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Abstract
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1 Introduction

Many modern materials are viscoelastic that exhibit anomalous power-law behavior
in contrast to normal elastic exponential behavior [3, 5, 8, 13, 20, 33, 35, 36, 50]. Con-
ventional elastic rheological relation based integer-order models, which are expressed
as a combination of exponentially decaying functions [37, 40], do not yield accu-
rate predictions of vibrations of viscoelastic materials especially over a wide range
of parameters. A Scott-Blair element with a power-law relaxation modulus accurately
describes the power-law behavior of viscoelastic material [11, 27, 34, 36, 59]. Further-
more, vibration of viscoelastic systems under long term external (cyclic) excitation
could cause structural damage from micro scale and propagate to macro scale and
eventually leads to material failure. The change of the material structure results in the
change of its fractal dimension and so the fractional order, leading to variable-order
fractional PDEs [14, 31, 43, 46, 47, 51, 55, 62].

In contrast to such material parameters as elastic modulus that can usually be mea-
sured a priori at least for undamaged structures, the variable order of a viscoelastic
structure undergoing vibrations cannot be measured a priori and so needs to be esti-
mated from themeasurements, e.g, time history of responses that ismeasured at certain
spatial locations. Extensive investigation has been conducted on the unique identifi-
cation of fractional order (and possibly along with other parameters, e.g. diffusivity
coefficient) in the context of time-fractional diffusion PDE [2, 7, 21–23, 25, 28, 29,
44, 48, 57]. The corresponding analysis on variable-order fractional PDEs is very
challenging, e.g., due to the lack of closed-form solution representation in this con-
text [31, 43, 46, 47, 54, 56]. It was proved that the fractional order of variable-order
time-fractional PDEs can be uniquely identified from the admissible class of analytical
functions [58, 60].

Unfortunately, in applications the fractional order is often not analytical but exhibits
piecewise pattern [5, 31, 43, 46, 47], which motivates this work. In this paper we prove
the well-posedness of a variable-order fractional viscoelastic Euler-Bernoulli beam
and regularity estimates of its solution with low regularity assumption of its variable
order. In particular, we prove that the variable order of the fractional viscoelastic Euler-
Bernoulli beam can be uniquely identified from the nonlinear manifold of piecewise
continuous free-knot polynomials, with the time history of the responses measured on
a space-time rectangular domain. Finally, we use an adaptive Levenberg-Marquardt
method to numerically invert the variable fractional order.

The rest of the paper is organized as follows: In §2 we recall the fractional vis-
coelastic Euler-Bernoulli beam and introduce notations and preliminary lemmas. In
§3 we prove the well-posedness of the problem and the regularity of its solutions. In §4
we prove the unique identification of the variable fractional order from the nonlinear
manifold of piecewise continuous free-knot polynomials such that each function in the
manifold may have different degrees on different pieces and may also vary with each
individual function, with the time history of the responses measured on a space-time
rectangular domain. In §5 we carry out numerical experiments to invert the variable
order by the Levenberg-Marquardt method. We address concluding remarks in the last
section.
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Fig. 1 A viscoelastic Euler-Bernoulli beammodel with length l and thickness h that undergoes a transverse
vibration under a distributed transverse load q(x, t)

2 Problem formulation and preliminaries

2.1 Model problem

We consider the small transverse vibrations of a straight isotropic viscoelastic beam
under the following assumptions: (i) The beam has a straight centroidal axis (cf. Figure
1), with length l, cross sectional area A, andmass densityρ; (ii) the loading and support
are symmetric about the x-z plane; (iii) cross sectional planes that are perpendicular
to the centroidal axis of the undeformed beam remain planar after deformation and
are perpendicular to the deflection curve of the deformed beam.

Given the distributed transverse load q(x, t), let w(x, t) be the transverse displace-
ment of the centroidal beam axis and let M(x, t) be the internal bending moment. The
combination of Newton’s second law and moment balance yields [6, 19, 26, 39]

ρA∂2t w + ∂2x M = q. (2.1)

TheEuler-Bernoulli assumptions lead to the following expressions for the infinitesimal
strains [6, 19, 39, 40]

εxx = ∂xux (x, y, z, t) = −z∂2xw(x, t),

εxz = (∂zux (x, y, z, t) + ∂xuz(x, y, z, t))/2 = 0,
(2.2)

and all other strains vanish. Putting the fractional viscoelastic rheological relation [38,
46] with the infinitesimal strain (2.2)

σxx (x, z, t) = Eα ∂
α(t)
t εxx (x, z, t) = −Eαz ∂

α(t)
t ∂2xw(x, t) (2.3)

into the expression of the net bending moment M(x, t) to obtain

M(x, t) = −
∫
A
zσxx (x, z, t)d A = Eα I∂

α(t)
t ∂2xw, (2.4)
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where I = ∫
A z

2d A is the second-order moments about the y axis and ∂
α(t)
t is the

variable-order fractional differential operator defined by [31, 42]

∂
α(t)
t g(t) := 0 I

1−α(t)
t ġ(t), 0 I

α(t)
t g(t) :=

∫ t

0

g(s)

�(α(s))(t − s)1−α(s)
ds. (2.5)

Incorporating the internal damping effect of the beam vibration Ed I∂t∂2xw with Ed >

0 being the internal damping coefficient [4, 9, 18] yields a variable-order fractional
model to describe the vibration of a viscoelastic Euler-Bernoulli beam under external
excitation [19, 39]

∂2t w + K∂t∂
4
xw + Kα∂

α(t)
t ∂4xw = q/(ρA), (x, t) ∈ (0, l) × (0, T ]. (2.6)

Here K := Ed I/(ρA) and Kα := Eα I/(ρA). We assume the beam to be simply
supported, leading to the initial and boundary conditions

w(x, 0) = w0(x), ∂tw(x, 0) = w̌0(x), x ∈ [0, l],
w(0, t) = w(l, t) = 0, ∂2xw(0, t) = ∂2xw(l, t) = 0, t ∈ [0, T ]. (2.7)

Problem (2.6)-(2.7) can be reformulated in terms of u = ∂tw as follows

∂t u + K∂4x u + Kα 0 I
1−α(t)
t ∂4x u = q/(ρA), (x, t) ∈ (0, l) × (0, T ],

u(x, 0) = w̌0(x), x ∈ [0, l],
u(0, t) = u(l, t) = ∂2x u(0, t) = ∂2x u(l, t) = 0, t ∈ [0, T ].

