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Abstract
We derive a fully-discrete finite element scheme to a fractional Timoshenko beam model,
which characterizes the mechanical responses of viscoelastic beams, thick beams and beams
subject to high-frequency excitations by properly considering the effects of both transverse
shear and rotational inertia. We prove high-order regularity of the solutions to the model and
then accordingly prove error estimates of the numerical scheme. Numerical experiments are
performed to substantiate the numerical analysis results and to demonstrate the effectiveness
of the fractional Timoshenko beammodel in modeling the mechanical vibrations of different
beams, in comparison with its integer-order analogue and the widely-used integer-order and
fractional Euler-Bernoulli beam models.

Keywords Fractional Timoshenko beam model · Viscoelasticity · Regularity · Finite
element approximation · Error estimate

Mathematics Subject Classification 35S10 · 45K05 · 65M60

1 Introduction

Viscoelastic materials such as polymeric materials and natural fibers exhibit mechanical
properties intermediate between those of viscous liquid and elastic solid when undergoing
deformation, and have shown widespread applications [3, 8, 24, 25]. In particular, numer-
ous experiments indicate that viscoelastic materials demonstrate power-law behaviors [2, 5,
31, 33, 40]. For instance, classical rheological models combine elastic elements (Hooke’s
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Fig. 1 Bending behavior of Timoshenko (left) and Euler-Bernoulli (right) beams

springs) with viscous components (Newtonian dashpots) to mimic the mixed properties of
the viscoelastic materials, which fundamentally approximate their power-law behaviors by
a combination of decaying exponentials [2, 5, 15, 24, 34]. Consequently, the fractional vis-
coelastic models, which are derived from the fractional analogue of the classical stress–strain
equation for the elastic materials that involves the relaxation function of the power-law form,
could robustly describe the observed power-law behaviors of the viscoelastic materials with
numerous experimental demonstrations [8, 33, 40].

Euler-Bernoulli beam theory is applicable for long-slender elastic beams but is no longer
suitable for thick beams, composite beams and beams under high frequency excitations. In
contrast, the Timoshenko beam theory additionally considers the effects of rotary inertia and
the shear deformation and has thus been widely used to characterize the mechanical behavior
of the aforementioned beams. For instance, Fig. 1compares the bending behavior of these
two kinds of beams under deformation to illustrate the difference, which is characterized by
the total angle ζ of rotation of the centroidal axis of beams. In the Timoshenko beam model
ζ = ζb + ζs as presented in the left plot of Fig. 1 where ζb and ζs are due to bending and
shearing, respectively, while the Euler-Bernoulli beammodel only assumes ζ = ζb as shown
in the right plot of Fig. 1, see also §6.3 for numerical validation.

We consider the following fractional Timoshenko beam model [12, 28, 35, 41, 42, 48],
which characterizes the mechanical responses of viscoelastic beams, thick beams, and beams
under high-frequency excitations by properly taking shear force and rotational inertia into
consideration

ρA(x)∂2t w = ∂x
(
κGA(x)∂α

t

(
∂xw − θ

)) + q(x, t),
ρ I (x)∂2t θ = ∂x

(
E I (x)∂x∂

α
t θ

) + κGA(x)∂α
t

(
∂xw − θ

)
.

(1)

Here (x, t) ∈ (0, l)× (0, T ]where l is the beam length,w(x, t) and θ(x, t) are the transverse
deflection and the angle of rotation of the cross section at x , A(x) is the cross-sectional
area, q(x, t) is the external force, ρ is the mass density of the material, E is Young’s elastic
modulus for the beam, I (x) is the rotational inertial,G is the shearmodulus, and κ is the shear
coefficient which is a dimensionless factor that depends on the shape of the cross-sectional
area. The ∂α

t with 0 < α < 1 refers to the Caputo fractional differential operator defined by
[23, 34]

∂α
t g(t) := 0 I

1−α
t ∂t g(t), 0 I

α
t g(t) := 1

�(α)

∫ t

0

g(s)

(t − s)1−α
ds. (2)
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We note that the viscoelastic beams modeled by (1) are anticipated to exhibit solid elastic
behavior when the fractional order α → 0, and to demonstrate viscous behavior due to the
inherent viscoelastic damping mechanism with α → 1.

In this work we assume that the beam is clamped at both ends so the displacement w and
the angle of rotation θ vanish at both ends, leading to the boundary conditions

w(0, t) = w(l, t) = 0, θ(0, t) = θ(l, t) = 0, t ∈ [0, T ], (3)

and we close system (1) by the initial conditions

w(x, 0) = w0(x), ∂tw(x, 0) = w̆0(x), x ∈ [0, l],
θ(x, 0) = θ0(x), ∂tθ(x, 0) = θ̆0(x), x ∈ [0, l]. (4)

After the model reformulation (cf. §3), each equation in model (1) takes the form of
a parabolic integro-differential equation with a memory kernel, which has been extensively
investigated in the literature [6, 13, 16, 18–20, 38, 44]. In [26], a parabolic integro-differential
equation with either smooth or the power-function kernel β(t) = tα−1 for 0 < α < 1
modeling the viscoelasticity in shape-memorymaterials has beenmathematically andnumeri-
cally analyzed. Semi-discrete finite element approximations for parabolic integro-differential
equations with integrable kernels have been proved in [21]. Optimal error estimates of the
H1-Galerkin mixed finite element methods for parabolic partial integral-differential equa-
tions arising from the materials with memory effects are established in [32]. In [46] the finite
element approximation to a nonlinear hyperbolic integro-differential equation with L1 con-
volution kernel is analyzed. To compensate for the singularity of the solutions at the initial
time, quadrature methods [22, 27] and discontinuous Galerkin methods [30] on non-uniform
temporal grids are applied to recover the optimal-order convergence rates. Convergence of
finite element solutions of stochastic partial integro-differential equations driven by white
noise has been analyzed in [11].

Compared with the extensive studies for a single parabolic integro-differential equation,
there aremuch less investigations for numericalmethods ofmodel (1) due to, e.g. the coupling
of the two equations and the lack of high-order regularity estimates of the solutions. To
compensate for this gap, we derive high-order regularity results of the solutions to model
(1) and then accordingly prove error estimates of the finite element scheme for the system
(1) by technical derivations. The rest of the paper is organized as follows. In §2, we present
preliminaries to be used subsequently. In §3, we prove high-order regularity of the solutions.
In §4, we derive a fully-discrete finite element scheme for the fractional Timoshenko beam
model and prove auxiliary estimates. In §5,we derive error estimates for the proposed scheme.
Numerical experiments are carried out in §6 to substantiate the theoretical findings and to
demonstrate the effectiveness of the fractional Timoshenko beam model in modeling the
mechanical vibrations of different beams compared with its integer-order analogue and the
integer-order and fractional Euler-Bernoulli beam models. We address concluding remarks
in the last section.

2 Preliminaries

For m ∈ N (the set of nonnegative integers), 1 ≤ p ≤ ∞, and I := (0, l) or [0, T ],
let Cm[0, T ] be the Banach space of continuous functions with continuous derivatives up to
orderm on [0, T ]. Let L p(I) be theBanach space of pth power Lebesgue integrable functions
on I andWm,p(I) be the Sobolev space of functions with derivatives up to orderm in L p(I).
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Let Hm(I) = Wm,2(I) and Hm
0 (I) be its subspacewith zero boundary conditions up to order

m − 1. All the spaces are equipped with standard norms [1].
For a Banach space X , define Wm,p(0, T ;X ) by [1, 10]

Wm,p(0, T ;X ) :=
{
g : ∥

∥∂kt g(·, t)
∥
∥X ∈ L p(0, T ), 0 ≤ k ≤ m

}

equipped with the norm

‖g‖Wm,p(0,T ;X ) :=

⎧
⎪⎪⎨

⎪⎪⎩

( m∑

k=0

∫ T

0

∥∥∂kt g(·, t)
∥∥p
X dt

)1/p

, 1 ≤ p < ∞,

max
0≤k≤m

ess sup
t∈(0,T )

∥
∥∂kt g(·, t)

∥
∥X , p = ∞.

Through out this paper we shall use Q and Qi to denote generic positive constants where
Q may assume different values at different occurrences. We set ‖ · ‖ := ‖ · ‖L2(I) and
abbreviate Wm,p(0, T ;X ) as Wm,p(X ) for simplicity.

