
Numerical Algorithms
https://doi.org/10.1007/s11075-023-01552-7

ORIG INAL PAPER

A fast algorithm for time-fractional diffusion equation
with space-time-dependent variable order

Jinhong Jia1 · Hong Wang2 · Xiangcheng Zheng3

Received: 4 October 2022 / Accepted: 31 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We investigate a fast algorithm for the time-fractional diffusion equation with a space-
time-dependent variable order, which models, e.g., the subdiffusion with varying
memory effects. In addition to the traditional L1 discretization of the time-fractional
derivative, we perform a further approximation for the L1 coefficients, analyze the
structures of the resulting all-at-once system, and apply the divide and conquermethod
to obtain a fast numerical algorithm. Due to the spatial dependence of the variable
order and the further approximation to the L1 coefficients, the temporal discretization
coefficients are coupled with the inner product of the finite element method and lack
the monotonicity, which are rarely encountered in previous works and thus motivate
novel analysis methods and computational techniques. Compared with the standard
time-stepping methods with L1 discretization, the proposed algorithm reduces the
complexity of solving the all-at-once system from O(MN 2) to O(MN ln3 N), where
M stands for the spatial degree of freedom and N refers to the number of time steps.
Numerical experiments are provided to substantiate the theoretical findings.

Keywords Space-time-dependent variable order · Time-fractional diffusion
equation · Finite element method · Error estimate · Divide and conquer

Mathematics Subject Classification (2010) 35R11 · 65M15 · 65M60

B Xiangcheng Zheng
xzheng@sdu.edu.cn

Jinhong Jia
jhjia@sdnu.edu.cn

Hong Wang
hwang@math.sc.edu

1 School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China

2 Department of Mathematics, University of South Carolina, Columbia 29208, SC, USA

3 School of Mathematics, Shandong University, Jinan 250100, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01552-7&domain=pdf

Numerical Algorithms

1 Introduction

Time-fractional diffusion equations have been widely applied in various fields and
have attracted extensive mathematical and numerical investigations [1–11] due to their
model capability for challenging phenomena with memory effects. As the order of the
time-fractional diffusion equation relates to the fractal dimension of the porous media,
the variable-order fractional operators are introduced to accommodate the structure
changes of the surroundings in, e.g., bioclogging and hydrofracturing in gas and oil
recovery [7, 8, 12, 13], which leads to the following time-fractional diffusion equation
with a space-time-dependent variable order proposed in, e.g., [14–17]

∂t u + κ(x, t)C0 D
γ (x,t)
t u − ∇ · (K(x)∇u) = f , (x, t) ∈ � × (0, T];

u(x, 0) = u0(x), x ∈ �; u(x, t) = 0, (x, t) ∈ ∂� × [0, T].
(1.1)

Here � ⊂ R
d (d = 1, 2, 3) is a simply connected bounded domain with smooth

boundary ∂�, x = (x1, · · · , xd), K(x) := (ki, j (x))di, j=1 is a symmetric and coer-
cive diffusion tensor, κ(x, t) > 0 is the ratio of the normal to anomalous diffusion
particles, f (x, t) is the source or sink term, and the fractional derivative with space-
time-dependent variable order 0 ≤ γ (x, t) < 1 is given by [18–20]

C
0 D

γ (x,t)
t g(x, t) := 1

�(1 − γ (x, t))

∫ t

0

∂sg(x, s)

(t − s)γ (x,t)
ds. (1.2)

There exist extensive investigations for the fast algorithms for constant-order
fractional problems [11, 21–24], while the corresponding studies for variable-order
fractional models are far from well developed. For space-fractional problems, Pang
and Sun proposed a fast algorithm for the variable-order space-fractional advection-
diffusion equations with nonlinear source terms in their pioneering work [50]. By
the properties of the elements of coefficient matrices, the off-diagonal blocks were
approximated by low-rank matrices and a fast algorithm based on the polynomial
interpolation was developed to approximate the coefficient matrices. The approxima-
tion could be constructed in O(kN) operations and requires O(kN) storagewith N and
k being the number of unknowns and the approximants, respectively, and the matrix-
vector multiplication could be implemented in O(kN log N) complexity, which leads
to a fast iterative solver for the resulting linear systems. A different approach was
proposed in [26] to develop a fast divide and conquer indirect collocation method for
the variable-order space-fractional diffusion equations, where the stiffness matrix was
approximated by the finite sum of Toeplitz matrices multiplied by diagonal matri-
ces. The approximation was shown to be asymptotically consistent with the original
problem,which requires O(N log2 N)memory and O(N log3 N) computational com-
plexity with N being the numbers of unknowns.

There are also some recent progresses for the fast algorithms of time-fractional
problems with time-dependent variable order γ = γ (t). In [27] a fast algorithm was
developed for the subdiffusion equation with time-dependent variable order based on
a shifted binary block partition and uniform polynomial approximations. In [25] a

123

Numerical Algorithms

fast all-at-once method was proposed for the variable-order time-fractional diffusion
equation by approximating the off-diagonal blocks by low-rank matrices based on the
polynomial interpolation. In [28, 29] the exponential-sum-approximation technique
was developed to approximate the variable-order fractional derivative and correspond-
ing time-fractional problems. This method was then combined with the L2-1σ formula
to construct a fast second-order approximation to the Caputo variable-order fractional
derivative and the corresponding subdiffusion problem [30].

Despite the growing studies for the fast algorithms for time-fractional problems
with time-dependent variable order γ = γ (t), there are rare studies for those with
space-time-dependent variable order γ = γ (x, t), and it is unclear whether the exist-
ing methods in the literature could be extended for such more complicated problems.
Due to the space dependence of the variable order, the temporal discretization coef-
ficients of the variable-order fractional derivative could not be separated from the
inner product of the finite element method, which makes the numerical analysis and
fast implementation intricate. Furthermore, in order to develop the fast algorithm,
we perform a further approximation for the coefficients of the L1 method for the
variable-order time-fractional derivative, which results in the loss of monotonicity of
the coefficients that is critical in error estimates. In this work we overcome these dif-
ficulties to develop and analyze a fast algorithm for model (1.1), which reduces the
complexity of solving the all-at-once system from O(MN 2) to O(MN ln2 N), where
M stands for the spatial degree of freedom and N refers to the number of time steps.

The rest of this paper is organized as follows. In Section2 we develop a fast
approximation for the space-time-dependent variable-order fractional derivative and
then model (1.1). In Section3 we prove error estimate of the proposed algorithm. In
Section4 we implement the fast approximate scheme by the divide and conquer
algorithm and carry out corresponding analysis. Various numerical experiments are
performed in Section5 and we address concluding remarks in the last section.

2 Fast approximation scheme

Let Hm(�) := Wm.2(�) be the Sobolev space of functions with weak derivatives up
to order m in L2(�), and Hm

0 (�) be its subspace with zero boundary condition up to
order m − 1. For a Banach space B, define Wm,p(0, T ;B) with respect to the norm
‖ · ‖B for 1 ≤ p < ∞ by [31]

Wm,p(0, T ;B) :=
{
v : [0, T] → B : ‖∂kt v(·, t)‖B ∈ L p(0, T), 0 ≤ k ≤ m

}

equipped with the norm

‖v‖Wm,p(0,T ;B) :=
(m∑
k=0

∫ T

0
‖∂kt v(·, t)‖p

Bdt
)1/p

.

