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ABSTRACT Variation among host-associated microbiomes is well documented across 
species, populations, and individuals. While numerous factors can contribute to this 
variation, understanding the influence of host genetic differences on microbial variation 
is particularly important for predicting co-evolutionary dynamics between hosts and 
their microbiota. Functional understanding of host genetic and microbial covariation is 
also of biomedical relevance, for example, providing insights into why some humans are 
more susceptible to chronic disorders like inflammatory bowel diseases. Unfortunately, 
disentangling the relative contribution to microbiome variation of host genetics from the 
environment has been difficult, particularly in humans where confounding environmen­
tal effects cannot be completely controlled experimentally. While isogenic laboratory 
models can be used in controlled environments, the effects on microbiomes of induced 
large-effect mutations may not recapitulate those of genetic variation observed in 
nature. Few studies have tested for the direct influence of natural host genetic varia­
tion on microbiome differences within a highly controlled environment in which hosts 
interact freely. To fill this gap, we performed a common garden experiment using families 
of genetically divergent populations of threespine stickleback fish—an outbred model 
organism commonly used for determining the genetic basis of complex traits in the 
context of natural genetic variation. Using germ-free derivation of divergent lines and 
hybrids between them in this experimental framework, we detected a clear, positive 
association between stickleback genetic dissimilarity and microbiome dissimilarity. With 
RAD-seq data, we identified regions of the genome that contributed most significantly 
to this relationship, providing insight into the genomic architecture of gut microbiome 
variation.

IMPORTANCE A major focus of host-microbe research is to understand how genetic 
differences, of various magnitudes, among hosts translate to differences in their 
microbiomes. This has been challenging for animal hosts, including humans, because 
it is difficult to control environmental variables tightly enough to isolate direct genetic 
effects on the microbiome. Our work in stickleback fish is a significant contribution 
because our experimental approach allowed strict control over environmental factors, 
including standardization of the microbiome from the earliest stage of development 
and unrestricted co-housing of fish in a truly common environment. Furthermore, 
we measured host genetic variation over 2,000 regions of the stickleback genome, 
comparing this information and microbiome composition data among fish from very 
similar and very different genetic backgrounds. Our findings highlight how differences 
in the host genome influence microbiome diversity and make a case for future manipu­
lative microbiome experiments that use host systems with naturally occurring genetic 
variation.
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M ulticellular organisms harbor and interact with a diverse array of microbes on and 
in their bodies (1–3). Commonly, these relationships are mutualistic or commen­

sal, with microbiome constituents helping to maintain host health as well as prevent 
pathogens from successfully colonizing (4, 5). Still, relationships between hosts and 
their microbiota are complicated because whether particular community members are 
pathogenic can be context dependent. The context under which microbial communi­
ties reach dysbiosis can be environmental or be dependent on the host’s genotype. 
For example, chronic inflammatory responses are possible when the host’s immune 
system interprets one or more common symbionts as pathogenic, potentially leading to 
common conditions such as inflammatory bowel diseases (6, 7) in humans. Understand­
ing how the underlying structure of host genomic variation affects mechanisms like the 
host immune response, and in turn shapes the microbiome, is a major research priority 
for host–microbe biology.

Substantial variation in microbiome composition has been documented among 
many different host species, populations, and individuals (8–11). Still, the genetic and 
molecular mechanisms underpinning these differences have been difficult to study. 
One particular challenge is isolating the influence of host genetic variation on the 
microbiome from other factors such as shared environmental influences. Elucidating the 
relationship between host genetics and microbiomes is essential for understanding the 
causes of variation, as well as population-specific disease states and co-evolutionary 
dynamics between host populations and those of their resident microbes (12–14). A 
specific question, for example, is whether greater genomic dissimilarity among individual 
hosts of the same species leads to greater dissimilarity in their microbiomes (15, 16). 
Similarly, are there specific genomic regions that contribute to microbiome variation, and 
what is the distribution of their effects on the structure of the microbiome?

Disentangling confounding factors from host genetic influence on the microbiome 
has proven challenging. Microbiome variation across human populations has been 
documented previously, pointing to a possible role for host genetic differences (12, 17). 
However, in most studies of human populations, and depending in part on the study 
design [e.g., genome-wide association (GWA), twin studies, etc.], covariance between 
host genetic and environmental factors is variably difficult to measure and account for 
(16–20). Furthermore, human GWA studies have also been biased by limited sampling of 
global populations that fails to completely sample host genetic diversity (21, 22).

Work in model organisms has helped address some challenges as environmen­
tal factors can often be more easily controlled. Common garden designs, in which 
replicated studies are performed in a common controlled environment, provide a 
particularly powerful approach for isolating and quantifying the influence of host 
genetic vs environmental factors (23, 24). These common garden designs have been 
frequently employed for microbiome studies in plants (25, 26), yielding insights into 
both genetic influences and genotype-by-environment interactions (27, 28). Using 
similar common garden designs in free-living animal species is more difficult, however, 
because unrestricted co-housing requires the tracking of individuals. Most previous 
studies in animals have kept individuals with different genotypes physically separated 
but generally exposed to the same conditions or have periods of isolation followed by 
contact between groups (29–31). Unfortunately, such designs can obscure the genetic 
effects by confounding them with rearing environments or microenvironments (29, 32).

Other factors beyond environmental influence can also be difficult to control in 
animal models. Parental transmission (vertical transmission) of microbes has often not 
been controlled because of a lack of gnotobiotic protocols that allow a common set 
of microbes to be re-introduced (31, 33). Genetic variation is also often missing from 
traditional inbred models which cannot capture the true effects of genetic variation 
in natural populations on microbiome variation. Sometimes genetic variation has been 
introduced in such studies through induced mutations, but these have often been of 
large effect in genes such as those involved in innate or adaptive immunity (34, 35). 
The significant disruption of biological systems caused by these large-effect, induced 
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mutations will more likely create dysbiotic states of microbiomes rather than reveal the 
influences of natural genetic variation on microbiome differences (36, 37).