Lemma 1 [7, 9, 34, 37] The left fractional integral operator 0 I
β
t and the right fractional

integral operator

t I
β
T g(t) := 1

�(β)

∫ T

t

g(s)

(s − t)1−β
ds

are bounded linear operators in L2(0, T ) with the semigroup properties

0 I
β1
t 0 I

β2
t v = 0 I

β1+β2
t v, t I

β1
T t I

β2
T v = t I

β1+β2
T v ∀t ∈ [0, T ], β1, β2 > 0, (5)

and they are adjoint operators in the sense that
∫ T

0
(0 I

β
t w)v(t)dt =

∫ T

0
w(t)(t I

β
T v)dt, w, v ∈ L2(0, T ), β > 0. (6)

The operator 0 I
β
t with 0 < β < 1 could commute with the differential operator ∂t

∂
1−β
t v = 0 I

β
t ∂tv = ∂t 0 I

β
t v, ∀v ∈ W 1,1(0, T ) with v(0) = 0. (7)

Lemma 2 [47, 48] The following coercivity holds for 0 < β < 1/2 if both sides of the
equation exist for t̄ ∈ [0, T ]

∫ t̄

0
0 I

β
t g · t I β

t̄ g dt ≥ cos(βπ)
∥∥0 I

β
t g

∥∥2
L2(0,t̄) = cos(βπ)

∥∥t I
β

t̄ g
∥∥2
L2(0,t̄) (8)

Lemma 3 [45, Theorem 3.2] Let a ≥ 0 and b > 0 be constants and suppose that ϑ , ι ≥ 0
and ϑ + ι < 1. Suppose that v ≥ 0 satisfies the inequality

v(t) ≤ a + b
∫ t

0
(t − s)−ϑ s−ιv(s)ds, for a.e. t ∈ [0, T ]. (9)

We write B0 := B(1 − ϑ, 1 − ι). For r > 0, let tr := ( r
bB0

) 1
1−ϑ−ι and let r0 := bB0T 1−ϑ−ι

so that tr ≤ T for r ≤ r0. Then, if r ≤ r0 and also r < 1, we have

v(t) ≤ a

1 − r
exp

(
bt−ϑ

r

(1 − r)(1 − ι)
t1−ι

)
, for a.e. t ∈ [0, T ]. (10)

123



Journal of Scientific Computing (2023) 95 :57 Page 5 of 21 57

3 Regularity

For the convenience of the analysis, we use the substitution

u(x, t) := w(x, t) − w0(x) − t w̆0(x), ψ(x, t) := θ(x, t) − θ0(x) − t θ̆0(x) (11)

to reformulate system (1) in terms of u and ψ as follows

ρA(x)∂2t u = ∂x
(
κGA(x)∂α

t

(
∂xu − ψ

)) + q̃(x, t),
ρ I (x)∂2t ψ = ∂x

(
E I (x)∂x∂

α
t ψ

) + κGA(x)∂α
t

(
∂xu − ψ

) + p̃(x, t)
(12)

along with the homogenous initial and boundary conditions

u(0, t) = ψ(0, t) = u(l, t) = ψ(l, t) = 0, t ∈ [0, T ], (13)

u(x, 0) = ∂t u(x, 0) = ψ(x, 0) = ∂tψ(x, 0) = 0, x ∈ [0, l]. (14)

Here q̃ and p̃ are defined by

q̃ := q + κG∂x
(
A(x)I 1−α

t
(
∂x w̆0 − θ̆0

))

= q + t1−ακG∂x

(
A(x)

(
∂x w̆0−θ̆0

))

�(2−α)
,

p̃ := E∂x
(
I (x)∂x 0 I

1−α
t θ̆0

) + κGA(x)0 I
1−α
t

(
∂x w̆0 − θ̆0

)

= t1−α
[
E∂x

(
I (x)∂x θ̆0

)
+κGA(x)

(
∂x w̆0−θ̆0

)]

�(2−α)
.

(15)

Integrate equations (12) from 0 to t , apply the homogeneous initial conditions in (14) and
use (7) to reach a coupled first-order system

ρA(x)∂t u = κG∂x
(
A(x)0 I

1−α
t

(
∂xu − ψ

)) + f (x, t),
ρ I (x)∂tψ = E∂x

(
I (x)0 I

1−α
t ∂xψ

) + κGA(x)0 I
1−α
t

(
∂xu − ψ

) + g(x, t),
(16)

where f := 0 I 1t q̃ and g := 0 I 1t p̃. System (16) is closed with the boundary condition (13)
and the initial condition

u(x, 0) = 0, ψ(x, 0) = 0, x ∈ [0, l]. (17)

Note that the two homogeneous initial conditions on ∂t u(x, 0) and ∂tψ(x, 0) in (14) can be
deduced naturally from (16) by taking the limit t → 0+.

We cite the well-posedness and regularity of the problem (16)–(13)–(17) from [48].

Theorem 1 [48] Suppose that w̆0, θ̆0 ∈ H2, q ∈ L2(0, T ; L2) and A, I ∈ H1 with 0 <

A∗ ≤ A(x), I (x) ≤ A∗ < ∞. Then problem (16)–(13)–(17) has the unique solution u, ψ ∈
W 1,∞(0, T ; L2) ∩ L2(0, T ; H1) with

‖u‖W 1,∞(0,T ;L2) + ‖u‖L2(0,T ;H1) + ‖ψ‖W 1,∞(0,T ;L2) + ‖ψ‖L2(0,T ;H1)

≤ Q
(‖ f ‖H1(0,T ;L2) + ‖g‖H1(0,T ;L2)

) ≤ Q
(‖q‖L2(0,T ;L2) + ‖w̆0‖H2 + ‖θ̆0‖H2

)

with Q = Q(ρ, A∗, A∗, ‖A‖H1 , ‖I‖H1 , κ,G, E, α, T ).
If further q ∈ H1(0, T ; L2), then u, ψ ∈ W 2,∞(0, T ; L2) ∩ L2(0, T ; H2) with

‖u‖W 2,∞(0,T ;L2) + ‖ψ‖W 2,∞(0,T ;L2) + ‖u‖L2(0,T ;H2) + ‖ψ‖L2(0,T ;H2)

≤ Q
(‖w̆0‖H2 + ‖θ̆0‖H2 + ‖q‖H1(0,T ;L2)

)
.

Here the constant Q = Q(ρ, A∗, A∗, ‖A‖H1 , ‖I‖H1 , κ,G, E, α, T ).

We then prove the regularity of the solutions u and ψ to the problem (16)–(13)–(17) in
the following theorem to support the subsequent numerical analysis.
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Theorem 2 If w̆0, θ̆0 ∈ H2, q ∈ H2(0, T ; L2) with ∂xq(x, 0) ∈ L2, A, I ∈ W 1,∞ with
A∗ ≤ A(x), I (x) ≤ A∗, then u, ψ ∈ W 1,∞(0, T ; H2) with the estimates for some constant
Q = Q(ρ, A∗, A∗, ‖A‖W 1,∞ , ‖I‖W 1,∞ , κ,G, E, α, T )

‖u‖W 1,∞(0,T ;H2) + ‖ψ‖W 1,∞(0,T ;H2)

≤ Q
(‖w̆0‖H2 + ‖θ̆0‖H2 + ‖q‖H2(0,T ;L2) + ‖∂xq(x, 0)‖).

Proof We deduce from (14) that ∂t∂xu(x, 0) = ∂t∂
2
x u(x, 0) = ∂t∂xψ(x, 0)

= ∂t∂
2
xψ(x, 0) = 0, and we apply them to pass the limit t → 0+ in (12) to get

lim
t→0+ ∂x

(
κGA(x)∂α

t

(
∂xu − ψ

)) = 0,

lim
t→0+ E∂x

(
I (x)∂α

t ∂xψ
) + κGA(x)∂α

t

(
∂xu − ψ

) = 0,

that is, ρA∂2t u(x, 0) = q(x, 0) and ρ I∂2t ψ(x, 0) = 0, which imply ∂2t ∂xu(x, 0)
= ∂x

(
q(x, 0)/ρA

)
and ∂2t ∂xψ(·, 0) = 0.

