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Cells mediate interactions with the extracellular environment through a crowded assem-
bly of transmembrane proteins, glycoproteins and glycolipids on their plasma mem-
brane. The extent to which surface crowding modulates the biophysical interactions 
of ligands, receptors, and other macromolecules is poorly understood due to the lack 
of methods to quantify surface crowding on native cell membranes. In this work, we 
demonstrate that physical crowding on reconstituted membranes and live cell surfaces 
attenuates the effective binding affinity of macromolecules such as IgG antibodies in a 
surface crowding-dependent manner. We combine experiment and simulation to design 
a crowding sensor based on this principle that provides a quantitative readout of cell sur-
face crowding. Our measurements reveal that surface crowding decreases IgG antibody 
binding by 2 to 20 fold in live cells compared to a bare membrane surface. Our sensors 
show that sialic acid, a negatively charged monosaccharide, contributes disproportion-
ately to red blood cell surface crowding via electrostatic repulsion, despite occupying 
only ~1% of the total cell membrane by mass. We also observe significant differences 
in surface crowding for different cell types and find that expression of single oncogenes 
can both increase and decrease crowding, suggesting that surface crowding may be an 
indicator of both cell type and state. Our high-throughput, single-cell measurement 
of cell surface crowding may be combined with functional assays to enable further 
biophysical dissection of the cell surfaceome.

cell surface crowding | cancer cell biology | glycocalyx | biophysics | plasma membrane

The biophysical organization of proteins, glycoproteins, and glycolipids that densely coat 
the surface of the cell membrane has been shown to govern many important physiological 
processes. Physical crowding on cell surfaces has a connection to cancer malignancy (1–3), 
and the dense glycocalyx on cancer cell surfaces can sterically hinder antibody binding and 
phagocytosis by immune cells (4). Recent studies have shown that the glycocalyx can also 
attenuate the binding of viruses and lectins to cell surface receptors (5–7). Surface crowding 
also alters protein mobility and sorting (8), as well as membrane channel gating (9). 
However, quantitative methods to obtain a detailed, mechanistic understanding of plasma 
membrane density and the biophysical interactions that govern macromolecular binding 
on live cell surfaces are lacking. This leaves basic questions about cell surface crowding 
unanswered, including the extent to which glycosylation contributes, how crowding differs 
among cell types and states, and even how best to quantify crowding in live cells.

While proteomic analysis of cell surface proteins provide detailed information on the 
relative abundance of proteins at the population level (10), it is difficult to predict collective 
biophysical features of cell surfaces simply from knowledge of the surface proteome. Previous 
studies have shown that the physical accessibility of large soluble ligands and macromolecules 
decreases on synthetic surfaces grafted with synthetic polymers or purified proteins (11–14). 
Other studies have developed tools that measure effects of surface crowding, including Houser 
et al. (15), who measured the separation of Förster resonance energy transfer pairs as a func-
tion of the steric interactions within the surface polymers on reconstituted membranes, and 
Son et al. (16), who measured nanometer-scale changes in height of multidomain proteins 
in vitro as surface density increased. While these studies of reconstituted systems provide 
valuable insights, direct quantification of surface crowding on live cell membranes remains 
a challenge. Advanced imaging techniques like electron microscopy enable nanometer-scale 
visualization of the cell membrane (17), but the preparation process is destructive, and 
structural information does not easily translate to a physical understanding of the effects of 
crowding, leaving a need for new tools to study the surfaces of living cells (3).

Here, we report a simple approach to measure surface crowding on live cells. Inspired by 
theoretical work on the adsorption of macromolecules on crowded surfaces (18), we engi-
neered macromolecular probes that insert into bilayer membranes and quantify the repulsive 
penalty posed by crowded cell surfaces by a reduction in effective affinity. We first validated 
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the measurement principle by engineering polymer–cholesterol 
conjugates of varying sizes and measuring their effective binding 
affinity on reconstituted membranes and red blood cell (RBC) mem-
branes. We quantified the reduction in binding affinity as a crowding 
energy using molecular dynamics (MD) simulations and adsorption 
theories. We then engineered a two-component sensor based on the 
binding of a monoclonal anti-biotin antibody to a biotin–fluoro-
phore–cholesterol conjugate that inserts into live cell plasma mem-
branes. By measuring the fraction of antibody bound to the surface 
biotin on individual cells relative to bare model membranes, we 
quantify the effect of cell surface crowding on antibody-binding 
affinity. Our crowding sensors work on cells of different size, shape, 
and membrane lipid compositions, providing a technique to com-
pare surface crowding across different live cell types and states.

Results

Physical Crowding on Membrane Surfaces Reduces the 
Binding Affinity of Soluble Macromolecules. Existing theories 
of adsorption thermodynamics give a direct relationship between 
the dissociation constant of a soluble macromolecule and the free 
energy of the surface, KD = exp(U ∕ (kBT )) (Fig. 1A). Therefore, 
a measurement of the KD on a surface is a reporter of its free 
energy. By measuring the dissociation constants on a crowded 
surface, KD , and a bare surface, K 0

D
 , we can measure the energy 

penalty posed by surface crowding, ΔU = kBT ln (KD ∕K 0
D
) . 

To test whether we could use this principle to read out surface 
crowding, we conducted coarse-grained MD simulations to 
study the binding of macromolecules to a bare surface and to 
a surface decorated with polymers (Fig. 1A). We found that the 
free energy as a function of distance from the surface increases 
in the presence of surface-tethered polymers (Fig. 1B), and the 
deviation of the energy minima is a direct readout of the effective 
dissociation constant, KD (see SI Appendix for further detail). We 
plot all results as a ratio of KD∕K

0
D

 , since the crowding energy is 
given by ΔU = kBT ln (KD ∕K 0

D
) and only relative differences are 

important for surface crowding. As expected, we find that KD∕K
0
D

 
increases as we increase the surface crowding by changing either 
the surface density or the contour length of the crowding polymers 
(Fig. 1C). It is important to note that the contour length of the 
surface polymers has a strong effect on KD , which demonstrates 
that the polymer number density alone is an insufficient metric 
of surface crowding.

Guided by these predictions, we engineered a series of exoge-
nous macromolecular probes with known size and affinity to a 
lipid bilayer by conjugating cholesterol and fluorescent dyes to 
PEG 1k, dextran 10k, and dextran 40k macromolecules 
(Fig. 1D and Materials and Methods). The diameters of these 
probes are approximately 2, 4, and 10 nm based on the radii of 
gyration (19). We hypothesized that the reduced binding affinities 
of these “crowding sensors” to crowded membrane surfaces would 
act as a reporter of the energy penalty posed by surface crowding. 
We first tested the binding of our sensors to a supported lipid 
bilayer (SLB) formed on a glass bead and decorated it with PEG3k 
polymers simulating cell surface crowding. After allowing the sen-
sor binding to reach equilibrium (45 min), we quantified the bead 
fluorescence with a flow cytometer. Using an adsorption isotherm 
to relate the bound sensor concentration to the bulk concentra-
tion, we calculated the effective dissociation constant. We found 
that the KD of the larger dextran 10k and 40k sensors increased 
on the PEG3k surface compared to that on the bare surface, with 
the KD of the dextran 40k sensor increasing by 55% when the 

SLB contained 1% (mol/mol) PEG3k (~15,000/µm2 area density) 
(Fig. 1E), which agrees with our simulation and is consistent with 
previous studies (12). In contrast, the small PEG 0.5k sensor 
experienced no change in KD for the PEG3k surface densities we 
tested (Fig. 1E). We observed no systematic change in the time to 
reach equilibrium on crowded surfaces compared to bare surfaces 
(SI Appendix).

To test the sensors’ ability to read out crowding due to proteins 
rather than synthetic PEG polymers, we then reconstituted SLBs 
with engineered proteins based on repeats of the FNIII domain, 
Fibcon, which has a size of ~4 nm per domain (20). We used 
different lengths based on one (Fib1L), three (Fib3L), or five (Fib5L) 
domain proteins with decahistidine tags that bind to SLBs containing  
1,2-dioleoyl-sn-glycero-3-(N-(5-amino-1-carboxypentyl) 
iminodiacetic acid)succinyl (DGS-Ni-NTA). The KD of the dex-
tran 40k sensor increased by more than 2× on surfaces crowded 
with Fib3L and Fib5L at a density of ~10,000/µm2 relative to a bare 
membrane, whereas the KD increased by only ~20% for Fib1L 
(Fig. 1F). It is important to note that the molecular weight of Fib1L 
(~14 kDa) is 4.6 times larger than PEG3k, yet the crowding strength 
generated by the PEG surface is 25% larger when comparing them 
at the same number density. These results highlight the fact that the 
molecular weight of a surface species is not a proper metric of crowd-
ing, just as number density and height of surface species are insuf-
ficient metrics by themselves. Indeed, “crowding” as it affects the 
affinity of soluble molecules at the cell surface is a collective phe-
nomenon that includes these and other cell surface molecular 
properties.

Our simulations and reconstituted SLB experiments demon-
strate the connection between surface crowding and effective 
binding affinities of large macromolecules. Our simple measure-
ment of KD is a quantitative reporter of surface crowding, regard-
less of the chemical identity of the surface species. The sensitivity 
of our sensors to protein length, molecular weight, and density 
provides a unique approach for studying the biophysical organi-
zation of the cell surface.

Macromolecular Binding at Cell Surfaces Is Osmotically Regulated 
by Sialylation. We next used the crowding sensors to study the effects 
of glycosylation on crowding on both reconstituted membranes and 
live plasma membranes. We reconstituted SLBs decorated with 
purified Glycophorin A (GYPA), a mucin-like transmembrane 
protein with a heavily glycosylated and sialylated extracellular domain 
(21). We found that the effective KD of our dextran 40k sensor 
increased by 2× on the crowded GYPA surface compared to a bare 
membrane (Fig. 2A). When we treated the GYPA-coated beads with 
sialidase from Clostridium perfringens (Clostridium welchii), we found 
that the removal of sialic acid, a negatively charged monosaccharide, 
decreased KD by 40% compared to the untreated GYPA surfaces. 
We hypothesized that the negative charge on sialic acids stiffens and 
stretches the disordered GYPA chain due to intrachain electrostatic 
repulsion, effectively increasing its persistence length and posing 
a larger energetic penalty against sensor binding at the surface. 
Polymer chain stiffening due to electrostatic interactions causes both 
the osmotic pressure and the effective volume of the polyelectrolyte 
surface brush to increase, leading to larger KD (see SI Appendix for 
the relationship between KD , osmotic pressure, and glycocalyx 
volume). GYPA contains 30 sialic acids held in close proximity ( ≈
1 nm) in its 15 O-glycans (21), resulting in a large negative charge 
density along its disordered chain. For end-grafted polymer brushes, 
strong repulsion among the polymer side chains acts to stiffen the 
polymers and increase the overall height of the brush (22). We note 
that interchain interactions would also increase the brush height, 
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but are likely playing a minor role due to screening of charges in 
physiological buffers. The average spacing between grafting sites of 
GYPA chains is ≈ 20 nm at 2,000/µm2 surface density, which is 30× 
larger than the 0.7-nm Debye length in physiological buffers (length 
scale over which charge interactions are screened).

To study the extent of crowding posed by sialylation on live  
cell membranes, we examined human RBC membranes, where 
the average protein compositions and copy numbers are well 

characterized (21, 23). Approximately 23% of the RBC membrane 
surface area is occupied by proteins (24), with GYPA and Band 3 
being two of the bulkiest and most abundant proteins. Given that 
GYPA contains 75% of the total sialic acids on RBCs, and because 
one-third to one-half of sugars on its 15 O-glycans are sialic acids 
(21), we hypothesized that GYPA plays a major role in mediating 
RBC surface crowding. Anionic transporter Band 3 is a multipass 
transmembrane protein with a single extracellular N-glycan with 
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Fig.  1. Macromolecular binding is a 
reporter of surface crowding. (A) Soluble 
macromolecules, like monoclonal anti
bodies, experience a repulsive energy 
penalty when binding to antigen targets 
located on crowded surfaces. Therefore, 
the concentration of surface-bound 
macromolecules is a direct readout 
of the effective dissociation constant 
and the crowding state of the surface. 
(Right) Snapshots of coarse-grained 
molecular dynamics (MD) simulations 
on bare and crowded surfaces. Soluble 
macromolecules (yellow spheres) of size 
�
s
 bind onto a surface functionalized 

with multidomain protein polymers 
(green spheres) with density, n , and 
monomer size, � . (B) MD simulations are 
used to calculate the binding energy of 
soluble macromolecules on bare (black 
symbols) and crowded (red symbols) 
surfaces. The binding affinity of soluble 
macromolecules on crowded surfaces 
( U ) is smaller than that on bare surfaces 
( U

0
 ). The difference, ΔU = U − U

0
 , is 

related to the crowding-induced change 
in the effective dissociation constant, 
K
D
 . Polymer brush theories are used to 

relate the effective dissociation constant 
to surface crowding (solid curves). See 
SI  Appendix for further theoretical and 
computational results. (C) The dissociation 
constant, K

D
 , normalized by the bare-

surface value, K0

D

 , increases monotonically 
with the surface protein density and 
contour length. (D) Experimental design 
of cholesterol-based sensors to measure 
crowding on membranes. Synthetic 
polymers of different molecular weights 
are used to vary the overall size of the 
sensor. The sensors have a strong 
binding affinity to the lipid bilayer, and 
fluorescent labels provide a readout 
of bound surface concentration and 
the effective dissociation constant, K

D
 . 

