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Enhanced dispersion in an oscillating array of harmonic traps
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Experiment, theory, and simulation are employed to understand the dispersion of colloidal particles in a
periodic array of oscillating harmonic traps generated by optical tweezers. In the presence of trap oscillation,
a nonmonotonic and anisotropic dispersion is observed. Surprisingly, the stiffest traps produce the largest
dispersion at a critical frequency, and the particles diffuse significantly faster in the direction of oscillation
than those undergoing passive Stokes-Einstein-Sutherland diffusion. Theoretical predictions for the effective
diffusivity of the particles as a function of trap stiffness and oscillation frequency are developed using generalized
Taylor dispersion theory and Brownian dynamics simulations. Both theory and simulation demonstrate excellent
agreement with the experiments, and reveal a “slingshot” mechanism that predicts a significant enhancement of
colloidal diffusion in dynamic external fields.
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I. INTRODUCTION

Dispersion—the coupling between stochastic and deter-
ministic forces that drive particle motion—is fundamental to
transport in potential-energy fields. At long times and under
dilute conditions, colloidal particles acted upon by an external
potential move diffusively. Numerous studies have analyzed
the effective diffusivity of isolated particles under static
potentials [1–4], including porous media [5,6], block copoly-
mers [7], corrugated and patterned substrates [8–10], and
colloidal crystals [11,12]. Experimentally, optical tweezers
provide a convenient method to trap particles in a two-
dimensional (2D) periodic array of potential wells [11–15].
Although trapping in static, periodic potentials tends to hinder
particle diffusion [1–3,16–19], various investigators have also
reported diffusion enhancement due to broken spatial sym-
metry (e.g., using tilted potentials [8,9,20–22] or convective
flow [13,15]).

Dynamic (i.e., time-varying) potential-energy fields pro-
duce qualitatively different dispersive phenomena. Time-
oscillating optical and magnetic fields have been shown to
significantly enhance particle diffusion via the “ratchet ef-
fect” [23–29]. Conceptually, this enhanced dispersion can
be rationalized as a coupling between Brownian motion, a
spatially modulated potential, and a time-varying, convec-
tive flow. Several studies of one-dimensional (1D) potentials
report a maximum diffusivity as a function of oscillation
frequency [25,28]; by comparison, 2D potentials are far less
studied [26,27]. To date, the impact of potential strength and
oscillation frequency on 2D dispersion has not been rigor-
ously quantified. Consequently, the extent (and mechanism)
of diffusion enhancement across a broad parameter space
remains elusive. Such insight could aid in the design of
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systems for manipulating and controlling particles using dy-
namic potential-energy fields.

In this article, we combine optical tweezer experiments,
Taylor dispersion theory, and Brownian dynamics simula-
tions to investigate the dispersion of colloidal particles in
a time-oscillating, 2D array of mobile potential wells. Our
main objective is to systematically measure and predict the
effective diffusivity across a broad range of potential strengths
and oscillation frequencies, thereby identifying the conditions
under which diffusion is maximally enhanced. In addition, we
seek to provide simplified and intuitive predictions for the
diffusivity under various limiting circumstances. Our results
reveal several distinct types of 2D dispersion, including (i)
random walking, (ii) trapping and hopping, and (iii) facilitated
hopping or “slingshotting.” In this third regime, we find that
diffusion is anisotropic and maximally enhanced at a critical
oscillation frequency. Somewhat surprisingly, the extent of
diffusion enhancement is exaggerated by increasing the po-
tential strength, which would ordinarily hinder diffusion under
stationary (i.e., nonoscillating) conditions. We rationalize this
effect based on a simplified model of a particle in an isolated
potential well and, incidentally, deduce a scaling relation for
the critical frequency as a function of the potential strength.

The remainder of this article is organized as follows. In
Sec. II, we present a high-level overview of our experimental
and theoretical methods. In Sec. III, we discuss our measure-
ments and predictions of the particle diffusivity for stationary
traps and traps oscillated at a finite frequency. Concluding
remarks and suggestions for future work are then given in
Sec. IV.

II. MATERIALS AND METHODS

A. Experiment

Experimentally, we use an optical tweezer (Tweez 305;
Aresis) with an infrared laser (wavelength 1064 nm) to
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FIG. 1. Schematic of a Brownian particle diffusing in a 2D, os-
cillating array of harmonic traps with potential-energy fieldV (r) and
velocity u(t ) given by Eqs. (1) and (2), respectively. The harmonic
well has curvature κ and depth �V = 1

8 κW 2
trap. Inset: Experiment

snapshot of radius a = 1.25 µm silica particles diffusing in an array
of traps created by optical tweezers.

generate a 16 × 16 lattice of harmonic traps spaced a distance
L = 6 µm apart along a 2D plane (see Fig. 1 for a schematic of
our experimental system). The interaction of a colloidal parti-
cle with each trap is well modeled by the piecewise potential,

V (r) =
{

1
2κr2 for r � 1

2Wtrap

�V for r > 1
2Wtrap,

(1)

where r is the particle position relative to the trap’s center,
κ is the trap stiffness, Wtrap is the trap width (≈3.2 µm),
and �V = 1

8κW 2
trap is the potential well depth. Most optical

tweezer applications employ very stiff traps (large κ) to ensure
that a trapped particle does not hop out of a given potential
well. However, in our experiments, we tune the laser power
from 0.05 to 0.5 W to vary the trap stiffness from κ = 0.5–6
kT/µm2, where kT = 4.046 × 10−21 J is the thermal energy.
To study dispersion in dynamic potential-energy fields, we
oscillated all traps synchronously with the sinusoidal velocity,

u(t ) = êxωA cos (ωt ), (2)

where A is the amplitude and ω is the angular frequency. In our
oscillating-trap experiments, we fix the amplitude A = 5 µm
and vary the frequency ω/2π = 0–66 mHz.

Silica microspheres of radius a = 1.25 µm (Bangs Labo-
ratories) were fluorescently labeled by coating a supported
lipid bilayer (SLB) containing a minority fraction of fluo-
rescently tagged lipid. The lipid mixture comprised DOPC,
5% DOPS (Avanti Polar Lipids), and 0.5% DOPE-Atto 647
(ATTO-TEC GmbH). Upon depositing a dilute concentra-
tion of particles to the bottom of an imaging chamber, we
observed oscillatory motion as the particles moved in and
out of neighboring harmonic wells along the 2D plane. Flu-
orescence imaging was carried out using an inverted Nikon
Ti2-Eclipse microscope (Nikon Instruments). A custom MAT-
LAB script based on the Crocker-Grier algorithm [30–32] was
used to track the particles’ trajectories and measure their
long-time self-diffusivity. With the trapping field switched
off, we measure the Stokes-Einstein-Sutherland diffusiv-
ity D0 ≈ 0.105 µm2/s, corresponding to a particle-to-wall

spacing of about 0.5 µm [33]. Further details on our ex-
perimental methodology can be found in the Supplemental
Material [34].

B. Theory

We apply generalized Taylor dispersion theory [5] to un-
derstand the coupling between oscillatory trap motion and
colloidal diffusion. For a Brownian particle that enters an
L × L cell occupied by a moving harmonic trap, the nor-
malized probability density g(r, t ) of finding the particle at
a position r and time t is governed by the Smoluchowski
equation, (

∂

∂t
+ L

)
g(r, t ) = 0, (3)

where

L ( · ) = u(t ) · ∇r( · ) − kT

γ
∇2

r ( · ) − 1

γ
∇r · [( · )∇rV (r)]

(4)
is the time-evolution operator, V (r) is the potential-energy
field given by Eq. (1), u(t ) is the velocity of the moving traps
given by Eq. (2), and γ is the particle resistivity. The terms
on the right-hand side of Eq. (4) reflect transport by convec-
tion, diffusion, and potential-energy gradients. The ratio D0 ≡
kT/γ defines the Stokes-Einstein-Sutherland diffusivity.