123

Numerical Algorithms

In particular, we have L p(0, T ;B) := W 0,p(0, T ;B). For simplicity, wemay drop the
subscript L2 and the domain � in the Sobolev spaces and norms and write Wm,p(B)

for Wm,p(0, T ;B) when no confusion occurs.
For a positive integer N , we define a uniform temporal partition on [0, T] by

tn = nτ (0 ≤ n ≤ N) with τ = T /N and a quasi-uniform partition of � with the
maximal mesh diameter h, and let Sh be the space of continuous and piecewise linear
functions on�with respect to the spatial partition. The Ritz projectionPh : H1

0 → Sh
is defined by

(K∇(g − Phg),∇χ) = 0, ∀χ ∈ Sh,

which satisfies the following approximation property [32]

‖g − Phg‖ ≤ Qh2‖g‖H2 , g ∈ H2 ∩ H1
0 . (2.1)

We further introduce the discrete-in-time space L̂∞(L2) equipped with the norm for
v = {v j }Nj=1 with v j ∈ L2(0, l)

‖v‖L̂∞(L2)
:= max

1≤ j≤N
‖v j‖.

To discretizemodel (1.1), we denote un := u(x, tn), κn := κ(x, tn), γn := γ (x, tn)
and fn := f (x, tn) for brevity. We approximate the derivatives ut and C

0 D
γ (x,t)
t u at

t = tn by the backward Euler and L1 schemes

ut (x, t)|t=tn = un − un−1

τ
+ 1

τ

∫ tn

tn−1

∂t t u(x, t)(t − tn−1)dt

:= δτun(x) + En,

(2.2)

C
0 D

γ (x,t)
t u(x, t)|t=tn =

n∑
k=1

∫ tk

tk−1

δτuk + (
∂su(x, s) − δτuk

)
ds

�(1 − γn)(tn − s)γn

:=
n∑

k=1

b̂n,k(uk − uk−1) + Rn,

(2.3)

where

b̂n,k := 1

�(2 − γn)τ γn

(
(n − k + 1)1−γn − (n − k)1−γn

)
,

Rn :=
n∑

k=1

Rn,k = 1

�(1 − γn)τ

n∑
k=1

∫ tk

tk−1

∫ tk
tk−1

∫ s
z ∂θθu(x, θ)dθdz

(tn − s)γn
ds.

(2.4)

123

Numerical Algorithms

To derive a fast algorithm, we further approximate the coefficients {b̂n,k} for n−k ≥ 1
via the Taylor expansion at the power γ̄

(n − k + 1)1−γn − (n − k)1−γn

=
S∑

s=0

(γ̄ − γn)
s

s!
(
(n − k + 1)1−γ̄ lns(n − k + 1)

−(n − k)1−γ̄ lns(n − k)
) + P̃n,k,

(2.5)

where S is the number of the expansion terms and γ̄ := 1

2
(γ∗ + γ ∗) where γ∗ and

γ ∗ refer to the lower and upper limits of γ over � × [0, T]. P̃n,k represents the local
truncation error given by

P̃n,k = (γ̄ − γn)
S+1

(S + 1)!
(
(n − k + 1)1−εn,k lnS+1(n − k + 1)

−(n − k)1−εn,k lnS+1(n − k)
)
,

where εn,k lies in between γn and γ̄ depending on n, k and x. Substitute (2.5) into b̂n,k

in (2.4) to get

b̂n,k =
S∑

s=0

(γ̄ − γn)
s

s!�(2 − γn)τ γn

(
(n − k + 1)1−γ̄ lns(n − k + 1)

−(n − k)1−γ̄ lns(n − k)
) + Pn,k =: bn,k + Pn,k

(2.6)

for n − k ≥ 1 where Pn,k = P̃n,k/
(
�(2 − γn)τ

γn
)
. For the case n = k, we set

bn,n = b̂n,n and Pn,k = 0 for completeness. Consequently, we replace b̂n,k by bn,k in

(2.3) to obtain a further approximation of C0 D
γ (x,t)
t u at t = tn

C
0 D

γ (x,t)
t u|t=tn =

n∑
k=1

bn,k(uk − uk−1) +
n∑

k=1

Pn,k(uk − uk−1) + Rn

:= δγn
τ un + Fn + Rn,

(2.7)

where

Fn =
n∑

k=1

Pn,k(uk − uk−1). (2.8)

We invoke (2.2) and (2.7) in (1.1) and integrate the resulting equation multiplied
by χ ∈ H1

0 (�) to get the weak formulation

(δτun, χ) + (κnδ
γn
τ un, χ) + (K∇un,∇χ)

= (fn, χ) − (
En + κn(Rn + Fn), χ

)
, ∀χ ∈ H1

0 (�).
(2.9)

123

Numerical Algorithms

We drop the local truncation errors to obtain a fast finite element scheme: findUn ∈ Sh
for n = 1, 2, · · · , N with U0 = Phu0 such that

(δτUn, χh) + (κnδ
γn
τ Un, χh) + (K∇Un, χh) = (fn, χh), ∀χh ∈ Sh . (2.10)

3 Error estimate

Weprove error estimate of the fast scheme (2.10). Themaindifficultiesweovercome lie
in the loss of monotonicity of {bn,k} due to the Taylor expansion (2.5) and the coupling
of the variable order and the inner product of the finite element method, which are
rarely encountered in the literature and novel analysis techniques are developed to
account for these issues, cf. the proof of Theorem 3.1.

3.1 Auxiliary estimates

We prove several auxiliary estimates based on the regularity of the solutions derived
in [16], which shows that under suitable smoothness assumptions on the data, the
solution u is bounded as follows

‖u‖W 2,p(L2) + ‖u‖W 1,p(H2) ≤ Q, (3.1)

where 1 ≤ p ≤ 2 and p < 1/γ0 with

γ0 := ‖γ (·, 0)‖L∞(�). (3.2)

Without loss of generality, we assume there exists a 0 < γ ∗ < 1 such that

0 ≤ γ (x, t) ≤ γ ∗, ∀(x, t) ∈ � × [0, T]. (3.3)

Lemma 3.1 If S ≥
3 ln N�, Pn,k can be bounded by

n∑
k=1

|Pn,k | < 1,
N∑

n=k

|Pn,k | < 1. (3.4)

Proof To bound Pn,k , we define the monotone decreasing function y(α) = (n − k +
1)1−α lnS+1(n − k + 1) − (n − k)1−α lnS+1(n − k) for n − k ≥ 1 on α ∈ [0, 1].
Consequently, we have for εn,k ∈ [0, 1]

y(εn,k) = (n − k + 1)1−εn,k lnS+1(n − k + 1) − (n − k + 1)1−εn,k lnS+1(n − k)

< (n − k + 1) lnS+1(n − k + 1) − (n − k) lnS+1(n − k) = y(0).

123

Numerical Algorithms

As |γ̄ − γn| < 1/2 and 1/�(2 − γn) < 1.2 for γn < 1, we bound Pn,k by

|Pn,k | ≤ 1.2N γ ∗

2S+1(S + 1)!
(
(n − k + 1) lnS+1(n − k + 1) − (n − k) lnS+1(n − k)

)
.

Therefore, we have

n∑
k=1

|Pn,k | ≤ 1.2N γ ∗
n−1∑
k=1

(n − k + 1) lnS+1(n − k + 1) − (n − k) lnS+1(n − k)

2S+1(S + 1)!

≤ 1.2N γ ∗

2S+1(S + 1)!
n−1∑
k=1

(
(n−k+1) lnS+1(n−k+1)−(n − k) lnS+1(n − k)

)

≤ 1.2N 1+γ ∗
lnS+1 N

2S+1(S + 1)! .

By setting S + 1 ≥ 3 ln N and applying the Stirling’s formula

(S + 1)! ≥ (S + 1)S+3/2

eS+1 (3.5)

we get

lnS+1 N

2S+1(S + 1)! ≤ (e ln N/2)S+1

(S + 1)S+3/2

≤ 1√
S + 1

(e ln N

2(S + 1)

)S+1 ≤ 1√
S + 1

(e
6

)3 ln N
.

