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Abstract

In this article, we propose a new finite element space Λh for the expanded mixed

finite element method (EMFEM) for second-order elliptic problems to guarantee its com-

puting capability and reduce the computation cost. The new finite element space Λh

is designed in such a way that the strong requirement Vh ⊂ Λh in [9] is weakened to

{vh ∈ Vh; divvh = 0} ⊂ Λh so that it needs fewer degrees of freedom than its classical

counterpart. Furthermore, the new Λh coupled with the Raviart-Thomas space satisfies

the inf-sup condition, which is crucial to the computation of mixed methods for its close

relation to the behavior of the smallest nonzero eigenvalue of the stiff matrix, and thus

the existence, uniqueness and optimal approximate capability of the EMFEM solution are

proved for rectangular partitions in R
d, d = 2, 3 and for triangular partitions in R

2. Also,

the solvability of the EMFEM for triangular partition in R
3 can be directly proved without

the inf-sup condition. Numerical experiments are conducted to confirm these theoretical

findings.

Mathematics subject classification: 65N30.
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1. Introduction

The expanded mixed finite element method (EMFEM) [9], first proposed for linear elliptic

problems of second-order to generalize the classical mixed methods in the sense that the gra-

dient as a newly introduced variable is explicitly approximated besides the unknown and flux,

has achieved a significant success in applications to those diffusion processes within complex

geometry and low permeability zones. Now the EMFEM has been extended successively to the

quasi-linear elliptic problems [10, 21], the fourth order elliptic equations [10], parabolic prob-

lems [8, 16, 19, 24], hyperbolic problems [27], displacement in porous media [18, 28] and other

physical models [6, 17, 20]. Recently, the EMFEM was found its application to the fractional-

order diffusion equations [7, 26].
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Checking carefully the direct proof for the EMFEM’s solvability (see pp. 487 in [9]), it is not

difficult to find that the finite element space Λh for the gradient and the space Vh for the flux

must satisfy the strong requirement Vh ⊂ Λh, which makes the selection of the test function

µh = σh ∈ Vh possible to ensure the existence and uniqueness of the solution to the EMFEM.

As a consequence, the strong requirement Vh ⊂ Λh excludes such the potential spaces as those

Λh with lower space indices, especially the often used piecewise-constant spaces. This may

confine the versatility of the EMFEM in applications and increase the computing burden. For

example, if Vh andWh are the the lowest order Raviart-Thomas space for triangular partitions,

the best convergence rates for the unknown in L2(Ω)-norm, the gradient in (L2(Ω))d-norm and

the flux in H(div; Ω)-norm are O(h) whatever the space index of Λh takes 1 or 0.

The main goals of this article are to: (1) Redesign the finite element space Λh in such a

way that they contain as many full polynomials as Wh does in order to preserve the same ap-

proximate capability, and contain all the divergence-free vectors of Vh to ensure the solvability

of the EMFEM for linear elliptic problems of second-order, and hence the strong requirement

Vh ⊂ Λh is weakened and thus designed Λh possesses minimum degrees of freedom. Specifi-

cally, for rectangular partitions, the degrees of freedom of Λh on an element E are 2k + 1 and

2(k + 1)2 − 1 degrees of freedom less than those of Vh|E for d = 2 and d = 3, respectively;

for triangular partitions, Λh consists of all the piecewise polynomials of degree ≤ k, which are

k + 1 and 1
2 (k + 1)(k + 2) degrees of freedom less than that of Vh|E for d = 2 and d = 3,

respectively. And thus, the commonly used piecewise constant spaces are retrieved. (2) Prove

that thus redesigned Λh combined with the Raviart-Thomas mixed space Vh ×Wh satisfies

the coerciveness condition and the inf-sup condition. This finding is crucial to the computation

of mixed methods since the inf-sup condition is closely related to the behavior of the smallest

nonzero eigenvalue of the stiff matrix, the loss of which may leads extra artificial (nonphysical)

constraints on the boundary conditions or locking phenomenon [3]. (3) Prove the existence,

uniqueness and the same approximate capability of the EMFEM solution as the traditional

mixed methods [9,10], by an application of the coerciveness and the inf-sup condition for rect-

angular partitions of Ω ⊂ R
d, d = 2, 3 and triangular partitions of Ω ⊂ R

2. (4) Present a direct

proof as did in [9] for the solvability of the EMFEM on general partitions of Rd. (5) Conduct

numerical experiments to confirm the theoretical findings.

The rest of this article is organized as follows. In Section 2, we shall develop the weak form

and the EMFEM for linear elliptic problems, prove the coerciveness for one of bilinear form

and analyze the key points we will stress in the sequel. Section 3 is devoted to the rectangular

partitions for Ω ⊂ R
d. we shall characterize the divergence-free vectors of Vh by decomposition

techniques, redesign the space Λh with minimum degrees of freedom, then prove the validation

of the inf-sup condition for the other bilinear form over the Λh and the Raviart-Thomas space.

Section 4 is devoted to the triangular partitions. We shall use the inclusion of divergence-free

vectors of Vh to redesign the Λh and give a direct proof for the solvability of the EMFEMs

for d = 2 and d = 3. Further, we shall apply the discrete Helmholtz decomposition theory to

prove the validation of the inf-sup condition over the newly defined space Λh and the Vh×Wh

for d = 2, then derive the solvability again and the same approximate capability of the EFEMs

solution as that of the traditional mixed methods have. In Section 5, numerical experiments

are conducted to confirm our theoretical findings. The last section is for concluding remarks.

Through out this paper, we write vectors or vector spaces in boldface, use (·, ·) to denote

the L2-inner product, and use ‖ · ‖ to denote the L2-norm or the Euclid norm in vector spaces.

We also use ‖ · ‖H to denote the norm in Sobolev space H and | · |H to denote its semi-norm.
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2. Formulation of the Expanded Mixed Finite Element Method

To fix ideas, we take the following second-order elliptic problems as a model,

(a) −∇.(a∇u − bu+ c) + du = f x ∈ Ω,

(b) u = 0 x ∈ ∂Ω,
(2.1)

where Ω is a bounded domain in R
d, d = 2, 3 with its boundary ∂Ω, x = (x, y) and x = (x, y, z)

for d = 2, 3 respectively; a(x) is a uniformly positive definite and bounded tensor, b(x), c(x)

and d(x) are given vectors and scalar function, f(x) ∈ L2(Ω).

We let

W = L2(Ω), Λ = (L2(Ω))d, V = H(div; Ω)

with their norms ‖ · ‖X as X = W,Λ and V, respectively, and then rewrite (2.1) into the

equivalent weak form: Find (σ,λ, u) ∈ V ×Λ×W such that

(a) (aλ,µ)− (σ,µ) + (bu,µ) = (c,µ), µ ∈ Λ,

(b) (λ,v) − (u,∇ · v) = 0, v ∈ V,

(c) (∇ · σ, w) + (du,w) = (f, w), w ∈W.

(2.2)

Let U =W×Λ endowed with the usual product norm ‖τ‖2
U

= ‖w‖2+‖µ‖2 for τ = (w,µ) ∈ U,

and introduce the bilinear forms A(·, ·) : U×U → R and B(τ ,v) : U×V → R,

A(χ, τ ) = (aλ,µ) + (bu,µ) + (du,w), χ = (u,λ), τ = (w,µ) ∈ U,

B(τ ,v) = (µ,v)− (w,∇ · v), τ = (w,µ) ∈ U,v ∈ V.
(2.3)

Then, (2.2) can be writren as the standard form: Find (χ,σ) ∈ U×V such that

(a) A(χ, τ ) + B(τ ,σ) = F (τ ), τ ∈ U,

(b) B(χ,v) = 0, v ∈ V,
(2.4)

with F (τ ) = (f, w) + (c,µ). We also let

Z = {τ ∈ U;B(τ ,v) = 0, for all v ∈ V}. (2.5)

Since the bilinear form B(·, ·) and the space Z are just the same as defined in [9], and A(·, ·)
is slightly different due to the adding of the extra terms b(x) and d(x), the solvability can be

proved in the same manner as done in Lemma 3.1-Lemma 3.3 and Theorem 3.4 of [9], we shall

only present the conclusion under mild assumptions on the coefficients a(x),b(x) and d(x) as

required in [14] without detailed proof here.