We then apply the operator ∂t 0 Iα
t ∂2t to both sides of the equations in (16), integrate the

resulting equations over (0, l) multiplied by 0 Iα
t ∂3t u and 0 Iα

t ∂3t ψ , respectively, and use the
properties in Lemma 1, as well as the derivations like

∂t 0 I
α
t ∂2t 0 I

1−α
t ∂xu(·, t) = ∂t 0 I

α
t ∂t 0 I

1−α
t ∂t∂xu(·, t)

= ∂t∂t 0 I
α
t 0 I

1−α
t ∂t∂xu(·, t) = ∂2t ∂xu(·, t)

= 0 I
1
t ∂3t ∂xu(·, t) + ∂2t ∂xu(·, 0) = 0 I

1−α
t 0 I

α
t ∂3t ∂xu(·, t) + ∂2t ∂xu(·, 0)

to get

ρ
(
A∂t 0 I

α
t ∂3t u, 0 I

α
t ∂3t u

) + κG
(
A 0 I

1−α
t 0 I

α
t ∂3t ∂xu, 0 I

α
t ∂3t ∂xu

)

= κG
(
A 0 I

1−α
t 0 I

α
t ∂3t ψ, 0 I

α
t ∂3t ∂xu

) + (
f∗, 0 Iα

t ∂3t u
)
,

ρ
(
I∂t 0 I

α
t ∂3t ψ, 0 I

α
t ∂3t ψ

) + E
(
I 0 I

1−α
t 0 I

α
t ∂3t ∂xψ, 0 I

α
t ∂3t ∂xψ

)

+κG
(
A 0 I

1−α
t 0 Iα

t ∂3t ψ, 0 Iα
t ∂3t ψ

)

= κG
(
A 0 I

1−α
t 0 I

α
t ∂3t ∂xu, 0 I

α
t ∂3t ψ

) + (
g∗, 0 Iα

t ∂3t ψ
)
,

(18)

with f∗ = ∂t 0 Iα
t ∂t q − κGA∂x

( q(x,0)
ρA

)
and g∗ = ∂t 0 Iα

t ∂2t g = 0. We integrate these two
equations from 0 to t and apply Lemmas 1–2 as well as

∫ t

0
ρ
(
A∂s 0 I

α
s ∂3s u, 0 I

α
s ∂3s u

)
ds = 1

2

∫ t

0
∂s‖

√
ρA 0 I

α
s ∂3s u‖2ds

= 1

2
‖√ρA 0 I

α
t ∂3t u‖2 − 1

2
‖√ρA 0 I

α
s ∂3s u‖2

∣∣∣
s=0

to reach at a lower bound estimate for the left-hand side of the first equation in (18)

∫ t

0
ρ
(
A∂s 0 I

α
s ∂3s u, 0 I

α
s ∂3s u

) + κG
∫ t

0

(
A 0 I

1−α
s 0 I

α
s ∂3s ∂xu, 0 I

α
s ∂3s ∂xu

)
ds

≥ ρA∗
2

‖0 Iα
t ∂3t u‖2 − ρA∗

2
‖0 Iα

s ∂3s u‖2
∣∣∣
s=0

+κGA∗ cos
(

(1 − α)π

2

)∥∥0 I
1−α
2

t 0 I
α
t ∂3t ∂xu

∥∥2
L2(0,t;L2)

.

(19)
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We then employ Cauchy’s inequality and Lemma 2 to bound the right-hand side terms of the
first equation in (18) by

∫ t

0
κG

(
A 0 I

1−α
s 0 I

α
s ∂3s ψ, 0 I

α
s ∂3s ∂xu

) + (
f∗, 0 Iα

s ∂3s u
)
ds

≤ κGA∗
4

cos

(
(1 − α)π

2

)∥
∥0 I

1−α
2

t 0 I
α
t ∂3t ∂xu

∥
∥2
L2(0,t;L2)

+Q
∥
∥0 I

1−α
2

t 0 I
α
t ∂3t ψ

∥
∥2
L2(0,t;L2)

+
∫ t

0

∥
∥ f∗(·, s)

∥
∥
∥
∥0 Iα

s ∂3s u(·, s)∥∥ds.

(20)

We incorporate (18) with the estimates (19)–(20) and apply the mapping property
∥
∥0 I

1−α
2

t 0 Iα
t ∂3t ψ

∥
∥
L2(0,t;L2)

≤ Q
∥
∥0 Iα

t ∂3t ψ
∥
∥
L2(0,t;L2)

to obtain

ρA∗
2

∥
∥0 Iα

t ∂3t u
∥
∥2 + 3

4
cos

(
(1 − α)π

2

)
κGA∗

∥
∥0 I

1−α
2

t 0 I
α
t ∂3t ∂xu

∥
∥2
L2(0,t;L2)

≤ ρA∗

2
‖0 Iα

s ∂3s u‖2
∣
∣
∣
s=0

+ Q
∥
∥0 Iα

t ∂3t ψ
∥
∥2
L2(0,t;L2)

+
∫ t

0

∥
∥ f∗(·, s)

∥
∥
∥
∥0 Iα

s ∂3s u(·, s)∥∥ds.
(21)

A similar inequality as (21) could be derived in an analogousmanner from the second equation
of (18), and we add these two inequalities to get

∥∥0 Iα
t ∂3t u

∥∥2 + ∥∥0 Iα
t ∂3t ψ

∥∥2 + (∥∥0 I
1−α
2

t 0 I
α
t ∂3t ∂xu

∥∥2
L2(0,t;L2)

+∥∥0 I
1−α
2

t 0 I
α
t ∂3t ∂xψ

∥∥2
L2(0,t;L2)

+ ∥∥0 I
1−α
2

t 0 I
α
t ∂3t ψ

∥∥2
L2(0,t;L2)

)

≤ Q
(‖0 Iα

s ∂3s u‖2 + ‖0 Iα
s ∂3s ψ‖2)

∣∣∣
s=0

+ Q‖0 Iα
t ∂3t ψ‖2L2(0,t;L2)

+Q
∫ t

0

∥∥ f∗(·, s)
∥∥∥∥0 Iα

s ∂3s u(·, s)∥∥ds.

(22)

To estimate the first two right-hand side terms of (22), we apply the operator 0 Iα
t ∂t on both

sides of the equations in (12) and pass the limit t → 0+ in the resulting equations to get
ρA(x)0 Iα

t ∂3t u|t=0 = 0 Iα
t ∂t q̃(x, t)|t=0 and ρ I (x)0 Iα

t ∂3t ψ |t=0 = 0 Iα
t ∂t p̃(x, t)|t=0. We then

apply the norm ‖ · ‖L2(0,l) on both sides of them and employ (15) to deduce
(‖0 Iα

t ∂3t u‖2 + ‖0 Iα
t ∂3t ψ‖2)∣∣t=0 ≤ Q(‖0 Iα

t ∂t q̃(·, t)‖ + ‖0 Iα
t ∂t p̃(·, t)‖

)∣∣
t=0

≤ Q(‖0 Iα
t ∂t q(·, t)‖∣∣t=0 + ‖w̆0‖H2 +‖θ̆0‖H2) ≤ Q(‖w̆0‖H2 +‖θ̆0‖H2)

(23)

for Q = Q(ρ, A∗, A∗, ‖A‖W 1,∞ , ‖I‖W 1,∞ , κ,G, E, α, T ). To estimate f∗, we apply
integration by parts to obtain

∂t 0 I
α
t ∂t q = ∂t

∫ t

0

∂sq(x, s)ds

�(α)(t − s)1−α
= tα−1

�(α)
∂t q(x, 0) + 0 I

α
t ∂2t q(x, t). (24)

We follow the procedures in [48, Theorem V.1] to employ the estimate (24) together with
the Sobolev embedding H2(0, T ) ↪→ C1[0, T ] and 1 = (t − s)−ε(t − s)ε ≤ Q(t − s)−ε for
0 < ε � 1 to bound the last right-hand side term of (22)

‖ f∗(·, s)‖ ≤ Qsα−1
∥∥∂sq(·, 0)∥∥+Q

(∥∥0 Iα
s ∂2s q(·, s)∥∥+‖∂xq(·, 0)‖+‖q(·, 0)‖),

∫ t

0

∥∥ f∗(·, s)
∥∥∥∥0 Iα

s ∂3s u(·, s)∥∥ds ≤ Q
∫ t

0
sα−1(t − s)−ε

∥∥0 Iα
s ∂3s u(·, s)∥∥2ds

+Q
(‖q‖2H2(0,T ;L2)

+ ∥∥0 Iα
s ∂3s u

∥∥2
L2(0,t;L2)

+ ‖∂xq(·, 0)‖2).
(25)
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We drop the last three terms on the left-hand side of (22) and invoke the estimates (23)–(25)
to get

∥
∥0 Iα

t ∂3t u(·, t)∥∥2+∥
∥0 Iα

t ∂3t ψ(·, t)∥∥2≤Q
∫ t

0
(t − s)−εsα−1

∥
∥0 Iα

s ∂3s u(·, s)∥∥2ds
+Q

(∥
∥0 Iα

s ∂3s u
∥
∥2
L2(0,t;L2)

+ ∥
∥0 Iα

s ∂3s ψ
∥
∥2
L2(0,t;L2)

)

+Q
(‖q‖2H2(L2)

+ ‖w̆0‖2H2 + ‖θ̆0‖2H2 + ‖∂xq(·, 0)‖2).
(26)

Then we apply the Gronwall inequality in Lemma 3 to conclude
∥
∥0 Iα

t ∂3t u
∥
∥ + ∥

∥0 Iα
t ∂3t ψ

∥
∥ ≤ Q(‖q‖H2(L2)+‖w̆0‖H2 +‖θ̆0‖H2 + ‖∂xq(·, 0)‖). (27)

Similar to the derivation of (18),we apply the operator ∂2t 0 I
α
t to (16), integrate the resulting

equations multiplied by φ ∈ H1
0 (0, l) and utilize (7), the homogeneous initial conditions (14)

and g(x, 0) = g′(x, 0) = 0 to find

κG
(
A∂t∂xu, ∂xφ

) =−ρ
(
A∂t 0 Iα

t ∂2t u, φ
)+κG

(
A∂tψ, ∂xφ

)+(
∂2t 0 I

α
t f , φ

)
,

E
(
I∂t∂xψ, ∂xφ

) = −ρ
(
I∂t 0 Iα

t ∂2t ψ, φ
) − κG

(
A∂tψ, φ

)

+κG
(
A∂t∂xu, φ

) + (
0 Iα

t ∂2t g, φ
)
.

