Applied Mathematics Letters 136 (2023) 108447

= Applied
Mathematics

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com /locate/aml —

Analysis of asymptotic behavior of the Caputo—Fabrizio R

Check for

time-fractional diffusion equation

Jinhong Jia®, Hong Wang """

& School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong 250358, China
® Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

ARTICLE INFO ABSTRACT

Article history: ‘We use the continuous time random walk to analyze the asymptotic behavior of the
Received 27 July 2022 Caputo—Fabrizio time-fractional diffusion equation (CF-tFDE). By evaluating the
Received in revised form 12 September diffusion limit of the Laplace—Fourier transform of the solution to the CF-tFDE,
2022 we prove that the long-time limiting governing equation satisfies an integer-order

Accepted 12 September 2022

¢ > Fickian diffusion equation. Numerical experiments are presented to verify the
Available online 22 September 2022

theoretical results.

Keywords: © 2022 Elsevier Ltd. All rights reserved.
Caputo—Fabrizio time-fractional

diffusion equation

Continuous time random walk

Laplace—Fourier transform

1. Introduction

Fractional diffusion equation was derived to accurately describe the power-law behavior that is observed
in the diffusive transport of solutes in heterogeneous porous media, which cannot be accurately captured by
the integer-order Fickian diffusion equation that is characterized by Gaussian-type exponentially decaying
solutions [1-6]. However, time-fractional diffusion equation admits solutions with weak singularity near the
initial time ¢t =0 [7,8].

The Caputo—Fabrizio time-fractional diffusion equation [9], which uses an exponentially decaying kernel
in place of the weakly singular power-law kernel in the conventional Caputo time-fractional diffusion
equation [10], was developed to reduce the singularity of its solution near the initial time ¢t = 0 while retaining
the nonlocal memory effect of the conventional time-fractional diffusion equation [11-13].

In this paper we use the continuous time random walk to analyze the asymptotic behavior of the
initial-value problem of the Caputo—Fabrizio time-fractional diffusion equation
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where 0(z) is the Dirac delta function, K is the diffusion coefficient, &

Caputo—Fabrizio time-fractional differential operator defined by
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where M («v) is a normalization function such that M (0) = M(1) =1 [9].

2. Asymptotic analysis using continuous time random walk
2.1. A continuous time random walk framework

We begin with a CTRW framework [5,14]. We consider a random motion of a particle that is located at
the origin x = 0 initially at the time ¢t = 0. Let ¢(z,t) be the joint probability density function (pdf) for the
particle to be located in the spatial interval (x,x + dx) during the time period (t,¢+ dt), and n(zx,t) be the
pdf that the particle has just arrived in the spatial interval (z,z + dz) at time ¢ with probability n(z,t)dx.
Then the CTRW master equation can be expressed as
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where the kernel ¢(x,t) has been extended by zero to ¢t < 0.
The jump length pdf A\(z) and waiting time pdf w(t) defined by
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give the probability A(z)dx that the particle is located in the spatial interval (z, x + dx) and the probability
w(t)dt that the waiting time is in the time interval (¢,¢ + dt), respectively. Then the cumulative probability
¥(t) of no jump taking place during the time period (0, ¢) is

P(t) =1 —/0 w(s)ds.

Let p(x,t) be the pdf for the particle to be in the spatial interval (z,z + dx) at time ¢, which is defined by

p(z,t) = /0 n(z,s)Y(t — s)ds. (4)

Introduce the Laplace transform w(z), the Fourier transform X(k), and the Laplace—Fourier transform
p(k, z) by N
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Egs. (3)—(4) are transformed in phase planes as
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and, consequently, a transformed master equation in the phase plane in terms of the transformed quantity
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Assume that the jump length pdf A(z) and the waiting time pdf w(t) are independent

¢(z,t) = Az)w(t).

If the waiting time pdf w(t) has mean
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e.g., w is the pdf of a Poissonian distribution, then we have
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If the jump length pdf A\(x) has zero mean and finite variance
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To derive the long-time limiting governing equation that is satisfied by p(x,t) in the physical space, we
look at the lowest order terms in (9) as (k, z) — (0,0) to obtain the diffusion limit satisfied by p(k, z) in the

phase space as
T 1
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with K; defined by

o
Ky = —
T o
Eq. (10) can be written as
2p(k,2) — 1 = —K 1k*p(k, 2). (11)

The inverse Laplace transform of (11) yields
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Apply the inverse Fourier transform to (12) to arrive at the initial-value problem of the classical Fickian
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diffusion equation
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2.2. Analysis of the time-fractional diffusion equation (1)—(2)

We are now in the position to applying the CTRW framework to analyze problem (1)—(2). Note that
physically, the solution p to problem (1)—(2) may be viewed as the pdf that describes the subdiffusive
transport of a particle, which is located at the origin at the initial time ¢ = 0, has its movement governed by
the CF-tFDE (1), and stays at the spatial interval (z, 2z + dx) at time ¢t with a probability p(z,t)dz. In other
words, the solution p(z,t) to problem (1) has the same physical meaning as the solution p(z,t) to problem
(13) except that the random motion of the particle in the latter is governed by a Fickian diffusive process.
Hence, we use the CTRW approach in Section 2.1 to analyze problem (1)—(2).

We now take the Laplace-Fourier transform of g—j;’ in Eq. (1) to obtain
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We use Eq. (2) to evaluate the Laplace—Fourier transform of % in Eq. (2) by
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Incorporate Egs. (14) and (15) into Eq. (1) to deduce
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We follow the derivation of Eq. (10) to evaluate the diffusion limit satisfied by p(k, z) in the phase space as
(k,z) — (0,0) by looking at the lowest order terms in (16)

2p(z,2) — 1 = —Kok*B(k, 2)
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Fig. 1. Left column: The mean-square displacement (MSD) of the solutions to the CF-tFDE (1), in comparison to the MSD of the
solutions to the integer-order diffusion equation (IDE) (17); Right column: The solutions to the CF-tFDE (1) and IDE (17) with
different values of o = 0.2 (first row), 0.5(second row), and 0.8 (third row), respectively.
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with K5 given by Ko

2 = M(a)’
The same derivation as Eq. (13) finds the long-time limiting governing equation that is satisfied by p(z,t)
in the physical space

Op B 0%p
p(x,0) = o(x), —00 < T < 00.

3. Numerical investigations

In this section we carry out numerical experiments to substantiate the theoretical results in the previous
section. It is well known that the mean square displacement (MSD) of the solution p to the classical
integer-order diffusion equation (IDE) (17) obeys the following relation asymptotically

< 22 (t) >= / 2?p(z, t)dr ~ t, (18)
while the MSD of the solution p to the conventional time-fractional diffusion equation of order 0 < o < 1
obeys the relation

< 22 (t) >~ . (19)

We now evaluate the MSD of the solution to the CF-tFDE (1) by setting M(«) = 1, the diffusivity
K = 0.01, and T = 10, so that the diffusivity in (17) is K3 = Ka. We plot the MSD of the solutions
to the CF-tFDE (1) and the solutions at the final time 7" = 10 with o = 0.2,0.5 and 0.8 respectively, in
comparison with the MSD of the solution to the integer-order diffusion equation and the solution at time
T =10 in Fig. 1.

We observe that the MSD of the solutions to the CF-tFDE (17) increases linearly with respect to the
time ¢ and the solutions to (1) coincide with those to the integer-order diffusion Eq. (17). In summary, these
results verify the analysis in the previous section. Although it is formally nonlocal, the CF-fFDE (1) behaves
like the integer-order diffusion equation asymptotically.
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