What is required to better understand the contribution of genetic variation to 
microbiome differences are studies in animal models that (i) have natural genetic 
variation that has been previously linked to microbiome differences in the wild, (ii) 
are amenable to controlled gnotobiotic studies in the laboratory, (iii) can be analyzed 
using a true unrestricted co-housed common garden design, and (iv) can take advant­
age of genomic tools to precisely study host genetic effects. Threespine stickleback 
fish (Gasterosteus aculeatus) have all these characteristics and have proven to be an 
exceptional model for studying natural genetic variation contributing to other complex 
phenotypes. This small fish has been widely studied in its natural marine and freshwa­
ter habitats, can be reared in the laboratory, and has extensive genomic resources. 
More recently, stickleback has been developed as a model for host-microbe interactions 
through the development of tools, such as gnotobiosis, for microbial experiments (38–
44). Previous studies have focused either on correlating variation in the microbiome of 
wild stickleback populations with differences in natural environments or have directly 
manipulated microbiota in the laboratory (38–41, 43). A gap in work using stickleback 
is directly assessing the relative contributions of the environment and host genomic 
variation to microbiome variation.

Here, we fill this gap by using genetically divergent, laboratory-raised populations 
of threespine stickleback fish—and hybrids between these populations—in a controlled-
and-replicated common garden experiment (Fig. 1; see Fig. S1 at https://figshare.com/s/
e40c984d26187d4d5fe7). We find evidence of a causal relationship between host genetic 
and microbiome variation. We also find that the strength of association between 
host genetic variation and microbiome attributes varies regionally across the genome, 
providing insight into the genomic architecture of the gut microbiome as a complex 
trait. Importantly, we characterize this relationship in a broader phenotypic context 
and document that at least some of the genetic variation associated with microbiome 
variation is also related to body size, highlighting the need to account for such inter­
mediate morphological traits in future studies of host-associated microbiomes.

MATERIALS AND METHODS

Fish husbandry

We generated eight genetically distinct families of threespine stickleback (Gasterosteus 
aculeatus) fish derived from wild-caught Alaskan populations previously maintained in 
the laboratory for at least 10 generations with periodic within-population outcrossing. 
These included three families originating from the freshwater population Boot Lake (N 
61.7167, W 149.1167), three families from the anadromous population Rabbit Slough (N 
61.5595, W149.2583), and two F1 hybrid families generated from Rabbit Slough females 
and Boot Lake males (Fig. 1; see Fig. S1 at https://figshare.com/s/
e40c984d26187d4d5fe7). These families each have their own genetic variants segregat­
ing in the offspring and vary in their relatedness (Fig. S1). All experimental families were 
generated on the same day in a 2-h period via in vitro fertilization. Embryos were 
incubated overnight in 0.1 µM filter-sterilized antibiotic medium containing 1 µL/mL 
Ampicillin, 0.1 µL/mL Kanamycin, 0.312 µL/mL Amphotericin, and four parts per thou­
sand (ppt) artificial seawater (Instant Ocean) (Spectrum Brands, Blacksburg, VA, USA) (see 
Fig. S2 at https://figshare.com/s/11c61208acba7777b117). Fin clips from the parents 
were saved and flash frozen in liquid nitrogen (LN2) to be used later for DNA-based 
parentage assignments. All procedures involving animals were in accordance with 
University of Oregon institutional animal care and use committee (IACUC) protocols.

Common garden experimental design

Embryos (n = 40) from each family (n = 8) were randomly assigned to one of two groups 
(n = 20 each) and pooled to comprise two replicate groups of 160 embryos (Fig. 1; see 
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Fig. S2 at https://figshare.com/s/11c61208acba7777b117). To remove microbes from the 
fertilization process and prevent vertical transfer, we followed germ-free derivation 
protocols for threespine stickleback that have been validated using 16S PCR and 
fluorescent in situ hybridization (FISH) (38). Specifically, the two embryo pools were 
surface sterilized using vacuum-filtered (0.1 µM) 0.2% polyvinylpyrrolidone-iodine and 
0.003% bleach diluted in sterile embryo, maintained in large petri dishes in an incubator 
(20°C) for 10 days, then transferred to two 75.71 L (20-gallon) tanks on a recirculating 
water system. Fish were fed a diet combining live brine shrimp nauplii and larval flake 
food once daily throughout the experiment. At 60 days post fertilization (dpf ), fish were 
removed from the tanks for dissection following procedures to standardize the dissect­
ing process (see Supplementary Methods Text S1 at https://figshare.com/s/
ff4e981a6adacaf06ada). An empty Eppendorf tube accompanied the samples through­
out processing and was later used as a negative control to capture environmental 
microbial contamination. Some mortality is common in clutches of stickleback embryos, 
and at the end of rearing, tank replicate 1 contained 69 surviving fish while tank replicate 
2 contained 80 surviving fish (see Fig. S2 at https://figshare.com/s/
11c61208acba7777b117).

Dissections and sample preparation

After euthanasia, the offspring were imaged using confocal microscopy to capture 
phenotypic variation including standard length and tail clipped for DNA-based 
parentage assignment (see Fig. S3 at https://figshare.com/s/351b3938a2d47c5acffa). 
Tail clips were flash frozen in LN2 and stored at −80°C. Guts were dissected following 
sterile procedures and tracked to account for introduced microbes (see Supplementary 

FIG 1 A replicated common garden experimental design enables the controlled measurement of host genetic and environmental influences on the stickleback 

gut microbiome. We performed eight total stickleback crosses from freshwater (Boot Lake) and oceanic (Rabbit Slough) laboratory populations, including two 

between-population (“hybrid”) crosses. We randomly assigned 40, initially germ-free progeny from each cross to two replicate tanks (20 progeny per family, per 

tank), and we raised the fish to 60 days post fertilization after a 10-day rearing period in two large petri dishes containing non-sterile embryo media. For the 

149 surviving fish, we determined family membership by parentage analysis using RAD-seq genotyping, and we profiled their gut microbiomes using 16S rRNA 

amplicon sequencing. The two tank-assigned samples are represented here by solid and dashed lines, and the three cross types (Bt, RS, and Hy) are represented 

by a respective green, blue, and turquoise color scheme, all of which remain consistent in figures throughout this article.
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Methods Text S1 at https://figshare.com/s/ff4e981a6adacaf06ada). Guts were then flash 
frozen in 1.5 mL Eppendorf tubes previously sterilized via UV irradiation in a Stratalinker 
(Stratagene, San Diego, CA, USA) at 1,000 J/cm2 and stored at −80°C (see Fig. S3 at 
https://figshare.com/s/351b3938a2d47c5acffa). The order of processing was random 
with respect to experimental factors of interest for all samples, throughout dissection, 
library preparation, and sequencing.