(2.8)

2.2 Preliminaries

Let Cm(I) and Cμ(I), with m ∈ N0, 0 ≤ μ ≤ 1 and I = [0, T ] or [0, l], be the
spaces of continuous functions with continuous derivatives up to order m and Hölder
continuous functions of index μ, respectively. Let L p(0, l), 1 ≤ p ≤ ∞, be the
Banach space of pth power Lebesgue integrable functions on (0, l) and letWm,p(0, l)
be the Sobolev space of L p functions with mth weakly derivatives in L p(0, l). Let
Hm(0, l) = Wm,2(0, l). For a non-integer s ≥ 0, the fractional Sobolev space Hs(0, l)
is defined by interpolation. All the spaces are equipped with standard norms [1, 12].
For a Banach spaceX equippedwith the norm ‖·‖X , letCm([0, T ];X ) be the space of
functions with continuous derivatives up to orderm on [0, T ] belonging toX equipped
with the norm

Cm([0, T ],X ) := {
g : [0, T ] → X : ‖∂ lt g(·, t)‖X ∈ Cl [0, T ], l = 0, 1, . . . ,m

}
,

‖g‖Cm ([0,T ],X ) := max
0≤l≤m

max
t∈[0,T ] ‖∂

l
t g(·, t)‖X .

Let {λi , φi }∞i=1 be the eigenvalues and eigenfunctions of −∂2x on x ∈ (0, l). Here
{φi }∞i=1 form an orthonormal basis in L2(0, l) and the corresponding eigenvalues

123



A fractional viscoelastic Euler-Bernoulli beam...

{λi }∞i=1 form a positive nondecreasing sequence which tend to infinity [12]. For s ≥ 0
we define the fractional Sobolev space [30, 41, 49]

Ȟ s(0, l) :=
{
v ∈ L2(0, l) : |v|2

Ȟ s :=
∞∑
i=1

λsi (v, φi )
2 < ∞

}

equipped with the norm ‖v‖Ȟ s = (‖v‖2
L2 + |v|2

Ȟ s )
1/2. Ȟ s(0, l) is the subspace of the

fractional Sobolev space Hs(0, l)with Ȟ0(0, l) = L2(0, l) and Ȟ2(0, l) = H2(0, l)∩
H1
0 (0, l).
Throughout this paper,we use Q, Qi to denote positive constants and Qmayassume

different values at different occurrences. We finally refer the following lemmas for
future use.

Lemma 1 [53] Let 0 ≤ D0(t) ∈ Lloc[0, b) be nondecreasing and D1 ≥ 0 be a
constant. If 0 ≤ g(t) ∈ Lloc[0, b) satisfies g(t) ≤ D0(t) + D1 0 I

β
t g(t) for t ∈ (0, b)

and 0 < β < 1, then g(t) ≤ D0(t)Eβ,1(D1�(β)tβ) for t ∈ (0, b), where Ep,q(z)
represents the Mittag-Leffler function [15].

Lemma 2 [24] The following equations hold

1F1(1; ν; t) = �(ν)

�(ν − 1)
t−1(1 + O(t−1)), t → −∞, ν ≥ 1,

∫ t

0
sν−1(t − s)μ−1e−βsds = B(μ, ν)tμ+ν−1

1F1(ν;μ + ν;−βt)

(2.9)

for β, μ, ν ∈ R
+, where B is the Beta function and 1F1 represents the Kummer

function.

3 Well-posedness and solution regularity

We prove well-posedness and solution regularity of models (2.6)–(2.7) and (2.8).

3.1 An auxiliary equation

We prove the well-posedness and solution regularity of the following variable-order
fractional ordinary differential equation motivated by (3.23)

y′(t) + Kλ2y(t) + Kαλ2 0 I
1−α(t)
t y(t) = g(t), t ∈ (0, T ], y(0) = ŷ0. (3.1)

Here λ, g(t) and ŷ0 are given data.

Lemma 3 If y ∈ C[0, T ] and 0 ≤ α(t) < α∗ < 1 for some upper bound α∗, then
0 I

1−α(t)
t y ∈ C1−α∗ [0, T ].
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Proof Suppose first � ≤ t < t + � ≤ T , then the definition (2.5) gives that

0 I
1−α(t)
t y(t + �) − 0 I

1−α(t)
t y(t)

=
∫ t+�

0

y(s)ds

�(1 − α(s))(t + � − s)α(s)
−

∫ t

0

y(s)ds

�(1 − α(s))(t − s)α(s)

=
∫ t+�

t

y(s)ds

�(1 − α(s))(t + � − s)α(s)

+
∫ t

t−�

(t + � − s)−α(s) − (t − s)−α(s)

�(1 − α(s))
y(s)ds

+
∫ t−�

0

(t + � − s)−α(s) − (t − s)−α(s)

�(1 − α(s))
y(s)ds :=

3∑
i=1

Ii ,

(3.2)

where I1 could be bounded by the estimate (3.11)

|I1| ≤ Q
∫ t+�

t
|y(s)|(t + � − s)−α(s)ds

≤ Q‖y‖C[0,T ]
∫ t+�

t
(t + � − s)−α∗

ds ≤ Q‖y‖C[0,T ]�1−α∗
.

(3.3)

A similar argument yields

|I2| ≤ Q
∫ t

t−�

|y(s)|(t − s)−α∗
ds ≤ Q‖y‖C[0,T ]�1−α∗

. (3.4)

To bound I3 in (3.2), we employ the fact that

∣∣(t + � − s)−α(s) − (t − s)−α(s)
∣∣ ≤ |α(s)|�(t − s)−α(s)−1 ≤ Q�(t − s)−α∗−1

to obtain

|I3| ≤ Q�

∫ t−�

0
|y(s)|(t − s)−α∗−1ds ≤ Q‖y‖C[0,T ]�1−α∗

. (3.5)

Thus, the assertion follows from the estimates (3.3)–(3.5).When t ≤ �, (3.2) becomes

0 I
1−α(t)
t y(t + �) − 0 I

1−α(t)
t y(t)

=
∫ t+�

t

y(s)ds

�(1 − α(s))(t + � − s)α(s)

+
∫ t

0

(t + � − s)−α(s) − (t − s)−α(s)

�(1 − α(s))
y(s)ds :=

2∑
i=1

Îi ,

(3.6)
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where | Î1| ≤ Q‖y‖C[0,T ]�1−α∗
from (3.3) and Î2 could be estimated by

| Î2| ≤ Q
∫ t

0
|y(s)|(t − s)−α∗

ds ≤ Q‖y‖C[0,T ]t1−α∗ ≤ Q‖y‖C[0,T ]�1−α∗
, (3.7)

which completes the proof of the lemma. ��

Theorem 1 If g ∈ C[0, T ] and 0 ≤ α(t) < α∗ < 1 for some upper bound α∗, then the
variable-order fractional ordinary differential equation (3.1) has a unique solution
y ∈ C1[0, T ] and

‖y‖C[0,T ] ≤ Q(λ−2‖g‖C[0,T ] + |ŷ0|), ‖y‖C1[0,T ] ≤ Q(‖g‖C[0,T ] + λ2|ŷ0|)
(3.8)

with Q = Q(K , Kα, α∗, T ).