(E) Normalized dissociation constant, 
K
D
∕K0

D

 , of the small (PEG-0.5k), medium 
(Dex-10k), and large (Dex-40k) sensors 
increases on lipid-coated beads 
functionalized with PEG-3k at varying 
surface densities. K0

D

 is the affinity on bare 
lipid-coated beads. (F) K

D
∕K0

D

 of large Dex-
40k sensors increases on lipid-coated 
beads functionalized with engineered 
proteins of the FNIII domain repeats, 
Fibcon (Fib), which has a size of ~4 nm per 
domain. Fib1L, Fib3L, and Fib5L contain 
1, 3, and 5 domains, respectively. For all 
data, error bars indicate SDs of the mean; 
N > 3.
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Fig. 2. Macromolecular binding on red blood cell (RBC) surfaces is osmotically regulated by sialylation. (A) Normalized dissociation constant of the large Dex-40k 
sensors, K

D
∕K0

D

 , on reconstituted membranes with Glycophorin A (GYPA), a mucin-like glycoprotein found on RBCs. Treatment of the GYPA-bound beads with 
sialidase removes the sialic acids, which deswells the GYPA and increases the surface accessibility for the sensor. Proteinase K (ProK) removes GYPA and the 
affinity is restored to the same value as bare beads. (B) Dissociation constant of large Dex-40k sensors on RBCs, normalized by the affinity on ProK-treated cells, 
K

proK

D

 . Sialidase treatment removes the sialic acids on the RBC surface and decreases K
D
 , consistent with the results on GYPA-bound beads. EDC carbodiimide 

chemistry removes the negative charge on the RBC surface. The K
D
 reduction is the same as that with sialidase treatment, consistent with our hypothesis that 

electrostatic charge repulsion within the glycocalyx reduces the accessibility of the sensors. Note that the affinities are normalized relative to the ProK-treated 
cells, KproK

D

 , which is different from the baseline on bare lipid-coated beads, K0

D

 . (C) Average height of the RBC surface proteins, ⟨h ⟩ , is measured in an untreated 
cell and cells treated with sialidase using the cell surface optical profilometer (CSOP) (16). The reduction in ⟨h ⟩ with sialidase treatment is consistent with the 
deswelling of polyelectrolyte brushes from charge removal. Measurements of RBC surface heights are based on N-terminal labeling of proteins, fluorescein 
5-isothiocyanate (FITC)-conjugated Agaricus bisporus lectin (ABL) targeting the Gal-GalNac disaccharide, FITC-conjugated Erythrina cristagalli lectin (ECL) targeting 
the Gal-GlcNac disaccharide. (D) Average normalized height of multidomain proteins in MD simulations with uncharged (red circles) and charged (cyan and 
magenta circles) protein residues, where h

0
 is the uncharged protein height at dilute densities. Electrostatic interactions among the proteins are modeled by 

a Yukawa potential with different Debye lengths, �−1 . The simulated decrease in surface protein height upon charge removal is consistent with the CSOP data. 
For all data, error bars indicate SDs of the mean; N > 3.D
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poly-LacNac (N-acetyllactosamine) glycans. Given a RBC surface 
area of 150 µm2, we estimate a surface density of 6,700/µm2 for 
Band 3 ( 5 × 105 − 106 copies per cell) and 1,300/µm2 for GYPA 
( 1 × 105 − 3 × 105 per cell) (23, 25).

We found that the KD of the dextran 40k sensor is ~2.5× larger 
on the RBC surface compared to that on RBC surfaces treated 
with broad-spectrum serine protease, proteinase K (ProK) 
(Fig. 2B). We note that ProK treatment leads to only a partial 
digestion of the cell surface proteins, so the relative crowding state 
on the untreated wild-type cells are even larger when compared 
against bare lipid-coated beads (discussed below). To study the role 
of surface charges, we treated RBCs with sialidase and found that 
the KD decreased by 40% compared to the untreated RBC. This 
result may be surprising given that sialic acids occupy only ~1% 
of the total cell membrane by mass on RBCs (26). We observed 
negligible binding of fluorescently labeled Sambucus nigra lectin 
(binds preferentially to sialic acids in α-2,6 linkage) and Maackia 
amurensis lectin II (binds preferentially to sialic acids in α-2,3 
linkage) on sialidase-treated RBC surfaces, verifying the proficient 
removal of sialic acids with sialidase. To verify that negative charge 
removal is the dominant mechanism of decreased KD , we used 
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) chem-
istry to neutralize the negative charges on the carboxylic group of 
sialic acids and other cell surface species (Materials and Methods). 
Consistent with our hypothesis, we found that even a partial neu-
tralization of electrostatic charges reduced KD to a value compa-
rable to the cells treated with sialidase (Fig. 2B). This further 
confirms that surface crowding cannot be described by surface 
density nor the protein molecular mass alone, and it demonstrates 
that surface charge can be a major contributor to crowding.

Because the Debye length is only 0.7 nm in physiological buff-
ers (1), it may be surprising to observe such a strong effect of 
charge interactions. However, neighboring sialic acids on the 
O-glycans of GYPA are of the same order as the Debye length 
based on structural information (27), meaning that intra-chain 
charge interactions are still relevant. We note that the dextran 
sensors themselves contain a few charges due to the Alexa Fluor 
dyes conjugated to the dextran macromolecules, which can change 
the absolute magnitudes of KD and K 0

D
 individually. However, 

only the relative difference between the crowded and bare surfaces 
matters, KD∕K

0
D

 , so the crowding energy is unaffected as long as 
the normalized ratio is constant across different sensor chemistries, 
ΔU = kBT ln (KD ∕K 0

D
) . As a control, we conjugated the dextran 

macromolecules to a charge-neutral 4,4-Difluoro-4-bora-3a, 
4a-diaza-s-indacene (BODIPY) dye, and found that the charges 
on the dye do not impact the binding kinetics nor crowding ener-
gies (SI Appendix). Electrostatic interactions between the sensors 
and the surface sialic acids are likely weak due to the larger sepa-
ration distances and Debye screening between the dilute sensors 
and the sialic acids. We also performed control experiments in 
buffers with pH ranging from 6.0 to 8.0, and we did not observe 
changes to the binding of our dextran-based sensors, indicating 
that our results are not a pH-dependent effect from sialic acid 
removal. Our sensors were also unaffected by lipid-coated beads 
with 0 to 5 mol % of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine, 
a lipid that carries a single negative charge on its head group. 
Lastly, to eliminate the possibility that sialic acid-binding proteins 
are bound to the cell surface and shield the membrane from sensor 
binding, we added exogenous sialic acid monosaccharides into the 
assay buffer to quench the sialic acid-binding proteins; we found 
no change in our results.

To understand the interplay between charge and glycocalyx archi-
tecture, we compared the average thickness of the RBC surface 

proteins on untreated and sialidase-treated RBCs. We used cell 
surface optical profilometry (CSOP) (16) to measure glycocalyx 
thickness by quantifying the height of a fluorophore conjugated to 
the N-terminus of surface proteins and fluorescent lectins attached 
to surface glycans (Fig. 2C). We found that the average heights of 
both proteins and glycans reduced by ~30 to 40% with sialidase 
treatment, consistent with the notion that the polyelectrolyte 
brushes deswell upon charge removal (22, 28). We tested the effects 
of charges in-silico by using MD simulations of surface-tethered 
polyelectrolytes interacting via a screened Coulomb (Yukawa) 
potential with two different electrostatic interaction distances, 1.0 
and 2.0 nm. We found that a surface containing mucin-like glyco-
proteins swells by ~40% at surface polymer densities of ~15,000/
µm2 (Fig. 2D), which is consistent with surface protein densities 
on cell membranes (21, 29). Our simulations support the hypoth-
esis that the glycocalyx maintains a swollen architecture from elec-
trostatic repulsion, and that the charged glycans pose a significant 
energy penalty against ligand binding. The mammalian cell surface 
contains approximately ~105 to 106 sialic acids/µm2, (1, 30, 31) 
which is further elevated in cancers (32, 33), supporting the idea 
that glycosylation can play an important role in modulating mac-
romolecular binding to the cell surface.

Cell Surface Crowding Is Significant and Varies across Different 
Cell Types. Motivated by the unique insights obtained from our 
crowding sensors on human RBCs, we applied them to quantify 
cell surface crowding of other mammalian cells, including tumor 
cells with up-regulated glycosylation and sialylation (1). The affinity 
of our cholesterol-polymer sensors to the cell membrane is in part 
determined by the chemical affinity of the cholesterol tag with the 
lipid membrane. Therefore, differences in the native composition 
of the lipid membrane (particularly cholesterol content) may result 
in differences in the intrinsic affinity measurement that obscure 
the surface crowding contribution. While our dextran sensors 
with adjustable size are useful for comparing different crowding 
conditions within the same cell type, accurate comparisons 
between cell types are not possible due to different lipid membrane 
compositions. To overcome this challenge, we developed a crowding 
sensor that can measure across different cell types regardless of the 
cell size, shape, and lipid composition. The sensor consists of two 
parts—a cholesterol–biotin conjugate that incorporates into the cell 
membrane from solution (biotin anchor), and a fluorescent anti-
biotin IgG antibody (crowding sensor) that measures cell surface 
crowding based on its binding affinity to the biotin anchor. The 
biotin anchor also contains a fluorescein 5-isothiocyanate (FITC) 
fluorophore via thymidine oligonucleotide linker to report its 
surface density on the membrane (5′-FITC-TTTTTT-biotin-
TTT-cholesterol-3′) (Fig.  3A  and Materials and Methods). The 
IgG size (~12 nm) (34, 35) is similar to our 40k dextran sensor 
(~10 nm). Control experiments on biotin-containing SLB beads 
showed a similar ~70% increase in KD of anti-biotin IgG on a 1% 
PEG3k brush compared to a bare surface, indicating that our IgG-
based sensors are as sensitive to steric crowding as the dextran-40 
sensors (SI Appendix). Our crowding sensor allows the simultaneous 
measurement of both the biotin surface density and anti-biotin 
antibody binding at single-cell resolution (Fig. 3B). At a given biotin 
anchor density, Fig. 3B shows that an IgG antibody binds much 
more readily on a bare bead surface compared to a RBC surface.

The FITC intensity on a cell surface is a readout of the saturat-
ing surface concentration of antibody binding, Cmax , which we 
use to plot the normalized bound antibody concentration 
(Fig. 3C). Any variations in cell size and surface area become nor-
malized because the bound FITC and antibody intensity is linearly 
proportional to the cell size (SI Appendix). A readout of Cmax at D
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single-cell resolution enables an accurate measurement of popu-
lation heterogeneities within a cell sample, which cannot be 
accomplished using the dextran sensors. The ratio of the slope of 
the isotherm relative to the slope of the bare bead at small bulk 
antibody concentrations provides a measurement of KD∕K

0
D

 . 
Technically, antibodies have two dissociation constants, KD1 and 
KD2 , corresponding to their bivalent binding. In general, the effec-
tive dissociation constant depends on a combination of two bind-
ing constants, and also the surface antigen concentration (36). 
Fortunately, at small antigen concentrations (less than ~1,400/
µm2), the effective KD depends only on a single binding constant 
and is insensitive to the absolute antigen surface density 
(SI Appendix). At small sensor concentrations, we have verified 
that our results do not depend on the absolute concentration of 
the sensors on the surface.

We next compared dissociation constants for different suspen-
sion and adherent mammalian cells, normalized by the value on 
bare beads, K 0

D
 (Fig. 3D). To prevent internalization of the mac-

romolecules into the cell interior, cells were incubated on ice 
throughout the measurement. We confirmed using confocal 
microscopy that the sensors and antibodies are localized on the 
cell surface and bound homogeneously within the resolution limit 
(SI Appendix). We identified that all mammalian cells tested have 
surfaces that are significantly more crowded than any reconstituted 
bead surface evaluated in Fig. 1 (e.g., KD∕K

0
D
≈ 22 for SKBR 

breast epithelial tumor cells compared to KD∕K
0
D
≤ 2 on bead 

surfaces with PEG3k, Fig. 1E). This highlights the importance of 
using native cell membranes to study the physiological impacts of 

cell surface crowding. As shown in Fig. 3D, we observed large 
variations in crowding across different cell types. For example, 
SKBR cells displayed 2× more crowding compared to MCF10a 
cells, which are nonmalignant breast epithelial cells commonly 
used to model normal breast epithelia behavior. Many mammalian 
cell surfaces contain a large concentration of sialic acids, which 
can locally reduce the pH due to its negative charge (1). Because 
the IgG antibodies are charged macromolecules (unlike our dex-
tran sensors), there may be a pH-dependent binding affinity of 
IgG onto charged surfaces (37–39). If desired, one could use our 
neutral dextran sensors within the same cell type to isolate the 
crowding effects specifically due to charge, as we demonstrated 
with RBCs.

Cell Surface Crowding Is Altered by Surface Protein Overexpression 
and Oncogenic Mutations. After observing significant differences in 
cell surface crowding across different cell types, we asked whether 
changes in protein expression can alter crowding within a single cell 
type. To test if our crowding sensor could resolve such changes, we 
used lentivirus to generate HEK cell lines expressing or overexpressing 
surface proteins of different heights. Our measurements show that 
the surface crowding of cells expressing CD43, signal regulatory 
protein alpha (SIRPɑ), and E-cadherin increased crowding, while 
the crowding of Fib1L-expressing cell remains approximately the 
same (Fig. 4A). Interestingly, SIRPɑ expression increased crowding 
by approximately 2.5× compared to the wild-type (Fig. 4B) and 
cell–cell crowding variability by ~25% (Fig. 4C), whereas CD43 
expression increased crowding by less than a factor of 2× (Fig. 4B) 
and cell–cell crowding variability by ~40% compared to the wild 

0 5,000 10,000 15,000
[biotin anchor] (a.u.)

0

5,000

10,000

15,000

[B
ou

nd
 a

nt
ib

od
y]

 (
a.

u.
)

N
or

m
al

iz
ed

 b
ou

nd
 a

nt
ib

od
y 

(a
.u

.)
Bead
RBC

A

C

B

0 0.1 0.2 0.3 0.4

Bulk antibody concentration (µg/ml)

0

0.5

1

1.5

Bead
RBC

D
K

D
 / 

K
D

0
 

n.s.

n.s.
**

**

F

B

crowding
sensor

(antibody)

biotin 
anchor

anti-biotin
antibody 

merge

biotin 
anchor

RB
C

Ju
rka
t

L1
21
0

He
la

MC
F1
0a

SK
BR

0

5

10

15

20

25

Fig. 3. Cell surface crowding is significant and 
varies across different cell types. (A) Above: 
Schematic of the two-part crowding sensors 
that insert into the lipid bilayer with a biotin 
antigen presented above the membrane. The 
effective affinity of anti-biotin antibody to the 
biotin anchor is used as a reporter of surface 
crowding. Below: Florescence image of a lipid-
coated bead with the FITC-biotin-cholesterol 
construct, anti-biotin antibody, and the merge. 
(Scale bar is 5 µm.) (B) Biotin anchor and the 
anti-biotin antibody bound on individual 
RBCs or beads for a fixed bulk antibody 
concentration, measured with flow cytometry. 
(C) Normalized surface concentration of bound 
antibody [data from panel (B) fitted with a 
linear slope] as a function of bulk antibody 
concentration. The ratio of the slopes at small 
antibody concentrations relative to that of the 
bare bead is used to determine the normalized 
dissociation constant on crowded surfaces, 
K
D
∕K0

D

 . Error bars represent the SD within the 
same sample. (D) Normalized dissociation 
constant of antibody, K

D
∕K0

D

 , on live suspension 
and adherent cells. Results are normalized by 
the binding affinity on bare lipid-coated beads, 
K
0

D

 . To prevent internalization of the sensors 
into the cell interior, cells were incubated 
on ice throughout the measurement. Error 
bars represent the SD of the mean in three 
replicate measurements, except for HeLa and 
SKBR, which were measured twice. P-values are 
calculated based on an ANOVA test and Tukey's 
range test (n.s.: nonsignificant, * < 0.05, ** < 
0.01, *** < 0.001).
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type (Fig. 4C). We note that the crowding variability measured 
in the wild type is ~60% larger than that in beads (Fig. 4C). This 
suggests that expression changes within a cell population can lead 
to both increased mean and variance in crowding. A key advantage 
of our antibody probe is its ability to measure crowding at single-
cell resolution and to obtain a distribution of crowding within a 
cell population. In the results presented prior to this section, we 
have focused on the mean surface crowding over an entire cell 
population. Our results in Fig. 4C demonstrate that the variance 
of the crowding distribution also contains valuable information 
about the heterogeneities within a cell population.