(3.6)

We invoke this and 2 + 3 ln e
6 < 0 in the estimate of Pn,k to get

n∑
k=1

|Pn,k | ≤ 1.2N 1+γ ∗
lnS+1 N

2S+1(S + 1)! ≤ 1.2N 2

√
S + 1

(e
6

)3 ln N ≤ N 2+3 ln e
6 < 1.

Similarly, we estimate the second statement of (3.4) by

N∑
n=k

|Pn,k | ≤ 1.2N

2S+1(S + 1)!

×
N∑

n=k+1

(
(n − k + 1) lnS+1(n − k + 1) − (n − k) lnS+1(n − k)

)

≤ 1.2N 1+γ ∗
lnS+1 N

2S+1(S + 1)! < 1

123

Numerical Algorithms

to complete the proof. ��
Lemma 3.2 Under the conditions (3.1)–(3.3) and S ≥
3 ln N�, En, Fn and Rn could
be estimated by

N∑
n=1

‖En‖ +
N∑

n=1

‖Rn‖ ≤ Q‖u‖W 2,1(L2), (3.7)

N∑
n=1

‖Fn‖ ≤ ‖u‖W 1,1(L2). (3.8)

for some constant Q independent from u and τ .

Proof We estimate En and Rn in (2.2) and (2.4) by

N∑
n=1

‖En‖ ≤ 1

τ

N∑
n=1

∫ tn

tn−1

‖∂t t u‖(t − tn−1)dt

≤
∫ T

0
‖∂t t u‖dt ≤ ‖u‖W 2,1(L2),

N∑
n=1

‖Rn‖ ≤ Q
N∑

n=1

n∑
k=1

∫ tk

tk−1

∫ tk
tk−1

‖∂zzu(x, z)‖dz
(tn − s)γ ∗ ds

≤ Q
N∑

k=1

∫ tk

tk−1

‖∂zzu‖dz
N∑

n=k

∫ tk

tk−1

ds

(tn − s)γ ∗

≤ Q‖u‖W 2,1(L2).

We invoke (3.4) in (2.8) to bound Fn by

N∑
n=1

‖Fn‖ ≤
N∑

n=1

n∑
k=1

|Pn,k |
∫ tk

tk−1

‖∂t u‖dt

≤
N∑

k=1

∫ tk

tk−1

‖∂t u‖dt
N∑

n=k

|Pn,k |

≤
N∑

k=1

∫ tk

tk−1

‖∂t u‖dt = ‖u‖W 1,1(L2),

(3.9)

which completes the proof. ��

3.2 Error estimate

Let un −Un = un −Phun +Phun −Un := ηn +ξn , and we bound ηn in the following
lemma.

123

Numerical Algorithms

Lemma 3.3 Under the conditions (3.1)–(3.3), ηn could be estimated by

N∑
n=1

(
‖δτ ηn‖ + ‖κnδγn

τ ηn‖
)

≤ Q‖u‖W 1,1(H2)h
2τ−1. (3.10)

Proof By (2.1), we have

N∑
n=1

‖δτ ηn‖ ≤ 1

τ

N∑
n=1

∫ tn

tn−1

‖(I − Ph)∂t u‖dt ≤ Q‖u‖W 1,1(H2)h
2τ−1.

We estimate δ
γn
τ u by

N∑
n=1

∥∥δγn
τ ηn

∥∥ = 1

τ

N∑
n=1

∥∥∥
n∑

k=1

bn,k(I − Ph)

∫ tk

tk−1

∂t udt
∥∥∥

≤ 1

τ

N∑
n=1

∥∥∥
n∑

k=1

(bn,k − b̂n,k + b̂n,k)(I − Ph)

∫ tk

tk−1

∂t udt
∥∥∥

≤ 1

τ

N∑
n=1

∥∥∥
n∑

k=1

b̂n,k(I − Ph)

∫ tk

tk−1

∂t udt
∥∥∥

+1

τ

N∑
n=1

∥∥∥
n∑

k=1

Pn,k(I − Ph)

∫ tk

tk−1

∂t udt
∥∥∥.

(3.11)

The first term on the right-hand side of (3.11) can be bounded by

1

τ

N∑
n=1

∥∥∥
n∑

k=1

b̂n,k(I − Ph)

∫ tk

tk−1

∂t udt
∥∥∥

≤ Qh2τ−1
N∑

n=1

n∑
k=1

∫ tk

tk−1

‖∂t u‖H2dt
∫ tk

tk−1

ds

(tn − s)γ ∗

≤ Qh2τ−1
N∑

k=1

∫ tk

tk−1

‖∂t u‖H2dt
N∑

n=k

∫ tk

tk−1

ds

(tn − s)γ ∗

≤ Q‖u‖W 1,1(H2)h
2τ−1.

123

Numerical Algorithms

We Lemma 3.4 to bound the second term on the right-hand side of (3.11) by

1

τ

N∑
n=1

∥∥∥
n∑

k=1

Pn,k(I − Ph)

∫ tk

tk−1

∂t udt
∥∥∥

≤ Qh2τ−1
N∑

n=1

n∑
k=1

|Pn,k |
∫ tk

tk−1

‖∂t u‖H2dt

= Qh2τ−1
N∑

k=1

∫ tk

tk−1

‖∂t u‖H2dt
N∑

n=k

|Pn,k |

≤ Q‖u‖W 1,1(H2)h
2τ−1.

Therefore, we finish the proof. ��

Theorem 3.1 The following error estimate holds for the fast finite element scheme
(2.10) for τ small enough

‖u −U‖L̂∞(L2)
≤ Q(τ + h2),

where Q is a constant independent from τ and h.

Proof We subtract (2.10) from (2.9) to get the error equation

(δτ (un −Un), χh) + (κnδ
γn
τ (un −Un), χh)

+(K∇(un −Un),∇χh) = −(
En + κn(Rn + Fn), χh

)
.

We invoke un −Un = ηn + ξn and set χh = ξn to get

(δτ ξn, ξn) + (κnδ
γn
τ ξn, ξn) + (K∇ξn,∇ξn) = −(Gn, ξn). (3.12)

where Gn := En + κn(Rn + Fn) + δτ ηn + κnδ
γn
τ ηn . We rewrite δ

γn
τ ξn in the form

δγn
τ ξn = bn,nξn +

n−1∑
k=1

(bn,k − bn,k+1)ξk,

and use the Cauchy inequality to (3.12) multiplied by 2τ to obtain

‖ξn‖2 + 2τ(κnbn,nξn, ξn) + 2τ(K∇ξn,∇ξn)

≤ ‖ξn−1‖2 + 2τ
n−1∑
k=1

(
κn(bn,k+1 − bn,k)ξk, ξn

) + 2τ‖Gn‖‖ξn‖.
(3.13)

123

Numerical Algorithms

We split bn,k+1 − bn,k by inserting the coefficients b̂n,k+1 and b̂n,k given in (2.4)

|bn,k+1 − bn,k | = |(b̂n,k+1 − b̂n,k) + (bn,k+1 − b̂n,k+1) − (bn,k − b̂n,k)|
≤ (b̂n,k+1 − b̂n,k) + |b̂n,k+1 − bn,k+1| + |b̂n,k − bn,k |
= (b̂n,k+1 − b̂n,k) + |Pn,k+1| + |Pn,k |.

We apply the monotonicity property of {b̂n,k}nk=1 (i.e., b̂n,k+1 > b̂n,k) and 2|ξkξn| ≤
ξ2k + ξ2n to bound the second term on the right-hand side of (3.13) by

2τ
n−1∑
k=1

(κn(bn,k+1 − bn,k)ξk, ξn)

≤ τ

n−1∑
k=1

(κn|bn,k+1 − bn,k |ξk, ξk) + τ

n−1∑
k=1

(κn|bn,k+1 − bn,k |ξn, ξn)

≤ τ

n−1∑
k=1

(
κn(b̂n,k+1 − b̂n,k + |Pn,k+1| + |Pn,k |)ξk, ξk

)

+τ

n−1∑
k=1

(
κn(b̂n,k+1 − b̂n,k + |Pn,k+1| + |Pn,k |)ξn, ξn

)
.

