.0
numerical results under uniaxial tension, three different

strain rates, and a high temperature. The simulated and

experimental results obtained under uniaxial tension and a

high temperature at strain rates of 5 � 10�4/s and 5 � 10�2/s

were in good agreement in terms of maximum stress and

fracture strain. The simulated results under uniaxial tension

and a high temperature at a strain rate of 5 � 10�3/s showed

small discrepancies in relation to the corresponding
models.

Strain-rate sensitivity
expressed in Eq. (3)

C m

154.04 0.2089

p0 p1

3.03 0.8

SN l0 l1

0.1 1.364 0.0075

T2

0.6
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Fig. 7 e Comparison between the engineering

stress¡strain curves obtained from the experimental and

simulated results from the GTN-shear model at various

strain rates under uniaxial tension at 650 �C. The
experimental data at strain rates of 5 £ 10¡4/s and

5 £ 10¡2/s were obtained from Ref. [54].
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experimental results after 100% engineering strain; however,

the predicted ultimate tensile strengthwas in good agreement

with the experimental data.

Fig. 8 (a) and (b) show the experimental sample used for the

hot uniaxial tension tests at a strain rate of 5 � 10�3/s and the

corresponding von-Mises stress contour at the onset of frac-

ture obtained from the FE simulations, respectively. The

simulations and the experiments yielded remarkably elon-

gated samples, and the simulated sample correlated reason-

ably well with the samples used in the experiments. This

suggests that the strain-hardening behaviors, including the

strain-rate sensitivity and the flow-softening and damage

behaviors, should be explicitly addressed in the FE
Fig. 8 e (a) Photograph of the fractured sample under

uniaxial tension and a high temperature and the (b)

corresponding simulation results showing the von-Mises

stress (unit: MPa) at a strain rate of 5 £ 10¡3/s.
simulations to obtain an accurate prediction of the

stressestrain curves.

Fig. 9 (a) and (b) show the distribution of the total volume

fraction of voids defined in Eq. (10) and the Lode angle function

u(s) associatedwith the evolution of the void volume owing to

inter-void shearing. As shown in the figures, the void volume

fraction evolves in the middle of the sheet samples, and the

void evolution owing to shearing is negligible because the

Lode angle function is nearly zero in the corresponding region.

4.3. Multiaxial loading in the hot Nakajima tests

The proposed material models were incorporated into the FE

simulation models for conducting the hot Nakajima tests

under multiaxial loading conditions. The predicted punch

force-stroke relationships obtained from the GTN-shear

model were compared with the corresponding experimental

data, as shown in Fig. 10. The sampleswith different widths in

the punch-contacted region, i.e., W40, W75, and W150, are

observed to experience the uniaxial-stretch, plane-strain, and

biaxial-stretch deformation modes, respectively.

All the predicted curves for various width conditions were

in good agreement with the corresponding experimental data,

as presented in Fig. 10. In particular, the simulated curves

obtained from the W40 sample were in good agreement with

the experimentally obtained curves with reasonable accuracy.

This confirms the suitability of the adopted strain-hardening

model, which includes strain-rate sensitivity and the flow

stress softening effect, under a wide strain range. The pro-

posed GTN-shearmodel could capture themaximum load and

punch stroke and reproduce the experimentally measured

punch stroke at failure with a marginal error regardless of the

sample dimensions.

Furthermore, the predicted displacements at the onset of

failure obtained from the proposed GTN-shear model and the

original GTN model under various width conditions were

compared, as shown in Fig. 11. The original GTN model was

found to reproduce the punch load�stroke curves; however,

some deviations were noted from the corresponding experi-

mental results in the predicted stroke at failure under certain
Fig. 9 e (a) Distribution of the total volume fraction of voids

and the (b) Lode angle function u(s) before fracture defined

in Eq. (13) obtained from the FE simulations.
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Fig. 10 e Punch load¡stroke plots obtained from the

simulated (dot lines) and experimental (symbol) multiaxial

loading tests using the GTN-shear model. The star symbol

represents the failure point of the material.
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width conditions. As illustrated in Fig. 11, the original GTN

model overestimated the punch stroke at failure for the W40

and W75 samples, and the GTN-shear model yielded better

predictions than those obtained from the original GTNmodel.