DNA isolation

DNA was extracted from tail clips from offspring and parents using the Qiagen DNeasy 
Blood and Tissue Kit (Qiagen, Valencia, CA, USA) and quantified using the Qubit 
Fluorometer Broad Range Kit (Thermofisher, Waltham, MA, USA). Sex was determined 
using PCR amplification of the male-specific GA1 region (45). Gut samples were 
homogenized for DNA isolation following a two-step homogenization pipeline (see 
Supplementary Methods Text S1 at https://figshare.com/s/ff4e981a6adacaf06ada), and 
DNA was then extracted following the Qiagen DNeasy spin column protocol described 
by Small et al. (42).

Library preparation

Genomic DNA from each tail clip was standardized to 10 ng/µL and digested with the 
restriction endonuclease SbfI-HF (New England Biolabs, Ipswitch, MA, USA) and was used 
to generate RAD-seq libraries (46–48). The uniquely barcoded samples were multiplexed 
and run in one lane of sequencing on an Illumina HiSeq 4000 to obtain single-end 150 
nucleotide (nt) reads. Twelve samples failed during the first round of sequencing and 
were re-sequenced later in a separate Illumina run following identical methods.

Gut DNA isolations were standardized to 20 ng/µL and submitted to the Univer­
sity of Oregon Genomics Core Facility (GC3F) for 16S rRNA (V4 region) amplicon 
library construction and sequencing (paired-end 150 nt reads) in a single lane on an 
Illumina HiSeq 4000 (see Supplementary Methods Text S1 at https://figshare.com/s/
ff4e981a6adacaf06ada) (42). Also sequenced were three negative control libraries, 
generated from a no-tissue extraction sample and two no-PCR-template reactions.

Genotyping and parentage assignment

Tail clip sequencing produced approximately 1.65 million reads per fish from the 
HiSeq 4000. Raw sequence data were demultiplexed by barcode and filtered using the 
process_radtags program in the Stacks suite (49, 50). Retained reads were then aligned 
using GSNAP (51) to the stickleback reference genome (version BROAD S1) obtained 
from Ensembl. Genotypes were called using the ref_map pipeline of the Stacks suite 
(49, 50). Filtering was then performed using the Populations package in Stacks with a 
minimum minor allele frequency of 0.05, a minimum stack depth of 10, and requiring 
that data be available in 92% of individuals. The resulting 2,400 SNPs were then used for 
parentage assignment by the maximum likelihood program COLONY version 2.0.6.2 (52). 
COLONY was run using default settings with allele frequencies set to calculate from data 
and an error rate of 0.001.

Amplicon sequence variant calling, filtering, and enumeration

We demultiplexed 16S reads and performed quality filtering, merging, denoising, and 
taxonomy classification using tools from QIIME 2 v2018.8.0 (53), generally according to 
the methods described by Small et al. (42). Briefly, we used demux (emp-paired), vsearch 
(join-pairs), quality-filter (q-score-joined), and deblur (denoise-16S) to define amplicon 
sequence variants (ASVs). To assign taxonomy to the ASVs, we used feature-classifier 
(extract reads and fit-classifier-naive-bayes) to train a classifier based on the GreenGenes 
13_8 99%-clustered OTU database, followed by application of the classifier using 
feature-classifier (classify-sklearn). We filtered out any remaining ASVs of mitochondrial 
or chloroplast origin using taxa (filter-table). The ASV count tables and ASV sequences 
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were then exported for further analysis using version 3.6.1 of the R statistical language 
(54).

Prior to further analysis, we filtered any individual 16S libraries that had particularly 
low-sequencing throughput as well as ASVs with particularly low representation among 
samples or those suspected to be from contaminating (non-fish) sources. Specifically, we 
excluded one ASV (5a743f17db20a09671800518094538a7, classified to family Coma­
monadaceae) that was in high abundance in the no-tissue negative control library 
and a likely reagent contaminant, and we excluded ASVs that were present in only 
one fish library. We conducted a post hoc analysis of other putative contaminants 
based on ASV frequencies and library DNA mass (see Supplementary Methods Text S1 
at https://figshare.com/s/ff4e981a6adacaf06ada) but found no strong candidates that 
would warrant removal or affect the outcome of any downstream analysis. We also 
excluded from downstream analysis individual libraries with fewer than 40,000 total ASV 
counts. In the case of subsequent multivariate and random forest analyses, ASV count 
data were normalized to account for depth differences among libraries using the cpm 
function (log = TRUE, prior.count = 0.5) from the edgeR R package (55), whereas the raw 
counts were used for differential ASV abundance analysis (see below).

Multivariate community analyses

We visualized stickleback gut microbiomes in community space (defined by 16S ASV 
abundances) using principal coordinates analysis (PCoA) based on Bray-Curtis dissimilar­
ity, as implemented via the R package phyloseq (56). We also performed PCoA based 
on a phylogenetic metric of community dissimilarity, weighted UniFrac (57). To obtain 
the weighted UniFrac dissimilarity matrix, we aligned ASV sequences using AlignSeqs 
from the R package DECIPHER (58), optimized parameters for a phylogenetic tree via 
maximum likelihood using pml and optim.pml functions from the R package phangorn 
(59), and generated the weighted UniFrac matrix with phyloseq’s distance function. We 
performed all visualizations and multivariate statistical tests in parallel, using both Bray–
Curtis and weighted UniFrac dissimilarity matrices.