(28)

To rewrite the right-hand side terms of (28), we apply f (x, 0) = 0, ρA∂2t u(x, 0) = q(x, 0)
and the integration by parts to obtain for t ∈ (0, T ]

∂t 0 I
α
t ∂2t u = 0 I

α
t ∂3t u + tα−1

�(α)
∂2t u(x, 0) = 0 I

α
t ∂3t u + tα−1

�(α)

q(x, 0)

ρA
,

∂2t 0 I
α
t f = ∂t 0 I

α
t ∂t f = 0 I

α
t ∂2t f + tα−1

�(α)
∂t f (x, 0) = 0 I

α
t ∂2t f + tα−1

�(α)
q(x, 0),

which give

(−ρA∂t 0 I
α
t ∂2t u + ∂2t 0 I

α
t f , φ) = −ρ(A 0 I

α
t ∂3t u, φ) + (0 I

α
t ∂2t f , φ).

Similarly we use ρ I∂2t ψ(x, 0) = 0 to get ∂t 0 Iα
t ∂2t ψ = 0 Iα

t ∂3t ψ . We incorporate these
relations in (28) to obtain

κG
(
A∂t∂xu, ∂xφ

) =−ρ
(
A 0 Iα

t ∂3t u, φ
)+κG

(
A∂tψ, ∂xφ

)+(
0 Iα

t ∂2t f , φ
)
,

E
(
I∂t∂xψ, ∂xφ

) = −ρ
(
I 0 Iα

t ∂3t ψ, φ
) − κG

(
A∂tψ, φ

)

+κG
(
A∂t∂xu, φ

) + (
0 Iα

t ∂2t g, φ
)
.

(29)

We set φ = ∂2t u and φ = ∂2t ψ in the first and second equations of (29), respectively, and
integrate the resulting equations from 0 to t to reach
∥∥∂t∂xu(·, t)∥∥2 ≤ Q‖∂s∂xu(·, s)∥∥2∣∣s=0

+Q
∫ t

0
(
∥∥∂2s u(·, s)∥∥2 + ∥∥∂s∂xψ(·, s)∥∥2 + ∥∥∂sψ(·, s)∥∥2)ds

+Q
∫ t

0

(∥∥A 0 I
α
s ∂3s u(·, s)∥∥+∥∥0 Iα

s ∂2s f (·, s)∥∥)∥∥∂2s u(·, s)∥∥ds,
∥∥∂t∂xψ(·, t)∥∥2 ≤Q‖∂s∂xψ(·, s)∥∥2∣∣s=0+Q

∫ t

0

∥∥I 0 I
α
s ∂3s ψ(·, s)∥∥∥∥∂2s ψ(·, s)∥∥ds

+Q
∫ t

0

∥∥∂2s ψ(·, s)∥∥2+∥∥∂s∂xu(·, s)∥∥2+∥∥∂sψ(·, s)∥∥2+∥∥0 Iα
s ∂2s g

∥∥2ds.

(30)

The two initial value terms on the right-hand side of (30) could be evaluated directly from the
initial conditions in (14) by ∂t∂xu|t=0 = ∂x∂t u(x, 0) = 0 and ∂t∂xψ |t=0 = ∂x∂tψ(x, 0) =
0.
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We follow the preceding procedures in (25) and incorporate (27) and Theorem 1 with (15)
to bound the terms on the right-hand side of (30) by

∥
∥0 Iα

s ∂2s f (·, s)∥∥ ≤ ∥
∥0 Iα

s ∂sq(·, s)∥∥ + Q(‖w̌0‖H2 + ‖θ̌0‖H1),∫ t

0

(∥∥A 0 I
α
s ∂3s u(·, s)∥∥ + ∥

∥0 Iα
s ∂2s f (·, s)∥∥)∥∥∂2s u(·, s)∥∥ds

+
∫ t

0

∥
∥I 0 I

α
s ∂3s ψ(·, s)∥∥∥

∥∂2s ψ(·, s)∥∥ds
≤ Q

(‖q‖2H2(L2)
+ ‖w̌0‖2H2 + ‖θ̌0‖2H2 + ‖∂xq(·, 0)‖2).

(31)

Wesum the two inequalities in (30) and invoke the preceding estimates to obtain for t ∈ [0, T ]
∥
∥∂t∂xu(·, t)∥∥2+∥

∥∂t∂xψ(·, t)∥∥2 ≤ Q
∫ t

0

∥
∥∂s∂xu(·, s)∥∥2+∥

∥∂s∂xψ(·, s)∥∥2ds
+Q(‖q‖2H2(L2)

+ ‖w̌0‖2H2 + ‖θ̌0‖2H2 + ‖∂xq(·, 0)‖2).
(32)

Then an application of the Gronwall’s inequality gives
∥
∥∂t∂xu(·, t)∥∥ + ∥

∥∂t∂xψ(·, t)∥∥
≤ Q

(‖q‖H2(L2) + ‖w̌0‖H2 + ‖θ̌0‖H2 + ‖∂xq(·, 0)‖). (33)

Finally, we apply the elliptic regularity theory [10] to (29) to get
∥∥∂t u(·, t)∥∥H2 ≤Q

(∥∥0 Iα
t ∂3t u(·, t)∥∥+∥∥∂t∂xψ(·, t)∥∥+∥∥∂tψ(·, t)∥∥+∥∥0 Iα

t ∂2t f (·, t)∥∥)
,∥∥∂tψ(·, t)∥∥H2 ≤Q

(∥∥0 Iα
t ∂3t ψ(·, t)∥∥+∥∥∂tψ(·, t)∥∥+∥∥∂t∂xu(·, t)∥∥+∥∥0 Iα

t ∂2t g(·, t)
∥∥)

,

and we incorporate the estimates (33), (27), (31), Theorem 1 and the Sobolev embedding
H2(0, T ) ↪→ C1[0, T ] to obtain

∥∥∂t u(·, t)∥∥H2 +
∥∥∂tψ(·, t)∥∥H2

≤ Q
(‖q‖H2(L2) + ‖q‖C1(L2) + ‖w̌0‖H2 + ‖θ̌0‖H2 + ‖∂xq(·, 0)‖)

≤ Q
(‖q‖H2(L2) + ‖w̌0‖H2 + ‖θ̌0‖H2 + ‖∂xq(·, 0)‖).

(34)

We incorporate (34) with ‖u(·, 0)‖H2 = ‖ψ(·, 0)‖H2 = 0 derived from (17) to conclude
that

‖u(·, t)‖H2 + ‖ψ(·, t)‖H2 ≤
∫ t

0

∥∥∂su(·, s)∥∥H2 +
∥∥∂sψ(·, s)∥∥H2ds

≤ Q
(‖q‖H2(L2) + ‖w̌0‖H2 + ‖θ̌0‖H2 + ‖∂xq(·, 0)‖),

which completes the proof of this theorem. 
�

4 Numerical Scheme for Problem (16)

Let tn := nτ for n = 0, 1, . . . , N with τ := T /N be a uniform partition on [0, T ], un :=
u(x, tn), ψn := ψ(x, tn), fn := f (x, tn), gn := g(x, tn) and β(t) := t−α/�(1 − α).
Thenwe introduce the discrete-in-time spaces L̂1(0, tn; L2), L̂2(0, tn; L2) and L̂∞(0, tn; L2)

equipped with the norms for v = {v j }Nj=1 with v j ∈ L2(0, l)

‖v‖L̂ p(0,tn;L2)
:=

(
τ

n∑

j=1

‖v j‖p
) 1

p
, p = 1, 2; ‖v‖L̂∞(0,tn;L2)

:= max
1≤ j≤n

‖v j‖.
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We perform temporal discretizations for ∂t u and 0 I
1−α
t ψ at t = tn for illustration

∂t u(x, tn) = δτun + Eu,n := un − un−1

τ
+ 1

τ

∫ tn

tn−1

utt (x, t)(t − tn−1)dt,

0 I
1−α
t ψ(x, tn) =

n∑

j=1

∫ t j

t j−1

β(tn − s)ψ(x, s)ds := I 1−α
τ ψn + Rψ,n .