(3.14)

By Lemma 3.1, the second sum on the right-hand side of (3.14) could be bounded by

τ

n−1∑
k=1

(
κn(b̂n,k+1 − b̂n,k + |Pn,k+1| + |Pn,k |)ξn, ξn

)

≤ τκnb̂n,n‖ξn‖2 + 2τ‖ξn‖2.

We invoke these estimates in (3.13) and add the resulting equation from n = 1 to
n∗(n∗ ≤ N) and cancel the like terms to get

‖ξn∗‖2 + τ

n∗∑
n=1

(K∇ξn,∇ξn)

≤ τ

n∗∑
n=1

n−1∑
k=1

(
κn(b̂n,k+1 − b̂n,k + |Pn,k+1| + |Pn,k |)ξk, ξk

) + τ

n∗∑
n=1

‖Gn‖‖ξn‖

= τ

n∗−1∑
k=1

(n∗∑
n=k+1

κn(b̂n,k+1 − b̂n,k)ξk, ξk
) + τ

n∗∑
n=1

‖Gn‖‖ξn‖

+τ

n∗−1∑
k=1

(n∗∑
n=k+1

κn(|Pn,k | + |Pn,k+1|)ξk, ξk
)
,

(3.15)

123

Numerical Algorithms

By

n∗∑
n=k+1

κn(b̂n,k+1 − b̂n,k) ≤ ‖κ‖L∞(L∞)

n∗∑
n=k+1

(b̂n,k+1 − b̂n,k)

= ‖κ‖L∞(L∞)

n∗∑
n=k+1

1

�(1 − γ (x, tn))

×
(∫ tk+1

tk

1

(tn − s)γ (x,tn)
ds −

∫ tk

tk−1

1

(tn − s)γ (x,tn)
ds

)

= ‖κ‖L∞(L∞)

n∗∑
n=k+1

1

�(1 − γ (x, tn))

∫ tk

tk−1

∫ tn

tn−1

∂z
(− (z − s)−γ (x,tn)

)
dzds

≤ Q‖κ‖L∞(L∞)

∫ tk

tk−1

n∗∑
n=k+1

∫ tn

tn−1

dz

(z − s)1+γ ∗ ds

= Q‖κ‖L∞(L∞)

∫ tk

tk−1

∫ tn∗

tk

dz

(z − s)1+γ ∗ ds

≤ Q‖κ‖L∞(L∞)

∫ tk

tk−1

ds

(tk − s)γ ∗ = Q‖κ‖L∞(L∞)τ
1−γ ∗ ≤ Q,

the first right-hand side term of (3.15) could be bounded by

τ

n∗−1∑
k=1

(n∗∑
n=k+1

κn(b̂n,k+1 − b̂n,k)ξk, ξk
) ≤ Qτ

n∗−1∑
k=1

(ξk, ξk).

By Lemma 3.4, the third term on the right-hand side of (3.15) can be bounded by

τ

n∗−1∑
k=1

(n∗∑
n=k+1

κn(|Pn,k | + |Pn,k+1|)ξk, ξk
)

≤ 2‖κ‖L∞(L∞)τ

n∗−1∑
k=1

(ξk, ξk).

Therefore, (3.15) can be bounded by

‖ξn∗‖2 + 2τ
n∗∑
n=1

(K∇ξn,∇ξn) ≤ Qτ

n∗−1∑
k=1

‖ξk‖2 + τ

n∗∑
n=1

‖Gn‖‖ξn‖.

We apply the discrete Gronwall inequality to obtain

‖ξn∗‖2 ≤ Qτ

n∗∑
n=1

‖Gn‖‖ξn‖.

123

Numerical Algorithms

Let ‖ξn∗‖ := max
1≤n≤N

‖ξn‖ such that ‖ξn∗‖ ≤ Qτ

n∗∑
n=1

‖Gn‖, and we use (3.7), (3.8) and
(3.10) to estimate Gn as

‖ξn∗‖ ≤ Qτ

n∗∑
n=1

‖Gn‖ ≤ Q(τ + h2),

which completes the proof. ��

4 Efficient implementation

We intend to develop a fast implementation of the scheme (2.10) by analyzing the
structures of the coefficient matrices and then accordingly applying the divide and
conquer algorithm for computation. Due to the spatial dependence of variable order, it
becomes much more challenging to separate the all-at-once coefficient matrix into the
Kronecker product of temporal and spatial parts, and then to approximate the temporal
part by a sum of Toeplitz matrices multiplied by diagonal matrices. Novel analysis
and matrix splittings are applied to resolve these issues to develop a fast divide and
conquer (FDAC) algorithm for the scheme (2.10).

4.1 Structure of coefficient matrices

Wefirst study the properties of the coefficients {bn,k}. Denote csn(x) := (γ̄ − γn)
s

s!�(2 − γn)τ γn

and dsk := (k + 1)1−γ̄ lns(k + 1) − k1−γ̄ lns k such that bn,k for n − k ≥ 1 can be
decomposed by

bn,k =
S∑

s=0

csn(x)dsn−k .

Thus δ
γn
τ un in (2.6) could be expressed as

δγn
τ un = bn,nun + (bn,n−1 − bn,n)un−1 − bn,1u0

+
n−2∑
k=1

S∑
s=0

csn(x)(dsn−k − dsn−k−1)uk .

Let {φi (x)}Mj=1 be the basis of Sh satisfying φi (xi) = 1 and φi (x j) = 0 for

j �= i where M is the degree of freedom of Sh , Un = ∑M
j=1U

n
j φ j (x), U =

[(U1)�, (U2)�, · · · , (UN)�]� with Un = [Un
1 ,Un

2 , · · · ,Un
M]� for 1 ≤ n ≤ N ,

and F = [(F1)�, (F2)�, · · · , (FN)�]� with Fn = [Fn
1 , Fn

2 , · · · , Fn
M]� and Fn

i =

123

Numerical Algorithms

(f (x, tn) + bn,1u0, φi) for 1 ≤ i ≤ M and 1 ≤ n ≤ N . Then the all-at-once linear
system of (2.10) can be expressed as

(A + IN ⊗ B)U = F. (4.1)

Here B = (Bi, j)Mi, j=1 is the stiffness matrix defined by Bi, j = (K∇φ j (x),∇φi (x))

and the matrix A = (An,k)
N
n,k=1 ∈ R

(NM)×(NM) is a sub-triangluar block matrix with
zero blocks An,k = 0 for k ≥ n + 1 and nonzero blocks An,k for k ≤ n defined by

(An,k)i, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
(τ−1 + bn,n)φ j , φi

)
, k = n,(

(−τ−1 + (bn,n−1 − bn,n)φ j , φi
)
, k = n − 1,

S∑
s=0

(dsn−k − dsn−k−1)
(
csn(x)φ j , φi

)
, 1 ≤ k ≤ n − 2.

As csn(x) is independent from k and dsn−k is independent from x, dsn−k −dsn−k+1 could
be separated from the inner product. To derive a fast matrix-vector multiplication
algorithm, we define a tri-diagonal matrixMs

n ∈ R
M×M by (Ms

n)i, j = (csn(x)φ j , φi)

such that An,k for n − k ≥ 2 could be expressed by

An,k =
S∑

s=0

(dsn−k − dsn−k−1)M
s
n . (4.2)

Then we decompose A as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 0 0 · · · 0 0
A2,1 A2,2 0 · · · 0 0
0 A3,2 A3,3 · · · 0 0
...