Proof We integrate (3.1) multiplied by R(−t) := eKλ2t to obtain a Volterra integral
equation of the second kind in terms of y(t)

y(t) = −Kαλ2R(t) ∗ 0 I
1−α(t)
t y(t) + R(t) ∗ g(t) + R(t)ŷ0. (3.9)

Here ∗ represents the symbol of convolution. Define an approximation sequence
{yn}∞n=0 by yn(t) := −Kαλ2R(t)∗0 I

1−α(t)
t yn−1(t)+y0(t)with y0(t) := R(t)∗g(t)+

R(t)ŷ0. We bound y0 by |y0| ≤ Q‖g‖C[0,T ]|R(t) ∗ 1| + |ŷ0| ≤ Q(λ−2‖g‖C[0,T ] +
|ŷ0|) =: Q0M . Let 
n := yn − yn−1 such that


n+1 = −Kαλ2R(t) ∗ 0 I
1−α(t)
t 
n, n ≥ 1. (3.10)

We interchange the order of integration on the right-hand side of (3.10) and utilize
Lemma 2 and the estimate

(t − s)−α(s) = (t − s)−α∗
(t − s)α

∗−α(s) ≤ max{1, T }(t − s)−α∗
(3.11)

to bound (3.10) for n ≥ 1
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∣∣
n+1(t)
∣∣ =

∣∣∣∣
∫ t

0

∫ s

0

Kαλ2e−Kλ2(t−s)
n(θ)

�(1 − α(θ))(s − θ)α(θ)
dθds

∣∣∣∣

≤
∫ t

0

Kαλ2
∣∣
n(θ)

∣∣
�(1 − α(θ))

∫ t

θ

e−Kλ2(t−s)

(s − θ)α(θ)
dsdθ

=
∫ t

0

Kαλ2
∣∣
n(θ)

∣∣
�(1 − α(θ))

∫ t−θ

0

e−Kλ2 y

(t − θ − y)α(θ)
dydθ

=
∫ t

0

Kαλ2
∣∣
n(θ)

∣∣
�(1 − α(θ))

[
B(1, 1 − α(θ))(t − θ)1−α(θ)

× 1F1(1; 2 − α(θ);−Kλ2(t − θ))
]
dθ

≤ Q
∫ t

0

∣∣
n(θ)
∣∣(t − θ)−α(θ)

�(1 − α(θ))
dθ ≤ Q

∫ t

0

∣∣
n(s)
∣∣(t − s)−α∗

�(1 − α∗)
ds

= Q1 0 I
1−α∗
t

∣∣
n(t)
∣∣, t ∈ [0, T ].

(3.12)

We utilize the estimate |y0| ≤ Q0M and the same estimate as (3.12) to obtain

∣∣
1(t)
∣∣ = |Kαλ2R(t) ∗ 0 I

1−α(t)
t y0| ≤ Q1 0 I

1−α∗
t |y0| ≤ Q0Q1M0 I

1−α∗
t 1,

and we assume that the generalized form of this equation holds for 1 ≤ n ≤ n∗ for
some n∗ ≥ 1

∣∣
n(t)
∣∣ ≤ Q0Q

n
1M0 I

n(1−α∗)
t 1, t ∈ [0, T ]. (3.13)

We combine (3.13) with (3.12) and the semigroup property of the fractional integral
operator to arrive at

∣∣
n∗+1(t)
∣∣ ≤ Q0Q

n+1
1 M0 I

1−α∗
t (0 I

n(1−α∗)
t 1) = Q0Q

n+1
1 M0 I

(n+1)(1−α∗)
t 1.

By mathematical induction, (3.13) holds for n ∈ N by mathematical induction. The
series defined by the right-hand side of (3.13) could be bounded as

∞∑
n=1

(Q1 0 I
1−α∗
t )n1 = Q1(I − Q1 0 I

1−α∗
t )−1

0 I
1−α∗
t 1 < ∞ (3.14)

due to boundedness of (I − Q1 0 I
1−α∗
t )−1 [10, 15–17]. As each yn ∈ C[0, T ], the

series on the left-hand side of (3.13) converge uniformly to its limiting function

y(t) := lim
n→∞ yn(t) = lim

n→∞

n∑
m=1


m + y0(t) ∈ C[0, T ]. (3.15)
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We pass the limit on both sides of yn(t) := −Kαλ2R(t) ∗ 0 I
1−α(t)
t yn−1(t) + y0(t)

to conclude that y is a continuous solution of equation (3.9) with its estimate in (3.8)
following from (3.13)–(3.15). Let ȳ ∈ C[0, T ] be another solution to (3.9), then we
apply similar techniques in (3.12) to bound e(t) := y(t) − ȳ(t) by

|e(t)| = |Kαλ2R(t) ∗ 0 I
1−α(t)
t e(t)| ≤ Q1 0 I

1−α∗
t |e(t)|. (3.16)

We apply the Gronwall’s inequality in Lemma 1 to conclude e(t) ≡ 0 such that
the integral equation (3.9) (and thus the differential equation (3.1)) admits a unique
solution y ∈ C[0, T ].

To bound y′, we differentiate (3.9) with respect to t and applyR′(t) = −Kλ2R(t)
to obtain

y′(t) = −Kαλ20 I
1−α(t)
t y(t) + KαKλ4R(t) ∗ 0 I

1−α(t)
t y(t)

−Kλ2R(t) ∗ g(t) + g(t) − Kλ2R(t)ŷ0.
(3.17)

We note from Lemma 3 that the first term on the right hand side of (3.17) belongs to
C1−α∗ [0, T ]. In addition, it is clear that the remaining terms on the right hand side
of (3.17) belong to C[0, T ] and thus y′ ∈ C[0, T ]. We apply (3.11)–(3.12) and the
Young’s convolution inequality to get

∣∣Kαλ20 I
1−α(t)
t y(t)

∣∣ ≤ Qλ20 I
1−α∗
t |y(t)| ≤ Qλ2‖y‖C[0,T ],

|Kλ2R(t) ∗ g(t)| ≤ Qλ2‖g‖C[0,T ]|R(t) ∗ 1| ≤ Q‖g‖C[0,T ],∣∣KαKλ4R(t) ∗ 0 I
1−α(t)
t y(t)

∣∣ ≤ Q1Kλ2 0 I
1−α∗
t |y(t)| ≤ Qλ2‖y‖C[0,T ].