Particle density fluctuations give rise to an effective dif-
fusivity that is distinct from the Stokes-Einstein-Sutherland
value. The strength and orientation of these fluctuations
are captured by the probability-weighted displacement field
d(r, t ), which satisfies the inhomogeneous equation,(

∂

∂t
+ L

)
d(r, t ) = 2kT

γ
∇rg+ 1

γ
[g∇rV − 〈g∇rV 〉 g],

(5)
where 〈 · 〉 ≡ L−2

∫
L2 ( · )dr denotes the spatial average over an

L × L cell. Clearly, the evolution of d is one-way coupled to
the evolution of g through the terms on the right-hand side of
Eq. (5). These terms reflect fluctuations in the probability cur-
rent, which drive long-wavelength disturbances to the number
density of particles. Following Brady and co-workers [35–40],
it can be shown that the structure field g(r, t ) is directly related
to the effective drift velocity of the particle,

U (t ) = u(t ) − 1

γ
〈g∇rV 〉 (t ), (6)

while the displacement field d(r, t ) is related to the effective
diffusivity tensor,

D(t ) = kT

γ
I + 1

γ
〈d∇rV 〉 (t ). (7)

The last two expressions are the key results of the dispersion
theory. They show that the enhancement (or reduction) in
drift and diffusion is driven by the average particle flux down
potential-energy gradients.

Equations (3) and (5) were solved numerically in an L × L
cell subject to periodic boundary conditions and the nor-
malization conditions 〈g〉 = 1 and 〈d〉 = 0. Our numerical
solutions were developed using the finite-element method
with implicit time advancement in COMSOL MULTIPHYSICS.
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The resulting g and d fields were then inserted into Eqs. (6)
and (7) to compute the effective drift and diffusivity of the
particle as a function of time. We validated the dispersion the-
ory by developing Brownian dynamics simulations of 10 000
freely draining (i.e., noninteracting) particles in HOOMD-
blue [41] and calculating their diffusivity from the long-time
growth of their mean-squared displacements. Further details
on the derivation of the relevant equations, numerical method,
and simulations can be found in the Supplemental Mate-
rial [34]. Below, we present the key results from the theoret-
ical calculations and compare them against the experimental
measurements.

III. RESULTS AND DISCUSSION

A. Stationary traps

When the traps are held stationary, the convective term
in Eq. (4) vanishes and the particle probability distribution
achieves a steady state. The absence of a time-dependent
convective term in the Smoluchowski equation implies zero
net drift, U = 0, and an isotropic, time-independent diffusiv-
ity D with components Dxx = Dyy = D. Figure 2(a) shows
that the scalar diffusivity D decreases monotonically with
the trap stiffness κ , as reported in previous studies using
one-dimensional (1D) potentials [7]. (Supplemental Mate-
rial Movies S1 and S2 [34] show measured and simulated
particle motion in stationary traps of varying stiffness.) For
“soft” traps (i.e., potential well depths �V � kT ), a regular
perturbation analysis admits the following expansion for the
diffusivity:

D = kT

γ

(
1 − 〈(V − 〈V 〉)2〉

2(kT )2

+ 〈(V − 〈V 〉)3〉 + 〈∇r(|∇rΦ|2) · ∇rV 〉
4(kT )3

+ · · ·
)

, (8)

where Φ(r) satisfies ∇2
r Φ(r) = 〈V 〉 −V (r) and 〈Φ〉 = 0.

Equation (8) indicates that the reduction in diffusivity below
the Stokes-Einstein-Sutherland value is proportional to the
spatial variance in the potential energy; both the first and
second corrections are plotted in Fig. 2(a). In this regime,
the particle trajectories appear to follow a random walk as in
classical Brownian motion [see Fig. 2(b), top row].

For “stiff” traps (�V � kT ) held in a fixed configuration,
the particles undergo activated-hopping dynamics and their
diffusivity is very nearly zero. Any given particle remains
trapped in a local potential well for a long time, punctuated
by discrete transitions (“hops”) from one well to another [see
Fig. 2(b), bottom row]. Kramers’ theory [16–18] suggests that
the effective diffusivity is proportional to the characteristic
“hopping frequency,” which scales linearly with the curvature
of the potential well κ = 1

2 (∇2
rV )|r=0 and exponentially with

the well depth �V = 1
8κW 2

trap:

D ∝ L2

4πγ
e−�V/kT

(∇2
rV

)∣∣
r=0. (9)

The last relationship is not exact. A constant of proportion-
ality, which would convert Eq. (9) into an equality, depends
upon the ratio Wtrap/L between the size and spacing of the

FIG. 2. Effective diffusivity D of particles in stationary traps
decreases monotonically with trap stiffness κ . (a) Results from
experiments (squares), Brownian dynamics simulations (triangles),
Smoluchowski theory (solid line), and asymptotic limits [dashed
lines; see Eqs. (8) and (9)]. A proportionality constant of 1.5 was
used in Eq. (9) to fit the numerical data. (b) Particle trajectories from
the experiments and simulations indicate random walks for soft traps
(top row, cool colors) and activated, Kramers-like hopping for stiff
traps (bottom row, warm colors). See also Supplemental Material
Movies S1 and S2 [34].

harmonic traps. For traps of diameter Wtrap = 3.2 µm spaced
a distance L = 6 µm apart, a proportionality constant of 1.5
gives quantitative agreement with the exact dispersion theory
(see Fig. 2). [See the Supplemental Material [34] for the
derivation of Eqs. (8) and (9).]

B. Oscillating traps

The situation qualitatively changes when the traps are
not stationary, but oscillated synchronously with the veloc-
ity prescribed by Eq. (2). After a sufficiently long time, the
system achieves a periodic steady state; one is then only
interested in time-averaged quantities over a periodic cycle,
( · ) ≡ limτ→∞(2π/ω)−1

∫ τ+π/ω

τ−π/ω
(·)dt . It is straightforward to
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FIG. 3. Oscillating array of harmonic traps generates a non-
monotonic, anisotropic dispersion of Brownian particles. (a) Time-
averaged effective diffusivities Dxx (filled symbols) and Dyy (open
symbols) plotted as a function of oscillation frequency ω for different
trap stiffnesses κ . Shown are results from experiments (squares),
Brownian dynamics simulations (small triangles), Smoluchowski
theory (small circles), and asymptotic limits [dashed lines, see Fig. 2
and Eqs. (8), (9), and (11)]. There are no fitting parameters in
the theory. (b) Experimental particle trajectories at the critical fre-
quency ωmax, where Dxx = Dxx,max, depict increasingly anisotropic
dispersion as the trap stiffness is increased. The field of view is
100 µm × 100 µm. See also Supplemental Material Movies S3 and
S4 [34] for measured and simulated particle trajectories.

show that the time-averaged drift is identically zero, U = 0,
whereas the time-averaged diffusivity D is generally nonzero
and anisotropic (Dxx �= Dyy) due to the existence of a pre-
ferred direction along the convection (x) axis.

Figure 3(a) illustrates the nonmonotonic dependence of
the time-averaged diffusivities Dxx and Dyy with the driv-
ing frequency ω for three different trap stiffnesses κ = 1,
3, and 5 kT /µm2 and a fixed amplitude A = 5 µm. The
softest of these traps (κ = 1 kT /µm2) exhibits the weakest
coupling between convection and potential-energy gradients:
over a broad range of frequencies, diffusion remains nearly
isotropic and close to the Stokes-Einstein-Sutherland limit
D0 ≈ 0.105 µm2/s. As the trap stiffness is increased to
κ = 3 and 5 kT /µm2, the diffusivity becomes increasingly
anisotropic with faster diffusion in the oscillating direction
relative to the transverse direction (Dxx > Dyy). Tracking the
particle trajectories, depicted in Fig. 3(b), visually confirms
the anisotropic dispersion (Supplemental Material Movies S3
and S4 [34] show measured and simulated trajectories in
oscillating traps of varying frequency and fixed stiffness).
Both Dxx and Dyy increase to a maximum before decaying
to an asymptotic plateau as ω becomes infinitely large (“ul-
trafast cycling”). Varying the oscillation amplitude A at fixed

frequency ω reveals a similar, nonmonotonic trend (additional
data provided in the Supplemental Material [34]).