Lemma 2.1 (Lemma 3.1, [9]). τ = (w,µ) ∈ Z if and only if

µ = −∇u and w ∈ H1
0 (Ω) := {w ∈ H1(Ω);w|∂Ω = 0}.

Theorem 2.2. Assume that there exist positive constant α and γ with 0 < γ < 1 such that the

coefficients a(x),b(x) ∈ C1(Ω) and d(x) ∈ C0(Ω) satisfy, for x ∈ Ω,

d(x) ≥ 0, XTa(x)X ≥ α‖X‖2,X ∈ Rd and |b(x)|2 ≤ 4γαd(x). (2.6)

Then, there exists a unique solution (σ,λ, u) ∈ V×Λ×W to the weak form (2.4) and thus to

(2.2).
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Proof. Selecting γ such that 0 < γ < 1 and |b|2 ≤ 4αγd, then

α|∇w|2 − |b||w||∇w| + dw2

= α(1− γ)|∇w|2 +
(√

αγ|∇w| − |b|
2
√
αγ

|w|
)2

+

(
d− |b|2

4αγ

)
|w|2

≥ α(1− γ)|∇w|2.

Thus, we apply Lemma 2.1 and the norm equivalence in H1
0 (Ω) to derive

A(τ , τ ) =(aµ,µ) + (bw,µ) + (dw,w)

=(a∇w,∇w) + (bw,∇w) + (dw,w)

≥
∫

Ω

{α|∇w|2 − |b||w||∇w| + dw2}dx

≥α(1 − γ)‖∇w‖2

≥Cα(1 − γ)
(
‖∇w‖2 + ‖w‖2

)

=Cα(1 − γ)‖τ‖2U .

which shows that the bilinear form A(·, ·) is coercive over Z.

On the other hand, the bilinear form B(·, ·) is the same as in [9] and also meets the inf-

sup condition. Thus, an application of the Brézzi’s theorem [4] ensures the existence and the

uniqueness of the solution to the weak form (2.4) or (2.2).

We shall denote by Eh a regular partition of Ω = ∪E∈Eh
E into triangles or into rectangles

(tetrahedra or cuboid for three dimensional domain). We then introduce the Raviart-Thomas

mixed finite element spaces Vh ×Wh ⊂ V ×W with the space index k ≥ 0 ( see [3, 9, 22, 23])

to approximate the two variables σ and u. Once the space Λh ⊂ Λ is defined for the third

variable λ, the EMFEM can be defined as to find (σh,λh, uh) ∈ Vh ×Λh ×Wh such that [9]

(a) (aλh,µh)− (σh,µh) + (buh,µh) = (c,µh), µh ∈ Λh,

(b) (λh,vh)− (uh,∇ · vh) = 0, vh ∈ Vh,

(c) (∇ · σh, w) + (duh, wh) = (f, wh), wh ∈Wh.

(2.7)

We let Uh = Λh ×Wh and use the bilinear forms A(·, ·) and B(·, ·) to rewrite (2.7) as to find

(σh,χh) ∈ Vh ×Uh with χh = (λh, uh) such that

(a) A(χh, τ h) + B(τ h,σh) = F (τ h), τ h = (µh, wh) ∈ U,

(b) B(χh,vh) = 0, vh ∈ Vh.
(2.8)

We then define the discrete version Zh of Z by

Zh = {τh = (wh,µh) ∈ U;B(τ h,vh) = 0, for ∀vh ∈ Vh}. (2.9)

It should be pointed out that Zh is not a subset of Z, and thus, the coerciveness of the

bilinear form A(·, ·) over Zh can not be inferred from Theorem 2.2 as a corollary. Here, we shall

apply the approximating property of the space Vh and give a new proof for the coerciveness.

This proof does not rely much on the choice of the space Λh.
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Theorem 2.3. Assume that the space-step h is sufficiently small and the coefficients a(x),b(x)

and d(x) satisfy the conditions (2.6). Then, the bilinear form A(·, ·) satisfies the following

coerciveness over the discrete space Zh in the sense, for τ h = (wh,µh) ∈ Zh,

A(τ h, τh) ≥ α1‖τh‖2U (2.10)

with α1 = min{α(1−γ)
2 ,

α(1−γ)
2C(1+h)} for some generic constant C independent of h.

Proof. We begin by proving the norm equivalence in Zh through a duality argument. Let

uw ∈ H1
0 (Ω) ∩H2(Ω) solves the equation

−∇ · (∇uw) = wh,

then, there exist a generic constant C > 0 such that ‖uw‖H2(Ω) ≤ C‖wh‖.
Consequently, for τh = (wh,µh) ∈ Zh, we apply the property of the projection Πh of mixed

finite element spaces [2, 3, 15, 22, 23] to manipulate,

‖wh‖2 =(wh, wh) = −(wh,∇ · (∇uw))
=− (wh,∇ ·Πh(∇uw))
=(µh,Πh(∇uw))
=(µh,Πh(∇uw)−∇uw) + (µh,∇uw)
≤‖µh‖‖Πh(∇uw)−∇uw‖+ ‖µh‖‖∇uw‖
≤(1 + Ch)‖µh‖‖uw‖H2(Ω)

≤C(1 + h)‖µh‖‖wh‖,

and hence,

‖wh‖ ≤ C(1 + h)‖µh‖,
which implies the equivalence between the norms ‖µh‖ and {‖wh‖2 + ‖µh‖2}

1
2 over Zh.

Analogues to the proof of Theorem 2.2, the coerciveness of the bilinear A(·, ·) over Zh is

derived in the following way,

A(τ h, τh) =(aµh,µh) + (bwh,µh) + (dwh, wh)

≥α‖µh‖2 − (|b||wh|, |µh|) + (dwh, wh)

=α(1 − γ)‖µh‖2 +
∥∥∥
√
αγ|µh| − |b|

2
√
αγ
wh

∥∥∥
2

+
∥∥∥
√
d− |b2|

4αγwh

∥∥∥
2

≥α(1 − γ)‖µh‖2

≥α(1 − γ)

2
‖µh‖2 +

α(1 − γ)

2C(1 + h)
‖wh‖2

≥min

{
α(1− γ)

2
,
α(1− γ)

2C(1 + h)

}
‖τh‖2.

Thus, the proof is completed by taking α1 = min{α(1−γ)
2 ,

α(1−γ)
2C(1+h)}. �

Remark 2.4. As mentioned in the previous section, the space Λh should be carefully chosen

so that it possesses as few degrees of freedom as possible, as well as preserves its optimal

approximation. This can be achieved by only requiring {vh ∈ Vh; divvh = 0} ⊂ Λh in place of

Vh ⊂ Λh in next two sections. In this way, those lower-order finite element spaces Λh can be

retrieved to approximate λh without losing accuracy, including the piecewise constant vector

spaces.
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3. New Λh with Minimum Degrees of Freedom for Rectangular

Partition

In this section, we shall carefully analyze the structure of those divergence free vectors

vh ∈ Vh for rectangular partition for Ω ⊂ R
d, d = 2, 3, then define some new Λhs with

minimum degrees of freedom in the sense that they possess the same approximate accuracy as

that of the spaceWh. Further, we shall show that these Λhs combined with the Raviart-Thomas

spaces satisfy the inf-sup condition, and thus prove the solvability of the EMFEM (2.7).

3.1. Two Dimensional Case

To simplify exposition, we let Eh be a regular family of rectangles of Ω ⊂ R
2 with their

edges parallel to x or y-axis, where h > 0 is a parameter representative of the diameter of the

elements. For each non-negative integer k ≥ 0, the Raviart-Thomas space of index k is given

by [3, 22, 23]

Vh =
{
vh ∈ H(div;Ω); vh|E ∈ Pk+1,k(E)× Pk,k+1(E) for all E ∈ Eh

}

and

Wh = {wh ∈ L2(Ω);wh|E ∈ Pk,k(E) for all E ∈ Eh}
with

Pk1,k2
(E) =

{
p(x, y); p(x, y) =

∑

0≤i≤k1,0≤j≤k2

aijx
iyj
}
,

the space of polynomials of degree ≤ k1 in x and ≤ k2 in y. Obviously

dimVh|E = 2(k + 1)2 + 2(k + 1) = 2(k + 1)(k + 2).