(3.18)

We incorporate (3.17) with the estimates in (3.18) and the first estimate in (3.8) to
conclude that

‖y′‖C[0,T ] ≤ Q(λ2‖y‖C[0,T ] + ‖g‖C[0,T ] + λ2|ŷ0|) ≤ Q(‖g‖C[0,T ] + λ2|ŷ0|),
(3.19)

which completes the proof.
��

3.2 Analysis of problems (2.6)–(2.7) and (2.8)

We prove the well-posedness and regularity estimates of models (2.6)–(2.7) and (2.8)
based on the previous theorem.

Theorem 2 If 0 ≤ α(t) < α∗ < 1, q ∈ Hκ(0, T ; Ȟγ (0, l)) and w̌0 ∈ Ȟ4+γ (0, l)
for κ , γ > 1/2, then the reduced problem (2.8) has a unique solution u ∈

123



Y. Li et al.

C([0, T ]; Ȟ4+γ (0, l)) ∩ C1([0, T ]; Ȟγ (0, l)) and

‖u‖C([0,T ];Ȟ4+s (0,l)) + ‖u‖C1([0,T ];Ȟ s (0,l))

≤ Q
(‖q‖Hκ (0,T ;Ȟ s (0,l)) + ‖w̌0‖Ȟ4+s (0,l)

)
,

(3.20)

for 0 ≤ s ≤ γ and Q = Q(ρ, A, K , Kα, α∗, T , κ). If further w0 ∈ Ȟ4+γ (0, l),
the original problem (2.6)–(2.7) has a unique solution w ∈ C1([0, T ]; Ȟ4+γ (0, l)) ∩
C2([0, T ]; Ȟγ (0, l)) for 0 ≤ s ≤ γ and

‖w‖C1([0,T ];Ȟ4+s (0,l)) + ‖w‖C2([0,T ];Ȟ s (0,l))

≤ Q
(‖q‖Hκ (0,T ;Ȟ s (0,l))+‖w̌0‖Ȟ4+s (0,l)+‖w0‖Ȟ4+s (0,l)

)
.

(3.21)

Proof We express u and q in (2.8) in terms of {φi }∞i=1 with the corresponding Fourier
coefficients for 1 ≤ i ≤ ∞ [32, 41, 45, 52]

ui (t) := (u(·, t), φi ), qi (t) := (q(·, t), φi ), t ∈ [0, T ], (3.22)

which, according to the spectral expansion of (2.8), satisfy

u′
i (t) + Kλ2i ui (t) + Kαλ2i 0 I

1−α(t)
t ui (t) = qi/(ρA),

ui (0) = w̌0,i := (w̌0, φi ), i ≥ 1.
(3.23)

The (3.23) corresponds to the problem (3.1) with y(t) = ui (t), y0 = w̌0,i , λ = λi
and g = qi/(ρA) such that by Theorem 1, the problem (3.23) has a unique solution
ui ∈ C1[0, T ] with the stability estimates as (3.8).

For any k, n ∈ N and Sn(x, t) := ∑n
i=1 ui (t)φi (x), we use Sobolev embedding

theorem and the estimates in (3.8) to conclude that for n → ∞
∥∥S′

n+k − S′
n

∥∥2
C([0,T ];C[0,l]) ≤ Q

∥∥S′
n+k − S′

n

∥∥2
C([0,T ];Ȟγ (0,l))

s = Q

∥∥∥∥
n+k∑

i=n+1

λ
γ

i

(
u′
i (t)

)2∥∥∥∥
C[0,T ]

≤ Q
n+k∑

i=n+1

λ
γ

i ‖ui‖2C1[0,T ]

≤ Q
n+k∑

i=n+1

(λ
γ

i ‖qi‖2Hκ (0,T ) + λ
4+γ

i w̌2
0,i ) → 0,

(3.24)

namely, S′
n converges inC([0, T ];C[0, l]) such that the interchange of the differentia-

tion with the summation (i.e. the Fourier expansions of u) is justified. Consequently, u
defined by u := ∑∞

i=1 ui (t)φi (x) is the solution to the problem (2.8) with the stability
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estimate

‖∂t u‖2
C([0,T ];Ȟ s (0,l))

≤
∞∑
i=1

λsi ‖ui‖2C1[0,T ] ≤Q
∞∑
i=1

(
λsi ‖qi‖2C[0,T ]+λ4+s

i |w̌0,i |2
)

= Q
(‖q‖2

Hκ (0,T ;Ȟ s (0,l))
+ ‖w̌0‖2Ȟ4+s (0,l)

)
, 0 ≤ s ≤ γ.

The estimate of u could be performed similarly via the estimates in (3.8)

‖u‖2
C([0,T ];Ȟ4+s (0,l))

≤
∞∑
i=1

λ4+s
i ‖ui‖2C[0,T ] ≤Q

∞∑
i=1

(
λsi ‖qi‖2C[0,T ]+λ4+s

i |w̌0,i |2
)

≤ Q
(‖q‖2

Hκ (0,T ;Ȟ s (0,l))
+ ‖w̌0‖2Ȟ4+s (0,l)

)
, 0 ≤ s ≤ γ.

We incorporate the above two estimates to obtain (3.20), and the uniqueness of the
solutions follows from that for the ordinary differential equations (3.23). Finally,
we conclude that (2.6)–(2.7) has a unique solution w ∈ C1([0, T ]; Ȟ4+γ (0, l)) ∩
C2([0, T ]; Ȟγ (0, l)) with the stability estimate (3.21) obtained directly from (3.20),
which completes the proof.