. . .
. . .

. . .
...

...

0 · · · · · · AN−1,N−2 AN−1,N−1 0
0 · · · · · · 0 AN ,N−1 AN ,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 0

A3,1 0 0 · · · 0 0
...

. . .
. . .

. . .
...

...

AN−1,1 AN−1,2 · · · 0 0 0
AN ,1 AN ,2 · · · AN ,N−2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

:= Ac + AL .

(4.3)

By (4.2), AL could be decomposed as

AL =
S∑

s=0

Ds(Ts ⊗ IM), (4.4)

123

Numerical Algorithms

where Ds for 0 ≤ s ≤ S are quasi-diagonal matrices with {Ms
n}Nn=1 being their

diagonal blocks

Ds =

⎡
⎢⎢⎢⎣

Ms
1
Ms

2
. . .

Ms
N

⎤
⎥⎥⎥⎦ ,

and Ts for 0 ≤ s ≤ S are toeplitz matrices given by

Ts =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · · · · 0
0 0 · · · · · · · · · 0

ds2 − ds1 0 0 · · · · · · 0
ds3 − ds2 ds2 − ds1 0 · · · · · · 0

...
. . .

. . .
. . .

. . .
...

dsN−2 − dsN−3
. . . · · · · · · 0 0

d p
N−1 − dsN−2 dsN−2 − dsN−3 · · · ds2 − ds1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.2 FDAC algorithm

Based on the above analysis on the structures of the matrices, we intend to apply the

divide and conquer algorithm. Let N = 2L such that L = O(ln N),U = [U�
,U

�]�,
F = [F�

, F
�]� and then we divide Ac,Ds and Ts into 2 × 2 blocks

Ac =
[
Ac
11 0

Ac
21 Ac

22

]
,Ds =

[
D
s
0

0 D
s

]
,Ts =

[
Ts
1 0

Ts
2 Ts

1

]
.

Consequently, (4.1) could be divided into two sub-linear systems as

[
Ac
11 +

S∑
s=0

D
s
(Ts

1 ⊗ IM) + τ IN/2 ⊗ S
]
U = F,

[
Ac
22 +

S∑
s=0

D
s
(Ts

1 ⊗ IM) + τ IN/2 ⊗ S
]
U

= F −
S∑

s=0

D
s
(Ts

2 ⊗ IM)U − Ac
21U .

(4.5)

As each subsystem in (4.5) has a similar structure as (4.1), we could repeat the dividing
procedure to obtain the FDAC algorithm presented in Algorithm 1.

We remain to estimate the computational cost of the FDAC algorithm.

123

Numerical Algorithms

Algorithm 1: FDAC algorithm for (4.5).
Data: Ds ,Ts , F
Result: U = FDAC(Ds ,Ts , F)

dim = length(F)/M;
if dim ≤ 2 then

solve (A + IN ⊗ S)U = F;
else

U = FDAC(D
s
,Ts

1, F);

F = F −
S∑

s=0

D
s
(Ts

2 ⊗ IM)U − Ac
21U;

U = FDAC(D
s
,Ts

1, F);
U = [U�

,U
�]�.

end if

Lemma 4.1 For any v ∈ R
MN/2, thematrix-vectormultiplicationD

s
(Ts

2⊗IM)v could
be carried out in O(MN ln N) operations.

Proof Divide v into N/2 parts v1, v2, · · · vN/2 with each part having M entries and
let V = [v1, v2, · · · , vN/2] ∈ R

M×(N/2). Then we have

(Ts
2 ⊗ IM)v = vec(VTs�

2) = vec
(
(Ts

2V
�)�

)
. (4.6)

Here IM ∈ R
M×M represents the identity matrix and vec(X) represents the vectoriza-

tion of matrixXwhich is the column vector formed by arranging all the columns ofX.
Let V� = [ω1,ω2, · · · ,ωM] such that Ts

2V
� = [Ts

2ω1,Ts
2ω2, · · · ,Ts

2ωM]. By the
fast Fourier transform, the multiplication of the Toeplitz matrix Ts

2 and the vector ωi

could be computed in O(N ln N) operations, and consequently Y = Ts
2V

� requires
O(MN ln N) operations. As Ds is a quasi-diagonal matrix with each diagonal block

being a tri-diagonal matrix, evaluating D
s
vec(Y) requires O(MN) operations, which

completes the proof. ��
Theorem 4.1 Theall-at-once linear system (4.1) couldbe implemented in O(MN ln3 N)

operations by the FDAC Algorithm 1.

Proof As Ac
21 has only one nonzero block of order M on its up and right position,

the third term on the right-hand side of the second sub-linear system in (4.5) could be
computed in O(M) operations. The second right-hand side term could be computed in
O(MN ln2 N)operations byLemma4.1.Consequently, computing the right-hand side
terms of the second sub-linear system of (4.5) requires O(MN ln2 N) operations, and
thus thematrix-vectormultiplications in repeating thedividingprocedure as (4.5) could
be computed by

O(MN ln2 N) + 2 × O
(MN

2
ln2

N

2

)
+ · · · + 2L × O

(MN

2L
ln2

N

2L

)
= O(MN ln3 N),

which completes the proof. ��

123

Numerical Algorithms

5 Numerical experiments

We test the effectiveness and efficiency of the fast finite elementmethod (2.10) by com-
paring it with the time-stepping solver (TSS) for the standard finite element method:
find Ûn ∈ Sh with U0 = Phu0 such that for n = 1, 2, · · · , N

(δτ Ûn, χh) + (κn δ̂
γ (x,tn)
τ Ûn, χh) + (K∇Ûn,∇χh) = (fn, χh), ∀χh ∈ Sh (5.1)

where δ̂
γn
τ un := ∑n

k=1 b̂n,k(uk − uk−1) denotes the standard L1 discretization of
C
0 D

γ (x,t)
t u at t = tn . Due to the space dependence of the variable order, the coefficients

{b̂n,k} in (2.4) could not be split from the inner product and O(MN 2) operations are
required to solve (5.1) by TSS, which is computationally expensive for large N .

We measure the errors and convergence rates of the scheme (2.10) as well as the
CPU times (in seconds) of the TSS for (5.1) and the FDAC algorithm for (2.10). As
the spatial discretization is standard, we only measure the temporal convergence rates
of the two methods in the sense

‖u − Û‖L̂∞(L2)
≤ Qτ ν̂ , ‖u −U‖L̂∞(L2)

≤ Qτ ν.

All experiments are performedonMatlab2016bon a computerwith Intel(R)Core(TM)
i5-6500U, CPU 3.2GHz and 8.00GB RAM. The symbol “\” indicates that the code
has already run for more than 3h and is terminated.

5.1 One-dimensional problems

We perform numerical experiments for model (1.1) in one space dimension involving
both singular and nonsingular solutions. We set � × (0, T] = [0, 1] × (0, 1] with
singular solutions near t = 0, κ(x, t) = 10 + xt , K = 0.01, f (x, t) = 1.

5.1.1 Comparison of model (1.1) with different kinds of variable orders

We present solutions of model (1.1) with constant fractional order γ = γ0, time-
dependent variable order γ = γ0 cos(π t/2) and space-time-dependent variable order
γ = γ0 sin(πx/2) cos(π t/2) in Fig. 1, from which we observe that the solutions
of model (1.1) with constant fractional order and time-dependent variable order are
similar, while the solution of model (1.1) with space-time-dependent variable order
has salient differences in comparison with them and thus have potential to model
more complex phenomena. This indicates that the space-time-dependent variable order
could improve the modeling capability of time-fractional problems.