We denote by qk(x) and pk(y) the polynomials of degree ≤ k with respect to variable x and

y respectively, then any polynomials (pk,k(x, y), qk,k(x, y)) ∈ (Pk,k(E))2 can be recast as

pk,k(x, y) = pk(y) +

k−1∑

i=0

k∑

j=0

ai,jx
i+1yj, qk,k(x, y) = qk(x) +

k∑

i=0

k−1∑

j=0

bi,jx
iyj+1. (3.1)

Lemma 3.1. Let k ≥ 0 be an integer. Then, any vector vh ∈ Vh on an element E can be

decomposed as

vh|E = (pk(y), qk(x)) +

(
−

k∑

i=0

k∑

j=0

j + 1

i+ 1
bi,jx

i+1yj,

k∑

i=0

k∑

j=0

bi,jx
iyj+1

)

+

(
k∑

i=0

k∑

j=0

{ai,j +
j + 1

i+ 1
bi,j}xi+1yj, 0

)

=: µ1 + µ2 + µ3,

(3.2)

with

µ3 =

k∑

i=0

k∑

j=0

{
ai,j +

j + 1

i+ 1
bi,j

}
xi+1yj.

Further there hold,

div(µ1 + µ2) = 0, divvh|E = divµ3 = ∂µ3

∂x
. (3.3)



A New Finite Element Space for Expanded Mixed Finite Element Method 823

Proof. Recalling the definition of the space Vh, we then rewrite vh on an element E as

vh|E =

(
pk(y) +

k∑

i=0

xi+1
k∑

j=0

aijy
j , qk(x) +

k∑

i=0

xi
k∑

j=0

bijy
j+1

)

=

(
pk(y) +

k∑

i=0

k∑

j=0

ai,jx
i+1yj, qk(x) +

k∑

i=0

k∑

j=0

bi,jx
iyj+1

)

= (pk(y), qk(x)) +

(
−

k∑

i=0

k∑

j=0

j + 1

i + 1
bi,jx

i+1yj ,

k∑

i=0

k∑

j=0

bi,jx
iyj+1

)

+

(
k∑

i=0

k∑

j=0

{ai,j +
j + 1

i+ 1
bi,j}xi+1yj , 0

)

:= µ1 + µ2 + µ3.

It can be easily checked that the vector

µ1 + µ2 = (pk(y), qk(x)) +

(
−

k∑

i=0

k∑

j=0

j + 1

i+ 1
bi,jx

i+1yj ,

k∑

i=0

k∑

j=0

bi,jx
iyj+1

)

is divergence free and possesses (k+1)(k+3) degrees of freedom, i.e., the first equality of (3.3)

is true. By a direct differentiation we may easily verify that the vector µ3 satisfies the second

equality of (3.3) and possesses (k + 1)2 degrees of freedom. That completes the proof. �

From this Lemma, we may draw the following corollary to characterize the divergence free

vector vh ∈ Vh.

Corollary 3.2. vh ∈ Vh is divergence free if and only if

ai,j = − j + 1

i+ 1
bi,j , i = 0, 1, · · · , k; j = 0, 1, · · · , k. (3.4)

Further, vh can be characterized as

vh = (pk,k, qk,k) +

(
−

k∑

j=0

j + 1

k + 1
bk,jx

k+1yj ,−
k∑

i=0

i+ 1

k + 1
ai,kx

iyk+1

)
, (3.5)

by a pair of polynomials pk,k and qk,k with their coefficients ai,j for i = 0, 1, · · · , k − 1; j =

0, 1, · · · , k and bi,j for i = 0, 1, · · · , k; j = 0, 1, · · · , k − 1. In (3.5), only ak,k = −bk,k is unde-

termined by the coefficients of pk,k and qk,k.

Proof. Noting that

vh = µ1 + µ2 + µ3, divvh = 0 and div(µ1 + µ2) = 0,

we immediately obtain

divµ3 =
∂µ3

∂x
=
∂

∂x

(
k∑

i=0

k∑

j=0

{ai,j +
j + 1

i + 1
bi,j}xi+1yj

)
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=

k∑

i=0

k∑

j=0

{(i+ 1)ai,j + (j + 1)bi,jx
iyj} = 0.

This is equivalent to

(i+ 1)ai,j + (j + 1)bi,j = 0 or ai,j = − j + 1

i+ 1
bi,j , for i, j = 0, 1, · · · , k.

For the second conclusion (3.5), we check carefully the structure of the divergence free vector

µ1 + µ2 and find that

µ1 + µ2 =(pk(y), qk(x)) +

(
−

k∑

i=0

k∑

j=0

j + 1

i+ 1
bi,jx

i+1yj,

k∑

i=0

k∑

j=0

bi,jx
iyj+1

)

=(pk(y), qk(x)) +

(
−

k−1∑

i=0

k∑

j=0

j + 1

i+ 1
bi,jx

i+1yj,

k∑

i=0

k−1∑

j=0

bi,jx
iyj+1

)

+

(
−

k∑

j=0

j + 1

k + 1
bk,jx

k+1yj ,

k∑

i=0

bi,kx
iyk+1

)
. (3.6)

Applying (3.4) and noting ak,k = −bk,k, we obtain

µ1 + µ2 =(pk(y), qk(x)) +

(
k−1∑

i=0

k∑

j=0

aijx
i+1yj ,

k∑

i=0

k−1∑

j=0

bi,jx
iyj+1

)

+

(
−

k∑

j=0

j + 1

k + 1
bk,jx

k+1yj,−
k∑

i=0

i+ 1

k + 1
ai,kx

iyk+1

)

=(pk,k, qk,k)−
(

k∑

j=0

j + 1

k + 1
bk,jx

k+1yj,

k∑

i=0

i+ 1

k + 1
ai,kx

iyk+1

)
.

This implies that the divergence-free vector µ1+µ2 can be expressed as the sum of (pk,k, qk,k) ∈
(Pk,k(E))2 and the vector

−
(

k∑

j=0

j + 1

k + 1
bk,jx

k+1yj ,

k∑

i=0

i+ 1

k + 1
ai,kx

iyk+1

)

whose 2k coefficients bk,j , j = 0, 1, · · · , k − 1 and ai,k, i = 0, 1, · · · , k − 1 are determined by

those coefficients of the first summand (pk,k, qk,k) and only one coefficient ak,k = −bk,k is

undetermined by (pk,k, qk,k).

Consequently, for all (pk,k, qk,k) ∈ (Pk,k(E)2 given by

pk,k(x, y) = pk(y) +
k−1∑

i=0

k∑

j=0

ai,jx
i+1yj , qk,k(x, y) = qk(x) +

k∑

i=0

k−1∑

j=0

bi,jx
iyj+1,

we may define the finite element space

Λh =

{
λh ∈ (L2(Ω))n;λh|E = (pk,k, qk,k)
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−
(

k−1∑

j=0

j + 1

k + 1
bk,jx

k+1yj ,

k−1∑

i=0

i+ 1

k + 1
ai,kx

iyk+1

)
+ bk,kx

kyk(−x, y)
}
. (3.7)

It is easily verified that

dimΛh|E = 2(k + 1)2 + 1.

Remark 3.3. The dimension of Λh|E is 2(k + 1)2 + 1, which is 2k + 1 degrees of freedom

less than that of Vh|E , as well as 2k + 5 degrees of freedom less than that of (Pk+1,k+1(E))2.

Obviously, (Pk,k(E))2 and the subspace {vh ∈ Vh; divvh = 0} of Vh|E are contained in Λh|E .

Example 3.4. Let k = 0. Then,

Λh =
{
µh ∈ (L2(Ω))2;µh|E = (a0, b0) + b0,0(−x, y), E ∈ Eh

}

with dimΛh|E = 3, which is of 2k + 1 = 1 freedom of degree less than that of Vh|E .
Let k = 1. We write

p1,1(x, y) = p1(y) + x(a0,0 + a0,1y), q1,1(x, y) = q1(x) + y(b0,0 + b1,0x).

Then,

Λh =
{
µh ∈ (L2(Ω))2;µh|E = (p1,1, q1,1)−

1

2
(b1,0x

2, a0,1y
2) + b1,1xy(−x, y), E ∈ Eh

}

in which, only b1,1 is undetermined by the coefficients of p1,1 and q1,1. Evidently, dimΛh|E = 9,

which has 2k + 1 = 3 degrees of freedom less than that of Vh|E .