Additionally, minor differences were observed between the

predicted results from the original GTN and GTN-shear

models for the W150 samples.

The strokes predicted at the onset of failure were analyzed

using the same approach as the fractographic analysis. The

original GTN model assumed that the material fails due to

void growth and coalescence under a given hydrostatic

pressure. Fractography of the W150 samples showed

numerous large dimples in the matrix, which validates the

assumption under the original GTNmodel. However, different

types of failure, e.g., that owing to inter-void shearing, were

observed in the fractographic images of the W40 and W75

samples. These failures were inapplicable to the original GTN

model for predicting the deformation behavior of the samples

under high-temperature conditions. Therefore, the results
Fig. 11 e Comparison between the experimental and

numerical displacements at the onset of failure. The

predicted displacements from the original GTNmodel were

obtained from Ref. [54].
indicated the requirement of an improved damage model for

predicting the hot deformation behavior of Tie6Ale4V alloy

sheets.

The evolution of the total volume fractions of the voids in

samplesW40 andW75 during the hot Nakajima tests is shown

in Fig. 12, and the predicted results obtained from the GTN-

shear model are compared with those obtained from the

original GTN model. As shown in the figure, the inter-void

shearing effect was clearly observed in the evolution of the

total volume fraction of the voids. After a punching stroke of

30 mm, the total volume fraction of the voids obtained from

the FE simulations using the GTN-shear model rapidly

increased and approached the volume fraction of the voids at

the onset of material failure. In contrast, the original GTN

model yielded a relatively slow evolution of the total volume

fraction of voids. Therefore, discrepancies were noted be-

tween the simulation and experimental punch strokes at

material failure.

Fig. 13 (a)e(c) show the predicted contours of state vari-

ables obtained using the GTN-shear model and the W40

sample at the onset of material failure. The equivalent plastic-

strain distribution shown in Fig. 13 (a) reveals a small plastic

deformation at the pole of the sample. Fig. 13 (b) displays the

contour of the Lode angle functionu(s) of theW40 sample and

reveals that the drawing deformation modes in the overall

locations are between the uniaxial-stretch and plane-strain

deformation modes. The uniaxial stretch mode, which is

equivalent to u(s) ¼ 0.0, is observed at the pole of the W40

sample. The drawing deformation mode, which is equivalent

to u(s) < 1.0, is predicted to be located over the remaining

sample area. Fig. 13 (c) reveals a high volume fraction of voids

owing to the inter-void shearing effect between the pole of the

sample and the clamping area, and the fracture location of the

W40 samples is affected by inter-void shearing, as shown in

Fig. 13 (d).

Fig. 14 (a)e(c) present the simulated distribution of the

equivalent strain, Lode angle function, and volume fraction of

the voids under inter-void shearing, respectively, obtained

using the W75 sample. Similar to the results obtained using
Fig. 12 e Comparison between the predicted volume

fractions of the voids in samples W40 and W75 obtained

using the original GTN and GTN-shear models.
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Fig. 13 e FE simulation results obtained using the GTN-shear model and the W40 sample: contour plots of (a) plastic strain,

(b) Lode angle function u(s) defined in Eq. (13), (c) volume fraction of voids owing to inter-void shearing, and (d) fractured

side view and its plastic-strain distribution.
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the W40 sample, a small equivalent plastic strain is predicted

at the pole of the W75 sample, as shown in Fig. 14 (a). The

plane-strain stretch deformation mode is observed in Fig. 14

(b) when the value of the Lode angle function is unity. The

volume fraction of voids under inter-void shearing presented

in Fig. 14 (c) is predicted to be a maximum of 3%. Fig. 14 (d)

reveals that the fracture location in the sample is associated

with the location of the maximum volume fraction of voids

owing to the inter-void shearing effect.
Fig. 14 e FE simulation results obtained from the GTN-shear mo