To test hypotheses about contributions of experimental design factors to differences 
in gut microbiome composition among fish, we first evaluated a series of permutational 
multivariate analysis of variance (PERMANOVA) models (60) using the adonis2 function 
from the R package vegan (61). Both visualization and full, strictly additive models 
including host population, tank, standard length, sex, and dissector identity as explan­
atory variables suggested negligible influence from sex and dissector, so we tested 
fully factorial models excluding these two terms for our primary inferences. Due to 
the family structure (within populations) inherent in our experimental design, we also 
performed nested PERMANOVA using the nested.npmanova function from the Biodiversi­
tyR package (62) to explicitly test population-level effects on microbiome dissimilarity. 
Last, we also performed tests to evaluate whether the different host genotypic classes 
(at both population and family levels) in the experiment showed different degrees of 
community dispersion (i.e., beta diversity) using vegan’s betadisper function.

Random forest classification of host genotype from microbiome data

To test whether gut microbiome structure as quantified by ASV relative abundances 
provides any predictive potential with respect to host population of origin, we built 
three random forest (RF) classifiers. The first was trained based on ASV data from 
tank 1 individuals and applied to tank 2 individuals, the second was based on tank 
2 training and tank 1 evaluation, and the third was based on a training set of 80 
individuals randomly selected regardless of tank, and application to the remaining 54. 
We implemented RF models using the randomForest R package and function (63), with 
the strata and sampsize arguments set to minimize bias arising from class imbalance 
during training.
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To evaluate whether average classification accuracy of the RF models was higher 
than chance expectations, we performed 999 permutations for each model, across which 
population labels for the training set were randomly shuffled. The accuracies obtained 
from the original models with unshuffled training data were compared to the null 
distributions of accuracies from the permutations to infer statistical significance.

Differential ASV abundance analysis using zero-inflated negative binomial 
mixed models

We tested for differential abundance of individual ASVs with respect to host population, 
host size (standard length: SL), tank, and their interactions by fitting zero-inflated and 
standard negative binomial mixed models, implemented via the R package NBZIMM 
(64). We deemed ASVs suitable for zero-inflated negative binomial (zinb) models if they 
had zero counts in at most 80% of the individuals, but in at least 5%. For those ASVs 
with zeroes comprising less than 5% of the counts, we used standard (nb) models. To fit 
the models, we also included host family as a random effect, and we summarized the 
fits from the NBZIMM functions glmm.zinb or glmm.nb, including tests for model terms, 
using type-II analysis of variance as implemented by the R package car (65). P-values 
across ASVs for each hypothesis test were adjusted to control the false discovery rate 
(66).

Genome-wide association of host genetic and microbiome dissimilarity

To understand the relationship between host genetic and gut microbiome dissimilarity 
in a genome-wide context, we conducted standard and partial Mantel tests (67) with 
1,000 permutations and based on individual genetic dissimilarity: (i) calculated from 
genotypes at all 2,408 RAD-seq loci, and (ii) calculated from maximally overlapping 
sliding windows of five RAD-seq loci, along each of the 21 stickleback chromosomes. 
We conducted standard and partial Mantel tests using the mantel and mantel.partial 
functions from the vegan R package (61).

To quantify individual genetic dissimilarity among fish, we calculated the fractional 
quantity of allelic differences between individuals using the diss.dist function (with 
percent = TRUE) from the R package poppr (68). We used community dissimilarity 
matrices for these tests based on Bray-Curtis and weighted UniFrac metrics, in parallel 
analyses. To account for potential non-causal associations between genomic region 
dissimilarity and community dissimilarity arising from linkage disequilibrium, we used 
partial Mantel tests with total genetic dissimilarities (estimated from all 2,408 loci) as 
the “control matrix.” To account for the contribution of host size (standard length: SL) 
differences to the relationship between host genetic and gut microbiome dissimilarity, 
we used partial Mantel tests with size dissimilarity as the control matrix. Size dissimilarity 
was calculated as the absolute value of the difference in standard length (SL) between 
two individuals, effectively “Manhattan distance.”

RESULTS

RAD-seq data enable parentage assignment in a common garden setting

We obtained 16S amplicon sequencing profiles from the guts of 149 juvenile threespine 
stickleback, including 69 from the first tank replicate and 80 from the second tank 
replicate (Fig. 1). We excluded 15 individuals from further analysis—6 from the first 
and 9 from the second tank—due to low-sequencing coverage (< 40,000 ASV-assigned 
reads after removing contamination). Among the remaining 134 individuals, 63 were 
female and 71 were male, with mean standard length (SL) estimates (with standard 
error) for the three different “population-level” genetic backgrounds of 17.368 mm 
(0.253) for Boot Lake, 18.524 mm (0.301) for Rabbit Slough, and 16.753 mm (0.392) 
for F1 hybrids (see Fig. S1 at https://figshare.com/s/e40c984d26187d4d5fe7; see Data 
Set S1 at https://figshare.com/s/1fe12c74e01708e7cc7d). We obtained a total of 2,306 
ASVs for final analyses, and the mean number of ASV-assigned reads among the 134 
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individuals was 238,706.4 (SEM = 11,274.01) (see Data Set S1 at https://figshare.com/s/
1fe12c74e01708e7cc7d).

Using RAD-seq data generated for the 149 progeny and all 16 of the potential 
parents, we assigned parentage with 100% confidence to all progeny (see Data Set S1 
at https://figshare.com/s/1fe12c74e01708e7cc7d). One Boot Lake family did not contain 
any surviving progeny in either tank, so we inferred that this family sustained complete 
mortality at an early stage of development. This was consistent with our monitoring 
of extra embryos (siblings of the 40 embryos per clutch included in the experiment), 
which also sustained 100% mortality early in development. Remaining for analysis were 
approximately uniformly distributed family sizes for two Boot Lake families, three Rabbit 
Slough families, and two F1 Boot Lake—Rabbit Slough hybrid families (see Fig. S1 at 
https://figshare.com/s/e40c984d26187d4d5fe7).