The high-frequency asymptote can be understood as fol-
lows. Over a time increment much shorter than the Brownian
time, a particle samples the entire potential range along the
convection axis as the potential field is rapidly cycled. There-
fore, the effective potential that is “felt” by the particle over
one periodic cycle is approximated by averaging V over the
convection axis:

v(y) = 1

L

∫ L/2

−L/2
V (x, y)dx. (10)

The quasisteady diffusion of a Brownian particle in a 1D
potential v(y) is well established [2,42], with diffusivities
(derived in the Supplemental Material [34]),

Dxx = kT

γ
, (11a)

Dyy = kT

γ
〈e−v/kT 〉−1 〈ev/kT 〉−1

. (11b)

Equation (11) agrees well with the data plotted in Fig. 3(a)
at the highest of frequencies. Whereas diffusion perpendicular
to convection is hindered as though the particle experienced
a potential-energy field given by Eq. (10), parallel diffusion
is largely unaffected because the potential-energy gradients
along the x direction have essentially been “smeared out.” Put
another way, since the time required for a Brownian particle
to diffuse from one lattice site to another is much slower than
the convection time (γL2/kT � 2π/ω), the particle is unable
to quickly respond to the rapid motion of the traps as it freely
diffuses along the convection axis.

C. Maximum diffusivity

Both theory and experiment predict a maximum diffusivity
that exceeds the Stokes-Einstein-Sutherland value, Dxx,max >

D0, at a critical oscillation frequency ωmax (see Fig. 3). Similar
maxima have been previously reported for 1D magnetic ratch-
ets [25,28]. Figures 4(a) and 4(b) sketch the basic argument
for this maximum. In a stationary system, a strongly trapped
Brownian particle fluctuates with variance kT/κ about a local
potential-energy minimum until a sufficiently large, thermal
“kick” successfully propels the particle out of the potential
well and into the interstices of the lattice [see Fig. 4(a), top,
and Supplemental Material Movie S5 [34]]. Oscillatory con-
vection displaces the particle along the x axis with amplitude
A[1 + (κ/γω)2]−1/2 ≈ γωA/κ , bringing it towards the edge
of the trap at x = ± 1

2Wtrap and effectively lowering the bar-
rier to escape [see Fig. 4(b), top, and Supplemental Material
Movie S6 [34]]. Consequently, the particle is never trapped for
very long, but rather is catapulted between lattice sites through
the motion of the harmonic traps. This “slingshot” mechanism
is facilitated at a critical frequency ωmax for which the fluctu-
ating particle position (with mean ∼γωmaxA/κ and variance
∼kT/κ) is convected a distance 1

2Wtrap up the potential-energy
gradient. By this argument, we make the following estimate
for ωmax (derived in the Supplemental Material [34]):

ωmax ≈ κ

γA

(
1

2
Wtrap −

√
kT

κ

)
. (12)
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FIG. 4. “Slingshot” mechanism of enhanced dispersion in an os-
cillating array of harmonic traps. (a) A particle trapped in a stationary
potential-energy well undergoes O(

√
kT/κ ) positional fluctuations

due to Brownian motion. Isocontours of the displacement field den-
sity dx reveal a dipolar profile. (b) Oscillation at the critical frequency
ωmax convects the particle probability up the potential-energy gra-
dient by an O(γωmaxA/κ ) distance, effectively lowering the barrier
to escape. The convected dx field samples larger trapping forces,
resulting in enhanced dispersion along the convection axis. Contour
plots in (a) and (b) were generated for κ = 5 kT /µm2. See also
Supplemental Material Movies S5–S7 [34] for simulated particle tra-
jectories and displacement field densities. (c) The critical frequency
ωmax plotted as a function of the trap stiffness κ favorably agrees with
the rough estimate given by Eq. (12).

This rough estimate qualitatively predicts the critical fre-
quency ωmax over a range of trap stiffnesses κ and quanti-
tatively up to a relative error of about 5% above the exact
calculation [Fig. 4(c)].

The enhanced dispersion can also be rationalized by plot-
ting the two-dimensional isocontours of the displacement
field density dx with and without convection [see Figs. 4(a)
and 4(b), bottom, and Supplemental Material Movie S7 [34]].
Under quiescent conditions, the dx field is strongly localized
to the center of the potential well and admits a dipolar pro-
file. Oscillation convects the dx field to the edge of the trap,
where the potential-energy gradient ∂V/∂x is maximized.
Larger trapping forces are, therefore, weighted more heavily
in the force-displacement dyad 〈dx(∂V/∂x)〉 that appears in
the xx component of Eq. (7). This argument directly explains
the maximum diffusivity Dxx,max observed at the critical fre-
quency ωmax.

The fact that dispersion along the convection axis increases
significantly with increasing trap stiffness may be counterin-
tuitive, given that strong harmonic traps reduce the particle
diffusivity under quiescent conditions. A useful analogy is
the classical Taylor-Aris dispersion of a tracer in a pressure-
driven fluid flow [43,44], in which smaller tracer diffusivities
generate stronger dispersion along the convection axis due
to the coupling between longitudinal convection and trans-
verse diffusion. This effect becomes more pronounced with
increasing convection strength. In our system, the strongest
dispersion occurs when convection, diffusion, and potential-
energy gradients are all in play and on equal footing. If the
traps are too stiff, then the particles remain confined to their
wells at the mercy of thermal forces; too strong a convective
velocity, and the particles are swept past the wells and only
sense transverse gradients in the potential-energy landscape.
The “optimal” rate of convection, for a given trap stiff-
ness, oscillation amplitude, and particle size, is satisfactorily
predicted by Eq. (12).

IV. CONCLUSIONS

We have measured and predicted the effective diffusivity
of individual colloidal particles moving through a 2D os-
cillating array of harmonic traps in order to elucidate the
influence of trapping strength and oscillation frequency. Our
results revealed several distinct regimes of dispersion. Under
soft trapping (i.e., weak potentials compared to kT ), particles
undergo random walks with a diffusivity given by Eq. (8).
Stiff (but stationary) traps leading to trapping-and-hopping
kinematics with Kramers-like diffusivity are given by Eq. (9).
Rapid oscillation of the traps enhances diffusion parallel and
perpendicular to the convection axis relative to a station-
ary system of equal trapping strength. The high-frequency
diffusivity is given by Eq. (11) as though the particles experi-
ence an effective, 1D potential in the perpendicular direction
[Eq. (10)]. Finally, we showed that the maximum diffusiv-
ity in the parallel direction occurs by a facilitated hopping
or slingshotting mechanism, whereby oscillatory convection
of particles up steep potential-energy gradients facilitates
their escape. A scaling relation for the critical frequency
at which parallel diffusion is maximally enhanced is given
by Eq. (12).

Our study focused on dispersion through a 2D array of har-
monic traps as a simple and tractable model for a corrugated
potential-energy landscape. However, it is straightforward to
draw connections to other physical systems where trapping
physics and nontrivial dispersive phenomena may emerge. Ex-
amples include stick-slip diffusion and Lévy flights [45,46],
active or directed motion through convection rolls [47–49],
and caging in concentrated suspensions [50,51].