(35)

Here I 1−α
τ ψn and Rψ,n are defined by [26, 27]

I 1−α
τ ψn =

n∑

j=1

∫ t j

t j−1

β(tn − s)L1ψ(·, s)ds

= 1

τ

n∑

j=1

∫ t j

t j−1

β(tn − s)
[
(t j − s)ψ j−1+(s − t j−1)ψ j

]
ds :=

n∑

j=0

cn, jψ j ,

Rψ,n =
n∑

j=1

∫ t j

t j−1

β(tn − s)(I − L1)ψ(·, s)ds,

(36)

where the coefficients cn, j for 0 ≤ j ≤ n ≤ N are defined by

cn,0 = 1

τ

∫ τ

0
β(tn − s)(τ − s)ds,

cn, j = 1

τ

[ ∫ t j

t j−1

β(tn − s)(s − t j−1)ds

+
∫ t j+1

t j
β(tn − s)(t j+1 − s)ds

]
, 1 ≤ j ≤ n − 1,

cn,n = 1

τ

∫ tn

tn−1

β(tn − s)(s − tn−1)ds.

(37)

The L1 refers to the temporal piecewise linear interpolation operator with respect to the
partition {t j }Nj=1 and the corresponding error on [t j−1, t j ] could be expanded as

v(s) − L1v(s) =
∫ t j

t j−1

G j (θ; s)dv(θ)

dθ
dθ, s ∈ [t j−1, t j ] (38)

where G j (θ; s) := (t j − s)/τ for θ ∈ [t j−1, s] or −(s − t j−1)/τ for θ ∈ [s, t j ].
The remaining terms ∂tψ , 0 I

1−α
t ∂xu, 0 I

1−α
t ∂x

(
A∂xu

)
, 0 I

1−α
t ∂x

(
Aψ

)
and 0 I

1−α
t ∂x

(
I∂xψ

)

could be discretized similarly at t = tn by δτψn , I 1−α
τ ∂xun , I 1−α

τ ∂x
(
A∂xun

)
, I 1−α

τ ∂x
(
Aψn

)

and I 1−α
τ ∂x

(
I∂xψn

)
with truncation errors Eψ,n , R∂x u,n , R∂x (A∂x u),n , R∂x (Aψ),n and

R∂x (I∂xψ),n , respectively. We plug these discretizations into (16) and integrate the result-
ing equations multiplied by any χ ∈ H1

0 (0, l) to get a weak formulation for problem (16) for
n = 1, 2, · · · , N :

ρ
(
Aδτun, χ

) + κG
(
AI 1−α

τ ∂xun, ∂xχ
)

= κG
(
AI 1−α

τ ψn, ∂xχ
) + (

fn, χ
) + (

κGR∂x (A∂x u−Aψ),n − ρAEu,n, χ
)
,

ρ
(
I δτψn, χ

) + E
(
I I 1−α

τ ∂xψn, ∂xχ
) + κG

(
AI 1−α

τ ψn, χ
)

= κG
(
AI 1−α

τ ∂xun, χ
)+(

gn, χ
)+(

ER∂x (I∂xψ),n+κGRA(∂x u−ψ),n−ρ I Eψ,n, χ
)
.

To derive a fully-discrete finite element scheme, let Sh be the space of continuous and
piecewise linear functions on [0, l] with respect to its quasi-uniform partition with the mesh
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diameter h. It is known that the Ritz projections �A : H1
0 (0, l) → Sh and �I : H1

0 (0, l) →
Sh defined by [43]

(
A∂x�Av, ∂xχ

)=(
A∂xv, ∂xχ

)
,

(
I∂x�I v, ∂xχ

)=(
I∂xv, ∂xχ

)
, ∀χ ∈ Sh (39)

have the approximation properties for any v ∈ H2(0, l) ∩ H1
0 (0, l) [43]

‖v − �Av‖ ≤ Qh2‖v‖H2 , ‖v − �I v‖ ≤ Qh2‖v‖H2 . (40)

We then drop the local truncation errors in the weak formulation to arrive at the fully-discrete
finite element schemeof (16): findUn, �n ∈ Sh withU0 := �Au0 = 0 and�0 := �Iψ0 = 0
such that for 1 ≤ n ≤ N and χ ∈ Sh

ρ
(
AδτUn, χ

) + κG
(
AI 1−α

τ ∂xUn, ∂xχ
) = κG

(
AI 1−α

τ �n, ∂xχ
) + (

fn, χ
)
,

ρ
(
I δτ�n, χ

) + E
(
I I 1−α

τ ∂x�n, ∂xχ
) + κG

(
AI 1−α

τ �n, χ
)

= κG
(
AI 1−α

τ ∂xUn, χ
) + (

gn, χ
)
.

(41)

We introduce the following useful lemmas for the error analysis of the proposed numerical
scheme.

Lemma 4 [26] The discrete fractional integral I 1−α
τ ψn defined in (36) could be rewritten

for 1 ≤ n ≤ N

I 1−α
τ ψn = cn,0ψ0 +

n∑

j=1

bn, jψ j , bn, j = 1

τ

∫ tn

tn−1

∫ min(t j ,t)

t j−1

β(t − s)dsdt . (42)

Remark 1 As we will see in the derivations in (43), Lemma 4 will be applied to convert the
discrete convolution sum into its continuous analogue such that the properties of the fractional
integral could be used to obtain the coercivity, which in turn supports the error estimates.

Lemma 5 For v, χ , χ̂ ∈ L̂2(0, T ; L2) with v0 = χ0 = χ̂0 = 0, 0 < B∗ ≤ B(x) < ∞ and
0 < |D(x)| ≤ D∗ < ∞ for x ∈ [0, l], the following estimates hold

τ

n∗∑

n=1

(
BI 1−α

τ vn, vn
)≥ B∗ cos

(
(1 − α)π

2

)
Sv,n∗ , Sv,n∗ :=∥∥0 I

1−α
2

t v
∥∥2
L2(0,tn∗ ;L2)

,

∣∣∣∣τ
n∗∑

n=1

(
DI 1−α

τ χ̂n, χn
)
∣∣∣∣ ≤ ε cos

(
(1 − α)π

2

)
Sχ,n∗ + Q1‖χ̂‖2

L̂2(0,tn∗ ;L2)

for 1 ≤ n∗ ≤ N, for some ε > 0 and for some Q1 = Q1(ε, D∗). Here v is defined piecewisely
by v = v j for t ∈ (t j−1, t j ] for 1 ≤ j ≤ N.

Proof We apply (42) and Lemmas 1 and 2 to get

τ

n∗∑

n=1

(
BI 1−α

τ vn, vn
) = τ

n∗∑

n=1

n∑

j=1

bn, j
(
Bv j , vn

)

=
n∗∑

n=1

n∑

j=1

∫ tn

tn−1

∫ min(t,t j )

t j−1

β(t − s)
(
Bv(·, s), vn

)
dsdt

=
n∗∑

n=1

∫ tn

tn−1

∫ t

0
β(t − s)

(
Bv(·, s), vn

)
dsdt

=
∫ tn∗

0

(
B 0 I

1−α
t v, v

)
dt =

∫ tn∗

0

(
B 0 I

1−α
2

t v, t I
1−α
2

tn∗ v
)
dt

≥ B∗ cos
(

(1 − α)π

2

)∥∥0 I
1−α
2

t v
∥∥2
L2(0,tn∗ ;L2)

= B∗ cos
(

(1 − α)π

2

)
Sv,n∗ ,

(43)
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which proves the first inequality of this lemma. We then follow a similar procedure in (43)
and apply Lemma 1 to obtain

∣
∣
∣τ

n∗∑

n=1

(
DI 1−α

τ χ̂n, χn
)∣∣
∣ =

∣
∣
∣
∣

∫ tn∗

0

(
D 0 I

1−α
t χ̂ , χ

)
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tn∗

0

(
D 0 I

1−α
2

t χ̂ , t I
1−α
2

tn∗ χ
)
dt

∣
∣
∣
∣

≤ ε cos

(
(1 − α)π

2

) ∫ tn∗

0

∥
∥0 I

1−α
2

t χ
∥
∥2dt + Q

ε

∫ tn∗

0

∥
∥0 I

1−α
2

t χ̂
∥
∥2dt

≤ ε cos

(
(1 − α)π

2

)
Sχ,n∗ + Q

ε

∫ tn∗

0

∥
∥χ̂

∥
∥2dt

= ε cos

(
(1 − α)π

2

)
Sχ,n∗ + Q

ε
‖χ̂‖2

L̂2(0,tn∗ ;L2)
,

which proves the second inequality of this lemma. 
�

5 Error Estimate

Let η = u − �Au, ξn = �Au(x, tn) − Un , η̂ = ψ − �Iψ and ξ̂n = �Iψ(x, tn) − �n . We
first estimate the truncation errors in the following theorem.