As expected, thus redesigned Λh combinning with Vh ×Wh satisfies the inf-sup condition,

and hence ensures the solvabilty of the EMFEM.

Theorem 3.5. Assume that k ≥ 0 is an integer and the finite element space Λh is defined by

(3.7). Then, the mixed finite element space Vh ×Λh ×Wh satisfies the inf-sup condition, that

is, for sufficiently small h > 0,

inf
vh∈Vh

sup
τ h∈Uh

B(τ h, vh)

‖τh‖U‖vh‖H(div;Ω)
≥ 1

2
√
2
. (3.8)

Proof. For any vh ∈ Vh, we have the decomposition (3.2) on an element E ∈ Eh as Lemma

3.1 stated,

vh|E = µ1 + µ2 + µ3

with µ3 = (µ3, 0). For each fixed y, we let P x
h : L2(E) → Pk(E) denote the orthogonal projection

operator in x-direction. Then, P x
h µ3 can be written as

P x
hµ3 =

k∑

i,j=0

ci,jx
iyj ∈ Pk,k(E), (3.9)

and further, the standard scaling argument and (3.3) ensure that the following projection

estimate holds,

‖µ3 − P x
h µ3‖ ≤ Ch

∥∥∥∥
∂µ3

∂x

∥∥∥∥ = Ch‖divvh‖. (3.10)
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Noticing that µ1 + µ2 + (P x
h µ3, 0) belongs to Λh, hence we can take

µh|E = µ1 + µ2 + (P x
h µ3, 0)

and rewrite the decomposition of vh|E as

vh|E = µ1 + µ2 + µ3 = µh|E + (µ3 − P x
h µ3, 0), (3.11)

and thus,

‖vh‖2E = (µh,µh)E + 2(µh, (µ3 − P x
h µ3, 0))E + ‖(µ3 − P x

h µ3, 0)‖2E.

Using the Hölder inequality and the projection estimate (3.10), we obtain, for sufficiently

small h > 0,

1

2
‖µh‖2E − Ch2‖divvh‖2E ≤ ‖vh‖2E ≤ 2‖µh‖2E + Ch2‖divvh‖2E ,

or equivalently,

1

2
‖µh‖2E + (1 − Ch2)‖divvh‖2E

≤‖vh‖2E + ‖divvh‖2E ≤ 1

2
‖µh‖2E + (1 + Ch2)‖divvh‖2E. (3.12)

Analogously, we derive the estimate for (µh,vh)E ,

(µh,vh)E = (µh,µh)E + (µh, (µ3 − P x
hµ3, 0))E ≥ 1

2
‖µh‖2E − Ch2‖divvh‖2E. (3.13)

Combining these estimates, then taking wh = −divvh and selecting h > 0 small enough such

that 1− Ch2 ≥ 1
2 , we obtain

(µh, vh)|E − (wh, divvh)|E = (µh,vh)E + ‖divvh‖2E

≥1

2
‖µh‖2E + (1− Ch2)‖divvh‖2E

≥1

2
{‖vh‖2E + ‖divvh‖2E} =

1

2
‖vh‖2H(div;E), (3.14)

and

‖µh‖2E + ‖wh‖2E = ‖µh‖2E + ‖divvh‖2E ≤ 2{‖vh‖2E + ‖divvh‖2E}. (3.15)

Consequently, (3.14) and (3.15) imply that, for all τ h = (µ̃h, w̃h) ∈ Uh = Λh ×Wh,

inf
vh∈Vh

sup
τ h∈Uh

B(τ h, vh)

‖τh‖U‖vh‖H(div;Ω)

= inf
vh∈Vh

sup
(µ̃

h
,w̃h)∈Λh×Wh

(µ̃h,vh)− (w̃h,∇ · vh)√
‖µ̃h‖2 + ‖w̃h‖2‖vh‖H(div;Ω)

≥ inf
vh∈Vh

(µh,vh)− (wh,∇ · vh)√
‖µh‖2 + ‖wh‖2‖vh‖H(div;Ω)

≥ inf
vh∈Vh

1
2‖vh‖2H(div;Ω)√
2‖vh‖2H(div;Ω)

=
1

2
√
2
,

which completes the proof. �
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3.2. Three dimensional Case

Analogues to the previous subsection, we let Eh be a rectangular partition for Ω ⊂ R
3 with

its space parameter h > 0 and define the Raviart-Thomas space on a cuboid E [3, 23],

Vh =
{
vh ∈ H(div; Ω);vh|E ∈ Pk+1,k,k(E) × Pk,k+1,k(E)× Pk,k,k+1(E), E ∈ Eh

}
,

Wh =
{
wh ∈ L2(Ω);wh|E ∈ Pk,k,k(E), E ∈ Eh

}

with Pk1,k2,k3
(E) being the space of polynomials of degree ≤ k1 in x, ≤ k2 in y and ≤ k3 in z.

Obviously

dimVh|E = 3(k + 1)3 + 3(k + 1)2.

We denote by pk,k(y, z), qk,k(z, x), and rk,k(x, y) the polynomials of degree ≤ k in each di-

rection with respect to two variables (x, y), (y, z) and (z, x) respectively, then recast pk,k,k, qk,k,k
and rk,k,k as

pk,k,k(x, y, z) = pk,k(y, z) +
k−1∑

i=0

k∑

j,l=0

ai,j,lx
i+1yjzl, (3.16a)

qk,k,k(x, y, z) = qk,k(z, x) +
k∑

i,l=0

k−1∑

j=0

bi,j,lx
iyj+1zl, (3.16b)

xrk,k,k(x, y, z) = rk,k(x, y) +

k∑

i,j=0

k−1∑

l=0

ci,j,lx
iyjzl+1. (3.16c)

Lemma 3.6. Let k ≥ 0 be an integer. Then, any vector vh ∈ Vh on an element E can be

decomposed as

vh|E =(pk,k(y, z), qk,k(z, x), rk,k(x, y))

+

(
−

k∑

i,j,l=0

(
j + 1

i + 1
bijl +

l + 1

i+ 1
cijl)x

i+1yjzl,

k∑

i,j,l=0

bi,j,lx
iyj+1zl,

k∑

i,j,l=0

ci,j,lx
iyjzl+1

)

+

(
k∑

i,j,l=0

(ai,j,l +
j + 1

i+ 1
bi,j,l +

l+ 1

i+ 1
ci,j,l)x

i+1yjzl, 0, 0

)

=:µ1 + µ2 + µ3 (3.17)

with

µ3 = (µ3, 0, 0) and µ3 =
k∑

i,j,l=0

(
ai,j,l +

j + 1

i+ 1
bi,j,l +

l + 1

i+ 1
ci,j,l

)
xi+1yjzl.

Further there hold,

div(µ1 + µ2) = 0,
∂µ3

∂x
= divµ3 = divvh|E . (3.18)

Proof. Recalling the definition of the space Vh, we then recast vh on an element E as

(pk,k(y, z), qk,k(z, x), rk,k(x, y))
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+

(
k∑

i=0

k∑

j,l=0

ai,j,lx
i+1yjzl,

k∑

i,j,l=0

bi,j,lx
iyj+1zl,

k∑

i,j,l=0

ci,j,lx
iyjzl+1

)

=(pk,k(y, z), qk,k(z, x), rk,k(x, y))

+

(
k∑

i,j,l=0

ai,j,lx
i+1yjzl,

k∑

i,j,l=0

bi,j,lx
iyj+1zl,

k∑

i,j,l=0

ci,j,lx
iyjzl+1

)

=(pk,k(y, z), qk,k(z, x), rk,k(x, y))

+

(
−

k∑

i,j,l=0

(
j + 1

i+ 1
bi,j,l +

l + 1

i+ 1
ci,j,l)x

i+1yjzl,

k∑

i,j,l=0

bi,j,lx
iyj+1zl,

k∑

i,j,l=0

ci,j,lx
iyjzl+1

)

+

(
k∑

i,j,l=0

(ai,j,l +
j + 1

i+ 1
bi,j,l +

l + 1

i+ 1
ci,j,l)x

i+1yjzl, 0, 0

)

=µ1 + µ2 + µ3.