To further examine the extent of surface crowding observed in 
different cell lines, we expressed the same surface proteins with a 
small, 12 residue Spot-tag fused at their N-terminus (16). We 
measured the crowding sensor binding as a function of protein 
expression level by quantifying the protein surface density using 
a fluorescent anti-Spot nanobody (VHH), a small ~2 to 4-nm 
antibody fragment. We found that crowding increased dramati-
cally as a function of protein overexpression level of CD43, 
SIRPɑ, and E-cadherin (Fig. 4D). We binned the cells by protein 
expression level and calculated crowding for each bin, which 
revealed that SIRPɑ increases the crowding the most, followed 
by CD43 and E-cadherin, while for Fib1L, little change was 
observed over 2 orders of magnitude of expression (Fig. 4E). The 
extracellular domains of Fib 1L, SIRPɑ, CD43, and E-cadherin, 
are 89, 317, 204, and 543 amino acids, respectively, underscoring 
that surface crowding is determined not only by protein molecular 
mass but by physical properties such as surface charge and struc-
ture. Taken together, these results demonstrate that changes in a 
single protein expression level can significantly alter the total cell 
surface crowding.

We next tested whether oncogenic transformation alters cell 
surface crowding using the breast epithelial cell line MCF10a, 
expressing the common oncogenes HER2 and KRAS(G12V) 
(40). MCF10a requires growth factors for proliferation but can 
also maintain homeostasis in the absence of growth factors. We 
found that MCF10a cells exhibit similar levels of crowding in 
both proliferating and nonproliferating states (Fig. 4 F and G). 
We measured the effect of the oncogenes and found that 
KRAS-expressing cells decreased crowding by 2× while 
HER2-expressing cells show slightly increased crowding 
(Fig. 4G). Interestingly, the variance of cell surface crowding 
was increased in transformed cells when compared to that of 
EV+, the state of non-malignant growth (Fig. 4 F and H). 
Consistent with this, KRAS(G12V) and HER2 expression in 
MCF10a cells is known to significantly alter the surfaceome as 
well as glycosylation pattern (41). Furthermore, surface protease 
activity also changes in KRAS and HER2 cells, cleaving different 
surface protein groups (42). Our observations suggest that the 
molecular-level changes in transformed cells result in collective 
biophysical changes in their cell surface.

Discussion

Traditional biochemical, genetic, and proteomics approaches excel 
at characterizing the molecular features of membrane proteins 
(29, 43–46). However, these approaches cannot capture the 
multibody biophysical interactions on cell surfaces that give rise 
to crowding. As a result, mechanistic understanding of the bio-
physical interactions that modulate the organization of the cell 
surface glycocalyx has been limited. In this work, we developed 
a simple experimental technique to quantify the impact of cell 
surface protein glycosylation, density, charge, stiffness, and other 

physical properties on macromolecular binding to the plasma 
membrane of live cells.

Our measurements provide a method to quantify the steric 
energy penalty posed by a crowded cell surface. We found that 
these energies correspond to ~0.75 to 3 kBT for the case of IgG 
binding to buried receptors. These results provide a perspective 
on what cell surface “crowding” means and how it might be quan-
tified. The free energy posed by the crowded cell surface arises 
from an osmotic pressure generated by the glycocalyx, given by 
ΔU ≈ ΠV eff  , where Π is the osmotic pressure and V eff  is the 
effective volume occupied by the macromolecule within the gly-
cocalyx (SI Appendix). The free energy may be interpreted as the 
mechanical work to displace a volume V eff  inside a crowded envi-
ronment with pressure Π . All crowding contributions are captured 
by the osmotic pressure, including protein glycosylation, density, 
charge, stiffness, and other physical properties. In SI Appendix, we 
demonstrate using MD simulations that all sensor-binding data 
collapse onto a universal curve described by a “cell surface equation 
of state”. We propose that the osmotic pressure is a universal met-
ric that acts as a quantitative reporter of cell surface crowding, as 
opposed to other proxy metrics like protein molecular weight, 
surface charge, or number density.

Based on our measurements, the cell surface osmotic pressures 
are given by Π=ΔU ∕V eff= kBT ln (KD∕K

0
D
)∕V eff=1−4 kPa,  

based on KD∕K
0
D
≈ 2 − 20 and an IgG that excludes a volume 

based on its size of 10 nm. Note that these absolute pressure values 
are estimates because an accurate value of the sensors’ excluded 
volume in the glycocalyx is unknown. These approximate values 
are consistent with the pressures generated by steric crowding 
interactions between synthetic polymer brushes on membranes, 
which are sufficient to bend the lipid bilayer (47–49). Interestingly, 
the surface osmotic pressures measured by our crowding sensors 
are larger than the stiffness of the cell cytoplasm (~100 Pa), the 
cell cortex (~1 kPa), and the thick glycocalyx of endothelial cells 
(100 to 500 Pa), as measured using atomic force microscopy with 
a large bead tip (50, 51). We anticipate that the 1 to 4 kPa pres-
sures are highly localized just above the membrane surface and 
that these pressures decay rapidly as a function of distance from 
the surface into the bulk fluid. Yet, large soluble ligands, antibod-
ies, viruses, and receptors from opposing cell surfaces that bind 
close to the membrane surface will experience large repulsive pres-
sures. Indeed, we found that the surface crowding can reduce the 
binding affinity of an IgG antibody to a cell surface by 20×.

We end by noting several areas for future investigation. First, we 
focused on crowding measurements at a fixed distance very close 
to the membrane surface. Since the glycocalyx is a fully 
three-dimensional structure, we anticipate that the surface crowding 
is height dependent and a measurement of crowding as a function 
of distance from the membrane may provide further insight into 
spatial organization. Second, our sensors may be used to study 
temporal changes in surface protein expression during different 
stages of the cell cycle, tumor progression, cell senescence, and cell 
differentiation. Third, while we focused on the extracellular side of 
the cell membrane, the cytoskeleton on the interior side plays a key 
role in membrane protein organization, and the interplay between 
cortical actin organization and glycocalyx crowding mediated by 
actin-binding proteins merits further study. Fourth, we envision 
the use of our technique on more complex systems beyond immor-
talized, individual cells grown on artificial surfaces. If appropriate 
contrasting agents and reporter tags can be functionalized on our 
sensors, alternative imaging modalities like ultrasound, X-ray, and 
MRI may allow a quantification of cell surface crowding in complex 
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systems, like deep tissues and organoids. Lastly, despite the advances 
in quantitative transcriptomics and proteomics (29, 43–46), it 
remains unclear whether and how protein copy number on a cell 
surface is regulated under physiological conditions or whether sur-
face crowding is simply an unregulated outcome of protein expres-
sion, glycosylation, and trafficking. Our crowding sensors may be 
used to address these and other topics related to the biophysical 
properties and collective function of the cell surfaceome.

Materials and Methods

Materials. See SI Appendix for a listing of materials and resources used for this 
work.

Protein Purification. Multi-FN3-domain proteins containing C-terminal 10× 
His-tag and N-terminal ybbR-tags were purified as described previously (20). 
Briefly, FN3 proteins were expressed in Rosetta DE3 cells (EMD Millipore), lysed by 
sonication, and purified over a His-Trap HP column (GE Healthcare). The proteins 
were gel-filtered and their size was confirmed via a Superdex 200 column on an 
AKTA Pure system (GE Healthcare).

Microscopy. All imaging was carried out on an inverted Nikon Eclipse Ti micro-
scope (Nikon Instruments) equipped with a Yokogawa CSU-X spinning disk using 
an oil-immersion objective [Apo TIRF 60× and 100×, numerical aperture 1.49, 
oil]. Three solid state lasers were used for excitation: 488 nm, 561 nm, and 640 nm 
(ILE-400 multimode fiber with BCU, Andor Technologies). The laser power at the 
sample plane was less than 1.5 mW for all three channels. Fluorescent light was 
spectrally filtered with emission filters (535/40 m, 610/75, and 665LP, Chroma 
Technology) and imaged on a sCMOS camera (Zyla 4.2, Andor Technologies). For 
CSOP measurements, Z-stack was acquired using a piezo z-stage (nPoint, Inc.).

Synthesis of Crowding Sensors. Cholesterol N-hydroxysuccinimide (NHS) (Nanocs) 
was dissolved in a 1:2 ratio of ethanol and dimethylsulfoxide (DMSO). Amino 10k dex-
tran and 40k dextran (Invitrogen) and Cholesterol-PEG-amine (Creative PEGWorks, 
Inc; 966 g/mol MW) were dissolved in DMSO. Equimolar ratio of NHS-dye (choice of 
AF488, AF555, AF647, or BODIPY), and cholesterol NHS were mixed at a 10:1 molar 
ratio with cholesterol-PEG-amine, 5:1 molar ratio with 10k dextran amino, 20:1 molar 
ratio with 40k dextran amino, and left overnight at 50 °C. Control probes without 
cholesterol conjugation were mixed without cholesterol NHS. To remove unreacted 
NHS reactants, the reaction mixture was processed through a Zeba Spin Desalting 
Column, 7K MWCO (Thermo Scientific). The labeling ratio of cholesterol and dye was 
recorded using a NanoDrop 2000c spectrophotometer (Thermo Scientific).

Small aliquots were stored in −80 °C and used within a few months. Thawed 
sensors were used within the same day. The labeling ratio of the small sensors is 
1 cholesterol/dye, 10k sensor is ~3 cholesterol/dye, and 40k sensor is ~7 choles-
terol/dye. The approximate hydrodynamic diameters of the Chol-PEG-dye, dextran 
10k, and dextran 40k sensors are ~2, 4, and 10 nm, respectively (19). As a control, 
we synthesized dextran sensors without the cholesterol anchors and observed no 
binding to membrane surfaces, verifying that nonspecific interactions between 
the dextran–dye conjugate and the membrane is negligible (SI Appendix).

Preparation of SLB on Glass Beads. Lipid-coated glass beads were created by 
coating glass microbeads with a fluid SLB. Small unilamellar vesicles (SUVs) were 
prepared by rehydrating a lipid sheet composed of 1,2-dioleoyl-sn-glycero-3- 
phosphocholine (DOPC) and other phospholipids with pure deionized water. For SLBs 
involving the attachment of His-tagged purified proteins, DOPC lipids were mixed 
with 7.5% of DGS-Ni-NTA. For SLBs involving the binding of anti-biotin antibody, 
DOPC lipids were mixed with 1% biotinyl cap phosphoethanolamine (PE) and 1% 
of PEG3k PE. After rehydrating for 30 min, the solution was vigorously vortexed, 
sonicated at low power (20% power) using a tip-sonicator (Branson Sonifier), and 
finally filtered through a 0.2-mm filter (Millipore). Stock solutions of SUVs were stored 
at 4C and were used within 48 h to avoid phospholipid oxidization.

Then, 4.07-μm and 6.46-μm glass micro-bead (Bangs labs) slurry (10% sol-
ids) were cleaned using a 3:2 mixture of H2SO4:H2O2 (Piranha) for 30 min in 
a bath sonicator, and were spun down at 1,000 g and washed 3 times before 
being resuspended in pure water. Clean beads were stored in water at room 
temperature and used within 48 h. To form SLBs, 45 μL SUV solution was added 
with 5 μL 10× 3-(N-morpholino)propanesulfonic acid (MOPS) buffer (500 mM 

MOPS pH 7.4, 1 M NaCl) and 10 μL clean bead suspension, and mixed gently. 
The bead/SUV mixture was incubated for 15 min at room temperature while 
allowing the beads to sediment to the bottom of the tube. Beads were washed 5 
times with 4-(2-Hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) buffer 
(50 mM HEPES pH 7.4, 100mM NaCl) by gently adding/removing the buffer 
without resuspending the glass beads into solution.

For experiments involving poly His-tagged purified Fibcon and GYPA proteins, 
200 nM protein was added into the DGS-Ni-NTA lipid-coated bead solution and 
incubated at room temperature for 20 min. Beads were washed 3 times with HEPES 
buffer by gently adding/removing the buffer without resuspending the glass beads 
into solution. For sialidase-treated GYPA beads, the beads were further treated with 
200 mUn/mL sialidase for 30 min at 37 °C. For ProK treated beads, the beads were 
treated with 0.05 mg/mL ProK for 20 min at 37 °C. Beads were washed 3 times with 
HEPES buffer. GYPA proteins were fluorescently labeled with NHS-Alexa Fluor 555, 
and we used confocal microscopy and flow cytometry to verify that the GYPA surface 
density did not change before and after sialidase treatment.

Preparation of RBCs. Becton Dickinson Microtainer contact-activated lancet 
was used to withdraw blood from volunteers. A small amount (10 μL) of blood 
was washed in phosphate-buffered saline (PBS) with 2 mM ethylenediamine-
tetraacetic acid to remove soluble proteins and plasma from whole blood. RBCs 
were stored in PBS solution at 4 °C and used within a day. All procedures followed 
a UC Berkeley IRB approved protocol (CPHS Protocol Number: 2019-08-12454).

To cleave sialic acid from the surface of RBCs, sialidase was used at 50 mUn/
mL in PBS at 37 °C for 2 h. No protease activity was found in our stock sialidase 
(SI Appendix). To digest the RBC surface proteins, ProK was added at 0.05 mg/mL 
in PBS at 37 °C for 1 h. To remove negative charges on carboxylic acid groups on 
RBC surfaces, 1 mM hydrazide-biotin and 30 mM EDC were mixed with untreated 
cells in PBS at room temperature for 3 h. The cell surface was visualized with 
confocal microscopy using fluorescently labeled streptavidin (SI Appendix).

RBC measurements were conducted using the synthetic dextran sensors. The 
small Chol-13xPEG-488 sensor was varied between 0 and 10 nM, the medium 
10k-555 sensor was varied between 0 and 15 nM, and the large 40k-647 sensor 
was varied between 0 and 5 nM.

