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Abstract

In this article, we propose a new finite element space Aj, for the expanded mixed
finite element method (EMFEM) for second-order elliptic problems to guarantee its com-
puting capability and reduce the computation cost. The new finite element space Aj
is designed in such a way that the strong requirement V; C Ay in [9] is weakened to
{vh € Vy;divv, = 0} C A} so that it needs fewer degrees of freedom than its classical
counterpart. Furthermore, the new Aj coupled with the Raviart-Thomas space satisfies
the inf-sup condition, which is crucial to the computation of mixed methods for its close
relation to the behavior of the smallest nonzero eigenvalue of the stiff matrix, and thus
the existence, uniqueness and optimal approximate capability of the EMFEM solution are
proved for rectangular partitions in R, d = 2,3 and for triangular partitions in R2. Also,
the solvability of the EMFEM for triangular partition in R® can be directly proved without
the inf-sup condition. Numerical experiments are conducted to confirm these theoretical
findings.

Mathematics subject classification: 65N30.
Key words: New finite element space, Expanded mixed finite element, Minimum degrees
of freedom, The inf-sup condition, Solvability, Optimal convergence.

1. Introduction

The expanded mixed finite element method (EMFEM) [9], first proposed for linear elliptic
problems of second-order to generalize the classical mixed methods in the sense that the gra-
dient as a newly introduced variable is explicitly approximated besides the unknown and flux,
has achieved a significant success in applications to those diffusion processes within complex
geometry and low permeability zones. Now the EMFEM has been extended successively to the
quasi-linear elliptic problems [10,21], the fourth order elliptic equations [10], parabolic prob-
lems [8, 16,19, 24], hyperbolic problems [27], displacement in porous media [18,28] and other
physical models [6,17,20]. Recently, the EMFEM was found its application to the fractional-
order diffusion equations [7,26].
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Checking carefully the direct proof for the EMFEM’s solvability (see pp. 487 in [9]), it is not
difficult to find that the finite element space A}, for the gradient and the space V, for the flux
must satisfy the strong requirement V; C Ay, which makes the selection of the test function
u, = o € Vy, possible to ensure the existence and uniqueness of the solution to the EMFEM.
As a consequence, the strong requirement Vj;, C Ay, excludes such the potential spaces as those
A with lower space indices, especially the often used piecewise-constant spaces. This may
confine the versatility of the EMFEM in applications and increase the computing burden. For
example, if V, and W), are the the lowest order Raviart-Thomas space for triangular partitions,
the best convergence rates for the unknown in L?(Q)-norm, the gradient in (L%(£2))%-norm and
the flux in H(div; Q)-norm are O(h) whatever the space index of A} takes 1 or 0.

The main goals of this article are to: (1) Redesign the finite element space Aj in such a
way that they contain as many full polynomials as W}, does in order to preserve the same ap-
proximate capability, and contain all the divergence-free vectors of V}, to ensure the solvability
of the EMFEM for linear elliptic problems of second-order, and hence the strong requirement
V;, C Ay, is weakened and thus designed A; possesses minimum degrees of freedom. Specifi-
cally, for rectangular partitions, the degrees of freedom of Ay on an element E are 2k + 1 and
2(k + 1)2 — 1 degrees of freedom less than those of V,|g for d = 2 and d = 3, respectively;
for triangular partitions, Ay consists of all the piecewise polynomials of degree < k, which are
k+ 1 and & (k + 1)(k + 2) degrees of freedom less than that of V,|p for d = 2 and d = 3,
respectively. And thus, the commonly used piecewise constant spaces are retrieved. (2) Prove
that thus redesigned A, combined with the Raviart-Thomas mixed space Vj x W}, satisfies
the coerciveness condition and the inf-sup condition. This finding is crucial to the computation
of mixed methods since the inf-sup condition is closely related to the behavior of the smallest
nonzero eigenvalue of the stiff matrix, the loss of which may leads extra artificial (nonphysical)
constraints on the boundary conditions or locking phenomenon [3]. (3) Prove the existence,
uniqueness and the same approximate capability of the EMFEM solution as the traditional
mixed methods [9,10], by an application of the coerciveness and the inf-sup condition for rect-
angular partitions of Q C R% d = 2,3 and triangular partitions of Q C R2. (4) Present a direct
proof as did in [9] for the solvability of the EMFEM on general partitions of R?. (5) Conduct
numerical experiments to confirm the theoretical findings.