Theorem 3 If w̆0, θ̆0 ∈ H2, q ∈ H2(0, T ; L2)with ∂xq(x, 0) ∈ L2(0, l), A, I ∈ W 1,∞(0, l)
with A∗ ≤ A(x), I (x) ≤ A∗, then the following estimates hold

∥∥Eu
∥∥
L̂∞(L2)

+ ∥∥Eψ

∥∥
L̂∞(L2)

+ ‖η‖L̂∞(L2)
+ ‖η̂‖L̂∞(L2)

+∥∥δτ η
∥∥
L̂∞(L2)

+ ∥∥δτ η̂
∥∥
L̂∞(L2)

≤ QM(τ + h2),∥∥R∂x (I∂xψ)

∥∥
L̂∞(L2)

+ ∥∥R∂x (A∂x u−Aψ)

∥∥
L̂∞(L2)

+∥∥RA(∂x u−ψ)

∥∥
L̂∞(L2)

≤ QMτ,

where the constant M := ‖w̆0‖H2 + ‖θ̆0‖H2 + ‖q‖H2(0,T ;L2) + ‖∂xq(x, 0)‖.

Proof We apply Theorem 1 to bound Eu in (35) by

‖Eu‖L̂∞(L2)
≤ max

1≤n≤N
Q

∫ tn

tn−1

∥∥∂2t u(·, t)∥∥dt ≤Qτ‖u‖W 2,∞(0,T ;L2) ≤QMτ, (44)

and Eψ can be bounded similarly. We apply (38) with Theorem 2 and 0 ≤ |G j (θ; s)| ≤ 1
for t j−1 ≤ θ, s ≤ t j , to bound R∂x (I∂xψ) by

‖R∂x (I∂xψ)‖L̂∞(L2)

≤ Q max
1≤n≤N

n∑

j=1

∫ t j

t j−1

∫ t j
t j−1

∣∣G j (θ; s)∣∣∥∥∂θψ(·, θ)
∥∥
H2dθ

�(1 − α)(tn − s)α
ds

≤ QM max
1≤n≤N

n∑

j=1

∫ t j

t j−1

∫ t j

t j−1

1

(tn − s)α
dθds

≤ QMτ max
1≤n≤N

n∑

j=1

((tn − t j−1)
1−α − (tn − t j )

1−α)≤QMT 1−ατ ≤ QMτ.

(45)
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Similarly, the terms R∂x (A∂x u−Aψ), RA(∂x u−ψ) and R∂x (I∂xψ) could be bounded as (45). We
then use Theorem 2, (40) and the estimate ‖u‖C([0,T ];H2) ≤ Q‖u‖W 1,∞(0,T ;H2) to bound

‖η‖L̂∞(L2)
≤ Qh2‖u‖C([0,T ];H2) ≤ QMh2,

‖δτ η‖L̂∞(L2)
≤ τ−1 max

1≤n≤N

∫ tn

tn−1

∥
∥∂tη(·, t)∥∥dt

≤ Qh2τ−1 max
1≤n≤N

∫ tn

tn−1

‖∂t u(·, t)‖H2dt ≤ QMh2.

The terms ‖η̂‖L̂∞(L2)
and ‖δτ η̂‖L̂∞(L2)

could be bounded similarly and thus we complete the
proof. 
�

We then prove the error estimates of the finite element scheme (41).

Theorem 4 Suppose w̆0, θ̆0 ∈ H2, q ∈ H2(0, T ; L2) with ∂xq(x, 0) ∈ L2(0, l). Then the
error estimate holds for the fully-discrete finite element scheme (41)

‖U − u‖L̂∞(0,T ;L2)
+ ‖� − ψ‖L̂∞(0,T ;L2)

≤ QM(τ + h2), (46)

where Q = Q(ρ, A∗, A∗, ‖A‖W 1,∞ , ‖I‖W 1,∞ , κ,G, E, α, T ) and M is given in Theorem 3.

Proof We decompose un−Un = ξn+ηn with ξn = �Aun−Un ∈ Sh andψn−�n = ξ̂n+ η̂n
with ξ̂n = �Iψn −�n ∈ Sh . We subtract (41) from the weak formulation and choose χ = ξn
and ξ̂n in the first and the second resulting equations, respectively, to obtain the error equations

ρ
(
Aδτ ξn, ξn

) + κG
(
AI 1−α

τ ∂xξn, ∂xξn
)

= κG
(
AI 1−α

τ ξ̂n, ∂xξn
) + κG

(
AI 1−α

τ η̂n, ∂xξn
)

+(
κGR∂x (A∂x u−Aψ),n − ρAδτ ηn − ρAEu,n, ξn

)
,

ρ
(
I δτ ξ̂n, ξ̂n

) + E
(
I I 1−α

τ ∂x ξ̂n, ∂x ξ̂n
) + κG

(
AI 1−α

τ ξ̂n, ξ̂n
)

= κG
(
AI 1−α

τ ∂xξn, ξ̂n
) + κG

(
AI 1−α

τ

(
∂xηn − η̂n

)
, ξ̂n

)

+(
ER∂x (I∂xψ),n + κGRA(∂x u−ψ),n − ρ I δτ η̂n − ρ I Eψ,n, ξ̂n

)
.

(47)

We multiply (47) by 2τ , use the relation
(
AI 1−α

τ ∂xvn, ξ̂n
) = −(

I 1−α
τ Avn, ∂x ξ̂n

) −(
(∂x A)I 1−α

τ vn, ξ̂n
)
for v = ξ and η, and then apply the geometric-arithmetic inequality

to obtain

ρ
∥∥
√
Aξn

∥∥2 + 2τκG
(
AI 1−α

τ ∂xξn, ∂xξn
)

≤ ρ
∥∥
√
Aξn−1

∥∥2 + 2τκG
(
AI 1−α

τ (ξ̂n + η̂n), ∂xξn
) + τ

∥∥G1,n
∥∥2 + τ

∥∥ξn
∥∥2,

ρ
∥∥
√
I ξ̂n

∥∥2 + 2τ E
(
I I 1−α

τ ∂x ξ̂n, ∂x ξ̂n
) + 2τκG

(
AI 1−α

τ ξ̂n, ξ̂n
)

≤ ρ
∥∥
√
I ξ̂n−1

∥∥2−2τκG
(
AI 1−α

τ ξn, ∂x ξ̂n
) − 2τκG

(
(∂x A)I 1−α

τ ξn, ξ̂n
)

−2τκG
(
AI 1−α

τ ηn, ∂x ξ̂n
)−2τκG

(
I 1−α
τ

(
Aη̂n+(∂x A)ηn

)
, ξ̂n

)

+τ
∥∥G2,n

∥∥2 + τ
∥∥ξ̂n

∥∥2,

(48)

where G1,n = κGR∂x (A∂x u−Aψ),n − ρAδτ ηn − ρAEu,n , and G2,n = ER∂x (I∂xψ),n +
κGRA(∂x u−ψ),n −ρ I δτ η̂n −ρ I Eψ,n for 1 ≤ n ≤ N . We add the first inequality in (48) from
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n = 1 to n0 for 1 ≤ n0 ≤ N and apply Theorem 3 and Lemma 5 to get

ρA∗‖ξn0‖2 + 2κGA∗ cos
(

(1 − α)π

2

)
S∂x ξ,n0

≤ κGA∗ cos
(

(1 − α)π

2

)
S∂x ξ,n0 + Qτ

n0∑

n=1

(∥∥ξn
∥
∥2 + ∥

∥ξ̂n
∥
∥2 + ∥

∥η̂n
∥
∥2)

+QM2(τ 2 + h4).