We end this article by providing several areas for future
investigation. First, one can easily adapt our experimental
system to generate other forms of time-dependent trap motion.
This study focused on 1D synchronous, sinusoidal motion
for simplicity; asynchronous or anharmonic kinematics will
likely give rise to different couplings with the potential-energy
field produced by the traps. This, in turn, could either en-
hance or hinder dispersion and merits further study. Second,
in addition to changing the convective forcing, one could
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investigate colloids with different packing densities and sur-
face chemistries to understand how dynamic external fields
impact multibody interactions (including hydrodynamic in-
teractions) and macroscopic suspension properties. Finally,
the use of self-propelled colloids would generate further
couplings with the dynamic potential landscape, producing
nontrivial effects that could be relevant to the field of active
matter.
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I. EXPERIMENTAL METHODOLOGY

A. Preparation of lipid-coated particles

Fluorescently labeled, lipid-coated particles were created by coating silica micro-beads with a supported lipid
bilayer (SLB) containing a minority fraction of fluorescently tagged lipid. 1,2-dioleoyl-sn-glycero-3-phos-phocholine
(DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) were purchased from Avanti Polar Lipids. Atto
647-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE-Atto 647) was purchased from ATTO-TEC GmbH. Silica
microspheres (diameter 2.5 µm; catalog code: SS05000) were purchased from Bangs Laboratories. Small unilamellar
vesicles (SUVs) were formed using an established sonication method [1]. In brief, a lipid film containing DOPC, 5%
DOPS, and 0.5% DOPE-Atto 647 was dried under nitrogen and then under vacuum for 30 minutes. The film was
rehydrated in Milli-Q (MQ) water to 0.2 mg/mL lipids, sonicated at low power using a tip sonicator (Branson SFX250
Sonifier) at 20% of maximum, 1 s/2 s on/off, for three minutes. MOPS buffer was added at a final concentration of
50 mM MOPS, pH 7.4, 100 mM NaCl to the resulting SUV mixture.

Silica microspheres were cleaned using a 3:2 mixture of sulfuric acid:hydrogen peroxide (Piranha) for 30 minutes in
a bath sonicator, spun at 1000 g, and washed 3 times before being resuspended in MQ water. To form SLBs on the
beads, 50 µL of SUV solution was mixed with 10 µL of the cleaned bead suspension. The bead/SUV mixture was
incubated for 15 minutes at room temperature while allowing the beads to sediment to the bottom of the centrifuge
tube. Beads were washed 5 times with MQ water by gently adding/removing the liquid without resuspending the
beads into solution. The fluidity of the SLB was verified by imaging beads on a glass coverslip at high laser intensity,
where the diffusion of labeled lipids was visible after photo-bleaching a small region. Lipid-coated beads were deposited
into a chamber containing MQ water and sealed off to eliminate drift. The beads settled down to the bottom of the
chamber and all experiments were conducted in 2D.
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B. Optical tweezer setup and calibration

An array of moving harmonic traps was generated using optical tweezers (Tweez 305, Aresis Ltd; Ljubljana, Slove-
nia), using an IR laser (1064 nm) with a maximum power of 5 W continuous wave (CW). We selected a trap-to-trap
switching rate of 100 kHz to ensure that the particles will effectively feel a continuous harmonic potential. We used
a 16 × 16 array of traps, which results in ≈ 2.5 ms time delay to illuminate all trap positions. This time delay is
significantly smaller than the Brownian and oscillatory convection timescales in our system, ensuring that the particles
experience a continuous harmonic potential. A custom MATLAB script was written to construct a time trajectory of
oscillatory trap positions for each cell lattice position and incorporated into the tweezer software. The trap focus was
adjusted to the mid-plane of the colloids sitting above the substrate. Laser powers were adjusted from 0.05-0.5 W to
vary the trap stiffness from κ = 0.5-6 kT/µm2.

The trap stiffness κ was calibrated by measuring the equilibrium probability distribution of the particles in a
stationary array of traps. For each laser power, κ was obtained by binning particles by their radial position r from the
center of the trap and fitting the binned data to a Boltzmann distribution, P (r) = (κ/2π)e−κr

2/(2kT ). An example
of a distribution and fit is shown in Fig. 1. We verified that there are no variations in trip stiffness between different
lattice positions in the array.

FIG. 1. Measurement of trap stiffness κ from the equilibrium probability distribution of particles diffusing in a harmonic well
generated by optical tweezers. Data are fit to a Boltzmann distribution to obtain κ (κ = 4 kT/µm2 in the case shown). This
measurement was averaged over all 16 × 16 trap positions in the lattice array and repeated for every laser power used in this
study.

The trap width Wtrap was determined from a separate set of experiments. Two traps were placed side-by-side with
center-to-center separation distance W . The first trap, containing a trapped particle, was held fixed while the position
of the second trap was varied; the average position 〈xi(t)〉 of the particle was measured as a function of the separation
distance W (Fig. 2). When the second trap is placed far away, no interference is observed on the average position of
the particle. However, as the second trap is moved closer, W < 3 µm for a particle of radius a = 1.25 µm, the average
position drifts towards the second trap. We found that the average particle position remains approximately constant
within the range of separation distances of W = 3-3.5 µm, giving an approximate trap width Wtrap ≈ 3.2 µm.

C. Measurement of diffusivity

The long-time self diffusivity was determined by particle tracking. All imaging was carried out on an inverted
Nikon Ti2-Eclipse microscope (Nikon Instruments) using a water-immersion objective (Plan Apochromat VC 60x,
numerical aperture 1.2, water). Lumencor SpectraX Multi-Line LED Light Source was used for excitation (Lumencor,
Inc). Fluorescent light was spectrally filtered with an emission filter (680/42; Semrock, IDEX Health and Science)
and imaged on a Photometrics Prime 95 CMOS Camera (Teledyne Photometrics). In order to achieve satisfactory
long-time statistics, particle trajectories were measured for times much larger than all other timescales in the system
(including the diffusive timescale γL2/kT , oscillation period 2π/ω, and trapping timescale γ/κ). A modified MATLAB
script, based on the IDL code by Crocker and Grier [2–4], was used to track the individual particles by identifying each
particle center and tracking its trajectory over time using an image stack with one frame taken every 1-2 s. Particles
that were immobile (due to defects) were filtered out so as not to be considered during image post-processing.
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FIG. 2. Measurement of trap width Wtrap. A second trap was placed at varying separation distances from the first trap
containing a trapped bead. We measured the time-averaged position of the trapped bead, 〈xi(t)〉, for varying separation
distances at fixed trap stiffness. We found that the average position is pulled towards the second trap at distances W < 3 µm
and is approximately constant in the range W = 3-3.5 µm. This gives an average trap width Wtrap ≈ 3.2 µm.

The average diffusivity tensor is classically defined in terms of the long-time derivative of the mean squared dis-
placements (MSD) of the particles:

D = lim
t→∞

1

2

d

dt
〈∆R(t)∆R(t)〉, (1)

where R denotes the global position vector [related to the local position vector r by Eq. (6), below] and the angle
brackets 〈 · 〉 denote an ensemble average (not to be confused with the cell average defined in the main text). The
MSD tensor over a time interval t is computed from the formula,

〈∆R(t)∆R(t)〉 =
1

Np

Np∑
i=1

lim
τ→∞

1

τ − t

∫ τ−t

0

[Ri(s+ t)−Ri(s)] [Ri(s+ t)−Ri(s)] ds, (2)

where Ri(t) denotes the global position of the ith particle at time t. In Eq. (2), the squared displacement of a particle
with index i is first averaged over all time windows of duration t within the interval τ of the particle’s trajectory.
This “time average” for each ith particle, evaluated in the limit as τ →∞, is subsequently averaged over all particles
i = 1, 2, . . . , Np to approximate the ensemble average of all squared displacements with satisfactory statistics. At
long times, the MSD tensor 〈∆R(t)∆R(t)〉 oscillates with fixed amplitude about a steady, linear growth. Thus, the
long-time derivative of the MSD can be measured by simply dividing by time, leading to the relation,

D = lim
t→∞

1

2t
〈∆R(t)∆R(t)〉. (3)

Equation (3) was used to measure the diffusivity from the measured particle trajectories (see Fig. 3). Trajectories
were averaged over a sufficiently long time interval τ to ensure linear growth, and the time integral in Eq. (2) was
discretized using the left Riemann sum. Statiscal errors in the MSD were calculated using a bootstrap algorithm [5].