The rest of this article is organized as follows. In Section 2, we shall develop the weak form
and the EMFEM for linear elliptic problems, prove the coerciveness for one of bilinear form
and analyze the key points we will stress in the sequel. Section 3 is devoted to the rectangular
partitions for Q C R?. we shall characterize the divergence-free vectors of V}, by decomposition
techniques, redesign the space Ay with minimum degrees of freedom, then prove the validation
of the inf-sup condition for the other bilinear form over the Aj;, and the Raviart-Thomas space.
Section 4 is devoted to the triangular partitions. We shall use the inclusion of divergence-free
vectors of Vj, to redesign the Ay and give a direct proof for the solvability of the EMFEMs
for d = 2 and d = 3. Further, we shall apply the discrete Helmholtz decomposition theory to
prove the validation of the inf-sup condition over the newly defined space A, and the Vj x W},
for d = 2, then derive the solvability again and the same approximate capability of the EFEMs
solution as that of the traditional mixed methods have. In Section 5, numerical experiments
are conducted to confirm our theoretical findings. The last section is for concluding remarks.

Through out this paper, we write vectors or vector spaces in boldface, use (-,) to denote
the L2-inner product, and use || - | to denote the L2-norm or the Euclid norm in vector spaces.
We also use || - ||z to denote the norm in Sobolev space H and |- |y to denote its semi-norm.
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2. Formulation of the Expanded Mixed Finite Element Method

To fix ideas, we take the following second-order elliptic problems as a model,
(@) = V. (aVu—bu+c)+du=f xe,

(b) u=0 x € 09, (2.1)

where Q is a bounded domain in R, d = 2, 3 with its boundary 99, x = (x,%) and x = (z,y, 2)
for d = 2,3 respectively; a(x) is a uniformly positive definite and bounded tensor, b(x), c(x)
and d(x) are given vectors and scalar function, f(x) € L?(€).
We let
W =1L2(Q), A= (L%Q)4 V=H(iv;Q)

with their norms || - ||x as X = W, A and V, respectively, and then rewrite (2.1) into the
equivalent weak form: Find (o, A\,u) € V x A x W such that

(@) (aA p)—(o,p)+ (bu,p) = (c, ), pE€A,
b)) A\v)—(u,V-v)=0, vev, (2.2)
(¢) (V-o,w)+ (du,w) = (f,w), weW.

Let U = W x A endowed with the usual product norm ||7(|3; = ||w||?>+ || p||? for T = (w, p) € U,
and introduce the bilinear forms A(-,-) : Ux U = R and B(7,v) : U x V = R,

A(X,T) = (a)‘v iu’) + (buv H‘) + (dua w)v X = (uv >‘)a T = (U}, /L) ey,

B(r,v) = (p,v) — (w,V - v), T=(w,pn) €U, veV. (23)
Then, (2.2) can be writren as the standard form: Find (x, o) € U x V such that
(@) Alx,7)+B(r,0)=F(r), T€U, 2.0
() B(x,v)=0, vev,
with F(7) = (f,w) + (¢, u). We also let
Z={rc€U;B(r,v) =0, forall veV}. (2.5)

Since the bilinear form B(-, ) and the space Z are just the same as defined in [9], and A(,-)
is slightly different due to the adding of the extra terms b(x) and d(x), the solvability can be
proved in the same manner as done in Lemma 3.1-Lemma 3.3 and Theorem 3.4 of [9], we shall
only present the conclusion under mild assumptions on the coefficients a(x),b(x) and d(x) as
required in [14] without detailed proof here.

Lemma 2.1 (Lemma 3.1, [9]). 7 = (w, i) € Z if and only if
p=—Vu and we HYQ) = {w e H'(Q);ulon = 0}.

Theorem 2.2. Assume that there exist positive constant o and v with 0 < v < 1 such that the
coefficients a(x),b(x) € C1(Q) and d(x) € C°(Q) satisfy, for x € Q,

d(x) >0, XTa(x)X >a|X|?XecR? and |b(x)|* < 4yad(x). (2.6)

Then, there exists a unique solution (o, A,u) € VX A x W to the weak form (2.4) and thus to
(2.2).
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Proof. Selecting «y such that 0 < v < 1 and |b|? < 4a7yd, then

a|Vw|? — |bl|w||Vw| + dw?

2
b|?
= a(1l —7)|Vw]? V——|| d—|— 2
o= IVl + (VEFTul - )+ (4= 25w
> a(l —v)|Vwl]?.
Thus, we apply Lemma 2.1 and the norm equivalence in H{(£2) to derive
A(r, 1) =(ap, p) + (bw, p) + (dw, w)
=(aVw, Vw) + (bw, Vw) + (dw, w)
2/{a|Vw|2 — |blJw]| V] + du?}dx
Q
>a(l —7)|Vuw?
>Ca(l =) (IVwl? + w]?)
=Ca(l - 9)|7lZ-
which shows that the bilinear form A(-,-) is coercive over Z.
On the other hand, the bilinear form B(-,-) is the same as in [9] and also meets the inf-

sup condition. Thus, an application of the Brézzi’s theorem [4] ensures the existence and the
uniqueness of the solution to the weak form (2.4) or (2.2).