5.1.2 Model (1.1) with singular solutions

In this experiment we test the performance of FDAC for model (1.1) by setting the
variable-order γ (x, t) = γ0(x + 1)/2 cos(π t/2) where the parameter γ0 coincides
with the definition (3.2) for γ (x, t). We choose γ0 = 0.1, 0.5 and 0.9 respectively,

123

Numerical Algorithms

0
1

0.02

0.04

1

u

0.06

0.8

y

0.08

0.5 0.6

x

0.1

0.4
0.2

0 0

0
1

0.02

0.04

1

u

0.06

0.8

t

0.08

0.5 0.6

x

0.1

0.4
0.2

0 0

0
1

0.02

0.04

1

u

0.06

0.8

t

0.08

0.5 0.6

x

0.1

0.4
0.2

0 0

Fig. 1 Solutions of (1.1) with constant fractional order γ = γ0 (left), time-dependent variable order
γ = γ0 cos(π t/2) (middle) and space-time-dependent variable order γ = γ0 sin(πx/2) cos(π t/2) (right)

which corresponds to different singularities of the solutions at t = 0 characterized
by the index p in (3.1). As the exact solutions are not available, numerical solutions
computed by the TSS under τ = 2−12 and h = 2−8 serve as the reference solutions.
We compare the accuracy of the FDAC algorithm for (2.10) and the TSS for (5.1) and
present the numerical results in Table 1 and Fig. 2, from which we observe that both
methods generate the same solution curves with the same accuracy under different
singularities of the solutions, as well as the same first-order temporal convergence
rates as proved in Theorem 3.1.

Table 1 Errors and convergence rates with different γ0 for Example 5.1.2

γ0 N ‖u − Û‖L̂∞(0,T ;L2) ν̂ ‖u −U‖L̂∞(0,T ;L2) ν

24 7.9540E-3 – 7.9540E-3 –

25 4.5895E-3 0.79 4.5895E-3 0.79

0.1 26 2.4406E-3 0.91 2.4406E-3 0.91

27 1.2462E-3 0.97 1.2462E-3 0.97

28 6.1467E-4 1.02 6.1467E-4 1.02

24 5.2271E-3 – 5.2271E-3 –

25 3.0232E-3 0.79 3.0232E-3 0.79

0.5 26 1.7142E-3 0.82 1.7142E-3 0.82

27 9.2288E-4 0.89 9.2288E-4 0.89

28 4.7149E-4 0.97 4.7149E-4 0.97

24 2.5275E-3 – 2.5275E-3 –

25 1.5021E-3 0.75 1.5021E-3 0.75

0.9 26 8.8278E-4 0.77 8.8278E-4 0.77

27 4.9364E-4 0.84 4.9364E-4 0.84

28 2.6501E-4 0.90 2.6501E-4 0.90

123

Numerical Algorithms

0 0.2 0.4 0.6 0.8 1

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0
=0.1

0
=0.5

0
=0.9

0 0.2 0.4 0.6 0.8 1

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0
=0.1

0
=0.5

0
=0.9

Fig. 2 Numerical solutions of Example 5.1.2 at x = 0.5 with different γ0 solved by TSS (left) and FDAC
(right)

5.1.3 Model (1.1) with smooth solutions

Let � × (0, T] = [0, 1] × (0, 1], the smooth solution u = t2 sin(πx), κ(x, t) =
(1 + xt/2), γ (x, t) = 0.5 + 0.25t sin(2πx) and the diffusion coefficient K = 0.01.
The right-hand side term f (x, t) is evaluated accordingly. We compare the accuracy
of the FDAC algorithm for (2.10) and the TSS of (5.1) by setting h = 2−6 and present
the numerical results in Table 2 and Fig. 3, formwhich we obtain the same conclusions
as Example 5.1.2. We then compare the CPU timesCPUU of solving (2.10) by FDAC
and CPUÛ of solving (5.1) by TSS under h = 2−4 in Table 3, which indicates that
the FDAC algorithm is much more efficient that the TSS.

5.2 Two-dimensional problems

We perform numerical experiments for model (1.1) in two space dimensions involving
both the piecewise constant variable order and a more generalized space-time variable
order.

5.2.1 Model (1.1) with a piecewise constant variable order

Let � × (0, T] = (0, 1)2 × (0, 1], u(x, y, t) = (t2 + 1)x sin(πx)y sin(π y),
κ(x, y, t) = 1 + 0.5xyt and K = diag(0.01, 0.01). The variable order γ = γ (x, y)

Table 2 Errors and convergence
rates for Example 5.1.3 N ‖u − Û‖L̂∞(L2) ν̂ ‖u −U‖L̂∞(L2) ν

24 1.0287E-2 – 1.0287E-2 –

25 4.4424E-3 1.21 4.4424E-3 1.21

26 1.9469E-3 1.19 1.9469E-3 1.19

27 8.7313E-4 1.16 8.7313E-4 1.16

28 4.1425E-4 1.08 4.1425E-4 1.08

123

Numerical Algorithms

0
1

0.2

0.4

1

0.6

0.8

0.8
0.5

1

0.6

1.2

0.4
0.2

0 0

0
1

0.2

0.4

1

0.6

0.8

0.8
0.5

1

0.6

1.2

0.4
0.2

0 0

Fig. 3 Numerical solutions of Example 5.1.3 solved by TSS (left) and FDAC (right)

takes the form of a piecewise constant function such that γ (x, y) = 0.55 on (x, y) ∈
(0, 0.5]× (0, 0.5], γ (x, y) = 0.45 on (x, y) ∈ (0.5, 1)× (0, 0.5] ∪ (0, 0.5]× (0.5, 1)
and γ (x, y) = 0.75 on (x, y) ∈ (0.5, 1)×(0.5, 1). The right-hand side term f (x, y, t)
is computed correspondingly.

We present errors and convergence rates under both FDAC and TSS in Table 4, as
well as their CPU times in Table 5, from which we observe that the fast method FDAC
has the same accuracy as TSS but is muchmore efficient than the TSS, which indicates
that the proposed fast method is applicable for model (1.1) with piecewise constant
variable order, which, in comparison with the generalized case in Section5.2.2, is
more tractable over the domain of interest for a particular application field.

5.2.2 Model (1.1) with a generalized space-time variable order

In this subsection we set γ (x, y, t) = 0.5 + 0.25t sin(2πx) sin(2π y) and the other
data are the same as those in Section5.2.1. Similar to previous examples, bothmethods
have the same accuracy and convergence rates as shown in Table 6, and generate the
same solution patterns as shown in Fig. 4. Furthermore, we plot the CPU times of
TSS and FDAC in Fig. 5, from which we observe that the CPU time of TSS grows
quadratically with respect to N , while the CPU time of FDAC algorithm grows linearly
as predicted in Theorem 4.1.