It can be easily checked that the vector

µ1 + µ2 = (pk,k(y, z), qk,k(z, x), rk,k(x, y))

+

(
−

k∑

i,j,l=0

(
j + 1

i + 1
bi,j,l +

l + 1

i+ 1
ci,j,l)x

i+1yjzl,

k∑

i,j,l=0

bi,j,lx
iyj+1zl,

k∑

i,j,l=0

ci,j,lx
iyjzl+1

)

is divergence free and possesses 2(k + 1)3 + 3(k+ 1)2 degrees of freedom, and thus satisfies the

first equality of (3.18). The vector

µ3 =

(
k∑

i,j,l=0

(ai,j,l +
j + 1

i+ 1
bi,j,l +

l + 1

i+ 1
ci,j,l)x

i+1yjzl, 0, 0

)
= (µ3, 0)

possesses (k+1)3 degrees of freedom and satisfies the second equality of (3.18). That completes

the proof. �

From Lemma 3.6, we may draw the following corollary to characterize the divergence free

vector vh ∈ Vh.

Corollary 3.7. vh ∈ Vh is divergence free if and only if

ai,j,l +
j + 1

i+ 1
bi,j,l +

l + 1

i+ 1
ci,j,l = 0, i, j, k = 0, 1, · · · , k. (3.19)

Further, vh can be characterized as

vh|E = (pk,k,k, qk,k,k, rk,k,k) +

(
−

k∑

j,l=0

(
j + 1

k + 1
bk,j,l +

l + 1

k + 1
ck,j,l)x

k+1yjzl,

−
k∑

i,l=0

j + 1

k + 1
(ai,k,l +

l + 1

i+ 1
ci,k,l)x

iyk+1zl,

k∑

i,j=0

ci,j,kx
iyjzk+1

)
(3.20)

by a triple (pk,k,k, qk,k,k, rk,k,k) with their coefficients ai,j,l, i = 0, 1, · · · , k − 1, l, j = 0, 1, · · · , k;
bi,j,l, i, l = 0, 1, · · · , k, j = 0, 1, · · · , k − 1 and ci,j,l, i, j = 0, 1, · · · , k, l = 0, 1, · · · , k − 1.
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In (3.20), only those (k+1)2 coefficients ci,j,k for i, j = 0, 1, · · · , k and one of the coefficient

ak,k,k or bk,k,k satisfying ak,k,k + bk,k,k + ck,k,k = 0 are undetermined by the coefficients of

(pk,k,k, qk,k,k, rk,k,k).

Proof. Noting that

vh = µ1 + µ2 + µ3, div(µ1 + µ2) = 0 and divvh = 0,

we immediately obtain

divµ3 =
∂µ3

∂x
=

∂

∂x

k∑

i,j,l=0

(
ai,j,l +

j + 1

i+ 1
bi,j,l +

l + 1

i+ 1
ci,j,l

)
xi+1yjzl = 0.

This is equivalent to

ai,j,l +
j + 1

i+ 1
bi,j,l +

l + 1

i+ 1
ci,j,l = 0, i, j, l = 0, 1, · · · , k,

from which the conclusion (3.19) follows directly.

For the second conclusion (3.20), we check carefully the structure of the divergence free

vector µ1 + µ2 and find that

µ1 + µ2

=(pk,k(y, z), qk,k(z, x), rk,k(x, y))

+ (−
k∑

i,j,l=0

(
j + 1

i + 1
bi,j,l +

l + 1

i+ 1
ci,j,l)x

i+1yjzl,

k∑

i,j,l=0

bi,j,lx
iyj+1zl,

k∑

i,j,l=0

ci,j,lx
iyjzl+1)

=(pk,k(y, z), qk,k(z, x), rk,k(x, y))

+ (−
k−1∑

i=0

k∑

j,l=0

(
j + 1

i+ 1
bi,j,l +

l+ 1

i+ 1
ci,j,l)x

i+1yjzl,

k−1∑

j=0

k∑

i,l=0

bi,j,lx
iyj+1zl,

k−1∑

l=0

k∑

i,j=0

ci,j,lx
iyjzl+1)

+ (−
k∑

j,l=0

(
j + 1

k + 1
bk,j,l +

l + 1

k + 1
ck,j,l)x

k+1yjzl,

k∑

i,l=0

bi,k,lx
iyk+1zl,

k∑

i,j=0

ci,j,kx
iyjzk+1).

(3.21)

We then apply (3.19) to obtain

µ1 + µ2 = (pk,k(y, z), qk,k(z, x), rk,k(x, y))

+

(
−

k−1∑

i=0

k∑

j,l=0

(
j + 1

i + 1
bi,j,l +

l + 1

i+ 1
ci,j,l)x

i+1yjzl,

k−1∑

j=0

k∑

i,l=0

bi,j,lx
iyj+1zl,

k−1∑

l=0

k∑

i,j=0

ci,j,lx
iyjzl+1

)

+

(
−

k∑

j,l=0

(
j + 1

k + 1
bk,j,l +

l + 1

k + 1
ck,j,l)x

k+1yjzl,

−
k∑

i,l=0

j + 1

k + 1
(ai,k,l +

l + 1

i+ 1
)ci,k,lx

iyk+1zl,

k∑

i,j=0

ci,j,kx
iyjzk+1

)
.

This implies that the divergence-free vector µ1 + µ2 can be expressed as the sum of a vector
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(pk,k,k, qk,k,k, rk,k,k) ∈ (Pk,k,k(E))3 with the known coefficients

ai,j,l for i = 0, 1, · · · , k − 1 and j, l = 0, · · · , k;

bi,j,l for j = 0, 1, · · · , k − 1 and i, l = 0, · · · , k;

ci,j,l for l = 0, 1, · · · , k − 1 and i, j = 0, · · · , k

and the vector

(
−

k∑

j,l=0

(
j + 1

k + 1
bk,j,l +

l + 1

k + 1
ck,j,l)x

k+1yjzl,

−
k∑

i,l=0

j + 1

k + 1
(ai,k,l +

l+ 1

i+ 1
ci,k,l)x

iyk+1zl,

k∑

i,j=0

ci,j,kx
iyjzk+1

)
.

If we leave the (k+1)2 coefficients ci,j,k for i, j = 0, 1 · · · , k as the degrees of freedom, then the

2(k + 1)2 coefficients of the second summand

− (
j + 1

k + 1
bk,j,l+

l + 1

k + 1
ck,j,l), j, l = 0, 1 · · · , k and

− j + 1

k + 1
(ai,k,l +

l + 1

i+ 1
ci,k,l), i, l = 0, 1, · · · , k

are determined by those coefficients of the first summand (pk,k,k, qk,k,k, rk,k,k), except ak,k,k
and bk,k,k which satisfy the constraint ak,k,k = −(bk,k,k + ck,k,k). Thus, the degrees of freedom

of the second summand is (k + 1)2 + 1. This completes the proof. �

Consequently, for all (pk,k,k, qk,k,k, rk,k,k) ∈ (Pk,k,k(E))3 given by (3.16) we may define the

finite element space

Λh =

{
λh ∈ (L2(Ω))n;λh|E = (pk,k,k, qk,k,k, rk,k,k) +

(
−

k∑

j,l=0

(
j+1

k+1
bk,j,l +

l + 1

k + 1
ck,j,l)x

k+1yjzl,

−
k∑

i,l=0

j + 1

k + 1
(ai,k,l +

l + 1

i+ 1
ci,k,l)x

iyk+1zl,

k∑

i,j=0

ci,j,kx
iyjzk+1

)}
. (3.22)

As stated in Corollary 3.7, only the (k+1)2 coefficients ci,j,k, i, j = 0, 1, · · · , k and one of ak,k,k
or bk,k,k satisfying ak,k,k+bk,k,k+ck,k,k = 0 are undetermined by the triple (pk,k,k, qk,k,k, rk,k,k).

Thus,

dimΛh|E = 3(k + 1)3 + (k + 1)2 + 1,

which is 2(k + 1)2 − 1 degrees of freedom less than that of Vh|E .