��

4 Global unique determination of variable fractional order

We prove the global uniqueness of the inverse problem of determining the variable
fractional order in the variable-order time-fractional viscoelastic Euler-Bernoulli beam
model

∂2t w + K∂t∂
4
xw + Kα∂

α(t)
t ∂4xw = 0, (x, t) ∈ (0, l) × (0, T ],

w(x, 0) = w0(x), ∂tw(x, 0) = w̌0(x), x ∈ [0, l],
sw(0, t) = w(l, t) = 0, ∂2xw(0, t) = ∂2xw(l, t) = 0, t ∈ [0, T ],

(4.1)

based on the observation data w(x, t) measured on a space-time rectangular domain.
Based on several experimental results [31, 43, 46, 47], which demonstrate that it
usually suffices to consider a (piecewise) constant or linear variable fractional order
in practical applications, we choose the following admissible set while studying the
inverse problem

A := {α(t) : α(t) is a piecewise polynomial function on [0, T ]}. (4.2)

At possible discontinuous points {tdi }Nd
i=1 ⊂ [0, T ] of α(t), the values of α(t) are

chosen as its left limits. The requirement of this admissible set is much weaker than
those in the literature, which constrain the variable order in, e.g., the space of analytic
functions that may not be practical in real problems [58, 60].
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Lemma 4 Suppose 0 ≤ α(t) < α∗ < 1, w0, w̌0 ∈ Ȟ4+γ (0, l) for γ > 1/2 and
∂tw(x, t0) �≡ 0 on [0, l] for each t0 ∈ [0, T ). Then for each t0 ∈ [0, T ), there
exists an open spatial interval �t0 ⊂ (0, l) and a positive constant σt0 such that
|∂t∂4xw(x, t0)| ≥ σt0 for x ∈ �t0 .

Proof By Theorem 2, the given assumptions imply that w ∈ C1([0, T ]; Ȟ4+γ ) ∩
C2([0, T ]; Ȟγ ). We apply the Sobolev embedding Hr+1/2+ε(0, l) ↪→ Cr [0, l] for
any ε > 0 and 0 ≤ r ∈ N [1] and Ȟ s(0, l) ⊂ Hs(0, l) for s ≥ 0 to conclude that
w ∈ C2

([0, T ];C[0, l]) ∩ C1
([0, T ];C4[0, l]).

Then we intend to prove by contradiction that for each t0 ∈ [0, T ), there exists
an xt0 ∈ (0, l) such that ∂t∂

4
xw(xt0 , t0) �= 0. If not, we have ∂t∂

4
xw(x, t0) =

∂2x [∂t∂2xw(x, t0)] = 0 on (0, l) (and thus on [0, l] by the continuity of ∂t∂
4
xw) for

some t0 ∈ [0, T ), which, together with the smoothness of w, implies

∂t∂
2
xw(x, t0) = a1x + b1 for some a1, b1 ∈ R, x ∈ [0, l]. (4.3)

The boundary conditions in (2.8) lead to ∂t∂
2
xw(0, t0) = ∂2x u(0, t0) = 0 and

∂t∂
2
xw(l, t0) = ∂2x u(l, t0) = 0, which gives ∂t∂

2
xw(x, t0) ≡ 0 on [0, l]. We then

incorporate ∂tw(0, t0) = u(0, t0) = 0 and ∂tw(l, t0) = u(l, t0) = 0 from (2.8) to
further prove ∂tw(x, t0) ≡ 0 on [0, l], which contradicts to the assumption of this
lemma and thus proves the existence of xt0 ∈ (0, l) such that ∂t∂

4
xw(xt0 , t0) �= 0.

Based on this result and the continuity of ∂t∂
4
xw, the conclusion of this lemma could

be reached by choosing �t0 as a sufficiently small open neighborhood of xt0 .
��

Remark 1 Lemma 4 ensures the existence of an open set � ⊆ (0, l), e.g. � :=
∪t0∈[0,T )�t0 , such that for each t0 ∈ [0, T ), there exists an open subset �t0 ⊂ �

on which ∂t∂
4
xw(x, t0) is strictly bounded away from 0.

We next prove the main result of this section in the following theorem.

Theorem 3 Suppose the assumptions in Lemma 4 hold. Then the variable order α(t) in
the time-fractional viscoelastic Euler-Bernoulli beammodel (4.1) could be determined
uniquely in the admissible setA on [0, T ], given the observation data on a space-time
rectangular domain � × [0, T ] where � is such a set as described in Remark 1.

More precisely, let w̌(t) be the solution to model (4.1) with α(t) ∈ A replaced by
some variable order α̌(t) ∈ A. Thenw(x, t) = w̌(x, t) for (x, t) ∈ �×[0, T ] implies
α(t) = α̌(t) for t ∈ [0, T ].

Proof Let {td,α
i }Nα

d
i=1, {td,α̌

i }N α̌
d

i=1 ⊂ (0, T ) be the sets of discontinuous points of α(t)
and α̌(t) on [0, T ], respectively. Under the assumptions, we have proved in Lemma 4
that w, w̌ ∈ C2([0, T ];C[0, l]) ∩ C1([0, T ];C4[0, l]). Since w(x, t) = w̌(x, t) for
(x, t) ∈ � × [0, T ], the difference of their equations leads to

(∂
α(t)
t ∂4x − ∂

α̌(t)
t ∂4x )w(x, t) = 0, (x, t) ∈ � × [0, T ]. (4.4)
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By the properties of �, there exists an open subset �0 ⊂ � and a positive constant
σ0 such that |∂t∂4xw(x, 0)| ≥ σ0 on �0. Without loss of generality, we may assume
that ∂t∂4xw(x, 0) ≥ σ0 on �0. By the continuity of ∂t∂

4
xw in time, there exists a small

time interval [0, τ ] with τ < min{td,α
1 , td,α̌

1 } such that

∂t∂
4
xw(x, t) ≥ σ0

2
> 0, ∀(x, t) ∈ �0 × [0, τ ]. (4.5)

We intend to prove α(0) = α̌(0) by contradiction. If not, we assume α(0) > α̌(0)
without loss of generality, and the continuity of α(t) and α̌(t) over [0, τ ] implies that
there exists a positive 0 < ε0 ≤ τ such that α(s) − α̌(s) ≥ ν on [0, ε0] for some
ν > 0. We then use (2.5) to reformulate (4.4) as follows

(
0 I

1−α(t)
t − 0 I

1−α̌(t)
t

)
∂t∂

4
xw(x, t)

=
∫ t

0

[
(t − s)−α(s)

�(1 − α(s))
− (t − s)−α̌(s)

�(1 − α̌(s))

]
∂s∂

4
xw(x, s)ds

=
∫ t

0
(t − s)−α(s)

[
1

�(1 − α(s))
− (t − s)α(s)−α̌(s)

�(1 − α̌(s))

]
∂s∂

4
xw(x, s)ds = 0,

∀(x, t) ∈ �0 × (0, ε0].