Host genotype, host size, and housing environment influence the stickleback 
gut microbiome

We found that three factors in our experiment reliably influenced overall microbiome 
dissimilarity among individual fish: population of origin (“genetic background”), host 
size, and rearing tank (“environment”) (Fig. 2). With respect to Bray-Curtis dissimilarity 
calculated from 2,306 ASV relative abundances, population explained the most variation 
(PERMANOVA: R2 = 0.056; F2,129 = 4.235; P ≤ 0.001), followed by tank (PERMANOVA: 
R2 = 0.046; F1,129 = 8.219; P ≤ 0.001), and then by standard length (PERMANOVA: 
R2 = 0.037; F1,129= 5.564; P ≤ 0.001). It should also be noted that in a model includ­
ing first-order interactions (Fig. 2), we detected a significant effect of the interaction 
between population and standard length (PERMANOVA: R2 = 0.028; F2,124 = 2.148; P = 
0.007), suggesting that fish size influences the gut microbiome (or vice versa) but to 
different degrees depending on the host’s genetic background (see Fig. S4 at https://
figshare.com/s/0d139faa133de0a2afde). Beta diversity of the gut microbiome (i.e., 
dispersion) may differ subtly among the three genetic backgrounds (permutation test: 
F2,131 = 3.438; P = 0.034), with Boot Lake individuals being less dispersed, on average, 
than Rabbit Slough or hybrid individuals (Fig. 2). In contrast, other factors such as sex 
did not have a significant influence on overall microbiome dissimilarity. Additionally, 
the identity of the researcher performing the dissections (see Supplementary Methods 
Text S1 at https://figshare.com/s/ff4e981a6adacaf06ada) had a minor effect on overall 
microbiome dissimilarity (see Fig. S5 at https://figshare.com/s/422bc5f6f3737c682c51).

We found similar trends when analyzing phylogenetic community dissimilarity using 
weighted UniFrac (see Fig. S4 at https://figshare.com/s/0d139faa133de0a2afde and S5 at 
https://figshare.com/s/422bc5f6f3737c682c51). However, standard length explained the 
most dissimilarity (PERMANOVA: R2 = 0.070; F1,129= 10.098; P <= 0.001), followed by 
population of origin (PERMANOVA: R2 = 0.034; F1,129= 2.451; P = 0.018), followed by 
rearing tank (PERMANOVA: R2 = 0.018; F1,129= 2.624; P = 0.046). Again, we noted an effect 
of interaction between population and standard length (PERMANOVA: R2 = 0.033; F2,124 
= 2.458; P = 0.020). We did not find a significant difference in beta diversity among the 
three genetic backgrounds (permutation test: F2,131 = 1.345; P = 0.282).

To evaluate whether the effect of host genotype in the PERMANOVA models was 
driven by overall population differences, as opposed to idiosyncratic family effects within 
populations, we also performed nested analysis based on the Bray–Curtis dissimilarity 
matrix. We found that population-level variation significantly explained microbiome 
variation (nested PERMANOVA: F2,127 = 2.934; P = 0.033), relative to family effects (nested 
PERMANOVA: F4,127 = 1.194; P = 0.160).

Genomically dissimilar stickleback hosts exhibit more dissimilar gut micro­
biota

We calculated pairwise genomic dissimilarity among individual fish, based on genotypes 
from 2,408 RAD-seq loci. Closely related host pairs, on average, tended to have more 
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similar gut microbiomes as measured by Bray-Curtis community dissimilarity (Fig. 3). We 
tested for a statistical association between genomic distance and microbial community 
distance, while accounting for standard length differences, and found evidence for a 
subtle but statistically significant positive relationship (partial Mantel test: Mantel r = 
0.0432; P = 0.011). We found no evidence for such a relationship between host genomic 
distance and community dissimilarity as measured by weighted UniFrac (partial Mantel 
test: Mantel r = −0.004; P = 0.580).

A B

C D

Fish Standar

FIG 2 Host genotype (population of origin), host size (standard length: SL), and rearing environment (tank) influence the structure of the stickleback gut 

microbiome. An ordination of individual stickleback guts in microbial community space using PCoA, and based on Bray-Curtis dissimilarity, shows evidence for 

separation by host family (A) and by tank (B). A scatterplot of values for the first PCoA axis (which explained 28.52% of the total variation in composition) vs. 

fish standard length (SL) shows differing relationships between community structure and fish length among the three different host populations (C). A similar 

scatterplot, but including PCoA 2 (11.12% of variation explained), suggests a weak relationship between community structure and fish size. In all plots, colors 

represent fish populations (Bt = green, RS = blue, Hy = turquoise). In B–D, point style represents rearing tank (tank 1 = closed, tank 2 = open), and in B ellipses, 

line style represents rearing tank (tank 1 = solid, tank 2 = dashed). Ellipses in A–B reflect 95% confidence regions about respective group centroids, and dashed 

lines in C–D show population-specific slopes from general linear models.
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Random forest classifiers trained using gut microbiome data predict popula­
tion membership with less accuracy for fish from hybrid crosses

We applied three random forest models using ASV relative abundances, first by training 
on fish from Tank 1 to classify population of origin for fish from Tank 2, second by training 
on Tank 2 fish to classify Tank 1 fish, and third by randomly selecting (regardless of 
tank) 80 fish for training and 54 fish for testing. For two of these models, total accuracy 
was significantly better than a null distribution generated by permutation (permutation 
test; P = 0.04, P = 0.073, and P = 0.004, respectively; see Fig. S6 at https://figshare.com/s/
bc99ee67fb3d46dcfb55). In all cases, the class-wise accuracy was consistently low for 
F1 (Hy) individuals (0.381, 0.167, 0.333) but higher for Bt (0.429, 0.778, 0.471) and RS 
individuals (0.517, 0.481, 0.682).