Example 3.8. Let k = 0. Then,

Λh = {µh ∈ (L2(Ω))3;µh|E = (a0, b0, c0) + (−(b1 + c1)x, b1y, c1z), E ∈ Eh}

with b1 and c1 undetermined. Evidently, dimΛh|E = 5, which is of 2(k + 1)2 − 1 = 1 freedom

of degree less than that of Vh|E .
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Let k = 1. We may write

p1,1,1(x, y, z) = p1,1(y, z) + x(a0,0,0 + a0,1,0y + a0,0,1z + a0,1,1yz),

q1,1,1(x, y, z) = q1,1(z, x) + y(b0,0,0 + b1,0,0x+ b0,0,1z + b1,0,1xz),

r1,1,1(x, y, z) = r1,1(x, y) + z(c0,0,0 + c1,0,0x+ c0,1,0y + c1,1,0xy),

Then,

Λh =
{
µh ∈ (L2(Ω))2;µh|E = (p1,1,1, q1,1,1, r1,1,1) + (µ1, µ2, µ3), E ∈ Eh

}
,

where

µ1 = −1

2
(b1,0,0 + c1,0,0)x

2 − (
1

2
b1,0,1 + c1,0,1)x

2z − (b1,1,0 +
1

2
c1,1,0)x

2y − (b1,1,1 + c1,1,1)x
2yz,

µ2 = −1

2
(a0,1,0 + c0,1,0)y

2−1

2
(a0,1,1+2c0,1,1)y

2z−1

2
(a1,1,0+

1

2
c1,1,0)xy

2−1

2
(a1,1,1 + c1,1,1)xy

2z,

µ3 == c0,0,1z
2 + c0,1,1yz

2 + c1,0,1xz
2 + c1,1,1xyz

2.

From this expression, we clearly see that the 5 independent degrees of freedom are c0,0,1, c0,1,1,

c1,0,1, c1,1,1 and one of b1,1,1 or a1,1,1 satisfying a1,1,1+ b1,1,1+ c1,1,1 = 0. Therefore, dimΛh|E =

3(k + 1)3 + (k + 1)2 + 1 = 29, which has 2(k + 1)2 − 1 = 7 degrees of freedom less that that of

Vh|E .

As expected, one can prove, analogues to the proof of Lemma 3.5 for two dimensional case,

that thus selected Λh combinning with Vh × Wh satisfies the inf-sup condition, and hence

ensures the solvabilty of the EMFEM.

Theorem 3.9. Assume that k ≥ 0 is an integer and the finite element space Λh is defined by

(3.7). Then, the mixed finite element space Vh ×Λh ×Wh satisfies the inf-sup condition, that

is, for sufficiently small h > 0,

inf
vh∈Vh

sup
τ h∈Uh

B(τ h, vh)

‖τh‖U‖vh‖H(div;Ω)
≥ 1

2
√
2
. (3.23)

Proof. The proof is completely analogues to the proof of Theorem 3.5, and thus omitted.�

3.3. Main Conclusions

In this subsection, we shall present the solvability of the EMFEM (2.7) or (2.8), and show

that thus selected Λh possesses the same approximate capability as the traditional EMFEM

does. For this purpose, we combine Theorem 2.3 for the coerciveness of A(·, ·) over Zh, Theorem

3.5 and Theorem 3.9 for the inf-sup conditions of B(·, ·) over Vh ×Uh, then apply the Brézzi

theorem (see Theorem 1 in [4], Theorem 2 in [23], Theorem 1.2 and Proposition 2.4 in [3]), to

obtain the following theorem.

Theorem 3.10. Assume that the assumptions (2.6) on the coefficients a(x),b(x) and c(x) are

valid, (σ,χ) with χ = (λ, u) is the solution to (2.2) or (2.4). Then, there exists a unique

solution (σh,χh) ∈ Vh × Uh with χh = (λh, uh) to the EMFEM (2.7) or (2.8). Further,

there exists a positive constant C1 independent of the space parameter h such that the following

approximate property holds, for sufficiently small h > 0,

‖σ − σh‖H(div;Ω) + ‖χ− χh‖ ≤ C1

{
inf

vh∈Vh

‖σ − vh‖H(div;Ω) + inf
µ

h
∈Uh

‖χ− µh‖
}
. (3.24)
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We conclude this section by two remarks, of which one concerns an explanation for minimum

degrees of freedom of Λh and the other is related to an alternative proof for the solvability of

the EMFEMs.

Remark 3.11. Λh|E contains (Pk,k)
2 or (Pk,k,k)

3 as its subset so that it can keep the same

approximate capability as Wh|E does. On the other hand, Λh|E also contains the divergence-

free vector space

{vh ∈ Vh; divvh = 0}

so that it can ensure the validity of the inf-sup condition, and thus the solvability of the

EMFEM (2.7) or (2.8). In this sense, we say that thus selected Λh|E possesses minimum

degrees of freedom.

Remark 3.12. If we do not pursue sedulously the presence of inf-sup condition, we may give

an alternative proof for the solvability of the EMFEM (2.7) as did in [9], which looks much

more compact and direct, see the detailed proof of Theorem 4.2 in the next section.

4. New Λh with Minimum Degrees of Freedom for Triangular

Partition

In this section, we shall choose Λh as the space of the piecewise polynomials of degree ≤ k

for triangular partition of Ω ⊂ R
d, d = 2, 3, then prove the solvability of the EMFEMs (2.7)

or (2.8) without using the Brézzi inf-sup theorem. Further, we prove, in two dimensional case,

thus selected Λh combined with the standard Raviart-Thomas space Vh×Wh still satisfies the

inf-sup condition.

We let Eh be a regular family of triangulations of Ω ⊂ R
d with h > 0 representing the

diameter of the elements. For each non-negative integer k, the Raviart-Thomas space of index

k is given by [3, 22, 23]

Vh = {vh ∈ H(div; Ω);vh|E ∈ (Pk(E))d + xPk(E) for all E ∈ Eh},

Wh = {wh ∈ L2(Ω);wh|E ∈ Pk(E) for all E ∈ Eh}.

Obviously, we have

dimVh|E =






(k + 1)(k + 3), d = 2,

1

2
(k + 1)(k + 2)(k + 4), d = 3.

4.1. New Λh and a Direct Proof for Solvability

Recalling the construction of Vh ×Wh in [23] for d = 2, [22] for d = 3 and Corollary 3.1

of [3], we know that

{vh|E ∈ Vh|E ; divvh|E = 0} ⊂ ((Pk(E))d.

Therefore we may redesign the third finite element space Λh as

Λh = {µh ∈ L2(Ω)d;µh|E ∈ ((Pk(E))d, for E ∈ Eh}. (4.1)
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Certainly, thus redesigned Λh contains all divergence free vectors of Vh as its subset, and

dimΛh|E =





(k + 1)(k + 2), d = 2,

1

2
(k + 1)(k + 2)(k + 3), d = 3,

which has k + 1 and 1
2 (k + 1)(k + 2) degrees of freedom less than that of Vh|E for d = 2 and

d = 3, respectively.

Example 4.1. Let k = 0. Then, for d = 2,

Λh|E = {(a0, b0); a0, b0 ∈ R}

and for d = 3,

Λh|E = {(a0, b0, c0); a0, b0, c0 ∈ R},
which have 1 degree of freedom less than those of Vh|E , respectively. Thus, the piecewise

constant spaces are retrieved in applications.

As mentioned in Remark 3.12, we next present the solvability of the EMFEM (2.7) without

applying the inf-sup theorem.

Theorem 4.2. Assume that k ≥ 0 and Wh×Λh×Vh are defined as above. Then, there exists

a unique solution (uh,λh,σh) ∈ Wh ×Λh ×Vh to the EMFEMs (2.7).

Proof. It suffices to prove that there exists only zero solution to (2.7) if c = 0, f = 0. For

this purpose, we take µh = λh in (2.7a), vh = σh in (2.7b) and w = uh in (2.7c), then add to

give,

(aλh,λh) + (duh, uh) + (buh,σh) = 0.

Then, applying Lemma 2.3 and the assumptions on the coefficients a,b and d we derive

0 = (aλh,λh) + (duh, uh) + (buh,σh) ≥ C0{‖uh‖2 + ‖λh‖2},

which implies

uh = 0, λh = 0.

Kicking uh = 0 back to (2.7c), we obtain that σh satisfies, by Corollary 3.1 in [3] and (2.7a),

∇ · σh = 0, σh|E ∈ (Pk(E))d and (σh,µh) = 0, ∀µh ∈ Λh.