(b) Lode angle function u(s) defined in Eq. (13), (c) volume fracti

side view and its plastic-strain distribution.
Notably, the Nahshon�Hutchinson model strongly in-

fluences the shear-induced damage evolution under the

plane-strain deformation mode. The additional inter-void

shearing model, which is expressed in Eq. (12), proposed by

Nahshon and Hutchinson cannot reproduce the hot defor-

mation behavior of Tie6Ale4V alloy sheets because the

experimental observations from the hot Nakajima tests reveal

a small effect of inter-void shearing on the failure evolution in

the plane-strain deformation mode. Therefore, the modified
del and the W75 samples: contour plots of (a) plastic strain,

on of voids owing to inter-void shearing, and (d) fractured
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Fig. 15 e Comparison between the function u0 ¼ u(s) � U(T) defined in Eq. (14) with respect to the stress ratio s2/s1 and the

corresponding stress triaxiality T under (a) plane-stress tension (s3/s1 ¼ 0 and s1 > 0) and (b) shear-stress states applied

under transverse stress (s3/s1 ¼ ¡1 and s1 > 0). Note that the NeH model represents the Nahshon¡Hutchinson model.
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inter-void shearing model, which is expressed in Eq. (15),

developed by Nielsen and Tvergaard [40] is suitable for

describing the mechanical behavior at high temperatures

under multi-axial loadings.

Fig. 15 (a) and (b) compare the values of the Lode angle

function for the stress ratios and triaxialities obtained from

the twomaterialmodels under plane-stress tension and shear

stress combined with transverse stress, respectively. As

shown in Fig. 15 (a), the Nahshon�Hutchinson model in-

troduces a large inter-void shearing effect under plane-strain

tension. As displayed in the figure, the GTN-shear model in-

troduces the interpolated function U(T) and reduces the

additional inter-void shearing effect under plane-strain ten-

sion; however, the inter-void shearing effect remains under

various stress states. As presented in Fig. 15 (b), small de-

viations are observed in the Lode angle functions obtained

from the Nahshon�Hutchinson and GTN-shear models.

Notably, the present study focuses on hot deformation

behavior under plane-stress conditions; however, rigorous

investigations are required under general stress states and

will be presented in a complementary paper.
5. Summary and conclusions

In this study, the ductile damage fracture behavior of

Tie6Ale4V alloy sheets under high-temperature conditions

was investigated via hot uniaxial tension and hot Nakajima

tests. Corresponding FE simulations were performed using an

improved Gurson-type model, namely, the GTN-shear model.

The major findings of the present study are as follows.
- The GTN-shearmodel characterized the tensile behavior of

the sheets under high temperatures, capturing the

maximum stress and the ductility from the corresponding

FE simulations. The FE simulations of the tensile tests

under high-temperature conditions revealed that the inter-

void shearing effect is negligible during these tests because

the Lode angle function is almost zero.

- Several dimples of various sizes were observed in the

fractographic images obtained from the hot tensile tests

and the balanced biaxial-stretch deformationmodes under

the hot Nakajima tests, showing the classical ductile fail-

ure mechanism. In contrast, elongated dimples were

observed under uniaxial-stretch and plane-strain defor-

mation modes during the hot Nakajima tests, thereby

revealing the inter-void shearing effect.

- The GTN-shear model captured the hot deformation

behavior obtained from the hot Nakajima and hot uniaxial

tensile tests. The experimental stressestrain (as well as

load edisplacement) curves and the displacements at the

onset of material failure were in good agreement with the

corresponding results obtained from the proposed model.

An additional interpolated function UðTÞ included in the

proposed GTN-shearmodel effectively controlled the inter-

void shearing effect in the Tie6Ale4V alloy sheets during

hot Nakajima tests, promoting fracture at moderate levels

of stress triaxiality.

Overall, the GTN-shear model based on micromechanics

accounted for the complex hot deformation behavior of the

Tie6Ale4V alloy sheets, thereby accurately predicting the load

histories and material failure positions under plane-stress
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conditions. Future research will focus on validating the ma-

terial model in terms of hot deformation behavior under

general stress states.
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