The particle resistivity γ used in all theoretical calculations was calibrated by measuring the Stokes-Einstein-
Sutherland diffusivity D0 = kT/γ ≈ 0.105 µm2/s of particles diffusing in the absence of a harmonic potential. For
a spherical particle of radius a in a fluid of viscosity η, the particle resistivity is given by γ = 6πηaKD, where
KD is a drag-correction factor to account for the hydrodynamic interaction with a nearby wall (in our case, the
substrate floor). For our system with a = 1.25 µm and η = 1 cP, we estimate the drag-correction factor to be
KD = kT/(6πηaD0) ≈ 1.63, corresponding to a particle-to-wall spacing of about 0.5 µm according to Faxén’s formula
[6]. This gives a particle resistivity of γ ≈ 9.49 kT · s/µm2.
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FIG. 3. Representative mean squared displacements 〈∆x(t)∆x(t)〉/(2t) (black symbols) and 〈∆y(t)∆y(t)〉/(2t) (blue symbols)
measured using Eq. (2) for Brownian particles diffusing through an oscillating array of harmonic traps. Diffusivities reported
in the main text were computed from the long-time plateaus of these curves, using Eq. (3). Statistical errors were calculated
using the bootstrap algorithm [5] over the entire observation time window.

II. TAYLOR-DISPERSION THEORY

A. Derivation of Eqs. (3)-(5): governing equations for the probability density and displacement

The starting point for deriving the basic equations in the main text is the single-particle Smoluchowski equation,

∂P (R, t)

∂t
= −∇R · J(R, t), (4)

where P (R, t) is the probability density of finding a Brownian particle at a global position R and time t and

J(R, t) = u(t)P − 1

γ
[kT∇RP + P∇RV (R)] (5)

is the probability flux. The spatial periodicity of the potential-energy field allows us to convert the “global” position
R to the “local” position r via the transformation,

R = nL+ r, (6)

where n contains the lattice indices of a given periodic cell. In terms of lattice and local coordinates, V (R) ≡ V (r),
P (R, t) ≡ Pn(r, t), and J(R, t) ≡ Jn(r, t).

In the following, we employ the “flux-averaging” approach of Brady and coworkers [7–12]. First, we define the
continuous wavevector k and apply the discrete Fourier transform ˆ( · ) ≡

∑
n( · )eik·nL to Eqs. (4)-(5), obtaining

∂P̂ (k, r, t)

∂t
= −(ik + ∇r) · Ĵ(k, r, t), (7)

Ĵ(k, r, t) = u(t)P̂ − 1

γ
[kT (ik + ∇r)P̂ + P̂∇rV (r)]. (8)

Next, we spatially average Eqs. (7)-(8) over one periodic cell according to 〈 · 〉 ≡ L−2
∫
L2( · ) dr, apply the divergence

theorem, and invoke periodic boundary conditions to obtain the continuity equation,

∂ρ̂(k, t)

∂t
= −ik · 〈Ĵ〉 (k, t), (9)
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〈Ĵ〉 (k, t) = u(t)ρ̂− 1

γ
[kT ikρ̂+ 〈P̂∇rV 〉], (10)

where ρ̂(k, t) ≡ 〈P̂ 〉 (k, t) is the Fourier-transformed number density. Eqs. (9)-(10) represent the macroscopic transport
equations for the periodic lattice.

Next, we define the structure function Ĝ(k, r, t) as

P̂ (k, r, t) = ρ̂(k, t)Ĝ(k, r, t). (11)

Multiplying Eq. (9) by Ĝ, subtracting from Eq. (7), and dividing through by ρ̂ then gives

∂Ĝ(k, r, t)

∂t
= −ρ̂−1[ik · (Ĵ − 〈Ĵ〉 Ĝ) + ∇r · Ĵ ]

= −u(t) ·∇rĜ+
kT

γ
∇2

rĜ+
1

γ
∇r · [Ĝ∇rV (r)] + ik ·

(
2kT

γ
∇rĜ+

1

γ
[Ĝ∇rV (r)− 〈Ĝ∇rV 〉 Ĝ]

)
, (12)

where in the last line we have substituted Eqs. (8), (10), and (11). Taylor-expanding Ĝ about k = 0,

Ĝ(k, r, t) = g(r, t) + ik · d(r, t) + · · · , (13)

substituting the expansion into Eq. (12), and collecting terms of like order in ik yields the ordered set of equations,

∂g(r, t)

∂t
+ u(t) ·∇rg −

kT

γ
∇2

rg −
1

γ
∇r · [g∇rV (r)] = 0, (14)

∂d(r, t)

∂t
+ u(t) ·∇rd−

kT

γ
∇2

rd−
1

γ
∇r · [d∇rV (r)]† =

2kT

γ
∇rg +

1

γ
[g∇rV (r)− 〈g∇rV 〉 g]. (15)

The last two equations are exactly Eqs. (3) and (5) from the main text. Conservation of probability requires the g-
and d-fields to satisfy periodic boundary conditions as well as the normalization conditions 〈g〉 = 1 and 〈d〉 = 0.

B. Derivation of Eqs. (6)-(7): effective drift velocity and diffusivity

The effective drift velocity U(t) and diffusivity D(t) of the Brownian particle are related to the Fourier-transformed,
average flux 〈Ĵ〉 via the large-wavelength expansion,

〈Ĵ〉 (k, t) = ρ̂ [U(t)− ik ·D(t) + · · · ] . (16)

In order to derive expressions for U and D, we insert Eqs. (11) and (13) into (10), obtaining

〈Ĵ〉 (k, t) = ρ̂

(
u(t)− 1

γ
[kT ik + 〈Ĝ∇rV 〉]

)
= ρ̂

[
u(t)− 1

γ
〈g∇rV 〉 − ik ·

(
kT

γ
I +

1

γ
〈d∇rV 〉

)
+ · · ·

]
. (17)

Equating terms of like order in ik in Eqs. (16) and (17) furnishes the expressions,

U(t) = u(t)− 1

γ
〈g∇rV 〉 (t), (18)

D(t) =
kT

γ
I +

1

γ
〈d∇rV 〉 (t), (19)

which are exactly Eqs. (6) - (7) in the main text.



6

III. NUMERICAL METHOD

Eqs. (3) and (5) were solved using the finite-element method in COMSOL Multiphysics R© (Version 5.5) with the
“Coefficient Form PDE” physics interface. An L × L square cell was set up and discretized into triangular elements
(Fig. 4). Periodic boundary conditions were applied to the g- and d-fields at the edges of the cell. Studies were
run using both time-dependent (u 6= 0) and stationary (u = 0) solvers. For the time-dependent studies, the g- and
d-fields were initialized to uniform values 1 and 0, respectively, and time-advanced using the backward differentiation
formula with a timestep ∆t = 0.001(2π/ω) until a periodic steady state was achieved. The number of periods needed
to reach steady state generally increased with the oscillation frequency. For the stationary studies, the equations were
solved iteratively using Newton’s method and the normalization conditions 〈g〉 = 1 and 〈d〉 = 0 were implemented
as weak-form constraints. Upon solving for the g- and d-fields, Eqs. (6) and (7) were evaluated using a fourth-order
domain integration method and (in the time-dependent studies) subsequently time-averaged over the final oscillation
period.

FIG. 4. Triangular meshes used for the finite-element calculations. Meshes containing (a) 1132 elements (for the time-dependent
studies) and (b) 29,018 elements (for the stationary studies) were used. Coarser meshes were used in the time-dependent
calculations to save computational time.