Flow Cytometry. An Attune NxT Acoustic Focusing Cytometer (ThermoFisher 
Scientific) was used for all flow cytometry experiments. For RBC measurements, 
we added ≈106 RBC into 1 mL of PBS containing appropriate sensors (typically 
≈30 μL stock RBC, containing 10 μL of collected blood in 400 μL of PBS).

Since the crowding energy is given by ΔU = kBT ln (KD ∕K
0
D
) , the impor-

tant quantity is the ratio of the dissociation constants on a crowded and bare 
surface, KD∕K

0
D

 . The absolute magnitudes of KD for our sensors are unimpor-
tant and irrelevant for measuring crowding. We therefore obtain the slope of 
the bound sensor on a crowded surface at small bulk sensor concentrations, 
and normalize this value by the slope on bare lipid-coated beads. This pro-
vides a direct measurement of the relative difference, KD∕K

0
D

 , if the bound 
saturation concentration, Cmax , is equal on the crowded and bare surfaces: 
KD∕K

0
D
= (�∕Cbulk)∕(�

0∕Cbulk) ≈ (C∕Cbulk)∕(C
0∕Cbulk) if Cmax ≈ C0

max
 . To verify 

this approach, we performed a control experiment across larger sensor concentra-
tion to obtain the full isotherm curve and found similar results for the ratio KD∕K

0
D
 . 

In the control experiments, the maximum saturating concentrations of the sensors, 
Cmax , were obtained by incubating the beads and RBCs with 0.5 µM bulk sensor 
concentration. The bound sensor concentrations were normalized by the satura-
tion value to obtain the fractional surface coverage, � = C∕Cmax . The slope at small  
bulk concentrations was used to obtain the dissociation constant. A represent-
ative dataset containing the full isotherm for the dextran 40k sensor is shown 
in SI Appendix.

For our antibody-based crowding measurements, we first incorporated a FITC-
biotin-DNA-cholesterol construct (5′-FITC-TTTTTT-biotin-TTT-cholesterol-3′) into the 
cell membrane. Therefore, the saturating surface concentration, Cmax , is set by 
the total FITC-biotin-DNA-cholesterol inserted into the cell membrane, which we 
measure directly from the FITC intensity. Because we used small concentrations 
of the construct in the cell membrane, there was never an excess of unbound 
antigen at saturating concentrations. As evidence of this statement, we found 
during our experimental design that the FITC signal reduces to zero when adding 
a saturating concentration of anti-FITC antibodies in the bulk, which shows that 
all FITC sites were occupied and quenched due to binding.D
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Since the synthetic crowding sensors and the monoclonal antibodies are flu-
orescently labeled, the intensity units from the flow cytometer report the bound 
sensor concentration. The fractional surface coverage is defined as � = C∕Cmax , 
where C is the surface concentration of the sensor on a given sample averaged 
across ~20,000 events. This fractional surface coverage is plotted as function of 
bulk concentration of the sensor, and the slope at small bulk sensor concentra-
tions gives the dissociation constant. Since only the ratio KD∕K

0
D
 is needed for the 

crowding energy (as opposed to their individual values), we compare the slopes 
of the normalized antibody signal from the flow cytometer (antibody channel 
intensity divided by the FITC channel intensity). We do not need to convert the 
intensity units into real concentration units because the conversion factor would 
normalize out when taking the ratio of the slopes. If absolute magnitudes of 
the individual dissociation constants are needed, fluorescence intensities can 
be converted to surface concentrations using Quantum Molecules of Soluble 
Fluorochrome kits (Bangs labs).

We allowed the measurement probes (dextran and biotin antibody) to reach 
equilibrium on the membrane surfaces for 45 min prior to flow cytometry analysis. 
A representative time trajectory of sensor binding on RBCs is shown in SI Appendix.

In this work, all replicates involving cells indicate biological replicates, in which 
cells were independently grown and measured on different days.

CSOP Height Measurements on RBCs. PBS solution containing unconjugated 
wheat germ agglutinin (WGA) was incubated into an 8-well chambered cover glass 
(Cellvis; catalog number: C8-1.5H-N) to coat the glass with WGA. This helps to immo-
bilize the RBCs when added to the chamber. The chambers were washed and filled 
with 0.25× PBS in Milli-Q water to swell the RBC into a bloated sphere. Our Chol-
13×PEG-488 sensors were added (83 nM) as a membrane reporter. Untreated and 
sialidase-treated RBCs were added to separate wells. We acquired approximately 15 
slices of images straddling the bead equator with a 100-nm step size. Each z-stack 
image contained up to ten beads per field-of-view. It is critical to locate the equator 
in both channels to ensure that accurate offsets are calculated (16). More than 100 
RBCs were acquired and processed in our custom MATLAB script. Cells with visible 
defects, including nonspherical shape, membrane tubule and/or bud formation 
were removed from analysis. In addition, chromatic aberration and other optical 
offsets were subtracted from our signal by taking a baseline calibration measure-
ment on RBC using our membrane sensor pairs Chol-13xPEG-488 at 83 nM and 
Chol-13×PEG-647 at 125 nM. The height of the cell surface proteins is obtained by 
quantifying the difference between the fluorescently labeled height and the aber-
ration offset, ⟨h⟩ = ⟨hmeasured⟩ − ⟨hoffset ⟩.

The N-terminal alpha-amines of RBCs were labeled with DyLight 650-4×PEG 
NHS at 100 μM for 15 min at room temperature in PBS at pH 6.5 (with citric acid). 
NHS reaction at low pH facilitates preferential labeling of the N terminus (aver-
age pKa ≈ 5 − 7 ) as opposed to other aliphatic amines on the protein (average 
pKa ≈ 10.5 ) and phosphoethanolamine lipids ( pKa > 10 ) (52). The reaction mixture 
was washed with PBS to remove excess NHS reagent. Proteinase-K treatment of these 
cells showed that the majority of the label was removed from the RBC surface, ver-
ifying that the NHS reaction predominantly labeled the proteins and not the lipids. 
For sialidase treatment, the cells were treated with 50 mUn/mL for 1 h at 37 °C to 
digest sialic acids from the cell surfaces prior to CSOP measurement. No divalent 
cations (including calcium and magnesium) were added in the measurements, which 
could result in unwanted cross-linking between negative charges in the glycocalyx.

In addition to N-terminal labeling of RBC surface, we also used lectins as a 
readout of cell surface height. For height measurements based on lectins, fluo-
rescein labeled Agaricus bisporus lectin (ABL), and Erythrina cristagalli lectin (ECL) 
were used. ABL binds to galactosyl (beta-1,3) N-acetylgalactosamine (also called 
the Thomsen-Friedenreich antigen, or T disaccharide), which are heavily expressed 
on GYPA proteins on the RBC surface. Unlike peanut agglutinin, which does not 
bind sialylated T antigen, ABL binds either sialylated or asialylated forms, which 
makes them good markers for height measurements. Although we noticed a 30 
to 50% increase in the binding of ABL to sialidase-treated RBCs, we still observed 
a strong signal on the fully sialylated surface and assumed that the spatial dis-
tribution of bound lectins does not change significantly between untreated and 
sialidase-treated RBCs. ECL binds to the disaccharide Gal (β1-4) GlcNAc, called 
LacNAc. Although ECL does not bind to LacNAc terminated with sialic acids, we 
still observed strong binding on RBCs for all conditions. The single N-glycosylation 
on the Band3 protein contains LacNAc, which is abundant on the RBC surface. 
The single complex N-glycan on Band3 is heterogeneous in size, based on the 

variable repeats of poly-LacNAc units (Gal-β1→4 GlcNAc β 1→3). The end of the 
oligosaccharide can be linked to sialic acid, fucose, or left exposed.

Coarse-Grained MD Simulations of Protein Polymers and Sensors. To con-
struct a model of macromolecular transport across cell surface proteins and glyco-
calyx, we performed coarse-grained MD simulations of particle transport within 
semi-flexible polymers diffusing on two-dimensional surfaces. See SI Appendix for 
a detailed explanation of our simulations. Briefly, we model surface proteins using 
a Kremer–Grest bead-spring model (53), with each bead representing a structured 
protein domain or a coarse-grained unit of an intrinsically disordered domain. In this 
work, the membrane does not deform nor fluctuate in the out-of-plane dimension, 
although these effects may be included. Simulations were performed using a graph-
ics processing unit-enabled HOOMD-blue MD package (54). A dilute concentration 
of soluble particles with different sizes were added to model the dynamics of sensor 
binding to the cell surface. The diameters of the Chol-PEG, 10k, and 40k sensors were 
modeled with spheres of diameter 3, 5, and 10 nm, respectively.

Mammalian Cell Culture and Preparation.

•	 HEK293T cells were obtained from University of California, San Francisco (UCSF) 
Cell Culture Facility and grown in Dulbecco’s Modified Eagle Medium (DMEM) 
(Life Technologies) supplemented with 10% heat-inactivated Fetal Bovine Serum 
(FBS) (Life Technologies) and 1% Pen-Strep (Life Technologies), at 37 °C, 5% CO2.

•	 SKBR3 cells were purchased from American Type Culture Collection (ATCC) and 
grown in McCoy’s 5A (ATCC) supplemented with 10% FBS and 1% Pen-Strep.

•	 Jurkat and L1210 cells were purchased from American Type Culture 
Collection (ATCC) and is grown in Roswell Park Memorial Institute (RPMI) 
(Life Technologies) supplemented with 10% FBS, 1% Pen-Strep.

•	 HeLa cells were obtained from University of California, Berkeley Cell Culture 
Facility and grown in DMEM (Life Technologies) supplemented with 10% 
heat-inactivated FBS (Life Technologies) and 1% Pen-Strep (Life Technologies), 
at 37 °C, 5% CO2.

•	 MCF10a-derived cell lines expressing oncogenes were a kind gift from Kevin 
Leung and James Wells at UCSF (41).

For depletion experiments, cells were grown in DMEM supplemented with 
5% horse serum, 0.5 mg/mL hydrocortisone, 100 ng/mL cholera toxin, and 1% 
Pen-Strep. For proliferation experiments, media were further supplemented 
with 20 ng/mL epidermal growth factor and 10 μg/mL insulin. Cells were pas-
saged by treatment with 0.05% trypsin, and for depletion experiments, by 
treatment with versene. Cells were passaged every 2 to 3 d. One day prior to 
flow cytometry experiments, care was taken to seed adherent cells at dilute 
to intermediate concentrations to prevent the formation of multicell clusters. 
For suspension cells (RBCs, L1210, Jurkat), cells were washed by centrifuging 
at 150 g for 1 min and resuspending in PBS to remove media. Adherent cells 
were carefully scraped from the plastic substrate using a cell scraper and then 
washed.

To prevent internalization of the sensors into the cell interior, cells were then 
incubated on ice for 10 to 15 min, and all subsequent steps were performed on 
ice. 10 to 100 nM of the FITC-biotin-cholesterol sensor was incubated with the 
cells for 20 min. The final isotherm for the anti-biotin antibody is insensitive to 
the precise amounts of biotin anchor on the cell surface, as long as the total con-
centration is low (less than ~1,400/µm2), as evidenced by the fixed slope of the 
biotin anchor vs. antibody intensity in the raw flow cytometry data (Fig. 3B). Cells 
were washed thoroughly (5×) in PBS in a centrifuge set to 4C. Finally, the cells 
were added into tubes prepared with several different Alexa Fluor 647-labeled 
anti-biotin monoclonal antibody concentration (0 to 0.5 μg/mL). After incubation 
on ice for 45 min, the samples were measured on the flow cytometer.

Lentiviral Preparation and Cell Line Generation. Lentivirus was produced by 
transfecting the transfer plasmids, pCMV-dR8.91, and pMD2.G (1.5 µg, 1.33 µg, 
and 0.167  µg per 35  mm well) into 293T cells grown to approximately 80% 
confluency using Mirus TransIT-293 Transfection Reagent (Promega) per man-
ufacturer protocol. After 60 to 72 h, supernatant containing viral particles was 
harvested and filtered with a 0.45-μm filter. Supernatant was immediately used 
for transduction or aliquoted and stored at −80 °C. Cells were seeded at 20% 
confluency in 35-mm dishes and 0.5 to 1 mL filtered viral supernatant was added 
to the cells. Medium containing virus was replaced with fresh growth medium 
24 h postinfection. Infected cells were imaged to assess transduction efficiency 
and then used in flow cytometry assays as described above.D
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Data, Materials, and Software Availability. All study data are included in 
the article and/or SI Appendix. Raw data files for the main results are available 
at a publicly accessible database (https://ucsb.box.com/s/1l8bhfbdbtw156k-
wp2w0drbp1m48oc0s) (55). These data will be accessible upon publication.
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Chapter I. Dynamics of macromolecular binding on crowded surfaces 
 
The goal of this chapter is to develop a theory of macromolecular adsorption to identify a quantitative metric 
of surface crowding. We aim to obtain a direct relationship between surface binding of soluble 
macromolecules and the crowding state of the surface, including the effects of variable glycoprotein length, 
polydispersity, stiffness, density, charge, and all other interactions. We propose that the osmotic pressure 
is a universal metric that acts as a quantitative reporter of cell surface crowding, as opposed to other proxy 
metrics like protein molecular weight or number density.  
 
1. Momentum balance on crowded cell membrane surfaces 

The Cauchy momentum balance in a control volume above the cell surface is given by 

 𝜌𝜌 𝐷𝐷𝒖𝒖
𝐷𝐷𝐷𝐷

+ ∇ ⋅ 𝝈𝝈 + 𝒃𝒃 = 𝟎𝟎, (1.1) 

where D/Dt is a material derivative, 𝒖𝒖 is the suspension average velocity, 𝝈𝝈  is the total stress of the 
suspension, and 𝒃𝒃  is an external force. Incompressibility further requires that ∇ ⋅ 𝒖𝒖 = 0 . The total 
suspension stress, which include both the fluid and the surface polymers, is given by 

 𝝈𝝈 = −𝑝𝑝𝑓𝑓𝑰𝑰 + 2𝜂𝜂0(1 + 5𝜙𝜙/2)𝑬𝑬 + 𝝈𝝈(𝑃𝑃), (1.2) 

where 𝑝𝑝𝑓𝑓  is the fluid pressure, 𝜂𝜂0 is the viscosity of the continuous Newtonian solvent, E is the rate-of-strain 
tensor, 𝜙𝜙 is the volume fraction of particles (= 4πa3n/3 for spheres), n is the number density, 5𝜙𝜙/2 is the 
Einstein shear viscosity correction that is present for all suspensions, and the particle contribution to the 
stress 𝝈𝝈(𝑃𝑃)  = −nkBT I + σP, where 𝝈𝝈𝑃𝑃 = −𝑛𝑛〈𝒙𝒙𝑖𝑖𝑖𝑖𝑭𝑭𝑖𝑖𝑖𝑖〉 is the virial stress contribution from interparticle 
interactions. The force 𝑭𝑭𝑖𝑖𝑖𝑖 includes all interparticle interactions between the particles. 