(4.6)

Since α(t) is bounded away from 1, there exists an 0 < ε1 ≤ ε0 and a positive constant
Q0 such that

1

�(1 − α(s))
≥ 2Q0, ∀0 < s < t, t ∈ (0, ε1]. (4.7)

As − ln(t − s) → ∞ as t → 0+ and α(s) − α̌(s) ≥ ν on [0, ε0], we conclude that
(t − s)α(s)−α̌(s) = e(α(s)−α̌(s)) ln(t−s) → 0 as t → 0+. Therefore, for the Q0 given in
(4.7), there exists an 0 < ε2 ≤ ε1 such that

(t − s)α(s)−α̌(s)

�(1 − α̌(s))
≤ Q0, ∀0 < s < t, t ∈ (0, ε2]. (4.8)

We incorporate the preceding estimates (4.7)–(4.8) to give a lower bound for the terms
in the bracket of (4.6) by

1

�(1 − α(s))
− (t − s)α(s)−α̌(s)

�(1 − α̌(s))
≥ Q0, ∀0 < s < t, t ∈ (0, ε2], (4.9)

which, together with (4.5), yields

123



Y. Li et al.

(t − s)−α(s)
[

1

�(1 − α(s))
− (t − s)α(s)−α̌(s)

�(1 − α̌(s))

]
∂s∂

4
xw(x, s)

≥ 1

2
σ0Q0(t − s)−α(s), ∀0 < s < t, (x, t) ∈ �0 × (0, ε2].

(4.10)

We invoke this estimate in (4.6) to find the contradiction, which implies α(0) = α̌(0).
Define the set t∗ := sup

{
t : α(s) = α̌(s), ∀s ∈ [0, t]} ∈ [0, T ] such that

α(s) = α̌(s) on [0, t∗]. Such closed interval exists due to α(0) = α̌(0) and the
assumption that both variable orders takes their values as their left limits at possible
discontinuous points. As α, α̌ ∈ A, α(s) − α̌(s) is a piecewise polynomial function

with possible discontinuous points {tdi }Nd
i=1 ⊆ {td,α

i }Nα
d

i=1∪{td,α̌
i }N α̌

d
i=1 on [0, T ]. To prove

t∗ = T by contradiction, we suppose t∗ < T . We consider the case t∗ = tdi∗ for some

1 ≤ i∗ ≤ Nd , and the case that t∗ /∈ {tdi }Nd
i=1 could be proved in a similar manner and

is thus omitted.
Since α(s) − α̌(s) is a piecewise polynomial function, there exists an 0 < ε <

min{tdi∗+1 − tdi∗ , T − tdNd
} such that α(s) − α̌(s) has finite zero points on (t∗, t∗ + ε]

and there exists an 0 < εt∗,1 ≤ ε such that α(s)− α̌(s) �= 0 on (t∗, t∗ + εt∗,1]. Without
loss of generality, we may assume that α(s) − α̌(s) > 0 on (t∗, t∗ + εt∗,1]. By the
properties of �, there exists an open subset �t∗ ⊂ � and a positive constant σt∗ such
that |∂t∂4xw(x, t∗)| ≥ σt∗ on �t∗ . Without loss of generality, we may assume that
∂t∂

4
xw(x, t∗) ≥ σt∗ on �t∗ . By the continuity of ∂t∂

4
xw in time, there exists a small

time interval [t∗, t∗ + τt∗ ] with 0 < τt∗ < εt∗,1 such that ∂t∂
4
xw(x, t) ≥ σt∗/2 on

�t∗ × [t∗, t∗ + τt∗ ].
Since α(t) = α̌(t) for t ∈ [0, t∗], we apply the mean value theorem to reformulate

equation (4.4) to obtain

0 = (
0 I

1−α(t)
t − 0 I

1−α̌(t)
t

)
∂t∂

4
xw(x, t)

=
∫ t

0

[
(t − s)−α(s)

�(1 − α(s))
− (t − s)−α̌(s)

�(1 − α̌(s))

]
∂s∂

4
xw(x, s)ds

=
∫ t

t∗

[
(t − s)−α(s)

�(1 − α(s))
− (t − s)−α̌(s)

�(1 − α̌(s))

]
∂s∂

4
xw(x, s)ds

=
∫ t

t∗

(t − s)−ᾱ(s)

�(1 − ᾱ(s))

(
ψ(1 − ᾱ(s)) − ln(t − s)

)
(α(s) − α̌(s))∂s∂

4
xw(x, s)ds,

∀(x, t) ∈ �t∗ × (t∗, t∗ + τt∗ ],

(4.11)

where ψ(x) := d
dx ln�(x) is the polygamma function and ᾱ(s) lies in between α(s)

and α̌(s) for t∗ < s ≤ t∗ + τt∗ . Since 0 ≤ ᾱ(s) ≤ α∗ < 1 and − ln(t − s) → ∞ as
t → t+∗ , there exists some positive Q1 and 0 < ε3 < τt∗ such that

ψ(1 − ᾱ(s)) − ln(t − s) ≥ Q1, ∀t∗ < s < t, t ∈ (t∗, t∗ + ε3], (4.12)
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which, together with the preceding estimates yields that for (x, t) ∈ �t∗ ×(t∗, t∗ +ε3]

(t − s)−ᾱ(s)

�(1 − ᾱ(s))

(
ψ(1 − ᾱ(s)) − ln(t − s)

)
(α(s) − α̌(s))∂s∂

4
xw(x, s)

≥ σt∗Q1(t − s)−ᾱ(s)(α(s) − α̌(s))

2�(1 − ᾱ(s))
> 0, ∀t∗ < s < t .

(4.13)

Thus we apply this with (4.11) to similarly claim α(t) = α̌(t) on (t∗, t∗ + ε3], and
thus on [0, t∗ + ε3]. This contradicts the definition of t∗, which implies t∗ = T and
thus completes the proof.

��

Remark 2 To explain the motivation of imposing the assumption on ∂tw in Lemma
4 and Theorem 3, we note that the condition “∂tw(x, t) �≡ 0 on [0, l] × � for each
non-empty open sub-interval� of [0, T )” is necessary for unique determination of the
variable fractional order α(t) in (4.1). This is due to the fact in the fractional operators
(2.5), both the function g(s) and the variable fractional order α(s) have the same
variable s such that if g(t) ≡ 0 on � for some � mentioned above, then we could
slightly change α inside � without affecting anything since the variable order α(s)
for s ∈ � has impacts only for the sub-integral over � that is always 0. Therefore, it
is impossible to determine the variable fractional order uniquely over � in this case.
We apply this argument to the fractional operator in (4.1) and use ∂tw(x, t) ≡ 0 over
[0, l] implies ∂t∂

4
xw(x, t) ≡ 0 to reach the aforementioned necessary condition.