Each model included at least 10 ASVs with relatively high feature importance (see 
Data Set S2 at https://figshare.com/s/fe7ff5a0127e7fdd3244), which belonged primarily 
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FIG 3 Stickleback that are similar genetically have similar gut microbiomes. A scatterplot (A) of all 

pairwise Bray-Curtis and genetic (based on 2,408 markers) dissimilarity values. Each point is colored 

(see legend) according to the population combination reflected by the fish pair. A companion plot 

(B) shows means and means ± standard errors as crossing lines for family-wise stratification of the 

pairwise dissimilarities, and each family pair is represented by a text label. Note that the x-axis limits are 

the same for both A and B, but the y-axis range is smaller for B to better illustrate the distributions of the 

means.
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to Phyla Proteobacteria and Actinobacteria, with representation from diverse classes, 
including Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacte­
ria, and Bacilli. One ASV (from Genus Agrobacterium) was consistently important for 
all three models, and several others assigned at least genus-level taxonomy, including 
Luteibacter rhizovicinus, Pseudonocardia halophobica, Sphingomonas spp., Bacillus spp., 
and Edaphobacter spp., showed high saliency for at least two of the classifiers (see Data 
Set S2 at https://figshare.com/s/fe7ff5a0127e7fdd3244).

Individual bacterial lineages are associated with stickleback genetic back­
ground, rearing environment, and genetic-by-environment interaction

We fit negative binomial or zero-inflated negative binomial mixed models to test 
whether relative abundances of individual ASVs (315 in total) differed among stick­
leback populations of origin. Among-individual variation was high at the ASV (see 
Fig. S7 at https://figshare.com/s/a80fd5df2e3f8c38541f), class (Fig. 4), and phylum (see 
Fig. S7 at https://figshare.com/s/a80fd5df2e3f8c38541f) levels, but we found statistical 
evidence of association with population of origin for many ASVs (see Data Set S3 at 
https://figshare.com/s/1eadd006fa1063417ef2). Among the 20 ASVs with the largest test 
statistics (for the effect of population), Class Alphaproteobacteria (Phylum Proteobac­
teria) dominated, with substantial representation also from Class Chlamydia (Phylum 
Chlamydiae). Many (48%) of the ASVs subject to a significant population effect also 
showed evidence for an effect of interaction between population and tank (see Data 
Set S3 at https://figshare.com/s/1eadd006fa1063417ef2). For example, the ASV with the 
fifth ranking population effect test statistic (assigned to Genus Bradyrhizobium) was in 
low relative abundance among Boot Lake families, but this effect was more pronounced 
in Tank 2 (see Fig. S8 at https://figshare.com/s/bcd2033ef549013801a2). Another ASV, 
assigned to Genus Agrobacterium and mentioned above as demonstrating consistent 
random forest feature importance, was also subject to population and population-by-
tank interaction effects but with consistent low abundance in Boot Lake individuals 
(see Fig. S8 at https://figshare.com/s/bcd2033ef549013801a2). Other ASVs, for instance 
one assigned to Genus Perlucidibaca, showed strong tank differences without popu­
lation or population-by-tank interaction effects (see Fig. S8 at https://figshare.com/s/
bcd2033ef549013801a2).

Gut microbiome and host genetic associations vary in strength and mode 
along the stickleback genome

Based on a sliding window approach using partial Mantel tests to account for overall 
relatedness and size differences among fish, we identified at least nine regions of the 
stickleback genome at which genetic dissimilarity is positively associated with gut 
microbiome (Bray-Curtis) dissimilarity (Fig. 5; see Data Set S4 at https://figshare.com/s/
4a6a3e22f857861fb981). In a parallel analysis using Weighted UniFrac to quantify 
community dissimilarity, we identified at least five genomic regions (see Fig. S9 at 
https://figshare.com/s/540694b8f9a180402fae), and all except one overlapped with the 
nine strongest candidate regions from the Bray-Curtis analysis. These four intersecting 
candidate regions lie on chromosomes 1, 14, 16, and 20, in marker position intervals of 
1.923, 0.406, 3.077, and 3.372 Mb, respectively. The strength of the relationship is clear 
between gut community (Bray-Curtis) and host genetic dissimilarity for these regions 
(Fig. 5; see Fig. S10 at https://figshare.com/s/6f8e5af4c698dd347851) relative to all 
markers (Fig. 5) and to four randomly sampled regions of the same approximate size (see 
Fig. S10 at https://figshare.com/s/6f8e5af4c698dd347851).
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DISCUSSION

Controlled common garden experiments are essential for understanding 
determinants of animal microbiomes

Several important features of our common garden experimental design are useful in 
addressing previously challenging questions. We subjected genetically variable individu­
als to identical rearing conditions, with a controlled and consistent diet, truly co-housed 
and with replication, allowing the disentanglement of host genetic from environmental 
effects on the gut microbiome. This degree of experimental control has been implemen­
ted more commonly for plant microbiome studies (69–72), but it is logistically difficult for 
studies of free-living animal species. Because animal experiments with unrestricted co-
housing require the tracking of individuals via marking or genotyping, a more conven­
ient alternative has been to keep subjects with different genotypes physically separated 
but generally exposed to similar conditions (33, 41, 42, 73–75). In contrast, we incorpora­
ted unrestricted co-housing in our current study, an approach taken in only a few other 
studies (31, 34, 76).

Importantly, external fertilization and early surface sterilization of embryos via 
gnotobiotic techniques developed for stickleback (38) allowed us to control for vertical 
transfer of microbes and to create a common conventional starting point for microbial 
colonization among individuals. Germ-free derivation has also been leveraged to 
understand host genetic contributions to microbiome attributes in Drosophila (77), dung 
beetles (78), mice (79), and zebrafish (34), although some of these studies relied on 
inbred lines or induced mutations, which place limitations on their ability to recapitulate 
and interrogate the landscapes of genetic variation often observed in natural popula­
tions. The design of our current study included both crucial elements: genetic variation 
sampled recently from natural stickleback populations coupled with a highly controlled, 
standardized environment. Additionally, by using genetically distinct populations of 
threespine stickleback and their F1 progeny, we broadened the continuum of genetic 
variation along which to assess patterns of inheritance in both regional genomic and 
quantitative genetic contexts.