IV. ASYMPTOTIC LIMITS

A. Derivation of Eq. (8): stationary traps with shallow potential wells

If the harmonic traps held in a fixed configuration, u = 0 and the g- and d-fields achieve a steady state. Equations
(3) and (5) then simplify to

kT∇2
rg(r) + ∇r · [g(r)∇rV (r)] = 0, (20)

kT∇2
rd(r) + ∇r · [d(r)∇rV (r)]† = −2kT∇rg − g∇rV + 〈g∇rV 〉 g. (21)

Eq. (20) may be solved subject to the constraint 〈g〉 = 1 to get the Boltzmann distribution,

g(r) =
e−V (r)/kT

〈e−V/kT 〉
. (22)

The governing equation for the d-field, Eq. (21), then simplifies to

kT∇2
rd + ∇r · (d∇rV )† = −kT∇rg. (23)
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Eq. (23) cannot be solved analytically in general. However, for “shallow” potential wells, ∆V � kT , we may
Taylor-expand Eq. (22) as

g = 1− V − 〈V 〉
kT

+
V 2 − 〈V 2〉 − 2 〈V 〉 (V − 〈V 〉)

2(kT )2
+ · · · , (24)

so that Eq. (23) becomes

kT∇2
rd + ∇r · (d∇rV )† =

(
1− V − 〈V 〉

kT
+ · · ·

)
∇rV. (25)

To solve Eq. (25), we expand the d-field in a perturbation series,

d(r) = d(0)(r) + d(1)(r) + · · · , (26)

where d(0) = O(∆V/kT ), d(1) = O[∆V 2/(kT )2], and so on. Inserting Eq. (26) into (25) and collecting terms of like
order in ∆V/kT yields the ordered set of equations,

kT∇2
rd

(0) = ∇rV, (27)

kT∇2
rd

(1) = −∇r · (d(0)∇rV )† − V − 〈V 〉
kT

∇rV, (28)

subject to the constraints 〈d(0)〉 = 0, 〈d(1)〉 = 0, etc. Since V and d are spatially periodic, Eqs. (27)-(28) may be
sequentially solved by means of Fourier series:

d(0)(r) = − 1

kT

∑
q 6=0

iq

q2
Vqeiq·r, (29)

d(1)(r) =
1

2(kT )2

∑
q 6=0

∑
q′ 6=0

(
iq

q2
+

2iq · (q − q′)q′

q2q′2

)
Vq−q′Vq′eiq·r, (30)

where q is the discrete wavevector and Vq ≡ L−2
∫
L2 [V (r)− 〈V 〉]e−iq·r dr denotes the Fourier integral of V .

By use of Eqs. (7) and (26), the effective diffusivity of the Brownian particle is given by

D =
kT

γ
I +

1

γ
〈d∇rV 〉

=
kT

γ
I +

1

γ
〈d(0)∇rV 〉+

1

γ
〈d(1)∇rV 〉+ · · · . (31)

Multiplying Eqs. (29) by ∇rV =
∑

q 6=0 iqVqeiq·r and averaging over an L×L cell yields the force-displacement dyads,

〈d(0)∇rV 〉 = − 1

kT

∑
q 6=0

qq

q2
|Vq|2, (32)

〈d(1)∇rV 〉 =
1

2(kT )2

∑
q 6=0

∑
q′ 6=0

(
qq

q2
+

2q · (q − q′)q′q

q2q′2

)
Vq−q′Vq′V−q, (33)

where |Vq|2 ≡ VqV−q. Thus, the diffusivity tensor D admits the Fourier-series representation,

D =
kT

γ

I − 1

(kT )2

∑
q 6=0

qq

q2
|Vq|2 +

1

2(kT )3

∑
q 6=0

∑
q′ 6=0

(
qq

q2
+

2q · (q − q′)q′q

q2q′2

)
Vq−q′Vq′V−q + · · ·

 . (34)

An alternative expression for D can be obtained by writing leading-order displacement field as the negative gradient
of a potential,

d(0)(r) = − 1

kT
∇rΦ(r), (35)
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where Φ(r) satisfies the Poisson equation,

∇2
rΦ(r) = −[V (r)− 〈V 〉], (36)

subject to the closure 〈Φ〉 = 0. The Fourier-series solution of Eq. (36) is

Φ(r) =
∑
q 6=0

q−2Vqeiq·r. (37)

By use of Eqs. (29), (33), and the convolution theorem, it can be shown that

〈d(1)∇rV 〉 =
1

2kT
〈(V − 〈V 〉)2∇rd

(0)〉+ 〈(∇rd
(0) ·∇rV )d(0)〉 . (38)

Then, by Eqs. (32), (35), (37), and (38), it follows that

〈d(0)∇rV 〉 = − 1

kT
〈∇rΦ∇rV 〉 , (39)

〈d(1)∇rV 〉 =
1

2(kT )2

[
−〈(V − 〈V 〉)2∇r∇rΦ〉+ 2 〈(∇r∇rΦ ·∇rV )∇rΦ〉

]
. (40)

Substituting Eqs. (39)-(40) into (31) then gives the alternative representation,

D =
kT

γ

(
I − 1

(kT )2
〈∇rΦ∇rV 〉+

1

2(kT )3

[
−〈(V − 〈V 〉)2∇r∇rΦ〉+ 2 〈(∇r∇rΦ ·∇rV )∇rΦ〉

]
+ · · ·

)
. (41)

Since V (r) is isotropic, only the trace of the steady diffusivity tensor need be computed: D ≡ 1
2D : I . Using

Eq. (31), the scalar diffusivity D is given by

D =
kT

γ
+

1

2γ
〈d(0) ·∇rV 〉+

1

2γ
〈d(1) ·∇rV 〉+ · · · . (42)

Taking the trace of Eqs. (39)-(40), integrating by parts, and applying Eq. (36) then gives

〈d(0) ·∇rV 〉 = − 1

kT
〈∇rΦ ·∇rV 〉

= − 1

kT
〈(V − 〈V 〉)2〉 , (43)

〈d(1) ·∇rV 〉 =
1

2(kT )2

[
−〈(V − 〈V 〉)2∇2

rΦ〉+ 2 〈(∇r∇rΦ ·∇rV ) ·∇rΦ〉
]

=
1

2(kT )2

[
〈(V − 〈V 〉)3〉+ 〈∇r(|∇rΦ|2) ·∇rV 〉

]
. (44)

Inserting Eqs. (43)-(44) into (45) then gives

D =
kT

γ

(
1− 1

2(kT )2
〈(V − 〈V 〉)2〉+

1

4(kT )3

[
〈(V − 〈V 〉)3〉+ 〈∇r(|∇rΦ|2) ·∇rV 〉

]
+ · · ·

)
. (45)

The last expression is exactly Eq. (8) from the main text.

B. Derivation of Eq. (9): stationary traps with deep potential wells

For stationary, “deep” potential wells, ∆V � kT , the small-potential perturbation series (26) fails to converge.
Unfortunately, no exact analytical solution of Eq. (23) is readily available. However, one can take advantage of the
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fact that, for deep potential wells, the probability density is strongly localized near the origin r = 0 of the lattice cell
where the potential-energy field V (r) is minimized. Then, a useful approximation of the d-field is

d(r) ≈ −rg(r)

= −re−V (r)/kT

〈e−V/kT 〉
. (46)

Eq. (46) is the particular solution of Eq. (23) and conserves probability, 〈d〉 = 0. However, this particular solution
clearly violates the periodic boundary conditions at the edges of the lattice cell x = ±L/2, y = ±L/2, incurring
an error of O(Le−∆V/kT / 〈e−V/kT 〉) that decreases in magnitude with increasing trap stiffness. Fig. 5 compares
the approximation, Eq. (46), against the “exact” numerical solution for the displacement field, showing very good
agreement. The slight error in the approximation is due to the neglect of the homogeneous solution of Eq. (23), which
is complicated by the 2D potential-energy field given by Eq. (1). It will be shown that the error in this approximation
for the d-field quantitatively (though not qualitatively) impacts the prediction for the effective diffusivity.

FIG. 5. Comparison of numerical solution for the steady displacement field density dx(x, y) against the particular solution
[see Eq. (46)] for a stiff trap, κ = 5 kT/µm2. (a) 2D contour plot of dx with line traces at four distinct values of y. (b) Plot of
dx against x for each line trace shows favorable agreement to Eq. (46).