5 Numerical inversion of variable fractional order

We incorporate the Levenberg-Marquardtmethodwith the fully-discrete finite element
method to numerically infer the variable order in model (4.1), which are implemented
in several experiments for illustration.

5.1 Fully-discrete finite element method for (4.1)

We reformulate the problem (4.1) as a first-order system (2.8) as follows

∂t u + K∂4x u + Kα 0 I
1−α(t)
t ∂4x u = 0, u = ∂tw. (5.1)

Let tn := nτ for n = 0, 1, . . . , N with τ := T /N be a uniform partition on [0, T ],
un := u(x, tn), wn := w(x, tn) and αn := α(tn). Then we discretize ∂t u, ∂tw and
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0 I
1−α(t)
t ∂4x u at t = tn for 1 ≤ n ≤ N by

∂t u(x, tn) ≈ un − un−1

τ
:= δτun, ∂tw(x, tn) ≈ wn − wn−1

τ
:= δτwn,

0 I
1−α(t)
t ∂4x u(x, t)

∣∣
t=tn

=
n∑

k=1

∫ tk

tk−1

∂4x u(x, s)ds

�(1 − α(s))(tn − s)α(s)

≈
n∑

k=1

∫ tk

tk−1

∂4x ukds

�(1 − αk)(tn − s)αk
=

n∑
k=1

bn,k∂
4
x uk := I 1−αn

τ ∂4x un,

(5.2)

with

bn,k := 1

�(1 − αk)

∫ tk

tk−1

ds

(tn − s)αk
= (tn − tk−1)

1−αk −(tn − tk)1−αk

�(2 − αk)
(5.3)

for 1 ≤ k ≤ n.
Let Sh ⊂ Ȟ2(0, l) be the continuously differentiable piecewise cubic Hermite

finite element space on a quasi-uniform partition on [0, l] with the partition diameter
h. Define the Ritz projection �h : Ȟ2 → Sh [49] by

(∂2x�hg, ∂
2
xχ) = (∂2x g, ∂

2
xχ), ∀χ ∈ Sh . (5.4)

We incorporate the preceding discretizations into (5.1) multiplied by χ ∈ Sh and then
integrate the resulting equation on (0, l) to derive the finite element scheme for (5.1):
Find Un,Wn ∈ Sh for n = 1, . . . , N such that for any χ ∈ Sh

(
δτUn, χ

) + K
(
∂2xUn, ∂

2
xχ

) + Kα(I 1−αn
τ ∂2xUn, ∂

2
xχ) = 0,

Un = δτWn, U0 := �hw̌0, W0 := w0.
(5.5)

5.2 A free-knot partitioned Levenberg-Marquardt method

Given some observation data {whist (xi , tn)}J ,N
i,n=1 on the time interval [0, T ] measured

at certain spatial locations 0 < x1 < x2 < · · · < xJ < l where J denotes the number
of sensors, we intend to develop a algorithm to numerically invert α(t). Concerning
the possible discontinuities of variable order (cf. the definition of the admissible set
A), we split the temporal interval [0, T ] into I subintervals with possible discontinuity
nodes P = {P1, · · · , PI−1} such that 0 =: P0 < P1 < P2 < · · · < PI := T . The
approximation αI (t) to α(t) is selected as a piecewise linear function as follows

αI (t) :=
I∑

m=1

Lα,m(t)1(Pm−1,Pm ], α := [α1, β1, · · · , αI , βI ] ∈ R
2I , (5.6)

where Lα,m(t) refers to the linear function on the subinterval [Pm−1, Pm] with
Lα,m(Pm−1) = αm and Lα,m(Pm) = βm for 1 ≤ m ≤ I . Let {wpred(xi , tn, p)}J ,N

i,n=1
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be the numerical solution of the fully-discrete finite element scheme (5.5) with the
variable order α(t) replaced by αI (t), we aim at finding the optimal parameters p∗
over p = [P,α] ∈ R

3I−1 to minimize the cost functional defined as

F( p) := τ

2

J∑
i=1

N∑
n=1

(
wpred(xi , tn; p) − whist (xi , tn)

)2

by the Levenberg-Marquardt algorithm in the iterative procedure

p j+1 := p j − (
J�
j J j + β j I3I−1

)−1 J�
j r j . (5.7)

Here β j is the regularization parameter, the residual vector r j ∈ R
J N is evaluated by

r j :=
[
wpred(xi , tn; p) − whist (xi , tn)

]J ,N

i,n=1
, (5.8)

and the Jacobian matrix J j of order J N × (3I − 1) is evaluated by

J j :=
[
wpred(xi , tn; p + δek) − wpred(xi , tn; p)

δ

]J ,N ,3I−1

i,n,k
, (5.9)

where δ > 0 the numerical differentiation step size and ek ∈ R
3I−1 is the unit vector

in the k-th coordinate direction for k = 1, 2, · · · , 3I − 1. We summarize the above
parameter identification method in Algorithm 1.

Algorithm 1: A Levenberg-Marquardt Algorithm

1. Given the observation data {whist (xi , tn)}J ,N
i,n=1 for model (4.1), the parameters γ, ν ∈ (0, 1),

β0 > 0, 0 < δ � 1, p0, tol> 0, and j := 0.
2. Solve the scheme (5.5) with α(t) replaced by αI (t) given in (5.6).
3. Use formula (5.8)-(5.9) to numerically evaluate Jacobian J j and J�

j r j .

4. If ‖J�
j r j‖ <tol, then stop and let p∗ := p j .

5. Compute the search direction d j := −(J�
j J j + β j I3I−1)

−1 J�
j r j .

6. Determine the search step γm by the Armijo rule: find the smallest nonnegative integer m such that

F
(
p j + γmd j

)
≤ F

(
p j

)
+ νγmd jJ�

j r j .