At low Reynolds numbers and in the absence of external forces, the momentum balance of the 
suspension (solvent plus any particles and polymers) at equilibrium is 

 ∇ · 𝝈𝝈 = 𝟎𝟎. (1.3) 

It is important to note that an aqueous polymer brush surface is at minimum a 2-component system: the 
fluid plus the particles (polymers). Therefore, the total suspension stress includes contributions from both 
the solvent and the particles (polymers), 𝝈𝝈 = −𝑝𝑝𝑓𝑓𝑰𝑰 + 𝝈𝝈(𝑃𝑃). Therefore, at every continuum point in the 
suspension, the overall pressure is a sum of the local fluid pressure, 𝑝𝑝𝑓𝑓, and the osmotic pressure from 
interactions among the particles within the suspension, including polymers, free ions, and other interacting 
particles, Π = −tr 𝝈𝝈(𝑃𝑃)/3 (see Fig. S1.1). If there are free ions in solution, then those electrolytes would 
generate an additional osmotic pressure that is included within Π via the stresslet 〈𝒙𝒙𝑖𝑖𝑖𝑖𝑭𝑭𝑖𝑖𝑖𝑖〉. Assuming that 
there are no fluid velocities and that the system is translationally invariant (i.e., independent of in-plane 
coordinates x and y), Eq. (1.3) becomes ∂σzz/∂z = 0.  This reveals that the total suspension stress is constant 
everywhere along the z-direction (normal to the membrane surface).  

Using Fig. S1.1, we shall conduct a momentum balance to clarify the relationship between the osmotic 
pressure and swelling of the polymer brush. Suppose that we perform a macroscopic momentum balance 
on the two regions indicated: bulk solution far away from the brush, and at a point within the brush. At 
equilibrium, the fluid pressure in the bulk and inside the brush must be equal; otherwise, we would get net 
flux of solvent to rush from one side to the other. Therefore, 𝑝𝑝𝑓𝑓bulk = 𝑝𝑝𝑓𝑓brush. Since the region inside the 
polymer brush also contains interactions among the polymer beads, these interactions generate an osmotic 
pressure, Π. This osmotic pressure increases the chemical potential of the solvent in the solution so that it 
equals that of the excess solvent surrounding the swollen polymer brush. The elastic swelling reaction of 
the network structure may be interpreted as a pressure acting on the solution, or swollen gel. The chain 



 

 

stretching and network swelling exactly balances the osmotic pressure generated by their interactions, in 
such a way that the overall momentum balance is satisfied. Therefore, polymer brush swelling and osmotic 
pressures are equivalent descriptions of the equilibrium structure of the polymer brush. Once we have a 
constitutive relation for the polymer, we can directly equate the osmotic pressure with the network swelling 
to determine the shape and size of the polymer gel.  For example, the swelling of a gel is given by Eq. (3.75) 
in Doi (Soft Matter Physics, 2013) (1): 

 

Π = 𝐺𝐺0 �
𝜙𝜙
𝜙𝜙0
�
1/3

,         (1.4) 

 
where 𝜙𝜙 is the volume fraction of polymers in the gel (i.e., metric of gel swelling), 𝜙𝜙0 is the volume fraction 
in the reference state, and 𝐺𝐺0 is the shear modulus of the gel in the reference state. Paraphrasing Doi’s text, 
the left hand side of Eq. (1.4) represents the force that drives polymers to expand and mix with the solvent, 
while the right-hand side represents the elastic restoring force of the polymer network which resists 
expansion.  The equilibrium volume of the gel is determined by the balance of these two forces. Once again, 
this demonstrates that the polymer brush height and osmotic pressures are equivalent descriptions of the 
equilibrium structure of the polymer brush. 
 

 

 
Figure S1.1: Cartoon illustrating the overall suspension pressure, which is composed of both a fluid 
pressure and the particle (polymer) osmotic pressure. Network swelling and osmotic pressures are 
equivalent descriptions of the equilibrium structure of the polymer brush. 
 

In the x- and y-directions (tangent to membrane surface), the particle stress can take on any value, 
𝜎𝜎𝑥𝑥𝑥𝑥

(𝑃𝑃) ≠ 0 and 𝜎𝜎𝑦𝑦𝑦𝑦
(𝑃𝑃) ≠ 0 . We therefore have an anisotropic particle stress tensor, 𝝈𝝈(𝑃𝑃) = 𝜎𝜎𝑥𝑥𝑥𝑥

(𝑃𝑃)𝒆𝒆𝑥𝑥𝒆𝒆𝑥𝑥 +
𝜎𝜎𝑦𝑦𝑦𝑦

(𝑃𝑃)𝒆𝒆𝑦𝑦𝒆𝒆𝒚𝒚 + 𝜎𝜎𝑧𝑧𝑧𝑧
(𝑃𝑃)𝒆𝒆𝑧𝑧𝒆𝒆𝑧𝑧, with 𝜎𝜎𝑧𝑧𝑧𝑧

(𝑃𝑃) = 0. The mechanical (osmotic) pressure is defined as Π = −tr 𝝈𝝈/3, and 
we define the in-plane pressure of cell surfaces as 
 Π = −�𝜎𝜎𝑥𝑥𝑥𝑥

(𝑃𝑃) + 𝜎𝜎𝑦𝑦𝑦𝑦
(𝑃𝑃)� /2 . (1.5) 

This is the in-plane pressure that we report in this document for both experiments and simulations. 
 

2. Equation of state (EOS) of crowded membrane surfaces 

Modeling the cell surface proteins and glycans as coarse-grained polymers, we can obtain an equation of 
state relating the osmotic pressure of the cell surface suspension as a function of its material properties, 
including density, contour length, persistence length, and electrostatic charge. 

The equation of state for hard-sphere colloidal suspensions, including the Carnahan-Starling EOS, is 
used commonly to model macromolecular crowding on the membrane surface and inside the cytoplasm (2-



 

 

5). Here, we use our data from molecular dynamics (MD) simulations to determine the equation of state for 
cell surfaces (see Chap. II for details of MD simulations). The EOS may be represented as a virial expansion 
(6): 

 
 Π = 𝑘𝑘𝐵𝐵𝑇𝑇

𝑉𝑉𝑝𝑝
� 𝜙𝜙
𝑁𝑁𝑅𝑅

+ 𝐵𝐵2𝜙𝜙2 + 𝐵𝐵3𝜙𝜙3 + ⋯� , (1.6) 

 
where Vp = πσ3/6 is the volume of a monomer, NR = L/σ is the degree of polymerization, B2 and B3 are the 
second and third virial coefficients and describe two-body and three-body interactions, respectively. For 
Weeks-Chandler-Andersen (WCA) potentials between all particles, B2 > 0 and B3 > 0, and the pressure 
increases beyond the ideal-gas value. 

As shown in Fig. S1.2, we find that truncation at the three-body level gives a proficient agreement over 
the concentrations that we tested in MD. For charge-neutral polymer surfaces, B2 = 0.40, B3 = 7.93. For 
charged polymers with Debye length κ−1 = 1σ, we obtain B2 = 2.22, B3 = 10.81; for κ−1 = 2σ, we obtain B2 = 
2.68, B3 = 29.67. 

 
Figure S1.2: Coarse-grained molecular dynamics (MD) simulations were used to compute the osmotic 
pressure generated by polymers tethered to a membrane surface. The osmotic pressure is defined by Eqs. 
1.5 and 1.6, and the ideal-gas pressure has been subtracted in this plot, Πig  =  𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇/(𝑉𝑉𝑝𝑝𝑁𝑁𝑅𝑅), where 𝑉𝑉𝑝𝑝 is 
the volume of a monomer and 𝑁𝑁𝑅𝑅 = 𝐿𝐿/𝜎𝜎 is the degree of polymerization. The symbols are simulation data, 
and the solid curves are Eq. 1.6. 

3. Analytical theory for brush inclusion penalty 

Halerpin et al. (7-9) have conducted theoretical analyses of soluble protein adsorption onto chemically 
grafted polymer brush surfaces. They distinguish between an insertion versus compressive mechanism of 
protein adsorption, depending on the size of the protein compared to the mesh size of the polymer brush. 
One key difference between chemically grafted polymer brushes and the cell surface glycoprotein brush is 
that a significant fraction of transmembrane proteins is mobile and can translate in 2D along the lipid bilayer 
surface. Therefore, a large macromolecule may adsorb onto the membrane via the insertion mechanism 
because it is energetically more favorable to exclude polymers from the interface as opposed to compressing 
the brush. 



 

 

To obtain the free energy of inserting a large macromolecule into the cell surface glycocalyx, we follow 
the theory by Louis et al (10). The inclusion energy of a colloid in a polymer suspension is given by 

 
 ΔU = Π(𝜙𝜙)Vs + γ(𝜙𝜙)As, (1.7) 
 
where Π(𝜙𝜙) is the osmotic pressure, γ(𝜙𝜙) is the interfacial tension, Vs is the volume of the macromolecule 
(= 4πR3/3 for spheres), and As is the surface area of the macromolecule (= 4πR2 for spheres). The first term 
in Eq. 1.7 is the reversible work required to create a cavity of volume Vs within the polymer brush. The 
second term is the energy penalty associated with creation of a depletion layer around the colloid surface. 
The osmotic pressure term has been discussed earlier and is given by Eq. 1.6. 

The interfacial tension for a planar interface is given by 

 , (1.8) 
where the relative adsorption Γ(𝜙𝜙) captures the effect of changes in local polymer density due to the creation 
of an interface. The adsorption is defined as  

  (1.9) 

where r is the distance from the colloid surface. The leading order expression of the adsorption is 
approximated by Γ ≈ −2𝑅𝑅𝑔𝑔/√𝜋𝜋 ≈ −𝑅𝑅𝑔𝑔. This assumes that the adsorption is independent of local density 
and behaves as an ideal polymer. With this approximation, the surface tension is described solely by the 
entropic free energy penalty of creating an additional cavity of volume ΓAs ≈ 𝑅𝑅𝑔𝑔As, in addition to the 
volume of the sensor Vs. 

Using this approximation, the surface tension term can be incorporated into a bulk osmotic pressure 
term in the insertion free energy as 

 Δ𝑈𝑈 ≈ Π(𝜙𝜙)𝑉𝑉eff, (1.10) 

where the effective volume of the cavity due to macromolecular insertion is Veff = 4πR3/3+4πR2𝑅𝑅𝑔𝑔  for a 
spherical polymer blob of size 𝑅𝑅𝑔𝑔 and macromolecule of size R (see Fig. S1.3). For our system with R ≈ 
𝑅𝑅𝑔𝑔, the effective volume is well-approximated as Veff = 4π(R + 𝑅𝑅𝑔𝑔)3/3. 
 

 
Figure S1.3: Schematic of the depletion layer and cavity related to the inclusion free energy of a colloid 
inside a polymer brush suspension. The size R is the radius of the macromolecule and 𝑅𝑅𝑔𝑔 is the radius of 
gyration of the glycoprotein. 

 



 

 

We use coarse-grained MD simulations to validate our theory. As shown in Fig. S1.4(A), when the 
insertion energy is plotted as a function of the surface density of polymers, there is no collapse of the data 
across different sensor sizes and lengths of the polymer brush. This indicates that the surface density is not 
an accurate, quantitative metric of crowding. Other proxy metrics like molecular weight and number density 
are inadequate to characterize crowding, because they do not include effects of variable glycoprotein length, 
polydispersity, stiffness, density, charge, and other interactions.  

However, when the energy is plotted as a function of the osmotic pressure, the data collapse onto a 
master curve, as shown in Fig. S1.4(B). It is important to note that there is no adjustable fitting parameters 
here. These results confirm our hypothesis that the surface osmotic pressure is the unique quantity that 
provides a direct, quantitative metric of crowding. When quantifying crowding effects on cell surfaces, one 
should use the osmotic pressure instead of other proxy metrics like molecular weight, size, and surface 
density of the surface proteins. 
 

 

Figure S1.4: Insertion energy for large (R = 2σ), medium (R = σ), and small (R = σ/2) sensors as a function 
of surface polymer number density and contour lengths. (A) Insertion energy for the sensors as a function 
of surface density of polymers. The data do not collapse onto a universal curve, indicating that the surface 
density is not an accurate metric of surface crowding. (B) Normalized insertion energy, Δ𝑈𝑈𝑈𝑈/(𝑘𝑘𝐵𝐵𝑇𝑇𝑉𝑉eff), 
where Veff = 4π(R + 𝑅𝑅𝑔𝑔)3/3 is the excluded volume of the sensor in the polymer brush. Data across different 
sensor sizes and surface polymer contour lengths collapse onto a universal line when plotted as a function 
of osmotic pressure Π.  

4. Analytical theory for effective brush potential  

In our coarse-grained MD simulations, the Weeks-Chandler-Andersen (WCA) repulsive potential (11) was 
implemented between the polymer-polymer, polymer-sensor, polymer-substrate, and sensor-substrate. For 
the sensor-substrate interactions, we also add an attractive Morse potential to model affinity of the sensor 
to the membrane, which effectively approximates a short-range, attractive harmonic potential, k(z−r0)2/2, 
with stiffness k. These two potentials are sufficient to predict the free-energy landscape for the bare 
membrane simulations. 

                𝑈𝑈WCA + 𝑈𝑈att             if 𝑧𝑧 <  21/6𝑅𝑅 (1.11) 

𝑈𝑈0  =        𝑈𝑈att                                                if 21/6𝑅𝑅 < 𝑧𝑧 < (21/6𝑅𝑅 + 𝑅𝑅) (1.12) 

                   0                                                      if 𝑧𝑧 > (21/6𝑅𝑅 + 𝑅𝑅) (1.13) 
 



 

 

where the repulsive WCA potential is given by  

 𝑈𝑈WCA = 4𝜖𝜖 ��𝑅𝑅
𝑧𝑧
�
12
− �𝑅𝑅

𝑧𝑧
�
6
� + 𝜖𝜖         (1.14) 

and the attractive potential to the membrane surface is given by 
      𝑈𝑈att = 𝑘𝑘(𝑧𝑧 − 𝑅𝑅)2/2  .          (1.15) 
 

Obtaining the Δ𝑈𝑈 contribution to the overall free energy is non-trivial, since we only include WCA 
potentials for sensor-polymer interactions and no explicit potential of the brush into the sensor’s equation 
of motion. We do not apriori know what the effective potential posed by the polymer brush will be. 

 

 

Figure S1.5: Local monomer volume fraction as a function of distance from the membrane, for a surface 
density of 8000 chains/µm2. The symbols are simulation data, and the solid curve is Eq. 1.16. 