Using Eq. (1) for V (r) and Eq. (46) for d(r), the force-displacement dyad that appears in Eq. (8) can now be
approximated as

〈d∇rV 〉 ≈ −
1

κ

〈e−V/kT∇rV∇rV 〉
〈e−V/kT 〉

, (47)

where we’ve used the fact that ∇rV = κr for r ≤ 1
2Wtrap and = 0 otherwise. Defining the well depth as ∆V =

1
8κW

2
trap, the cell averages in Eq. (47) become

〈e−V/kT 〉 =
2πkT

κL2

(
1− e−∆V/kT

)
+

(
1− 2π∆V

κL2

)
e−∆V/kT , (48)

〈e−V/kT∇rV∇rV 〉 =
2π(kT )2

L2

[
1−

(
1 +

∆V

kT

)
e−∆V/kT

]
I . (49)

Substitution into Eq. (47) then gives, upon simplification,

〈d∇rV 〉 ≈ kT

{
−1 +

[
1 +

2πkT

κL2

(
e∆V/kT − ∆V

kT
− 1

)]−1
}

I

≈
(
−kT +

κL2

2π
e−∆V/kT

)
I for ∆V � kT. (50)



10

Substitution into Eq. (7) and replacing κI by (∇r∇rV )|r=0 then gives the following approximation for the diffusivity
tensor:

D ≈ L2

2πγ
e−∆V/kT (∇r∇rV )|r=0, (51)

or, upon taking one-half the trace,

D ≈ L2

4πγ
e−∆V/kT (∇2

rV )|r=0. (52)

This is exactly the form that would be predicted by Kramers’ theory for the escape of a Brownian particle from a
deep potential well [13–15]. Comparison of Eq. (52) to numerical calculations of D indicates the qualitatively correct
dependence on the trapping strength, but quantitative discrepancies due to errors in the approximation (46) for the
d-field (see Fig. 6). Quantitative agreement can be obtained by renormalizing the above result by a factor that
depends upon the ratio Wtrap/L. Therefore, we write

D ∝ L2

4πγ
e−∆V/kT (∇2

rV )|r=0 (53)

up to a proportionality constant. Eq. (53) is identical to Eq. (9) from the main text. For traps of diameter Wtrap = 3.2
µm spaced a distance L = 6 µm apart, a proportionality constant of 1.5 gives quantitative agreement with the exact
dispersion theory (see Fig. 6).

FIG. 6. Log-linear plot of diffusivity D against trap stiffness κ. The full numerical solution (solid curve) is compared against
Eq. (9) (dashed curves) using two different constants of proportionality. Irrespective of the numerical prefactor, Eq. (9)
demonstrates the appropriate scaling with the trapping strength and is consistent with Kramers’ theory of activated escape.
A proportionality constant of 1.5 gives quantitative agreement with the exact solution for the specific geometry considered in
this study.

C. Derivation of Eq. (11): oscillating traps in the high-frequency limit

In the high-frequency limit, the potential-energy field is cycled in the x-direction at a rate much faster than the
response time of the Brownian particle. A reasonable model for this system is a quasi-steady, uniform convection
in the x-direction, for which we make the ansatz g = g(y) and dy = dy(y) (for the time being, we will ignore the
dx-field). Eqs. (3) and (5) then simplify to

kT
d2g

dy2
+
∂V

∂y

dg

dy
+

(
∂2V

∂x2
+
∂2V

∂y2

)
g = 0, (54)
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kT
d2dy
dy2

+
∂V

∂y

ddy
dy

+

(
∂2V

∂x2
+
∂2V

∂y2

)
dy = −2kT

dg

dy
− g ∂V

∂y
+

〈
g
∂V

∂y

〉
g. (55)

Averaging Eqs. (54)-(55) over the x-direction only and defining the modified potential,

v(y) =
1

L

∫ L/2

−L/2
V (x, y) dx, (56)

then gives

kT
d2g

dy2
+

d

dy

(
g
∂v

∂y

)
= 0, (57)

kT
d2dy
dy2

+
d

dy

(
dy
∂v

∂y

)
= −2kT

dg

dy
− gdv

dy
+

〈
g

dv

dy

〉
g, (58)

where we have applied the conditions V (L/2, y) = V (−L/2, y) and (∂V/∂x)|x=±L/2 = 0. Here, it is understood
that the cell average of a one-dimensional (1D) function f(y) simplifies to a 1D average in the y-direction, 〈f〉 =

L−1
∫ L/2
−L/2 f(y) dy.

Eqs. (57)-(58) are the 1D versions of Eqs. (20)-(21). The solution of Eq. (57) for the g-field, subject to the constraint
〈g〉 = 1, is the 1D analog of Eq. (22):

g(y) =
e−v(y)/kT

〈e−v/kT 〉
. (59)

Eq. (58) then simplifies to

kT
d2dy
dy2

+
d

dy

(
dy
∂v

∂y

)
= −kT dg

dy

=
e−v/kT

〈e−v/kT 〉
dv

dy
, (60)

which is the 1D analog of Eq. (23). Unlike the 2D problem, the 1D problem admits an exact analytical solution:

dy(y) = −yg(y) + c1e−v(y)/kT

∫ y

0

ev(η)/kT dη + c2Le−v(y)/kT

= −ye−v(y)/kT

〈e−v/kT 〉
+ c1e−v(y)/kT

∫ y

0

ev(η)/kT dη + c2Le−v(y)/kT . (61)

The first term on the right-hand side of Eq. (61) is simply the particular solution of Eq. (60); it is the 1D analog
of Eq. (46), which was used to approximate the full solution in the strong-potential limit. The remaining terms in
Eq. (61) are the homogeneous solutions, with constants c1, c2 that must be determined from the periodicity and
normalization conditions,

dy(L/2)− dy(−L/2) = 0, (62a)

〈dy〉 =
1

L

∫ L/2

−L/2
dy(y) dy = 0. (62b)

Inserting Eq. (61) into (62), setting v(L/2) = v(−L/2), and solving for the two unknowns c1 and c2 gives

c1 = 〈e−v/kT 〉
−1
〈ev/kT 〉

−1
, (63a)

c2 =
1

L
〈e−v/kT 〉

−2
(
〈ye−v/kT 〉 − 〈ev/kT 〉

−1
〈

e−v/kT
∫ y

0

ev(η)/kTdη

〉)
. (63b)
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With the solution for dy(y) fully specified, it remains to compute the effective diffusivity along the y-axis. Multi-
plying Eq. (61) by dv/dy, applying the inverse chain rule, and averaging over the y-direction gives〈

dy
dv

dy

〉
= kT

(
〈e−v/kT 〉

−1
〈
y

de−v/kT

dy

〉
− c1

〈
de−v/kT

dy

∫ y

0

ev(η)/kT dη

〉
− c2L

〈
de−v/kT

dy

〉)
. (64)

Inserting Eqs. (63) into (64) and integrating by parts then gives, after some simplification,〈
dy

dv

dy

〉
= kT

(
−1 + 〈e−v/kT 〉

−1
〈ev/kT 〉

−1
)
. (65)

Since dy is independent of x, 〈dy(∂V/∂y)〉 = 〈dy(dv/dy)〉. Thus, the yy component of Eq. (7) simplifies to

Dyy =
kT

γ
+

1

γ

〈
dy

dv

dy

〉
=
kT

γ
〈e−v/kT 〉

−1
〈ev/kT 〉

−1
, (66)

where an overbar is used to denote the long-time average over one periodic cycle. This is the classical result for
diffusion of a Brownian particle in a 1D periodic potential [16, 17].

Up until now, we have neglected the dx-field, which appears in the xx-component of Eq. (7) and, therefore, influences
the effective diffusivity along the x-axis. To a first approximation, we assume that the gradients in the x-direction
have been “smeared out” so that dispersion in that direction is negligible: 〈dx(∂V/∂x)〉 ≈ 0. This approximation
is consistent with a model of dispersion in an effectively 1D potential. Therefore, the xx-component of Eq. (7)
(time-averaged) is simply the Stokes-Einstein-Sutherland diffusivity:

Dxx =
kT

γ
. (67)

Eqs. (66) and (67) are exactly the same as Eq. (11) from the main text.