7. Update p j+1 := p j + γmd j , β j+1 := β j /2. Let j := j + 1 and go to Step 2.

5.3 Numerical investigation

We carry out numerical experiments to investigate the performance of the proposed
Levenberg-Marquardt method to numerically evaluate the variable fractional order
in the model (4.1) for a Euler-Bernoulli beam of length l = 1m, width 0.1m and
height 0.01m, given observation data on [0, T ] = [0, 0.5]s measured at certain spatial
locations {xi = (5 − i)/8}Ji=1. The Euler-Bernoulli beam is made of a widely used
superalloy, i.e., Inconel alloy 718 material [63] with ρ = 8192 kg/m3, Eα = 200 GPa
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Table 1 Errors α − αI in Example 1

J I Itr CPU time ‖α − αI ‖L∞ ‖α − αI ‖L2 ‖α − αI ‖L1
1 2 43 1m 18s 9.01E-02 2.86E-02 1.61E-02

4 43 4m 2s 4.55E-02 1.49E-02 8.55E-03

6 43 8m 18s 3.60E-02 1.20E-02 6.89E-03

8 43 14m 9s 2.58E-02 8.53E-03 4.87E-03

2 2 100 10m 42s 8.74E-02 2.60E-02 1.46E-02

4 42 3m 58s 4.55E-02 1.49E-02 8.55E-03

6 100 40m 21s 2.33E-02 8.50E-03 4.88E-03

8 100 0m 18s 1.91E-02 6.70E-03 3.84E-03

3 2 100 11m 14s 8.56E-02 2.39E-02 1.32E-02

4 44 4m 9s 4.55E-02 1.49E-02 8.55E-03

6 44 8m 29s 3.60E-02 1.20E-02 6.89E-03

8 100 59m 21s 1.91E-02 6.52E-03 3.81E-03

4 2 100 15m 40s 8.67E-02 2.76E-02 1.56E-02

4 42 3m 58s 4.55E-02 1.49E-02 8.55E-03

6 42 8m 6s 3.60E-02 1.20E-02 6.89E-03

8 100 58m 40s 1.77E-02 6.16E-03 3.54E-03

and Ed = 1 × 10−5E . The model (4.1) is simulated via the finite element scheme
(5.5) with N = 256 and the uniform spatial partition h = 1/8.

Example 1: Inverting a smooth variable fractional order.
Let w0(x) = 0, w̌0(x) = x3(1 − x)3 and α(t) = 14

15 t
3 + 2

5 (t − 1
5 )

2 + 0.4 in
problem (4.1). In the Levenberg-Marquardt algorithm, we set γ = 0.75, ν = 0.25,
δ = 10−6, tol = 10−17, p0 = [T /I , 2T /I , . . . , (I − 1)T /I , 0.5, 0.5, . . . , 0.5] ∈
R
3I−1 and maximum iteration number Itrmax = 100. We present the errors α −

αI under L1, L2 and L∞ norms in Table 1, and plot α(t) and αI (t) as well as the
corresponding cost functionals in Fig. 2. From these results we find that the free-
knot partitioned Levenberg-Marquardt method generates an accurate and convergent
numerical inversion αI (t) to α(t).

Example 2 : Inverting a continuous and piecewise smooth variable fractional
order.

We consider a continuous and piecewise smooth variable order

α(t) =
{ 3

10 − 2
5 t, t ∈ [0, T /2],

59
320 + (t − 3T

4 )2, t ∈ (T /2, T ]

in problem (4.1). Let w̌0(x) = 0.1 sin(πx) and the other data are the same as those in
Example 1. We present the numerical inversion results in Fig. 3, which again demon-
strate the effectiveness of the proposed method.

123



A fractional viscoelastic Euler-Bernoulli beam...

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 10 20 30 40 50 60 70 80 90 100

number of iteration

10-16

10-14

10-12

10-10

10-8

Fig. 2 Plots ofα(t) andαI (t) (left) and the cost functionals (right) with different values of [I , J ] in Example
1
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Fig. 3 Plots ofα(t) andαI (t) (left) and the cost functionals (right) with different values of [I , J ] in Example
2

Example 3: Inverting a discontinuous variable fractional order.
We consider a piecewise smooth variable order

α(t) =
{ 13

25 + 2t3 + 1
5 t

2/T , t ∈ [0, T /4],
1
2 t + 1

2 (1 − t5/T ), t ∈ (T /4, T ],

which is discontinuous at t = T /4. Let w̌0(x) = x3(1 − x)3 and the other data are
the same as those in Example 1. We present the numerical inversion results in Fig. 4,
which demonstrate that the proposed algorithm also works well for the model with
discontinuous variable fractional orders.

Example 4 : Inverting a discontinuous variable fractional order with fixed P .
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Fig. 4 Plots ofα(t) andαI (t) (left) and the cost functionals (right) with different values of [I , J ] in Example
3
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Fig. 5 Plots ofα(t) andαI (t) (left) and the cost functionals (right) with different values of [I , J ] in Example
4

We consider a discontinuous variable fractional order

α(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.2 + (x − T /2)2, t ∈ [0, T /4],
0.2 + t3, t ∈ (T /4, T /2],
0.22, t ∈ (T /2, 3T /4],
0.25 − 0.1t, t ∈ (3T /4, T ].

In this example, we fix P = {T /I , 2T /I , . . . , (I − 1)T /I } and then follow the
Algorithm 1 to progressively update p = α ∈ R

2I with p0 = [0.5, 0.5, . . . , 0.5]. Let
w̌0(x) = x3(1− x)3 and the other data are the same as those in Example 1. Numerical
results are presented in Fig. 5, which indicates that the proposed method provides a
satisfactory approximation of α(t) even in the case that the P is fixed.
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6 Concluding remarks

In this paper, we analyze the forward and inverse problems of a variable-order vis-
coelastic Euler-Bernoulli beam. The well-posedness and the solution regularity of the
proposed model are proved, based on which we further prove the uniqueness of the
inverse problem of determining a piecewise polynomial variable-order contained in
the proposed model, with the measurements of the unknown solutions on a space-
time rectangular domain. Several numerical experiments are conducted to identify the
variable fractional order.

A potential extension of the current work is to consider the corresponding inverse
problem for model (4.1) with other definitions of variable-order fractional derivative
such as [52, 61]

∂̄
α(t)
t g(t) := 0 Ī

1−α(t)
t ġ(t), 0 Ī

α(t)
t g(t) :=

∫ t

0

g(s)

�(α(t))(t − s)1−α(t)
ds. (6.1)

We note from the proof of Theorem 3 that the derivation of the third equality in (4.11)
implicitly employs the hidden-memory feature of the variable-order operator (2.5)
such that α = α̌ on [0, t∗] yields

∫ t∗

0

[
(t − s)−α(s)

�(1 − α(s))
− (t − s)−α̌(s)

�(1 − α̌(s))

]
∂s∂

4
xw(x, s)ds = 0, t ∈ (t∗, t∗ + τt∗ ], (6.2)

which is in general not true for the case of (6.1) since the variable order in (6.1) assumes
its current value α(t) on the entire interval [0, t]. Thus (4.11) and the subsequent proof
may not hold in this case that requires further consideration.
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