From MD simulation data, the monomer volume fraction of the polymers as a function of height from 
the membrane surface is modeled by 

 𝜙𝜙𝑚𝑚 = 𝜙𝜙𝑚𝑚0 �1 − �𝑧𝑧
𝐿𝐿
�
2
�
4
. (1.16) 

We verified that this model for the polymer brush agrees with data from MD simulations, as shown in Fig. 
S1.5. The parabolic form inside the brackets is well known from polymer theory (12); we observe a steeper 
decay of density, likely due to the fact that the chains are not grafted and instead free to diffuse in 2D. The 
free energy of a sensor binding to a crowded polymer surface is given by 
 

                𝑈𝑈WCA + 𝑈𝑈att + Δ𝑈𝑈        if 𝑧𝑧 <  21/6𝑅𝑅 (1.17) 

                  𝑈𝑈att + Δ𝑈𝑈                                        if 21/6𝑅𝑅 < 𝑧𝑧 < (21/6𝑅𝑅 + 𝑅𝑅) (1.18) 

                   Δ𝑈𝑈                                                           if 𝑧𝑧 > (21/6𝑅𝑅 + 𝑅𝑅) (1.19) 

                   0                                                                if 𝑧𝑧 > 𝐿𝐿 (1.20) 
 
Substituting Eq. 1.16 into the virial pressure equation of state, Eq. 1.6, gives the local osmotic pressure as 
a function of distance from the membrane surface. The crowding energy as a function of distance, Δ𝑈𝑈(𝑧𝑧), 
is obtained by using Eq. 1.10.  The resulting crowding energy is used in Eqs. 1.17 – 1.20 to obtain the total 
energy as a function of distance, 𝑈𝑈(𝑧𝑧). As shown in Fig. S1.6, the data from our MD simulations (black 
symbols) demonstrate excellent agreement with our theory (red curve). 

𝑈𝑈 = 



 

 

 

Figure S1.6: Full free energy curve using Eqs. 1.17 - 1.20 (solid red curve) agrees with the direct calculation 
from the sensor probability distribution (black crosses). There are no adjustable parameters in the theoretical 
model, Eqs. 1.17 – 1.20. 
 

Chapter II. Coarse-grained molecular dynamics (MD) simulations 
 

1. Basic construction of the model 

To construct a molecular model of macromolecular transport across cell surface proteins and glycocalyx, 
we performed coarse-grained Molecular Dynamics (MD) simulations of colloidal transport within semi-
flexible polymers diffusing on 2D surfaces. This is a modified extension of our protein polymer surface 
model presented previously (13). 
 

 

Figure S2.1: Schematic of our coarse-grained MD simulations of a protein polymer brush with surface-
binding macromolecular sensors. Using a Kremer-Grest bead-spring model (14), individual beads of 
diameter σ are connected by a finitely extensible nonlinear elastic (FENE) potential and a bending stiffness 
is invoked by a 3-particle angular potential, UB. The bottom bead is confined to remain along a 2D surface 
but can diffuse laterally along the surface. Sensor particles of size R are added to the bulk above the polymer 
brush. The sensors have a short-ranged binding affinity to the substrate. 

We modeled surface protein chains using a Kremer-Grest bead-spring model (14), with each bead 
representing a structured protein domain or a coarse-grained unit of an intrinsically disordered domain. A 
bead at one end of the chain is confined between two parallel walls separated by one bead diameter, allowing 
it to diffuse freely in 2D but cannot escape out of plane. All other beads on the chain are free to move in 



 

 

3D, except through a bottom wall that acts as a solid substrate, thereby modeling protein diffusion along a 
membrane that is in-plane fluid. Because the size of each protein domain is large compared to the 
surrounding solvent molecules, the solvent is coarse grained and its dynamics are not explicitly evolved. In 
other words, the protein chain experiences a hydrodynamic drag and Brownian motion from the continuous 
solvent. In this work, the membrane does not deform nor fluctuate out of plane, although these effects may 
be included. 

Simulations were performed using a GPU-enabled HOOMD-blue molecular dynamics package (15,16), 
and all simulations contained at least 2000 protein chains and 10000 sensor particles. The dynamics of 
particle i is evolved in time following the overdamped Langevin equation 

 
 𝟎𝟎 = −𝜁𝜁𝑖𝑖𝑼𝑼𝑖𝑖 + 𝑭𝑭𝑖𝑖𝐵𝐵 + 𝑭𝑭𝑖𝑖𝑃𝑃, (2.1) 

where 𝜁𝜁𝑖𝑖 is the hydrodynamic drag factor, 𝑼𝑼𝑖𝑖  is the velocity, 𝑭𝑭𝑖𝑖𝐵𝐵 = �2𝜁𝜁𝑖𝑖2𝐷𝐷𝑖𝑖𝜦𝜦 is the translational Brownian 

force, Di is the Stokes-Einstein-Sutherland translational diffusivity of a single monomer, and 𝑭𝑭𝑖𝑖𝑃𝑃  is the 
interparticle force. The left-hand side is zero since inertia is negligible for coarse-grained proteins embedded 
in a viscous solvent. The translational diffusivity is modeled with the usual white noise statistics, 〈𝜦𝜦(𝑡𝑡)〉 =
𝟎𝟎 and 〈𝜦𝜦(𝑡𝑡)𝜦𝜦(0)〉 = δ(t) I, where δ(t) is a delta function and I is the identity tensor. The drag coefficient ζi 

of particle i is linearly scaled with the particle size σi. The interparticle force (described below) includes 
contributions from sensor-polymer chain interactions, intrachain polymer potential, interchain bead-bead 
pair interactions, and bead-wall interactions.   

All interactions between the particles and walls are modeled with a Weeks-Chandler-Andersen (WCA) 
potential (11), in which a Lennard-Jones (LJ) potential is shifted upwards, truncated at the potential 
minimum of 21/6 σi (such that the potential is purely repulsive), and assigned a well depth of 𝜖𝜖 = 𝑘𝑘𝐵𝐵𝑇𝑇 (where 
kBT is the thermal energy). All lengths are expressed in units of the LJ diameter σ and is set to unity. We 
connect the polymer chains with a finitely extensible nonlinear elastic (FENE) potential, using a spring 
constant of k0 = 30 and a bond length of R0 = 1.5 (expressed in terms of reduced LJ units, 𝜖𝜖 = 𝜎𝜎 = 1). To 
model semi-flexible polymers, we implemented a bending potential between 3 neighboring particles to 
capture chain stiffness, 𝑈𝑈𝐵𝐵 = 𝜖𝜖𝐵𝐵�1 − cos(𝜃𝜃ijk − 𝜃𝜃0)�, where 𝑈𝑈𝐵𝐵 is the bending energy, 𝜃𝜃ijk is the bond 
angle between neighboring particles (i,j,k), and θ0 = π is the resting angle. The persistence length of the 
chains was measured by calculating the bond angle correlation, 〈𝒆𝒆1 ⋅ 𝒆𝒆𝑖𝑖〉 = exp(−𝑠𝑠𝑖𝑖/ℓ𝑃𝑃), where ei is the 
unit vector connecting the center of mass positions of particles i and i + 1, and si is the path length along the 
polymer to particle i. To implement the persistence length ℓ𝑃𝑃 as an input to the simulations, the bending 
energy is set to 𝜖𝜖𝐵𝐵/(𝑘𝑘𝐵𝐵𝑇𝑇) = ℓ𝑃𝑃/𝜎𝜎 to achieve the desired polymer stiffness. We have set ℓ𝑃𝑃 = 3𝜎𝜎 for all of 
our protein-based simulations based on previous work, and have verified the angular correlation for 
unbound polymers in 3D as a validation of proper implementation (13). 

Sensor particles of different sizes were added to the bulk of the simulation box to model the dynamics 
of sensor transport and binding to the cell surface. The diameters of the Chol-0.5k PEG, 10k dextran, and 
40k dextran sensors were modeled with spheres of diameter 3, 5, and 10 nm, respectively (17). The sensor 
particles have an attractive potential to the membrane via a Morse potential with the HOOMD parameters 
(D0 = 3 × 109, α = 10−4, r0 = σ/2, and rcut = σ/2 + R), which effectively approximates a short-range, attractive 
harmonic potential Uatt = k(z − r0)2/2 with stiffness k = 2D0α2 = 60. All other particle pairs experience a 
short-ranged repulsive WCA potential, as described earlier. The dynamics of sensor particle i is evolved in 
time following the Langevin equation 

 
 𝟎𝟎 = −𝜁𝜁𝑖𝑖𝑼𝑼𝑖𝑖 + 𝑭𝑭𝑖𝑖𝐵𝐵 + 𝑭𝑭𝑖𝑖𝑃𝑃 + 𝑭𝑭𝑖𝑖wall, (2.2) 
 
where Fi

wall = Fi
att +Fi

WCA is the short-ranged potential that the sensor particle experiences with the surface, 
Fi

att = −∇Uatt is the attractive linear force, and Fi
WCA = −∇UWCA is the WCA potential with the surface (see 

Eqs. 1.14 and 1.15 for definitions of the potentials). In summary, each sensor particle experiences the 
potentials in Eqs. 1.11 – 1.13 as a function of height z, in addition to the pair-wise WCA potentials with the 



 

 

protein polymers. It is straightforward to add flexibility and non-spherical shape effects into our sensor 
model. 

Unlike our previous work (13) where a large concentration of passive PEG depletants were added to 
the bulk to compress the cell surface proteins, in this work we focus on dilute concentrations in which the 
osmotic compression is negligible. Furthermore, we did not observe any depletion flocculation nor any 
large-scale protein clustering. Simulations with dilute concentrations of sensors are very time consuming 
because acquiring sufficient statistics requires many time steps at equilibrium. Therefore, we accelerated 
our simulations by using a larger concentration of sensor particles that interact only with the protein polymer 
and the surface, but not with each other. The sensors act as “ideal-gas” particles to each other but interact 
with WCA potentials with the surface proteins. However, sensor concentrations that are too large can 
interact with each other indirectly via correlated motion of the protein polymers. A sensor volume fraction 
less than 1% was used in this work.  

 
 

 
 

We used a system box size of V = L2Lz, where L was adjusted to achieve the specified area density and 
number of polymer chains, and Lz was chosen to be sufficiently large to maintain a uniform bath 
concentration of sensors in the bulk. Dilute surface densities were conducted with ∼ 200 chains/µm2, and 
the dense surfaces contained ∼ 20,000 chains/µm2. We imposed periodic boundary conditions in the x and 
y directions, and no-flux hard walls at z = 0 and z = Lz to prevent any particles from passing through. Initial 
configurations were generated by placing the particles in lattice locations, and sufficient time steps were 
run to reach a steady-state. Time steps were varied from ∆t = 10−6 − 10−4 and verified to be sufficiently small 
to capture relevant dynamics. 

A snapshot of the simulations is shown in Fig. S2.2. Simulations were conducted for long enough time 
steps to sample equilibrium properties. Figure S2.3 shows the concentration of sensors on the membrane 
surface as a function of time, and we can see that sufficient configurations are sampled after equilibrium is 
achieved. 

 

 

 

Figure S2.2: Snapshot of coarse-grained MD 
simulations with sensors (yellow particles) of 
size R = 2σ, and surface polymers (green 
particles) of length L = 10σ, where σ is the size 
of an individual monomer. 

Figure S2.3: Volume fraction of sensors of size R = 
σ on the membrane surface, 𝜙𝜙𝑠𝑠 = 4𝜋𝜋𝑅𝑅3𝑛𝑛𝑠𝑠/3, as a 
function of nondimensional time t/(σ2/D0), where D0 

is the Stokes-Einstein-Sutherland diffusivity based 
on the monomer size σ. Solid curves are a fit to a 
first-order kinetic rate law, 𝜙𝜙𝑠𝑠/𝜙𝜙𝑠𝑠∞=1 - exp(-t/𝜏𝜏). 

 



 

 

2. Calculation of mechanical stress (and pressure) of cell surface proteins 

The pressure of cell surface proteins is given by the negative trace of the virial stress tensor, 

 𝝈𝝈 = −𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇𝑰𝑰 −
1
𝑉𝑉
〈∑ ∑ 𝒓𝒓𝑖𝑖𝑖𝑖𝑭𝑭𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗>𝑖𝑖𝑖𝑖 〉, (2.3) 

where 𝑉𝑉 = 𝐿𝐿2〈ℎ〉 is the volume of the polymer brush, 𝐿𝐿 is the length of the simulation box, 〈ℎ〉 is the 
average height of the polymer surface, 𝒓𝒓𝑖𝑖𝑖𝑖 is the interparticle distance, and 𝑭𝑭𝑖𝑖𝑖𝑖𝑃𝑃  is the pair-wise interparticle 
force between all particles, including individual monomers within a single polymer. The first term in Eq. 
2.3 is the ideal-gas stress and the number density is defined as n = N/V where N is the total number of 
particles. The second term is the Irving-Kirkwood virial stress tensor that measures the contribution from 
interparticle interactions. For polymers, it is important to note that the ideal-gas pressure is Πig = nckBT and 
not nkBT, where nc is the number density of chains, nc = Nc/V (Nc is the total number of chains). Particles 
lose their translational degree of freedom when constrained as a polymer, so the ideal-gas pressure decreases 
with increasing degree of polymerization. Returning to our virial EOS in Eq. 1.6, we can rewrite the ideal-
gas expression as Πig = (kBT/Vp)𝜙𝜙/NR, where the degree of polymerization NR = N/Nc. For very large 
molecular weight polymers (NR → ∞), the ideal-gas contribution is zero and the first term contributing to 
the osmotic pressure is two-body interactions (i.e., second virial coefficient). 

In calculating the osmotic pressure using Eq. 2.3, it would seem like we are overestimating the pressure 
based on the first term, which assumes that all N particles are independent. However, the virial stress term 
will cancel the “excess” stress contribution from the nkBT term. That is, the FENE potential applied to the 
constitutive particles on the polymers (which represent elasticity) has the opposite sign and subtracts the 
independent degrees of freedom. The net result is that we correctly recover the ideal-gas pressure of a 
polymer, Πig = (kBT/Vp)φ/NR. 

 
3. Calculation of free energy potentials 

The free energy experienced by the sensor particle as a function of the distance from the membrane surface 
is given by U = −kBT ln P(z), where P(z) is the normalized probability distribution of the sensors. We 
calculate P(z) by binning the simulation into thin slabs and ensemble averaging over all particles and time. 
From these distributions, we calculate the effective binding energy and the insertion penalty at equilibrium, 
as shown in Fig. S2.4. The offset at the energy minimum gives the glycocalyx contribution Ug and the in-
plane osmotic pressure of the cell surface. 