FIG 4 Relative abundance of bacterial classes based on 16S profiling demonstrates substantial variation in community composition among individuals, 

populations and families, and rearing tanks. Each vertical bar represents the gut microbiome of an individual fish, and bars are ordered within each family–tank 

combination by increasing abundance of Class Gammaproteobacteria, the most abundant class overall on average. Black horizontal bars below the plot 

represent tank (Tank 1 = solid, Tank 2 = dashed), and colored horizontal bars represent stickleback families. The legend to the right of the plot provides a key to 

the 16 most abundant (on average, from bottom to top) classes.
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FIG 5 The strength of the relationship between host genetic and gut microbiome dissimilarity varies along the stickleback genome. A sliding window analysis 

(A) shows the strength of host genetic vs. gut microbiome dissimilarity associations across chromosomes. For each overlapping window of five (RAD-seq) 

(Continued on next page)
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Interactions among host genetic background, rearing environment, and host 
morphology suggest complex, interdependent drivers of gut microbiome 
diversity

The primary objective of our study was to test whether host genetic variation deter­
mines the composition of the stickleback gut microbiome. To this end, we assayed 
ASV abundance in each fish to compare taxonomic patterns with previously published 
studies in wild and lab-reared stickleback. Our observation of Gammaproteobacteria as 
the major class is consistent with previous findings of our laboratory in adult stickleback 
(38, 42), and the laboratories of other stickleback researchers (41, 80), and is consistent 
across wild and lab-reared populations (38). Our primary hypothesis, however, was 
that host genetic variation would impact variation in the microbiome overall. Here, 
we provide three lines of evidence that support this hypothesis. First, we document 
clear partitioning by host population of variation in community space. Second, ASV 
abundance data predict host population with above-noise accuracy using random 
forest classifiers. Third, among-individual genetic differences along the host genome 
accompany microbiome differences. The general strength of this pattern was greater 
for analyses based on Bray–Curtis dissimilarity relative to those based on weighted 
UniFrac, suggesting that groups of bacterial lineages with recent shared ancestry may be 
collectively influenced by host genetics.

Interestingly, we also found that relationships between host genetic variation and 
gut microbiome variation differed depending on other study variables, namely rearing 
environment (tank) and fish size (standard length). These statistical interactions between 
host genotype and other factors are not surprising, as other studies of host–microbiome 
associations have revealed similar patterns. For example, a tightly controlled, recent 
study of influences on the stickleback gut microbiome revealed that host genotype 
effects were more pronounced during infection with the cestode parasite Schistoce­
phalus solidus, relative to controls (76). Additionally, authors of a study in which two 
Japanese quail genotypes received different cholesterol diets found that diet interacts 
with host genotype to influence the intestinal microbiome (81).

Our observed connections among stickleback genotype, standard length, and gut 
microbiome composition highlight an increasing appreciation for the idea that a 
multitude of heritable host traits likely unrelated to immunobiology sensu stricto make 
significant contributions to microbiota. Indeed, traits such as body size in killifish and 
cod (82) and mice (83), and leaf attributes and physiological traits in Picea spruces (84), 
have been shown to co-vary with host-associated microbiome attributes but without 
necessarily explaining the totality of host genetic contributions to microbiome variation. 
In the case of our study, we noted a relationship of varying strength between SL and 
community composition across the three genotypes and that host genetic variation still 
explained microbiome variation after accounting for the size differences.

FIG 5 (Continued)

markers, a partial Mantel test (accounting for overall genetic dissimilarity) was used to assess the relationship between genetic and microbiome (Bray-Curtis) 

dissimilarity. The left (black) y-axis and black points indicate the test statistic, and the right (red) axis and solid red lines represent the lowess-smoothed P-value 

distribution from the statistical tests. Note that the red y-axis is on a log10 scale, ascending from high to low, to show that especially low P-values commonly 

accompany windows with large, positive test statistics. Points (marker windows) above the top, dashed line represent regions of the genome especially strongly 

(i.e., beyond null expectations) associated with microbiome differences. The red, dashed line marks a P-value of 0.05. Blue bands show four “peaks,” window 

blocks that are consistently significant across frequency-based (Bray-Curtis) and phylogenetic (Weighted UniFrac) metrics of community dissimilarity. These 

peaks likely correspond to regions of the stickleback genome that influence gut microbiome differences. Alternating white and gray vertical bands demarcate 

stickleback chromosomes. Plots of host genetic and gut microbiome dissimilarity for a randomly selected region of 15 markers on chromosome 14 (B and 

C) show a relatively weak association, whereas the 15 markers in peak 4 (D and E, and marked with an asterisk) show a strong, positive relationship. Each point 

in B and D is colored (see legend in D) according to the population combination reflected by the fish pair. In Plots B and D, points are “jittered” about discrete 

degrees of genetic dissimilarity (x-axis) to reduce obfuscation. Plots C and E show means and means ± standard errors as crossing lines representing family-wise 

stratification of the pairwise dissimilarities, with each family pair represented by a text label.
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One outstanding question, however, concerns the directionality of potential causal 
relationships among these variables. Body size or growth function parameters, which 
show high heritability in stickleback fishes (85, 86), may determine which microbes can 
colonize and/or persist in the gut. Standard length can vary substantially between adults 
in threespine stickleback populations and is also often used as a metric for determining 
developmental stage of juveniles (87). As our fish were 60 dpf—still juvenile—it is 
possible that differences in developmental rate among genotypes could explain our 
results.

Alternatively, it is conceivable that a fish’s gut microbiome, determined in part by 
its genotype, affects metabolism and ultimately growth to dictate size. In any case, 
consideration of a host’s composite phenotype, including morphological, behavioral, 
metabolic, and immunological traits, is important when conceptualizing host genetic 
contributions to the microbiome. Traits like body size within stickleback and other 
host systems, for example, should be explicitly evaluated and accounted for whenever 
possible, when the primary interest of studies (e.g., GWAS) is the identification of host 
genetic microbiome determinants. Importantly, our ability to document the interactions 
among these variables further highlights the strength of the common garden experi­
mental design.

Gut microbiome dissimilarity increases with greater host genetic dissimilarity

One important prediction from our conceptual understanding of host-microbe co-
evolutionary dynamics is that continuous genetic differentiation among individual hosts 
in a population, particularly owing to differing immunogenetic repertoires, will translate 
to compositional dissimilarity of the microbiome (16, 88). Tests of this prediction for 
hosts of the same species have been rare, are seldom performed using controlled 
experiments, and have provided mixed results. For example, an environment-controlled 
study of Daphnia galeata hatched from different sediment layers (73) tested for an 
association between genome-wide genetic dissimilarity and microbiome dissimilarity, 
and it yielded no such relationship. On the other hand, authors of an exome sequenc­
ing-based study compared wild-caught house mice from five natural populations and 
did find evidence for a positive relationship between host genetic and gut microbiome 
dissimilarity (33), as did authors of a microsatellite-based study of wild-caught threespine 
stickleback from six lake populations (39).