V. BROWNIAN DYNAMICS SIMULATIONS

The Langevin equation of motion corresponding to Eqs. (4)-(6) is given by

dri(t)

dt
= −u(t)− 1

γ
∇rV [ri(t)] +

√
2kT

γ
Bi(t), i = 1, 2, . . . , Np, (68)

where i is the particle index, Np is the total number of particles in the system, and Bi(t) is a white-noise source with
statistics,

〈Bi(t)〉 = 0, 〈Bi(t)Bi(t
′)〉 = δ(t− t′)I . (69)

[Note that the angle brackets 〈 · 〉 appearing in Eq. (69) denote ensemble averages and are not to be confused with
the cell average defined in the main text.] The potential-energy field V (r) and convective velocity u(t) appearing
in Eq. (68) are given by Eqs. (1) and (2), respectively. Interactions between particles have been neglected, so the
Np equations of motion are uncoupled. For the purpose of numerically time-advancing Eq. (68), it is convenient
to shift to the laboratory frame in which the position of each particle is measured as r̄i(t) = r0(t) + ri(t), where
r0(t) =

∫ t
0
u(τ) dτ = êxA sin (ωt) denotes the time-dependent position of the moving traps. In this frame, Eq. (68)

becomes

dr̄i(t)

dt
= − 1

γ
∇r̄V [r̄i(t)− r0(t)] +

√
2kT

γ
Bi(t), i = 1, 2, . . . , Np. (70)

Here, the convective term has been eliminated and the potential-energy field oscillates in time.
In our Brownian dynamics simulations, we numerically advanced Eq. (70) using the GPU-enabled HOOMD-blue

software package [18]. A system of Np = 10, 000 particles was initialized at random positions within a periodically
replicated L × L cell and advanced for τ = 10, 000 s (2.78 h) using a time step ∆t = 1 ms. Fig. 7 shows that
the simulated probability density shows excellent agreement with the deterministic solution of the corresponding
Smoluchowski equation [Eq. (3)]. The MSD and effective diffusivity of the particles were then computed exactly as
in the experiments using Eqs. (2)-(3), wherein the time integral was discretized using the left Riemann sum.
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FIG. 7. Comparison of the convected probability density g(x, y, t) for a stiff trap near the critical frequency (κ = 5 kT/µm2,
ω/2π = 18.33 mHz) from (a) deterministic solution of the Smoluchowski equation [Eq. (3)] and (b) stochastic simulation of the
Langevin equation [Eq. (68)].

A. Derivation of Eq. (12): convective escape of a Brownian particle from a harmonic well

We wish to estimate the critical oscillation frequency ωmax at which a Brownian particle rattling around the bottom
of a potential-energy well is convected near the edge of the well with ample probability for escape. To make such an
estimate, we start with the Langevin equation, Eq. (68), simplified for a single particle in a harmonic well V (r) = 1

2κr
2:

dr(t)

dt
= −κ

γ
r(t)− u(t) +

√
2kT

γ
B(t). (71)

Eq. (71) may be straightforwardly integrated with the initial condition r(0) = 0 to give the fluctuating particle
position,

r(t) = e−κt/γ
∫ t

0

eκs/γ

(
−u(s) +

√
2kT

γ
B(s)

)
ds. (72)

Substituting Eq. (2) into (72) for the convective velocity then gives, upon integration,

r(t) = −êxA
(

γω/κ

1 + (γω/κ)2

)(
cos (ωt) +

γω

κ
sin (ωt)− e−κt/γ

)
+

√
2kT

γ
e−κt/γ

∫ t

0

eκs/γB(s) ds. (73)

The first term on the right-hand side of Eq. (73) is the deterministic part of the fluctuating particle position, which
is driven by oscillatory convection and attenuated by the trapping force. The second term is the stochastic part due
to Brownian motion. The mean displacement and mean squared displacement of the particle respectively capture
strength of these deterministic and stochastic elements:

〈r(t)〉 = −êxA
(

γω/κ

1 + (γω/κ)2

)(
cos (ωt) +

γω

κ
sin (ωt)− e−κt/γ

)
, (74)

〈(r(t)− 〈r(t)〉)(r(t)− 〈r(t)〉)〉 =
kT

κ

(
1− e−2κt/γ

)
I , (75)

where we have applied the white-noise statistics, Eq. (69), of the fluctuating B-field.
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After waiting a long enough time t� γ/κ, the exponential terms in Eqs. (74)-(75) die off and we are left with an
oscillating particle probability with variance kT/κ given by Eq. (75). The amplitude of these oscillations are found
from the extrema of the particle drift, Eq. (74):

sup
t≥0
|〈r(t)〉| = γωA/κ√

1 + (γω/κ)2
≈ γωA

κ
for

γω

κ
� 1. (76)

Thus, the basin of probability of size ∼
√
kT/κ oscillates with amplitude ∼ γωA/κ about the center of the potential-

energy well. As the frequency ω is increased, the oscillations become more pronounced. The particle is expected to
escape a well of finite width Wtrap when the spatial extent of the particle probability density crosses the edge of the
well, at a critical frequency ωmax:

1
2Wtrap ≈

γωmaxA

κ
+

√
kT

κ
, (77)

or, solving for ωmax,

ωmax ≈
κ

γA

(
1
2Wtrap −

√
kT

κ

)
. (78)

The last expression is exactly Eq. (12) from the main text.

VI. ADDITIONAL DATA

In addition to measuring the effective diffusivity D as a function of the oscillation frequency ω, we also varied the
amplitude A while holding the frequency fixed. The strength of the convective velocity u(t) = êxωA cos (ωt) may be
modified by varying either the amplitude A or the frequency ω. Fig. 8 plots Dxx and Dyy against A for a fixed trap
stiffness κ = 5 kT/µm2 and frequency ω/2π = 18.3 mHz. This frequency corresponds to the critical frequency ωmax
(for which Dxx is maximized) for κ = 5 kT/µm2 and A = 5 µm, as shown in the main text (see Fig. 3). We find that
the Dxx is non-monotonic and achieves a maximum at A = 5 µm. For amplitudes A > 5 µm, the convective motion
is fast compared to the particle response time. Consequently, the particles sample regions outside of the harmonic
well and their average diffusivity along the convection axis is reduced.

FIG. 8. Effective diffusivity as a function of oscillation amplitude at a fixed trap stiffness κ = 5 kT/µm2 and frequency
ω/2π = 18.3 mHz. Like Fig. 3 in the main text, Dxx is non-monotonic and reaches a maximum when the convection strength
balances the harmonic trap strength. At very large amplitudes, the particle cannot quickly respond to the rapidly oscillating
trap and explores regions outside of the harmonic well.
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VII. SUPPLEMENTAL MOVIES

Below, we describe the Supplemental Movies associated with this manuscript. All time stamps corresponds to
hours:minutes:seconds.

S1. Experimental micrographs of silica particles with radius a = 1.25 µm diffusing through a stationary array
of harmonic traps (6×6 grid shown) with varying trap stiffness.

S2. Microscopic Brownian dynamics simulations of a small sample of particles diffusing through a stationary
array of harmonic traps (6×6 grid shown) with varying trap stiffness (same parameters as in S1).

S3. Experimental micrographs of silica particles with radius a = 1.25 µm diffusing through an oscillating array
of stiff traps (6×6 grid shown) with varying oscillation frequency and fixed trap stiffness κ = 5 kT/µm2. The
second part of the movie shows the trajectories of several tagged particles.

S4. Microscopic Brownian dynamics simulations of a small sample of particles diffusing through an oscillating
array of stiff traps (6×6 grid shown) with varying oscillation frequency and fixed trap stiffness κ = 5 kT/µm2

(same parameters as in S3).

S5. Macroscopic Brownian dynamics simulations of 10,000 particles diffusing through a stationary array of
harmonic traps (60×60 grid shown) over long length and time scales, varying the trap stiffness.

S6. Macroscopic Brownian dynamics simulations of 10,000 particles diffusing through an oscillating array of
stiff traps (60×60 grid shown) over long length and time scales, varying the oscillation frequency at a fixed trap
stiffness κ = 5 kT/µm2.

S7. 2D contour plots of the displacement field density dx(x, y, t) in an L×L periodic cell containing an oscillating
harmonic trap, varying the oscillation frequency at a fixed trap stiffness κ = 5 kT/µm2 (same parameters as in
S6). Bottom row plots the long-time average over one periodic cycle.
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