 
Figure S2.4: Effective free energy potential experienced by a macromolecule of size R = σ approaching a 
bare (black) and crowded (red) cell surface membrane, which is a superposition of two contributions, U0 

and ΔU. The circle and cross symbols are a direct calculation of the free energy via U = −kBT ln P(z) from 
MD simulations, where P(z) is the normalized probability distribution of the sensors. Solid curves are Eqs. 
1.17-1.20. The depth of the minimum gives the effective binding energy at equilibrium. 



 

 

As shown in Fig. S2.4, our analytical theory in Eqs. 1.17-1.20 agrees very well with the direct energy 
calculations from MD simulations. Once the sensor-substrate affinity is determined in the theory by fitting 
to the bare-membrane simulations (black symbols and curve), there are no fitting parameters for the 
crowded surface simulations and theory (red symbols and curve).  
 
4. Incorporation of charges on protein polymers 
Charge effects were analyzed in MD simulations by adding a screened coulomb (Yukawa) pair potential 
between the constituent monomers of the polymer. The energy scale was set to 𝜖𝜖 = 𝑘𝑘B𝑇𝑇, and the Debye 
length was varied from κ−1 = σ to κ−1 = 2σ. Electrostatic interactions were not included for sensor-polymer 
or sensor-sensor interactions. 
 
 
 

Chapter III. Experimental details 
 

1. Binding isotherms for dextran sensors 
In the main text, we obtained the relative difference between the crowded and bare surfaces by taking the 
ratio of the slopes of the bound sensors at small bulk sensor concentrations. This provides a direct 
measurement of the relative difference, 𝐾𝐾𝐷𝐷/𝐾𝐾𝐷𝐷0  (or 𝐾𝐾𝐷𝐷/𝐾𝐾𝐷𝐷

proK  for RBCs), assuming that the bound 
saturation concentration, 𝐶𝐶max, is equal on the crowded and bare surfaces. As a control, we performed a 
measurement of the effective dissociation constant of the dextran sensors by obtaining the full isotherm 
across a larger range of bulk concentrations. The maximum saturating concentrations of the sensors, 𝐶𝐶max, 
were obtained by incubating the beads and RBCs with 0.5 𝜇𝜇M bulk sensor concentration. The bound sensor 
concentrations at each bulk sensor concentrations were normalized by the maximum concentration at 
saturation to obtain the fractional surface coverage, 𝜃𝜃 = 𝐶𝐶/𝐶𝐶max. The slope at small bulk concentrations 
were used to obtain the dissociation constant. A representative dataset containing the full isotherm on RBCs 
for the dextran 40k sensor is shown in Fig. S3.1. The relative ratios of the binding affinities were 
𝐾𝐾𝐷𝐷/𝐾𝐾𝐷𝐷

proK = 1.5 and 2.6 for sialidase-treated and untreated RBCs, respectively, which agree with the 
results in the main text obtained using a ratio of the slopes at small bulk concentrations. 
 

 
 

Figure S3.1. Surface coverage of bound 40k dextran sensors as a function of bulk concentration of sensors 
on untreated (circle), sialidase (NA)-treated (square), and Proteinase K-treated (triangle) RBCs. Each 
measurement was normalized by the maximum concentration at saturation to obtain the fractional surface 
coverage, 𝜃𝜃 = 𝐶𝐶/𝐶𝐶max. The slope at small bulk concentrations, shown as solid lines, were used to obtain 
the dissociation constant. 



 

 

 
2. Effective dissociation constants of multivalent binding species 
As shown by Cremer et al. (18,19), interpretation of the effective dissociation constant of multivalent 
binding species requires some care. For bivalent-binding antibodies, there are two dissociation constants, 
𝐾𝐾𝐷𝐷1 and 𝐾𝐾𝐷𝐷2, defined by 𝐾𝐾𝐷𝐷1 = [𝐴𝐴][𝐿𝐿]𝑠𝑠/[𝐴𝐴𝐴𝐴]𝑠𝑠 for the first binding event, and 𝐾𝐾𝐷𝐷2 = [𝐴𝐴𝐴𝐴]𝑠𝑠[𝐿𝐿]𝑠𝑠/[𝐴𝐴𝐿𝐿2]𝑠𝑠 
for the second binding when both binding sites are bound to the two ligands.  The total surface concentration 
of sites is [𝐿𝐿]𝑠𝑠/2 + [𝐴𝐴𝐴𝐴]𝑠𝑠/2 + [𝐴𝐴𝐿𝐿2]𝑠𝑠, so the fraction of bound species is 
 

𝜃𝜃 =
total bound antibodies
total number of sites

=
[𝐴𝐴𝐴𝐴]𝑠𝑠 + [𝐴𝐴𝐿𝐿2]𝑠𝑠

[𝐿𝐿]𝑠𝑠/2 + [𝐴𝐴𝐴𝐴]𝑠𝑠/2 + [𝐴𝐴𝐿𝐿2]𝑠𝑠
=

𝛼𝛼[𝐴𝐴]
𝐾𝐾𝐷𝐷 + [𝐴𝐴] 

 
where 𝛼𝛼 = (𝐾𝐾𝐷𝐷2 + [𝐿𝐿]𝑠𝑠)/(𝐾𝐾𝐷𝐷2 + 2[𝐿𝐿]𝑠𝑠) is a number that varies between 0.5 and 1.0, and the effective 
dissociation constant is given by 
 

𝐾𝐾𝐷𝐷 =
𝐾𝐾𝐷𝐷1𝐾𝐾𝐷𝐷2

𝐾𝐾𝐷𝐷2 + 2[𝐿𝐿]𝑠𝑠
 

 
Therefore, the binding isotherm still takes on the classic Langmuir form, except the interpretation of the 
effective 𝐾𝐾𝐷𝐷 is slightly different.  At small bulk antibody concentrations, [𝐴𝐴] ≪ 1, we are still fitting a line 
with the slope that gives the effective dissociation constant. The main potential issue is that the effective 
dissociation constant is now a function of the ligand concentration, [𝐿𝐿]𝑠𝑠. This is not an issue for our dextran-
based sensors because the “ligand” concentration is simply the total available surface area on the beads and 
cells, which is fixed constant in each respective experiment.  

However, this is a potential issue for our antibody-based measurement because our biotin-DNA 
cholesterol sensors incorporate into cell membranes with different affinities. Therefore, the ligand 
concentration [𝐿𝐿]𝑠𝑠 could be changing drastically as a function of cell type, over-expression, etc. As shown 
in the expressions above, varying [𝐿𝐿]𝑠𝑠  will change the effective dissociation constants, which is an 
unwanted problem.  In fact, we did indeed see this effect when we used a very large concentration of the 
biotin-based cholesterol sensors.   

This issue has been addressed previously by Yang et al (19), in which they observed a 10x decrease 
in effective 𝐾𝐾𝐷𝐷  of monoclonal antibodies on SLB-coated beads when the ligand surface density was 
increased from 1400/𝜇𝜇𝑚𝑚2 to 40,000/𝜇𝜇𝑚𝑚2. Fortunately, they found that the effective 𝐾𝐾𝐷𝐷 increased only from 
13𝜇𝜇𝜇𝜇 to 18𝜇𝜇𝜇𝜇 when increasing the ligand surface density from 1400/𝜇𝜇𝑚𝑚2 to 4200/𝜇𝜇𝑚𝑚2 (small ligand 
concentrations). We therefore hypothesized that staying at small surface ligand concentrations would 
reduce or eliminate this potential uncertainty of determining the effective 𝐾𝐾𝐷𝐷. 

To these ends, we performed control experiments with varying amounts of biotin-based cholesterol 
sensors on beads, RBCs, and mammalian cells. We found that the effective dissociation constant was 
insensitive to changes in [𝐿𝐿]𝑠𝑠 when [𝐿𝐿]𝑠𝑠 ≪ 1.  In other words, the parameters 𝛼𝛼 and 𝐾𝐾𝐷𝐷 above were not a 
function of [𝐿𝐿]𝑠𝑠 at the low ligand concentrations used in our measurements. 

The rationale for this result in the context of the equations above is that lim
[𝐿𝐿]𝑠𝑠→0

𝛼𝛼 → 1  and 

lim
[𝐿𝐿]𝑠𝑠→0

𝐾𝐾𝐷𝐷 → 𝐾𝐾𝐷𝐷1.  In other words, we are measuring essentially the monomeric binding affinity of the 

antibody because the surface ligand concentration is so low, and the second binding constant 𝐾𝐾𝐷𝐷2 drops out 
of the problem.  Therefore, our approach to obtain the effective dissociation constant from the Langmuir 
isotherm form is an appropriate way to obtain the binding affinities and energies, and our results are 
insensitive to the absolute surface concentrations of the ligand sensors. 

 
3. Sensors have no non-specific adsorption onto membranes 
Our dextran sensors have a strong affinity to insert into the lipid bilayer via cholesterol tags bound to the 
dextran molecules. To rule out the possibility of other, non-specific interactions of the dextran sensors onto 
membranes, we conjugated the dextran molecules to Alexa Fluor dyes only, without cholesterol tags.  Upon 
incubating these dextran-dye sensors with lipid-coated beads and red blood cells (RBCs), we did not detect 



 

 

enrichment on the membrane, validating that the main adsorption mechanism of our sensors is via the 
cholesterol tags. A representative microscopy image is shown in Fig. S3.2. We conclude that there is a 
negligibly small adsorption and non-specific interaction of our dextran macromolecules with the membrane. 
For our other probe based on anti-biotin binding, an antibody-only control was performed on cholesterol 
anchors containing no biotin tag (a cholesterol-FITC construct), and we observed no nonspecific anti-biotin 
binding on the membrane. 
 

 
Figure S3.2. There is no non-specific adsorption of our sensors onto membranes.  Dextran-dye sensors in 
the absence of cholesterol does not incorporate into lipid coated beads or RBC membranes.   

 
 

4. Control experiments of dextran sensors with different chemistries. 
In the previous section, we showed that the intrinsic dextran macromolecules (without cholesterol) do not 
exhibit non-specific adsorption onto the membrane. However, the Alexa Fluor dyes conjugated to the 
cholesterol-dextran macromolecules are negatively charged and may interact electrostatically with the 
charged cell surface. As a control, we conjugated our cholesterol-dextran sensors with BODIPY, a charge-
neutral dye. As shown in the main text, RBCs have highly charged cell surfaces that we can modulate using 
neuraminidase (NA) treatment; RBCs are a good model system to examine the interactions between the cell 
surface and the sensor dye charges.  

We conducted two tests on RBCs to assess the impact of the dye charges. First, to test whether the 
binding kinetics are equivalent between the Alexa Fluor and BODIPY conjugated cholesterol-dextran 
sensors, we took a time series of sensor binding on untreated and neuraminidase (NA) treated RBCs. As 
shown in Fig. S3.3, the binding kinetics of both dye types are essentially identical across the RBC surfaces. 
Note that the important feature from Fig. S3.3 is the time constant towards equilibrium, not the final 
saturation value. The final equilibrium value is irrelevant because the intensity units from the flow 
cytometer is different across the two different laser channels, and because the two sensor types may contain 
a slightly different labeling ratio of cholesterol. The dashed and solid curves in Fig. S3.3 are a fit to a first-
order kinetic rate law, C/C∞ = 1 - exp(-t/τ). The characteristic decay time towards equilibrium is 𝜏𝜏 = 7.53 
min (WT) and 𝜏𝜏 = 7.05 min (NA) for the Alexa Fluor 647 conjugated dextran sensors and 𝜏𝜏 = 7.38 min 
(WT) and 𝜏𝜏 = 7.51 min (NA) for the BODIPY conjugated dextran sensors.  All of these values are similar 
to each other, which validates that the binding kinetics between the charged Alexa Fluor dyes and neutral 
BODIPY dyes have no difference. Within the same dye, the fact that the binding kinetics are the same 
between the WT cells (fully charged) and NA-treated cells (reduced charge) is another indication that the 
kinetics are unaffected by cell surface charges.  
  



 

 

 
Figure S3.3. Bound sensor concentration as a function of time for Alexa Fluor 647 conjugated dextran 
sensors (black curves and symbols) and BODIPY conjugated dextran sensors (green curves and symbols), 
on untreated RBCs (“WT”, filled circle symbols) and NA-treated RBCs (“NA”, open square symbols). 
Solid and dashed curves are a fit to a first-order kinetic rate law, 𝐶𝐶/𝐶𝐶∞ = 1 - exp(-t/𝜏𝜏). The characteristic 
decay time towards equilibrium is 𝜏𝜏 = 7.53 min (WT) and 𝜏𝜏 = 7.05 min (NA) for the Alexa Fluor 647 
conjugated dextran sensors and 𝜏𝜏 = 7.38 min (WT) and 𝜏𝜏 = 7.51 min (NA) for the BODIPY conjugated 
dextran sensors.  This validates that the binding kinetics between the charged Alexa Fluor dyes and neutral 
BODIPY dyes has no difference. 

 
Next, we tested whether the effective dissociation constant 𝐾𝐾D is different between the Alexa Fluor 

and BODIPY conjugated cholesterol-dextran sensors. As described in the main text, we performed an 
equilibrium measurement of sensor binding on untreated and NA-treated RBCs using both types of sensors. 
The binding measurement at large bulk concentrations provide the saturating binding concentration, 𝐶𝐶max, 
and the fractional coverage may be obtained using small bulk concentrations, 𝜃𝜃 = 𝐶𝐶/𝐶𝐶max. As presented 
in the main text, our key metric of comparison is the relative difference between the binding affinities of 
WT and NA-treated cells, not the absolute value of 𝐾𝐾D. As shown in Fig. S3.4, we find that the ratio of the 
binding affinities on NA-treated and WT RBCs are 𝐾𝐾D𝑁𝑁𝑁𝑁/𝐾𝐾D𝑊𝑊𝑊𝑊 = 0.634  for BODIPY conjugated 
cholesterol-dextran and 𝐾𝐾D𝑁𝑁𝑁𝑁/𝐾𝐾D𝑊𝑊𝑊𝑊 = 0.652  for Alexa Fluor 647 conjugated cholesterol-dextran. This 
validates that the negative charges on the Alexa Fluor 647 dyes do not impact the results presented in Fig. 
2 of the main text. 