6 Concluding remarks

In this work we developed a fast finite element method for the time-fractional diffu-
sion equation with a space-time-dependent variable order. We approximated the L1

Table 3 CPU times (in seconds) under TSS and FDAC for Example 5.1.3

N 28 29 210 211 212 213 214 215 216 217 218

CPUÛ 2.74 10.8 42.7 168 674 2692 \ \ \ \ \
CPUU 0.12 0.19 0.40 0.87 1.87 3.86 7.91 20 58 296 1654

123

Numerical Algorithms

Table 4 Errors and convergence rates for Example 5.2.1 with h = 2−6

N ‖u − Û‖L̂∞(0,T ;L2) ν̂ ‖u −U‖L̂∞(0,T ;L2) ν

24 1.5131E-2 – 1.5131E-2 –

25 7.3551E-3 1.04 7.3551E-3 1.04

26 3.5693E-3 1.04 3.5693E-3 1.04

27 1.7240E-3 1.05 1.7240E-3 1.05

28 8.2262E-4 1.07 8.2262E-4 1.07

Table 5 CPU times (in seconds) for Example 5.2.1 with h = 2−4

N 28 29 210 211 212 213 214 215

CPUÛ 40.5 164 616 2459 9904 \ \ \
CPUU 1.51 2.31 5.01 10.7 23.1 66.4 105 252

Table 6 Errors and convergence rates for Example 5.2.2 with h = 2−6

N ‖u − Û‖L̂∞(0,T ;L2) ν̂ ‖u −U‖L̂∞(0,T ;L2) ν

24 4.8342E-3 – 4.8342E-3 –

25 2.3533E-3 1.04 2.3533E-3 1.04

26 1.1476E-3 1.04 1.1476E-3 1.04

27 5.6092E-4 1.03 5.6092E-4 1.03

28 2.7660E-4 1.02 2.7660E-4 1.02

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0.1

0.
1

0.1

0.10.1

0.
1

0.1

0.2

0.
2

0.2
0.2

0.
2

0.2
0.3

0.3

0.3

0.
3

0.3 0.
4

0.40.4

0.4

0.
5

0.5

0.5

0.6

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0.1

0.
1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.
2

0.2
0.3

0.3

0.3

0.3

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0.1

0.
1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.
2

0.2
0.3

0.3

0.3

0.3

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0.1

0.
1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.
2

0.2
0.3

0.3

0.3

0.3

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0.1

0.
1

0.1

0.10.1

0.
1

0.1

0.2

0.
2

0.2
0.2

0.
2

0.2

0.3

0.3

0.3

0.
3

0.3 0.
4

0.40.4

0.4

0.
5

0.5

0.5

0.6

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0.1

0.
1

0.1

0.10.1

0.
1

0.1

0.2

0.
2

0.2
0.2

0.
2

0.2

0.3

0.3

0.3

0.
3

0.3 0.
4

0.40.4

0.4

0.
5

0.5

0.5

0.6

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 4 Numerical solutions for Example 5.2.2 at t = T /2 (the first row) and t = T (the second row).
First column: the exact solutions; Second column: numerical solutions of TSS; Third column: numerical
solutions of FDAC

123

Numerical Algorithms

0 1 2 3 4

104

0

0.5

1

1.5

2

2.5

3
104

5 6 7 8 9 10 11
2

3

4

5

6

7

8

9

10

11

Fig. 5 CPU times of TSS and FDAC algorithms with h = 2−4 for Example 5.2.2 (left) and those under the
log-log coordinate system (right)

coefficients of the fractional derivative by Taylor expansion and proved the optimal-
order error estimate of the approximated scheme. A fast DAC algorithm was accord-
ingly derived, which reduced the computational cost from O(MN 2) to O(MN ln3 N).
Various numerical experiments were performed to test the proposed methods.

Below we use the enhanced oil recovery [33–37] as an example application to out-
line the motivation of our study in this paper. To improve the efficiency of secondary
recovery, in which water is injected into oil reservoir to displace the resident oil out of
the reservoir, surfactant or other chemicals may be mixed with water as the injecting
fluid to “wash” the oil and displace the resident oil out. To model the displacement
process, let c(x, t) be the concentration of an invading fluid and let p(x, t) and u(x, t)
be the pressure and Darcy velocity of the total fluid mixture. Under the assumption
that the injected solvent fluid and the resident oil fluid is fully miscible and incom-
pressible, the governing system of PDEs for modeling the miscible displacement of
one incompressible fluid by another in a two-dimensional porous medium reservoir
� with a nonuniform local elevation over a time period of [0, T] can be formulated as
follows [34–37]

φ
(
∂t c + κ(x, t)C0 D

γ (x,t)
t c

) + ∇ · (uc − D(x, u)∇c) = c̄q,

∇ · u = q, u = − K
μ(c)

(∇ p − ρg∇d), (x, t) ∈ � × (0, T].
(6.1)

The last two equations are derived by combining the mass conservation for the fluid
mixture with the incompressibility condition and Darcy’s law. Here K is the intrinsic
permeability tensor of the medium, μ is the concentration-dependent viscosity of the

123

Numerical Algorithms

fluid mixture, ρ is the density of the fluid mixture, g is the magnitude of gravitational
acceleration, d(x) is the reservoir depth, q(x, t) is the external source and sink term
that accounts for the effect of injection and production wells.

The first PDE in (6.1) governs the transport of the invading fluid, φ(x) is the
porosity of the medium, D(x, u) is the diffusion-dispersion tensor that accounts for
the effect of themolecular diffusion and the velocity-dependentmechanical dispersion,
c̄(x, t) is either the specified concentration of the injected fluid at injection wells or
c̄(x, t) = c(x, t) is the resident concentration at production wells. The time-fractional
derivative in the PDE accounts for the movement of the portion of the particles of
the injected fluid that get absorbed to the micropores in the geological formation
and is experiencing subdiffusive advective transport [38, 39]. Thus, the travel time of
the adsorbed injected solvent particles may deviate from that of the particles in the
bulk fluid phase [40], leading to an anomalous subdiffusive transport process that is
characterized by a sub-linear growth of the particle’s mean square displacement with
respect to the time t [41]. This motivates the use of a time-fractional PDE to model
subdiffusive advective transport PDE [42, 43] as an alternative to the conventional
integer-order diffusive advective transport PDE [35, 37]. However, the conventional
time-fractional diffusion PDE admits solution with initial singularity [9, 44] that is not
physically relevant because it does not capture the Fickian diffusive behavior near the
initial time while it can successfully capture the subdiffusive behavior for sufficiently
large time. Instead, the two time-scale time-fractional diffusion PDE in (6.1) provides a
physically relevant model of subdiffusive transport process [14, 45, 46]. Here κ(x, t)
is the partition coefficient, namely κ/(1 + κ) portion of the total invading fluid is
absorbed to the porous medium and the rest stays in the bulk fluid mixture.

In oil recovery oil reservoirs often have insufficient permeability due to the existence
of micropores, resulting in a large amount of adsorbed oil mass and significantly
decreased flow rate to the wellbore and so significantly reduced recovery efficiency.
Hydraulic fracturing is often used to increase the pore sizes and so the permeability
of the porous media [47, 48]. The change of the structure of the porous media results
in the change of the fractal dimension of the media [7] via the Hurst index, which in
turn leads to the change of the order γ of the variable-order time-fractional diffusive
advective transport PDE in (6.1) [18, 19, 45]. Furthermore, since the hydrofracturing
is typically heterogeneous in space, the variable fractional order depends on both
time and space, i.e., γ = γ (x, t) and so the form of the transport PDE in (6.1). A
sequentially decoupled time-stepping discretization was developed and analyzed for
the integer-order analogue of problem (6.1) [35, 37, 49]. This allows us to focus on
the fast solution of the time-fractional subdiffusive advective transport PDE in (6.1).
Since the advection term in the equation is local, we drop the term in the equation and
focus on the variable-order time-fractional diffusion PDE (1.1) in our study in this
paper.

Author contribution Xiangcheng Zheng and Jinhong Jia: methodology, writing—original draft. Hong
Wang: conceptualization, review and editing.

Funding This work was partially supported by the National Natural Science Foundation of China under
Grant Nos. 11971272 and 12001337, by the Natural Science Foundation of Shandong Province under Grant
ZR2019BA026, and by the National Science Foundation under Grant No. DMS-2012291.

123

Numerical Algorithms

Availability of supporting data All data generated or analyzed during this study are included in this article.

Declarations

Ethical approval Not applicable

Competing interests The authors declare no competing interests.