Therefore, recalling the definition of Λh, we then can take µh = σh to force σh = 0. That

completes the proof. �

Remark 4.3. We have obtained the solvability of the EMFEMs without the inf-sup condition

and can conduct numerical analysis as in [9] to derive an optimal convergence result. However,

as pointed out in [3]: the inf-sup condition is closely related to the behavior of the smallest

nonzero eigenvalue. This eigenvalue is nothing but the positive constant in the inf-sup condition

and must remain bounded away from zero when the dimensions of the spaces increase. The loss

of the inf-sup condition may leads extra artificial (nonphysical) constraints on the boundary

conditions or locking phenomenon.

Therefore, we should further discuss the validity of the inf-sup condition on the newly defined

space Vh ×Uh or Vh ×Λh ×Wh for triangular partitions.
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4.2. The Inf-Sup Condition for Two Dimensional Space

We begin this subsection by defining the space over the domain Ω ⊂ R
2,

Sh = {sh ∈ H1(Ω); sh|E ∈ Pk+1(E) for all E ∈ Eh},

and the discrete gradient operator gradh :Wh → Vh by the equation [5, 13]

(gradhwh,vh) = −(wh, divvh), ∀vh ∈ Vh. (4.2)

We immediately have the discrete Helmholtz decomposition [5, 13]

Vh = gradhWh ⊕ curlSh, (4.3)

where the decomposition is orthogonal with respect to both the L2(Ω)×L2(Ω) and theH(div; Ω)

inner products.

To prove that the inf-sup condition is valid over the space Vh×Uh, we first give an estimate

for wh bounded by gradhwh.

Lemma 4.4. Let gradhwh be defined via the relation

(gradhwh,vh) = −(wh, divvh), ∀vh ∈ Vh.

Then, there exists a positive constant C0 independent of h such that

‖wh‖ ≤ C0‖gradhwh‖.

Proof. Letting (ξh, ηh) ∈ Vh ×Wh be the mixed finite element solution to the equation

∆η = wh in Ω,

η = 0 on ∂Ω,
(4.4)

then, we have
(ξh,vh) = −(ηh, divvh), ∀vh ∈ Vh,

(divξh, wh) = (wh, wh), ∀wh ∈Wh,
(4.5)

An equivalent formulation is [13]

ξh = gradhηh, divξh = wh. (4.6)

Further, using a standard stability analysis, we have

‖ξh‖H(div;Ω) + ‖ηh‖ ≤ C0‖wh‖. (4.7)

Take vh = ξh in the definition of gradhwh and use (4.6) and (4.7) to derive

(wh, wh) = −(gradhwh, ξh)

≤‖gradhwh‖‖ξh‖ ≤ C0‖gradhwh‖‖wh‖ (4.8)

which implies the desired estimates. �

With the help of this lemma, we proceed with the validity of the inf-sup condition on

Vh ×Uh.
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Theorem 4.5. Let Uh = Λh ×Wh. Then, the mixed finite element space Vh × Uh satisfies

the inf-sup condition

inf
vh∈Vh

sup
τ h∈Uh

B(τ h,vh)

‖τh‖U‖vh‖V
≥ α2, (4.9)

where α2 = 1√
max{2,C0}

for the positive constant C0 given in Lemma 4.4.

Proof. For any vh ∈ Vh with its Helmholtz decomposition vh = gradhwh + curlsh, then by

divcurlsh = 0 and the orthogonal decomposition of vh, we have

divvh = divgradhwh,

(curlsh,vh) = (curlsh, gradhwh + curlsh) = (curlsh, curlsh)

(gradhwh, gradhwh) = −(wh, divgradhwh).

We take µh = curlsh and wh = wh − divvh, then manipulate in the following way

(µh,vh)− (wh, divvh)

=(µh,µh)− (wh, divvh) (by the orthogonality)

=(µh,µh)+(gradhwh, gradhwh)−(gradhwh, gradhwh)−(wh, divvh)

=(µh,µh) + (gradhwh, gradhwh) + (wh, divvh)− (wh, divvh) (by the definition (4.2))

=(µh,µh) + (gradhwh, gradhwh)− (wh − wh, divvh)

=(µh,µh) + (gradhwh, gradhwh) + (divvh, divvh)

=(vh,vh) + (divvh, divvh) (by the orthogonality)

=‖vh‖2H(div;Ω), (the norm of H(div; Ω))

and

(µh,µh) + (wh, wh)

=(µh,µh) + (wh − divvh, wh − divvh)

≤2{(µh,µh) + (wh, wh) + (divvh, divvh)}

≤max{2, C0}{(µh,µh) + (gradhwh, gradhwh) + (divvh, divvh)} (by Lemma 4.4)

=max{2, C0}‖vh‖2H(div;Ω) (by the orthogonality),

where Lemma 4.4 is used to bound wh. Thus,

inf
vh∈Vh

sup
τ h∈Uh

B(τ h,vh)

‖τh‖U‖vh‖H(div;Ω)

= inf
vh∈Vh

sup
τ h∈Uh

(µh,vh)− (wh,∇ · vh)√
‖µh‖2 + ‖wh‖2‖vh‖H(div;Ω)

≥ inf
vh∈Vh

‖vh‖2H(div;Ω)√
max{2, C0}‖vh‖2H(div;Ω)
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=
1√

max{2, C0}
, (4.10)

which shows the inf-sup condition is valid over Vh ×Uh by taking α2 = 1√
max{2,C0}

. �

Remark 4.6. If the decomposition (4.3) of Vh for 3-dimension case still holds, we would

analogously prove the inf-sup condition as stated in Theorem 4.5.

4.3. Main Conclusions

In this subsection, we shall present the solvability of the EMFEM (2.7) or (2.8) for the trian-

gular partitions, and show that thus redesigned Λh possesses the same approximate capability

as the traditional EMFEMs do, by combining Theorem 2.3 and Theorem 4.5 with the Brézzi

theorem [3, 4, 23].

Theorem 4.7. Let Ω ⊂ R
2. Under the same assumptions as in Theorem 3.10, the EMFEMs

(2.7) permits a unique solution (σh,χh) ∈ Vh×Uh with χh = (λh, uh) satisfying the following

approximate property,

‖σ − σh‖H(div;Ω) + ‖χ− χh‖ ≤ C1{ inf
vh∈Vh

‖σ − vh‖H(div;Ω) + inf
µ

h
∈Uh

‖χ− µh‖}. (4.11)

Evidently, thus selected Λh can keep the same approximate capability as Wh does and

possesses minimum degrees of freedom in the sense of Remark 3.11.

5. Numerical Experiments

In this section, we shall carry out three numerical examples to test the validation of the

EMFEM, of which the first two are for elliptic equations of second-order in 2-D with triangular

and rectangular partitions respectively and the last one is for fractional differential equation in

1-D. All the numerical experiments are implemented by Matlab R2014a on a Lenovo-PC with

Intel(R) Core(TM) i7-4720HQ of 2.60GHz CPU and 8 GB RAM.

Example 5.1 (Triangular partitions). In this example we set Ω = [0, 1] × [0, 1], a(x) =

1 + x21 + x22 and c(x) = d(x) = 0. The right hand term f can be calculated by inserting above

information into the governing equation.

In this example we consider two cases, i.e., pure diffusion and advection diffusion. The

discrete space Vh ×Wh are chosen as the lowest order Raviart-Thomas mixed finite element

spaces, while the space Λh ⊂
(
L2(Ω)

)2
is defined as the piecewise constant vector space with

local basis function φ1 = (1, 0)T and φ2 = (0, 1)T in each element.

(a) Firstly we set b = [0, 0]T . The governing equation is pure diffusion. The exact solution is

given as follows

u(x) = sin(πx1) sin(πx2).

The errors of u − uh,σ − σh,λ − λh are presented in Table 5.1 with different mesh size.