We believe that the negative charges on the dextran sensors play a small role for our particular 
system in part because the bound sensor concentrations are very dilute on the RBC surface. The average 
separation distance between the dextran sensors on the RBC surface over the range of interest is ≈ 100 nm 
at 100/𝜇𝜇𝑚𝑚2 surface density, and the average distance between the dextran sensors and the GYPA proteins 
is ≈ 10  nm at 2000/𝜇𝜇𝑚𝑚2  GYPA surface density. Both of these distances are more than an order of 
magnitude larger than the small 0.7 nm Debye length in physiological buffers, so we expect that the majority 
of the charge interactions are screened. Interestingly, the absolute magnitudes (not the ratio) of 𝐾𝐾D for the 
BODIPY sensors are larger than the Alexa Fluor sensors, which is the opposite of what one may expect 
based on electrostatic repulsion between the dye and the charged cell surface. One may naively expect that 
the negative charge repulsion between the Alexa Fluor and the RBC surface would cause less binding and 
a larger 𝐾𝐾D for the Alexa Fluor sensors. At very large sensor concentrations, the surface is saturated with a 
dense packing of sensors. Here, we believe that the average separation distance between neighboring 
sensors may be similar to the Debye length, and the negative charge repulsion among the neighboring 
sensors’ Alexa Fluor dyes may lead to smaller packing and a smaller 𝐶𝐶max than the BODIPY conjugated 
dextran sensors.  A smaller saturating concentration would normalize the fractional coverage to a larger 
value, leading to smaller absolute magnitude of 𝐾𝐾D  for the Alex Fluor conjugated dextran sensors. In 
summary, the effects of negative charges on the dye do not impact the normalized ratio of the binding 
affinities at the dilute concentrations that form the basis of our crowding measurements; however, they are 



 

 

an important consideration in general when the absolute magnitudes of 𝐾𝐾D are desired or one would like to 
use these sensors at much larger concentrations. 

Once again, the absolute magnitudes of 𝐾𝐾D are unimportant for our work because we are only 
interested in relative ratios between the different cell treatments. The crowding free energies come from the 
ratio in the binding affinity on bare and crowded surfaces, Δ𝑈𝑈 = 𝑘𝑘𝐵𝐵𝑇𝑇 ln (𝐾𝐾𝐷𝐷/𝐾𝐾𝐷𝐷0) , not the absolute 
magnitude. The absolute magnitudes for the dextran sensors depend on the intrinsic chemistries of the 
cholesterol interaction with the membrane, which is irrelevant for our crowding measurements.  
 

 
Figure S3.4. Surface coverage of bound 40k dextran sensors as a function of bulk concentration of Alexa 
Fluor 647 conjugated dextran sensors (black lines and symbols) and BODIPY conjugated dextran sensors 
(green lines and symbols), on untreated RBCs (“WT”, filled circle symbols) and NA-treated RBCs (“NA”, 
open square symbols). Solid and dashed lines are a fit to obtain the dissociation constant. We find that the 
ratio of the binding affinities on NA-treated and WT RBCs are 𝐾𝐾D𝑁𝑁𝑁𝑁/𝐾𝐾D𝑊𝑊𝑊𝑊 = 0.634  for BODIPY 
conjugated cholesterol-dextran and 𝐾𝐾D𝑁𝑁𝑁𝑁/𝐾𝐾D𝑊𝑊𝑊𝑊 = 0.652  for Alexa Fluor 647 conjugated cholesterol-
dextran. This validates that the negative charges on the Alexa Fluor 647 dyes do not impact the results 
presented in Fig. 2 of the main text. 

 
 

5. Verification that the stock sialidase is protease-free. 
A sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein gel of bovine serum 
albumin (BSA), MW = 66 kDa, is shown in Fig. S3.5. BSA was treated with various concentrations of 
sialidase and Proteinase K at 37C for 5 hours.  The protein was subsequently heat-denatured in 1x Laemmli 
Sample Buffer (Sigma Aldrich) in the presence of 𝛽𝛽-mercaptoethanol. The sample was then loaded onto a 
NuPAGE Novex 4–12% gradient Bis-Tris gel (Fisher Scientific) and separated by electrophoresis.  This 
gel confirms that our stock sialidase does not have protease activity. In addition to BSA, we collected the 
supernatant of RBCs treated with sialidase and found no detectable signal of proteins released from the 
RBC surface as a result of sialidase treatment.  This verifies that soluble sialic acid-binding proteins are not 
embedded in the glycocalyx to hinder the binding of the sensors. 



 

 

 
Figure S3.5. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein gel of 
bovine serum albumin (BSA), MW = 66 kDa, treated with enzymes sialidase and Proteinase K at 37C for 
5 hours.  We detected no protease activity in our stock sialidase. In our experiments, RBCs were treated 
with sialidase at 50 mUn/mL.  
 
6. EDC conjugation to remove negative charges from cell surface 
We used a carbodiimide crosslinker chemistry based on 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 
(EDC) to remove negative charges present on carboxylic acid groups on the red blood cell surface. Most 
surface negative charges come from the carboxylic acid on the sialic acids, but charged amino acids (e.g., 
aspartic acid and glutamic acid) may also be impacted by this reaction. We added EDC and hydrazide-
biotin (a charge-neutral molecule) to a suspension of red blood cells, and the effectiveness of the reaction 
was assessed by imaging with AF555-labeled straptavidin. As shown in Fig. S3.6, the reaction was 
qualitatively very effective and we believe that most negative charges were neutralized on the cell surface.   
 

 
 
Figure S3.6. EDC chemistry was used to remove negative charges from the red blood cell surface. The 
reaction conjugated hydrazide-biotin to carboxylic acid sites, which enabled detection using AF555-labeled 
streptavidin to image the red blood cell surface.  Scalebar is 10 𝜇𝜇m. 
 
 
7. Sensor internalization in mammalian cells is minimal when performed on ice. 
To prevent internalization of the macromolecules into the mammalian cell interior, the cells were incubated 
on ice throughout the measurement. We confirmed using confocal microscopy that the majority of the 
sensors are localized on the cell surface and appear to be bound homogeneously, as shown in Fig. S3.7. In 
Fig S3.7, the sensors were not added at the same concentration to test for robustness against internalization 
across a wide range of sensor concentrations. In all of our reported measurements, we did not observe 
significant internalization of neither the biotin anchor nor the antibody when performing the experiments 
on ice. 
 



 

 

 
Figure S3.7. Representative confocal images of three cancer cell types incubated with biotin-FITC-
cholesterol construct (left) and surface-bound IgG (right).  Majority of the signal is localized on the cell 
surface. This is a test to check for sensor internalization, so these images do not correspond to the same 
sensor concentrations and the arbitrary image intensity is not reflective of the crowding state of the cells. 
All scale bars are 10 𝜇𝜇m. 
 
8. Bound antibody concentration normalized by the bound biotin-FITC-cholesterol concentration 

is independent of heterogeneities in cell size. 
The advantage of using the DNA-based FITC-biotin-cholesterol sensor is that this construct acts as a proxy 
of cell size and cell membrane surface area. A plot of normalized bound antibody signal (i.e., antibody 
intensity divided by the FITC intensity) as a function of forward scattering (a metric of cell size) is shown 
in Fig. S3.8. We observe a constant normalized bound antibody across a 6x change in forward scattering, 
which indicates that the variations in cell membrane area is properly accounted for in our calculation of cell 
heterogeneities. By obtaining the fraction of bound antibodies by dividing against the FITC signal, we are 
normalizing for cell heterogeneities in shape and surface area. This normalization enables a measurement 
of population heterogeneities within a sample, which we cannot do using the dextran sensors.   

 
Figure S3.8. Representative flow cytometry data for HeLa cells of normalized antibody signal as a 
function of forward scatter. Black dots are individual cells and the red line is a linear fit to the data. We 
obtain approximately zero slope in the linear fit, which indicates that the normalized antibody 
concentration is independent of cell size.  



 

 

Chapter IV. Additional supplemental figures 
 

 
 
Figure S4.1. Macromolecular crowding on membrane surfaces is described by a surface 
osmotic pressure. 
 
(A) The dissociation constant of a surface-binding macromolecule is given by its binding energy, 

𝑈𝑈, which is a sum of the intrinsic affinity, 𝑈𝑈0, and the penalty due to crowding, Δ𝑈𝑈. The energy 
penalty posed by surface crowding is directly related to the change in normalized binding 
affinity, 𝐾𝐾𝐷𝐷/𝐾𝐾𝐷𝐷0, and the osmotic pressure of the surface, Π. 
 

(B) Coarse-grained molecular dynamics (MD) simulations were used to calculate the binding 
energy curves for spherical sensors of sizes 𝜎𝜎𝑠𝑠  =  0.25𝜎𝜎  (small), 𝜎𝜎  (medium), and 2𝜎𝜎 (large), 
where 𝜎𝜎 is the coarse-grained effective diameter of a glycocalyx polymer chain. The depth of 
the minimum gives the effective binding energy at equilibrium. The surface contains polymers 
with contour length 10𝜎𝜎 at a concentration of ∼ 10,000/𝜇𝜇𝑚𝑚2. 



 

 

 
(C) The energy penalty across various sensor sizes, surface polymer lengths, and surface 

polymer charges all collapse onto a unifying scaling line when the data are plotted against the 
osmotic pressure generated by the surface polymers, Π. The multi-domain proteins on the 
surface have varying lengths and are either charged (cyan and magenta circles) or neutral (all 
other symbols). Electrostatic interactions among the polymers are modeled by a Yukawa 
potential with different Debye lengths, 𝜅𝜅−1 . The energy penalty Δ𝑈𝑈  is normalized by the 
effective volume of the sensor immersed inside the crowded surface, 𝑉𝑉, and Π is calculated 
via the Irving-Kirkwood virial stress tensor.  Error bar indicates standard deviations of 
ensembles over all time and particles. The solid line is given by analytical theory and is not a 
fit.  

 

 

 

 

 
 
Figure S4.2. Sensor binding on crowded membrane surfaces approaches equilibrium at 
similar rates for bare and crowded surfaces. 
 
(A) Bound dextran-40k sensor concentration as a function of time on bare membrane beads 

(black symbols) and crowded PEG 3K surfaces (green symbols) saturates with the same time 
constant. Solid curves are a fit to a first-order kinetic rate law, 𝐶𝐶/𝐶𝐶∞  = 1 - exp(-t/𝜏𝜏). The 
characteristic decay time towards equilibrium is 𝜏𝜏 = 8.86 min for bare membranes and 𝜏𝜏 = 
8.74 min for crowded PEG 3K surfaces. 
 

(B) MD simulations of sensor binding on bare surfaces (black symbols) and crowded surfaces 
(green symbols), where 𝜙𝜙𝑠𝑠 = 4𝜋𝜋𝑅𝑅3𝑛𝑛𝑠𝑠/3 is the volume fraction of bound sensors at the surface. 
The characteristic decay time towards equilibrium is 𝜏𝜏 = 9.8 min for bare membranes and 𝜏𝜏 = 
9.0 min for crowded polymer surfaces. 
 
 
 



 

 

 
 

Figure S4.3. The crowding penalties reported by the large dextran-40k sensor and anti-
biotin IgG antibodies are quantitatively similar on crowded reconstituted surfaces, 
consistent with their similar size (~10 nm).  
 
We confirmed that our alternative measurement using antibodies provides a readout of crowding 
consistent with the dextran-40k sensor. 

 
 
 

 
  



 

 

Experimental materials and resources 
 

Purified human Glycophorin A (CD235a) extracellular domain with a C-terminal 6x-His tag (catalog 
number: 16018-H08H) was purchased from Sino Biological US Inc. 
Alexa Fluor 647 labeled anti-biotin (BK-1/39; catalog number: sc-53179 AF647) was purchased from Santa 
Cruz Biotechnology. Monoclonal antibodies against human Glycophorin AB (CD235ab) (HIR2; catalog 
number: 306602) and human CD47 (CC2C6; catalog number: 323102) were purchased from BioLegend.  
 
BD Microtainer Contact Activated Lancet, 30 G x 1.5 mm, low flow, purple (catalog number: 366592) was 
purchased from BD Biosciences.  
 
Lectins Sambucus Nigra Lectin (SNA; catalog number: L-1300), Fluorescein labeled Agaricus bisporus 
lectin (ABL; catalog number: FL-1421), Fluorescein labeled Erythrina cristagalli lectin (ECL; catalog 
number: FL-1141), and Wheat Germ Agglutinin (WGA; catalog number: L-1020-10) were purchased from 
Vector Laboratories. 
 
1,2-dioleoyl-sn-glycero-3-(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl (DGS-Ni-NTA; 
catalog number: 709404), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC; catalog number: 850375), 
1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS; catalog number: 840035), 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE; catalog number: 870273), 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol)-2000 (PEG2k PE; catalog number: 
880130), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol)-3000 (PEG3k 
PE; catalog number: 880330) were purchased from Avanti polar lipids. 
 
Silica microspheres (4.07μm; catalog code: SS05002; lot number: 12602 and 6.84μm; catalog code: SS06N; 
lot number: 4907) were purchased from Bangs laboratories. Cholesterol NHS (catalog number: CSL02) 
was purchased from Nanocs Inc. Cholesterol-PEG-Amine, MW 1k (catalog number: PLS-9961) was 
purchased from Creative PEGWorks. Dextran, Amino, 10,000 MW (10k dextran; catalog number: D1860), 
Dextran, Amino, 40,000 MW (40k dextran; catalog number: D1861), Alexa Fluor 647 NHS Ester 
(Succinimidyl Ester) (NHS-AF647; catalog number: A20006), Alexa Fluor 555 NHS Ester (Succinimidyl 
Ester) (NHS-AF555; catalog number: A20009), Alexa Fluor 488 NHS Ester (Succinimidyl Ester) (NHS-
AF488; catalog number: A20000) , BODIPY FL NHS Ester (Succinimidyl Ester) (NHS-BODIPY; catalog 
number:  D2184) were purchased from Invitrogen. 
 
NHS-Fluorescein (5/6-carboxyfluorescein succinimidyl ester) (NHS-FITC; catalog number: 46409), 
DyLight 650-4xPEG NHS Ester (catalog number: 62274), EZ-Link Hydrazide-Biotin (hydrazide-biotin; 
catalog number: 21339), EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (catalog 
number: 77149), Zeba Spin Desalting Column, 7K MWCO (catalog number: 89882) were purchased from 
Thermo Scientific. 
 
Proteinase K from Tritirachium album (catalog number: P2308) and sialidase from Clostridium perfringens 
(C. welchii) (catalog number: N2876) were purchased from Sigma. FITC-biotin-DNA-cholesterol construct 
(5’-FITC-TTTTTT-biotin-TTT-cholesterol-3’) was purchased from Integrated DNA Technologies, Inc. 
 
MATLAB educational license was obtained from MathWorks Inc. UC Berkeley’s BRC High Performance 
Computing Savio cluster with NVIDIA K80 GPU were used for molecular simulations. Attune NxT 
Acoustic Focusing Cytometer (ThermoFisher Scientific) was used for all of the flow cytometer experiments. 
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