We found a positive relationship between genetic dissimilarity calculated from 2,408 
RAD-seq loci across the stickleback genome and Bray–Curtis gut microbiome dissimilar­
ity, accounting for differences in fish size. This pattern appears to be driven largely by 
smaller genomic differences and more similar microbiomes, on average, between Boot 
Lake individuals, and more generally by smaller genetic and microbiome dissimilarities 
between individuals within, relative to between, families (Fig. 3). Interestingly, commun­
ity dissimilarity was not greatest for individual pairs with a Boot Lake and Rabbit Sough 
individual (the most genetically dissimilar pair type in the experiment), suggesting 
that allelic dominance at host loci may be important for inheritance with respect to 
microbiome composition.

Not surprisingly, this structural relationship between genetic variation and beta 
diversity was also borne out by multivariate analyses treating population of origin as 
a discrete factor. We observed that the gut microbiota of Boot Lake individuals was 
less dispersed, on average, relative to Rabbit Slough or hybrid individuals. Boot Lake 
individuals, considered as a group in this experiment, have experienced more inbreeding 
and exhibit on average lower genetic variation than Rabbit Slough individuals.

Our abilities to predict population membership of fish based on their gut microbiota 
also varied by genetic diversity within the groups. Random forest classifiers trained 
using ASV relative abundances were most accurate for fish belonging to pure freshwater 
(Boot Lake) or pure anadromous (Rabbit Slough) populations. Accuracy declined when 
predicting membership for F1 individuals from the hybrid crosses. Deeper investigation, 
including greater sampling of progeny from a more diverse panel of crosses, is needed 
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to better understand what aspects of genetic variation and forms of inheritance (i.e., 
non-additive) are driving the patterns observed here.

Host genomic regions contribute differentially to variation in the gut 
microbiome

Our sliding window analyses of the relationship between host genetic and microbiome 
dissimilarity suggest that several regions of the stickleback genome contribute large 
effects to gut microbiome variation among individual fish, relative to the genome 
average. The distribution of effect sizes for the analysis based on Bray–Curtis community 
dissimilarity is similar to that for an analysis in which we tested for correspondence 
between genetic dissimilarity and standard length (SL) differences (see Fig. S9 at 
https://figshare.com/s/540694b8f9a180402fae), suggesting for this metric of community 
dissimilarity anyway, a comparable genomic architecture in the broad sense.

As was the case for several other analyses; however, measurement of microbiome 
dissimilarity using weighted UniFrac resulted in fewer large-effect regions of association 
than analysis based on Bray–Curtis dissimilarity. Nevertheless, four genomic regions from 
the two analyses overlap, lending support for at least several potentially important 
genetic effects, each on a different stickleback chromosome. In addition, we controlled 
for standard length differences via partial Mantel tests, and none of the four regions 
overlapped with large-effect regions from the SL analysis, so host genetic effects other 
than those on body size explain the differences in community structure.

The genomic regions of association we identified are large, covering hundreds of 
kilobases in some cases, so narrowing intervals to putative causal variants would likely 
require GWAS or fine-mapping analyses, with considerably larger sample sizes. At least 
one other study has included an analysis (QTL mapping) of association between genomic 
variants and gut microbiome composition in threespine stickleback from two British 
Columbia lake populations (89). Although mapping intervals were also wide in that 
study, there appears to be minimal overlap between QTL for the latent community 
variables mapped therein and association peaks from our analyses, with the possible 
exception of overlapping regions on chromosomes 2, 14, and 20.

Given our finding of an overall association between genetic dissimilarity and 
microbiome dissimilarity, as well as genomically localized peaks of extreme test statistic 
values, we conclude that there is an overall polygenic host contribution to microbiome 
beta diversity. However, our permutation-based association tests carried a lower bound 
P-value of 0.001, and the contribution of any particular genomic region should be 
considered preliminary in light of the possibility of false positives inherent in genomic 
multiple testing frameworks. As in other genomic association studies, the effects of 
candidate regions here should be confirmed in the future via additional approaches such 
as independent replication, fine-scale mapping, and genome editing.

Conclusions and perspective

We conclude from our carefully controlled common garden experiment that host 
genomic diversity is a definitive facilitator of beta diversity for gut microbiomes among 
individual stickleback fish and that inheritance of structural microbiome traits is not 
strictly additive. Future studies that both leverage metagenomic interrogations of the 
microbiome and precise manipulation of host genomes will be required to understand 
mechanistic bases of the associations reported here. The replicated tank element of our 
common garden design also demonstrated that rearing environment is an important 
factor and that the interaction between genetic and environmental variation (G-by-E) 
influences the microbiome as well. Our results indicate that future studies which harness 
standing genetic variation measured across the host genome, as compared to gross 
population or inbred line membership, permit much more nuanced understanding of 
genomic architecture and possible mechanistic connections between host genes and 
microbes. In addition, for those studies with inherent reliance on inferences from host 
genomic data (e.g., GWAS, QTL mapping), efforts should be made to limit the impact 

Research Article mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.00219-23 16

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
bi

o 
on

 1
8 

Se
pt

em
be

r 2
02

3 
by

 2
60

1:
1c

1:
83

7f
:fc

21
:2

05
a:

77
d8

:3
c0

f:5
35

2.

https://figshare.com/s/540694b8f9a180402fae
https://doi.org/10.1128/mbio.00219-23


of variables that confound genetic effects, through tools like gnotobiotic protocols and 
unrestricted co-rearing. These tools can be implemented now for powerful outbred fish 
models such as threespine stickleback and can be developed for many other organisms 
in future studies to better understand the general principles and mechanisms by which 
host genetic variation influences microbiome diversity.
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