(49)

We apply Lemma 5 to estimate the terms on the right-hand side of the second inequality in
(48) as follows

∣
∣
∣
∣

n0∑

n=1

[ − 2τκG
(
AI 1−α

τ ξn, ∂x ξ̂n
) − 2τκG

(
(∂x A)I 1−α

τ ξn, ξ̂n
)

−2τκG
(
AI 1−α

τ ηn, ∂x ξ̂n
) − 2τκG

(
I 1−α
τ

(
Aη̂n + (∂x A)ηn

)
, ξ̂n

)]
∣
∣
∣
∣

≤ E A∗ cos
(

(1 − α)π

2

)
S
∂x ξ̂ ,n0

+ κGA∗ cos
(

(1 − α)π

2

)
S
ξ̂ ,n0

+Qτ

n0∑

n=1

(
∥∥ξn

∥∥2 + ∥∥ηn
∥∥2 + ∥∥η̂n

∥∥2),

and we incorporate this with a similar derivation as (49) for the second inequality of (48) to
get

ρA∗
∥∥ξ̂n0

∥∥2+2E A∗ cos
(

(1 − α)π

2

)
S
∂x ξ̂ ,n0

+2κGA∗ cos
(

(1 − α)π

2

)
S
ξ̂ ,n0

≤ E A∗ cos
(

(1 − α)π

2

)
S
∂x ξ̂ ,n0

+κGA∗ cos
(

(1 − α)π

2

)
S
ξ̂ ,n0

+Qτ

n0∑

n=1

(∥∥ξn
∥∥2 + ∥∥ξ̂n

∥∥2 + ∥∥ηn
∥∥2 + ∥∥η̂n

∥∥2) + QM2(τ 2 + h4).

(50)

We add (49) and (50) and use Theorem 3 to obtain for 1 ≤ n0 ≤ N

ρ
∥∥ξn0

∥∥2 + ρ
∥∥ξ̂n0

∥∥2 + cos

(
(1 − α)π

2

)(
κGS∂x ξ,n0 + ES

∂x ξ̂ ,n0
+ κGS

ξ̂ ,n0

)

≤ QM2(τ 2 + h4) + Qτ

n0∑

n=1

(‖ξn‖2 + ‖ξ̂n‖2
)
.

(51)

We choose τ sufficiently small and apply the discrete Gronwall’s inequality for (51) to obtain
for 1 ≤ n ≤ N

∥∥ξn
∥∥ + ∥∥ξ̂n

∥∥ ≤ QM(τ + h2). (52)

We combine (52) with (40) to complete the proof. 
�
Remark 2 In the current studywe only consider the first-order temporal discretization scheme
due to the complexity of higher-order regularity estimates of the solutions to the coupled sys-
tem, while the Crank-Nilcolson time discretization scheme in combination with the averaged
product-integration rule for the fractional integral [4, 26, 30] could be applied to construct
the second-order temporal approximation. In particular, nonuniform temporal meshes could
be used to account for the solution singularity to recover the second-order accuracy.
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6 Numerical Experiments

We carry out numerical experiments to investigate the convergence behavior of the scheme
(41) tomodel (16) and the performance of the proposed viscoelastic Timoshenko beammodel
in the context of real isotropic material, in comparison with its integer-order analogue

ρA(x)∂2t w = ∂x
(
κGA(x)

(
∂xw − θ

)) + q(x, t),
ρ I (x)∂2t θ = ∂x

(
E I (x)∂xθ

) + κGA(x)
(
∂xw − θ

) (53)

with initial and boundary conditions in (3)–(4), the integer-order Euler-Bernoulli beam

ρA(x)∂2t w + ∂2x
(
E I (x)∂2xw

) = q(x, t), (x, t) ∈ (0, l) × (0, T ],
w(0, t) = ∂xw(0, t) = w(l, t) = ∂xw(l, t) = 0, t ∈ [0, T ],
w(x, 0) = ∂tw(x, 0) = 0, x ∈ [0, l],

(54)

and the fractional Euler-Bernoulli beam model

ρA(x)∂2t w + ∂2x
(
E I (x)∂α

t ∂2xw
) = q(x, t) (55)

with initial and boundary conditions in (54). Both the spatial and temporal partitions are
uniform with the mesh sizes h and τ , respectively.

6.1 Convergence Rate of the Finite Element Scheme

Let [0, l]× [0, T ] = [0, 1]× [0, 1] and ρ = A(x) = E = I (x) = κ = G = 1 for simplicity.
We assume homogeneous initial conditions and the uniform pressure load q = 0.01 within
the beam. Since the explicit solution of the fractional Timoshenko beam model (1) are in
general not available, we use the numerical solution Û and �̂ computed under (τ, h) =
(1/1440, 1/720) as the reference solution to test the temporal convergence rates, and the
numerical solution computed under (τ, h) = (1/1024, 1/720) as the reference solution to
test the spatial convergence rates. Therefore, we compute the convergence orders r , r̂ , ι and
ι̂ of the following errors

‖U − Û‖L̂∞(0,T ;L2)
≤ Q

(
τ r + hι

)
, ‖� − �̂‖L̂∞(0,T ;L2)

≤ Q
(
τ r̂ + h ι̂

)
, (56)

and numerical results are presented in Tables 1, 2, 3, which indicates the first-order accuracy
in time and the second-order accuracy in space of the scheme (41) and thus substantiates the
theoretical analysis.

6.2 Dynamic Response of Timoshenko BeamModels

The dynamic durability provides experimental evidence that the beam structures can survive
a specific dynamic environment. In this case, a test structure is driven or forced to vibrate
by specified inputs, e.g, natural frequencies. Therefore, it is of great importance to precisely
predict and describe the resonance behaviors of the mechanical structures. In this subsection,
the high-strength, corrosion-resistant nickel chromium alloy 718 material [49] is selected
for dynamic investigation of the beams. This age-hardenable alloy is readily fabricated to
provide outstanding fatigue resistance, awide range of temperature creep strength and rupture
strength. This superalloy beam has a weight density of ρ = 8192 kg/m3, a modulus of
elasticity of E = 200 GPa, a shear modulus of G = 80 GPa, and a Timoshenko shear
coefficient κ = 5/6 [49]. The beams are set to have length l =1m and width 0.1m. The
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Table 1 Temporal convergence rates for scheme (41)

‖U − Û‖L̂∞(L2) τ α = 0.3 α = 0.5 α = 0.7

1/32 1.49E-08 – 8.19E-06 – 2.05E-06 –

1/48 9.84E-09 1.03 5.54E-06 0.96 1.35E-06 1.02

1/64 7.29E-09 1.04 4.16E-06 1.00 1.00E-06 1.05

1/72 6.45E-09 1.05 3.68E-06 1.02 8.84E-07 1.06

1/96 4.75E-09 1.06 2.72E-06 1.05 6.48E-07 1.08

‖� − �̂‖L̂∞(L2) 1/32 1.25E-11 – 6.93E-07 – 1.77E-07 –

1/48 8.22E-12 1.04 4.68E-07 0.97 1.17E-07 1.03

1/64 6.08E-12 1.05 3.51E-07 1.00 8.66E-08 1.05

1/72 5.37E-12 1.06 3.11E-07 1.03 7.64E-08 1.06

1/96 3.95E-12 1.07 2.30E-07 1.05 5.60E-08 1.08

Table 2 Spatial convergence rates for scheme (41)

‖U − Û‖L̂∞(L2) h α = 0.3 α = 0.5 α = 0.7

1/8 4.67E-06 – 2.52E-06 – 5.98E-07 –

1/16 1.14E-06 2.04 6.22E-07 2.02 1.47E-07 2.02

1/24 5.02E-07 2.01 2.76E-07 2.01 6.53E-08 2.01

1/36 2.23E-07 2.01 1.22E-07 2.01 2.89E-08 2.01

1/40 1.80E-07 2.01 9.89E-08 2.01 2.34E-08 2.01

‖� − �̂‖L̂∞(L2) 1/8 1.21E-06 – 3.04E-07 – 2.67E-08 –

1/16 3.16E-07 1.94 7.64E-08 2.00 6.89E-09 1.95

1/24 1.41E-07 1.98 3.39E-08 2.00 3.08E-09 1.99

1/36 6.29E-08 1.99 1.51E-08 2.00 1.37E-09 2.00

1/40 5.10E-08 2.00 1.22E-08 2.01 1.11E-09 2.00

thicknesses of the slender and thick beams are hs = 0.025m and ht = 0.2m, where s and t
denote the slender and thick beams, respectively, which give the primary natural frequencies
for Timoshenko beams asω

timo,s
1 = 794 rad/s andω

timo,t
1 = 5006 rad/s [35]. In the numerical

experiments, we choose the loading term q = B cos(ωt)δ(x − l
2 ) located at the middle of

the beam, with Btimo
s = Btimo

t = 1 and the excitation frequency ω = ω
timo,s
1 , ωtimo,t

1 over a
time interval [0, T ] = [0, 1s].