References

1. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J.
Numer. Anal. 47, 204–226 (2009)

2. K. Diethelm, The analysis of fractional differential equations. An application-oriented exposition using
differential operators of Caputo type. Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin,
2010

3. Gu, X., Sun, H., Zhao, Y., Zheng, X.: An implicit difference scheme for time-fractional diffusion
equations with a time-invariant type variable order. Appl. Math. Lett. 120, 107270 (2021)

4. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: Analysis and numerical
solution. Math. Comp. 88, 2157–2186 (2019)

5. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional
nonlinear parabolic problems, Commun. Comput. Phys. 24, 86–103 (2018)

6. Li, Y., Wang, H., Zheng, X.: A viscoelastic Timoshenko beammodel: regularity and numerical approx-
imation. J. Sci. Comput. to appear

7. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in
Mathematics (2011)

8. Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model
for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)

9. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh
for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

10. Zayernouri, M., Karniadakis, G.: Discontinuous Spectral Element Methods for Time- and Space-
Fractional Advection Equations. SIAM J. Sci. Comput. 36, B684–B707 (2014)

11. Zhao, X., Hu, X., Cai, W., Karniadakis, G.E.: Adaptive finite element method for fractional differential
equations using hierarchical matrices. Comput. Meth. Appl. Mech. Engrg. 325, 56–76 (2017)

12. Garrappa, R., Giusti, A., Mainardi, F.: Variable-order fractional calculus: A change of perspective.
Commun. Nonlinear Sci. Numer. Simul. 102, 105904 (2021)

13. Feng, L., Turner, I., Perré, P., Burrage, K.: An investigation of nonlinear time-fractional anomalous dif-
fusion models for simulating transport processes in heterogeneous binary media. Commun. Nonlinear
Sci. Numer. Simul. 92, 105454 (2021)

14. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute trans-
port. Water Resources Res. 39, 1–12 (2003)

15. Zaky, M., Bockstal, K., Taha, T., Suragan, D., Hendy, A.: An L1 type difference/Galerkin spectral
scheme for variable-order time-fractional nonlinear diffusion-reaction equations with fixed delay. J.
Comput. Appl. Math. 420, 114832 (2023)

16. Zheng, X., Wang, H.: A time-stepping finite element method for a time-fractional partial differential
equation of hidden-memory space-time variable order. Elect. Trans. Numer. Anal. 55, 652–670 (2022)

17. Zheng, X., Wang, H.: A time-fractional partial differential equation with a space-time dependent
hidden-memory variable order: analysis and approximation. BIT Numer. Math. 61, 1453–1481 (2021)

18. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29,
57–98 (2002)

19. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations:
Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl.
Anal. 22, 27–59 (2019)

20. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy
for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

123

Numerical Algorithms

21. Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz
linear systems from spatial fractional diffusion equations. Numer. Linear Algerbra Appl. 24, e2093
(2017)

22. Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equa-
tions. Fract. Calc. Appl. Anal. 14, 475–490 (2011)

23. Fu, H., Ng, M., Wang, H.: A divide-and-conquer fast finite difference method for space-time fractional
partial differential equation. Comput. Math. Appl. 73, 1233–1242 (2017)

24. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its
applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

25. Pang, H., Qin, H., Sun, H.: All-at-once method for variable-order time fractional diffusion equations.
Numer. Algor. 90, 31–57 (2021)

26. Jia, J., Zheng, X., Fu, H., Dai, P., Wang, H.: A fast method for variable-order space-fractional diffusion
equations. Numer. Algor. 85, 1519–1540 (2020)

27. Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with appli-
cations to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)

28. Zhang, J., Fang, Z., Sun, H.: Exponential-sum-approximation technique for variable-order time-
fractional diffusion equations. J. Appl. Math. Comput. 68, 323–347 (2022)

29. Zhang, J., Fang, Z., Sun, H.: Robust fast method for variable-order time-fractional diffusion equations
without regularity assumptions of the true solutions. Appl. Math. Comput. 430, 127273 (2022)

30. Zhang, J., Fang, Z., Sun,H.: Fast second-order evaluation for variable-orderCaputo fractional derivative
with applications to fractional sub-diffusion equations. Numer. Math. Theory Methods Appl. 15, 200–
226 (2022)

31. Adams, R.A., Fournier, J.J.: Sobolev Spaces. Elsevier, San Diego (2003)
32. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics,

vol. 1054. Springer-Verlag, New York (1984)
33. Balhoff, M.: An Introduction to Multiphase, Multicomponent Reservoir Simulation. Developments in

Petroleum Science, vol. 75. Elsevier (2022)
34. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)
35. Douglas, J., Ewing, R.,Wheeler,M.: A time-discretization procedure for amixed finite element approx-

imation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)
36. R.E. Ewing (ed.), The Mathematics of Reservoir Simulation, in Research Frontiers in Applied Math-

ematics, 1, SIAM Philadelphia, 1984
37. Wang, H., Liang, D., Ewing, R., Lyons, S., Gin, G.: An approximation to miscible fluid flows in porous

media with point sources and sinks by a Eulerian-Lagrangian localized adjoint method andmixed finite
element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)

38. Sharma, A., Namsani, S., Singh, J.: Molecular simulation of shale gas adsorption and diffusion in
inorganic nanopores. Mol. Simul. 41, 414–422 (2015)

39. Ungerer, P., Collell, J., Yiannourakou, M.: Molecular modeling of the volumetric and thermodynamic
properties of Kerogen: influence of organic type and maturity. Energy & Fuels 29, 91–105 (2015)

40. Zhokh, A., Strizhak, P.: Non-Fickian diffusion of methanol in mesoporous media: geometrical restric-
tions or adsorption-induced? J. Chem. Phys. 146, 124704 (2017)

41. Chepizhko, O., Peruani, F.: Diffusion, subdiffusion, and trapping of active particles in geterogeneous
media. Phys. Rev. Lett. 111, 160604 (2013)

42. Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous
media: transition from anomalous to normal transport. Adv. Water Resour. 27, 155–173 (2004)

43. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics
approach. Phys. Rep. 339, 1–77 (2000)

44. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave
equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

45. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order
time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer.
Anal. 41, 1522–1545 (2021)

46. Zhang, Y., Green, C., Baeumer, B.: Linking aquifer spatial properties and non-Fickian transport in
mobile-immobile like alluvial settings. J. Hydrol. 512, 315–331 (2014)

47. Gandossi, L., Von Estorff, U.: An overview of hydraulic fracturing and other formation stimulation
technologies for shale gas production. Scientific andTechnical ResearchReports, Joint ResearchCentre

123

Numerical Algorithms

of the European Commission; Publications Office of the European Union (2015). https://doi.org/10.
2790/379646

48. King, G.: Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter,
investor, university researcher, neighbor and engineer should know about estimating frac risk and
improving frac performance in unconventional gas and oil wells. SPEHydraulic Fracturing Technology
Conference, SPE 152596, Woodlands, Texas, February 6-8 (2012)

49. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous
medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

50. Pang,H., Sun,H.:A fast algorithm for the variable-order spatial fractional advection-diffusion equation.
J. Sci. Comput. 87, 15 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.2790/379646
https://doi.org/10.2790/379646

	A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order
	Abstract
	1 Introduction
	2 Fast approximation scheme
	3 Error estimate
	3.1 Auxiliary estimates
	3.2 Error estimate

	4 Efficient implementation
	4.1 Structure of coefficient matrices
	4.2 FDAC algorithm

	5 Numerical experiments
	5.1 One-dimensional problems
	5.1.1 Comparison of model (1.1) with different kinds of variable orders
	5.1.2 Model (1.1) with singular solutions
	5.1.3 Model (1.1) with smooth solutions

	5.2 Two-dimensional problems
	5.2.1 Model (1.1) with a piecewise constant variable order
	5.2.2 Model (1.1) with a generalized space-time variable order

	6 Concluding remarks
	References