We can see that the convergence rates are in agreement with the theoretical findings.
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Table 5.1: Errors and convergence rates of u− uh,σ − σh,λ− λh.

h ‖u− uh‖ rate ‖σ − σh‖ rate ‖λ− λh‖ rate
1
10

5.220E-2 3.657E-1 2.617E-1
1
20

2.620E-2 0.9945 1.832E-1 0.9972 1.312E-1 0.9961
1
30

1.740E-2 1.0094 1.222E-1 0.9987 8.750E-2 0.9991
1
40

1.310E-2 0.9867 9.160E-2 1.0019 6.560E-2 1.0013
1
50

1.050E-2 0.9915 7.330E-2 0.9988 5.250E-2 0.9983

Table 5.2: Errors and convergence rates of u− uh,σ − σh,λ− λh.

h ‖u− uh‖ rate ‖σ − σh‖ rate ‖λ− λh‖ rate
1
10

1.037E-1 1.4016 1.0289
1
20

5.220E-2 0.9903 7.028E-1 0.9959 5.184E-1 0.9890
1
30

3.490E-2 0.9929 4.687E-1 0.9991 3.461E-1 0.9964
1
40

2.620E-2 0.9967 3.516E-1 0.9993 2.597E-1 0.9983
1
50

2.090E-2 1.0128 2.813E-1 0.9997 2.078E-1 0.9991

(b) Secondly we choose b = [1, 1]T . The governing equation is advection diffusion. The exact

solutions is defined by

u(x) = sin(2πx1) sin(2πx2)

The errors of u − uh,σ − σh,λ − λh are listed in Table 5.2 with different mesh size. It is

easy to see that the convergence rates are optimal.

Example 5.2 (Rectangular partitions). In this example we set Ω = [0, 1] × [0, 1], a(x) =

1 + x1x2 and c(x) = d(x) = 0. The right hand term f can be calculated by inserting above

information into the governing equation.

In this example we still consider two cases, i.e., pure diffusion and advection diffusion. The

discrete space Vh ×Wh are chosen as the lowest order Raviart-Thomas mixed finite element

spaces, while the space Λh ⊂
(
L2(Ω)

)2
is defined as Example 2.3 in Section 2. For k = 0

the dimension of the local space is 3 in each element. Let ψk, k = 1, 2, 3, 4, denote the local

basis functions of the vector space Vh in the lowest order Raviart-Thomas mixed finite element

spaces. Then the local basis functions φi, i = 1, 2, 3, of Λh are constructed as φi = ψi − ψ4.

(a) Firstly we set b = [0, 0]T . The governing equation is pure diffusion. The exact solution is

defined below

u(x) = x1(1− x1)x2(1− x2).

The errors of u− uh, σ− σh, λ−λh are displayed in Table 5.3 with different mesh size. We

can observe that the convergence rates are in agreement with the theoretical findings.

(b) Secondly we choose b = [1, 1]T . The governing equation is advection diffusion. The exact

solution is chosen as follows

u(x) = sin(3πx1) sin(3πx2)

The errors of u− uh, σ − σh, λ− λh are listed in Table 5.4 with different mesh size. Again

we can find that the convergence rates are optimal.
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Table 5.3: Error of u− uh, σ − σh, λ− λh.

h ‖u− uh‖ rate ‖σ − σh‖ rate ‖λ− λh‖ rate
1
10

4.280E-3 1.747E-2 1.967E-2
1
20

2.150E-3 0.9932 8.760E-3 0.9958 9.850E-3 0.9978
1
30

1.430E-3 1.0057 5.840E-3 1.0000 6.570E-3 0.9987
1
40

1.080E-3 0.9757 4.380E-3 1.0000 4.930E-3 0.9982
1
50

8.604E-04 1.0182 3.510E-3 0.9923 3.940E-3 1.0045

Table 5.4: Error of u− uh, σ − σh, λ− λh.

h ‖u− uh‖ rate ‖σ − σh‖ rate ‖λ− λh‖ rate
1
10

1.896E-1 2.3021 2.4831
1
20

9.580E-2 0.9848 1.1561 0.9936 1.2727 0.9642
1
30

6.400E-2 0.9948 7.714E-1 0.9978 8.524E-1 0.9885
1
40

4.810E-2 0.9927 5.788E-1 0.9984 6.403E-1 0.9945
1
50

3.840E-2 1.0093 4.631E-1 0.9994 5.127E-1 0.9959

Example 5.3 (Fractional diffusion model). Let Ω = [0, 1], T = 1. Consider the following

fractional diffusion equation of order 2− β for 0 < β < 1,

∂u

∂t
− d

dx

1

Γ(β)

∫ x

0

1

(x− s)1−β

du

dx
(s)ds+ 3

du

dx
= f(x) in Ω× [0, 1],

u(x) = 0, x = 0 and 1,

u(x, 0) = x2(1 − x)2, in Ω. (5.1)

The exact solution is prescribed to be u(x, t) = x2(1− x)2et, and therefore λ,σ and the source

term f can be calculated accordingly from the governing equation,

λ(x, t) = (2x− 6x2 + 4x3)et,

σ(x, t) = −
{
24 θx3+β−(1−θ)(1−x)3+β

Γ(4+β) − 12 θx2+β−(1−θ)(1−x)2+β

Γ(3+β) + 2 θxβ+1−(1−θ)(1−x)β+1

Γ(2+β)

}
et

+bx2(1− x)2et,

f(x, t) = −
{
24 θxβ+2+(1−θ)(1−x)β+2

Γ(β+3) − 12 θxβ+1+(1−θ)(1−x)β+1

Γ(β+2) + 2 θxβ+(1−θ)(1−x)β

Γ(β+1)

}
et

+b(2x− 6x2 + 4x3)et + x2(1 − x)2et.

In this example, we use the lowest Raviart-Thomas space Wh × Vh with the space index

k = 0, that is, Vh is the piecewise linear polynomial space as well as Wh is the piecewise

constant space. Λh is taken to be the piecewise constant space. We partition [0, T ] uniformly

with time step τ = h and use the backward Euler scheme to discrete the temporal derivative.

The spacial errors and convergence rates for β = 1
3 ,

2
3 at t = T = 1 are presented in Table

5.5. The numerical results in Table 5.5 show that the convergence rates for the unknown u, the

spacial derivative λ and the fractional flux σ at t = T = 1 is 1, which are in agreement with

the theoretical findings predicted by Theorem 4.7.
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Table 5.5: Spatial errors and convergence rates at t = T = 1.

β h ‖u− uh‖ rate ‖λ− λh‖ rate ‖σ − σh‖H1(Ω) rate
1
3

2−4 6.6255E-03 2.3632E-02 1.7993E-01

2−5 3.2268E-03 1.038 1.1523E-02 1.036 9.2358E-02 0.962

2−6 1.6001E-03 1.012 5.6926E-03 1.017 4.7994E-02 0.944

2−7 7.9816E-04 1.003 2.8294E-03 1.009 2.5285E-02 0.925

2−8 3.9881E-04 1.001 1.4107E-03 1.004 1.3492E-02 0.906

2−9 1.9937E-04 1.000 7.0440E-04 1.002 7.2783E-03 0.890

2
3

2−4 6.4674E-03 2.3478E-02 1.2406E-01

2−5 3.1863E-03 1.021 1.1704E-02 1.004 6.2922E-02 0.979

2−6 1.5865E-03 1.006 5.8584E-03 0.998 3.1710E-02 0.988

2−7 7.9237E-04 1.002 2.9343E-03 0.997 1.5937E-02 0.993

2−8 3.9607E-04 1.000 1.4695E-03 0.998 7.9982E-03 0.995

2−9 1.9802E-04 1.000 7.3575E-04 0.998 4.0105E-03 0.996

6. Concluding Remarks

We propose the new finite element space Λh so that it, as coupled with the Raviart-Thomas

spaces, can preserve the same approximate capability as the traditional mixed methods do as

well as ensure the solvability of the EMFEM for linear elliptic problems of second-order. The

strong requirement Vh ⊂ Λh in [9] is weakened and the new Λh possesses minimum degrees

of freedom. The redesigned Λh combined with the Raviart-Thomas mixed space satisfies the

coerciveness condition and the inf-sup condition. We also prove the existence, uniqueness and

the same approximate capability of the EMFEM solution as the traditional mixed methods

[9,10], by an application of the coerciveness and the inf-sup condition for rectangular partitions

of Ω ⊂ Rd, d = 2, 3 and triangular partitions of Ω ⊂ R2. In this way, the EMFEM in [9] is

generalized to those finite element spaces Λh with lower indices, such as the commonly used

piecewise constant space, to reduce computation cost and improve the stability of the EMFEM

obviously.

This approach can be extended to other mixed finite element spaces, for examples, the BDM

elements and the BDDF elements [2, 3].

Although the solvability for triangular partitions, even for general partitions in R
d, d = 2, 3,

can be proved by a direct proof, the proof based on the inf-sup condition for triangular partitions

in R
3 is still left open due to the lack of knowledge on the orthogonal decomposition of the

space Vh.
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