The Timoshenko beam models are simulated via the finite element scheme (41) with
h = 1/4096. Due to the high temporal frequency of the given load term, the numerical
approximation with deficient temporal partitions cannot catch the resonance phenomenon
described by the physical model, and often results in spurious and nonphysical phenomena
“beat", i.e., the vibration is a rapid oscillation with slowly varying amplitude [14], which is
in sharp contrast with the diffusion models. In Fig. 2, we investigate the resonance behaviors
of the center of neutral beam axis over a short time period [0, T ] = [0, 0.1s], which indicates
that fine temporal mesh is required to produce the physical behaviors for the fixed observation
time.
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Table 3 The rotational angles for Euler-Bernoulli beams and Timoshenko beams

Slender beam Thick beam

α = 0 x ζeuler ζtimo ζtimo,b ζeuler ζtimo ζtimo,b

Beuler
t = 1 l/8 -2.70E-06 -2.69E-06 -2.67E-06 2.97E-06 -3.10E-06 -1.95E-06

Btimo
t = 1 l/4 -3.22E-06 -3.26E-06 -3.24E-06 3.61E-06 -3.30E-06 -2.37E-06

3l/4 3.22E-06 3.26E-06 3.24E-06 -3.61E-06 3.30E-06 2.37E-06

7l/8 2.70E-06 2.69E-06 2.67E-06 -2.97E-06 3.10E-06 1.95E-06

α = 0.1 x ζeuler ζtimo ζtimo,b ζeuler ζtimo ζtimo,b

Beuler
t = 1000 l/8 -1.47E-07 1.55E-07 1.53E-07 -1.46E-07 1.68E-07 1.07E-07

Btimo
t = 600 l/4 -1.83E-07 1.92E-07 1.91E-07 -1.84E-07 1.86E-07 1.35E-07

3l/4 1.83E-07 -1.92E-07 -1.91E-07 1.84E-07 -1.86E-07 -1.35E-07

7l/8 1.47E-07 -1.55E-07 -1.53E-07 1.46E-07 -1.68E-07 -1.07E-07

α = 0.9 x ζeuler ζtimo ζtimo,b ζeuler ζtimo ζtimo,b

Beuler
t = 4000 l/8 -1.09E-09 -1.10E-09 -1.09E-09 -1.31E-09 -1.22E-09 -8.13E-10

Btimo
t = 2000 l/4 -1.45E-09 -1.47E-09 -1.46E-09 -1.74E-09 -1.50E-09 -1.08E-09

3l/4 1.45E-09 1.47E-09 1.46E-09 1.74E-09 1.50E-09 1.08E-09

7l/8 1.09E-09 1.10E-09 1.09E-09 1.31E-09 1.22E-09 8.13E-10

Fig. 2 Left to right: Displacement of the thick integer-order Timoshenko beam (53) on [0, T ] for T = 0.1s
with τ = π

8ω , τ = π
16ω , and τ = π

32ω , respectively

In Fig. 3, we display the time history of the transverse displacement of the neutral beam
axis with the same data as in Fig. 2. To properly present the temporal evolution with the
fine time resolution, we alternatively sample the maximum and minimum every 11

2 time
periods. The very fine temporal step τ = π

1024ω is applied to ensure the time resolution to
generate physically relevant observations. When the external driving frequency equals to the
natural frequency of the beams, we observe from Fig. 3 that (1) the predicted vibrations of
the integer-order Timoshenko beam grow linearly in time, which is not consistent with the
physical observations since they do not take damping effects into consideration. In contrast,
(2) the maximum amplitude of the slender Timoshenko beams ranges from 8 × 10−5 for
integer-order model (53) to 1 × 10−7 for fractional model (1) with α = 0.1, and decreases
further from1×10−7 to 5×10−10 withα increasing from0.1 to 0.9,which are consistentwith
the discussions in §1. Furthermore, (3) the fractional operator in the fractional Timoshenko
beam model naturally incorporates the viscoelastic damping mechanism and thus predicts
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Fig. 3 Left to right: Deflection of the integer-order Timoshenko beams and fractional Timoshenko beams for
α = 0.1, and α = 0.9, on [0, T ] for T = 1s. Blue line: Slender beam. Red line: Thick beam (Color figure
online)

vibrations that do not oscillate infinitely, which agrees more with physical observations [17,
40].

6.3 Model Comparison in Terms of the Total Angle of Rotation

We compare the total angles of rotation of integer-order and fractional Euler-Bernoulli and
Timoshenko beams as shown in Fig. 1. We choose the same material as §6.2 and apply the
same parameters of the Timoshenko beam therein. Euler-Bernoulli beams are set to have
length l =1m and width 0.1m with hs = 0.025m and ht = 0.2m, and the primary natural
frequencies for Euler-Bernoulli beams are ω

euler ,s
1 = 798 rad/s and ω

euler ,t
1 = 6381 rad/s

[35]. The loading term in §6.2 are specifiedwithω = ω
euler ,s
1 andω

euler ,t
1 over a time interval

[0, T ] = [0, 1s]. The Euler-Bernoulli models are simulated via cubic Hermite finite element
method with 64 elements. The rotational angles illustrated in Fig.1 for the Euler-Bernoulli
beams are computed by ζeuler = ζeuler ,b = ∂xw, and those for the Timoshenko beams are
evaluated by ζtimo = ∂xw and ζtimo,s = ζtimo − ζtimo,b = ∂xw − θ .

To better present the effects of the shear deformation,we apply the amplitude of the loading
term Bs = 1 for slender beams and adjust Bt for thick beams accordingly to compare these
angles at the time when slender beams and thick beams exhibit similar total rotation angle ζ

of the same magnitude. We present the angles ζeuler of Euler-Bernoulli beams and ζtimo and
ζtimo,b of the Timoshenko beams measured at different spatial locations in Table 3 with the
same τ , h, ωtimo,s

1 and ω
timo,t
1 as those in Fig. 3.

Table 3 shows that for the case of slender beams with almost the same total rotation
angles ζeuler ≈ ζtimo, both integer-order (i.e. α = 0) and fractional-order (i.e. α > 0)
Timoshenko beams generate ζtimo,s/ζtimo ≈ 0.7%, which indicates that the contribution of
the shear deformation on the rotational angles is negligible such that the rotational angles
of both Euler-Bernoulli and Timoshenko beams are almost due to bending. In other words,
both of the models generate similar results for the case of slender beams. However, for the
case of thick beams with ζeuler ≈ ζtimo, ζtimo,s/ζtimo ≈ 35% in the Timoshenko beam
models, which implies that the shear deformation has significant impacts for the rotational
angles of the thick beams and thus the bending behavior depicted by the Timoshenko model
deviates from that by the Euler-Bernoulli model and is indeed more reasonable due to the
consideration of shear deformation.
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7 Concluding Rmarks

In this work we prove high-order regularity of the solutions to a fractional Timoshenko
beam model, and then derive and analyze its fully-discrete finite element scheme without
any regularity assumption of its true solutions, but only on the data. Numerical experiments
indicate that the fractional Timoshenkomodel not only retainsmajor advantages of its integer-
order analogue such as accounting for the impacts of the shear deformation for the rotational
angles, but provides anmore adequatemodeling for themechanical vibrations of thick beams,
composite beams and beams under high frequency excitations, in comparison with Euler-
Bernoulli beam models.

From the perspective of physical properties, the integer-order Timoshenko beam model
for purely elastic materials without damping effects follows the energy conservation property
but might result in inaccurate approximations for long observation time due to the lack of
damping effects [14, 35]. To accommodate this issue, there exist several models accounting
for the damping effects for the integer-order Timoshenko beam model, e.g. linear frictional
dampings in the form of first-order derivatives [29, 36, 39]. Nevertheless, these systems tend
to generate exponential decay of the energy and might not produce precise approximations
of the experimentally observed power-law behaviors of the viscoelastic materials over a
wide parameter range [2, 15, 24, 34]. In contrast, the fractional Timoshenko beam model
could robustly describe the observed power-law behaviors of the viscoelastic materials with
numerous experimental demonstrations [8, 33, 40], and provides more modeling flexibility
via different choices of the fractional orderα for different beams.More rigorous investigations
and comparisons for physical properties of integer-order and fractional Timoshenko beam
models will be considered in the near future.
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