We shall denote by &, a regular partition of {2 = Ugeg, E into triangles or into rectangles
(tetrahedra or cuboid for three dimensional domain). We then introduce the Raviart-Thomas
mixed finite element spaces V5, x Wi, C 'V x W with the space index k > 0 ( see [3,9,22,23])
to approximate the two variables o and u. Once the space Ay C A is defined for the third
variable A, the EMFEM can be defined as to find (o, Ap,up) € Vi X Ay X W), such that [9]

(a) (arn,pmp) = (on, pp) + (bun, py) = (¢, 1), py € Ap,
(b) ()\h,Vh) — (uh, V- Vh) =0, vy € Vh, (27)
(C) (V “ O, w) + (duh,wh) = (f, wh), wp, € Wh,.

We let Uy, = Ap, x W), and use the bilinear forms A(-,-) and B(,-) to rewrite (2.7) as to find
(on,xn) € Vi x Uy, with x;, = (An, up) such that

(@) Alxp,mn) +B(Th,0n) = F(Th), Th = (y, wn) €U,

(2.8)
(b) B(Xh,vh) =0, vn € V.
We then define the discrete version Zj of Z by
7y, = {Th = (wh,uh) S U;B(Th,vh) =0, for Vvj € Vh}. (2.9)

It should be pointed out that Zj is not a subset of Z, and thus, the coerciveness of the
bilinear form A(-, -) over Zj, can not be inferred from Theorem 2.2 as a corollary. Here, we shall
apply the approximating property of the space V5 and give a new proof for the coerciveness.
This proof does not rely much on the choice of the space Ay,.
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Theorem 2.3. Assume that the space-step h is sufficiently small and the coefficients a(x), b(x)
and d(x) satisfy the conditions (2.6). Then, the bilinear form A(-,-) satisfies the following
coerciveness over the discrete space Zy, in the sense, for T, = (wn, uy,) € Zp,

A(Tn,mh) = aallTull? (2.10)

a(l—y) ao(l—7)
2 > 20(1+h)

with a; = min{ } for some generic constant C' independent of h.

Proof. We begin by proving the norm equivalence in Zj; through a duality argument. Let
wy € HE(Q) N H?(Q) solves the equation

=V - (Vuy) = wp,
then, there exist a generic constant C' > 0 such that ||uy | g2y < Cllwa].
Consequently, for 7, = (wp, ;) € Zp, we apply the property of the projection ITj, of mixed
finite element spaces [2,3,15,22, 23] to manipulate,
[wnll? =(wh,wn) = —(wp, V - (Vi)

=— (wp, V- I (Vuy))

=(pn; Mp (V)

=(pn In(Vuw) — V) + (B, V)

S TR (Viw) = V|| 4[| g [ Ve |

<1+ Ch)[lpplllwwl r2 @)

<CA+h)|pallllwnll,
and hence,

l[wn]l < C(1 4 R)l|ppll,

which implies the equivalence between the norms ||g;, || and {||ws || + ||,,]|2}2 over Z.
Analogues to the proof of Theorem 2.2, the coerciveness of the bilinear A(-,-) over Zj is
derived in the following way,

A(Th, Th) =(apy,, py,) + (bwp, py,) + (dwp, w)
>al|py | = (Iblwnl, [p]) + (dwn, wp)

Ib| 2 b2 |?
vV a’V'Nhl - zmwh + = day Wh

—a(1 =l + |

>a(l =)/ 2
S te))
2

2 a(l —v)
Il + 5y e

. fa(l=7) a(l-7)
me{ 2 ’20(1+h)}|””2'

I

Thus, the proof is completed by taking ; = min{ O‘(lg'”, 20‘0((11:_7,2) }. O

Remark 2.4. As mentioned in the previous section, the space Ay should be carefully chosen
so that it possesses as few degrees of freedom as possible, as well as preserves its optimal
approximation. This can be achieved by only requiring {vy, € Vj;divv, =0} C Ay, in place of
V;, C Aj in next two sections. In this way, those lower-order finite element spaces Ay can be
retrieved to approximate A, without losing accuracy, including the piecewise constant vector
spaces.
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3. New A, with Minimum Degrees of Freedom for Rectangular
Partition

In this section, we shall carefully analyze the structure of those divergence free vectors
vy, € V), for rectangular partition for @ C R? d = 2,3, then define some new Aps with
minimum degrees of freedom in the sense that they possess the same approximate accuracy as
that of the space W},. Further, we shall show that these Ajs combined with the Raviart-Thomas
spaces satisfy the inf-sup condition, and thus prove the solvability of the EMFEM (2.7).

3.1. Two Dimensional Case

To simplify exposition, we let £, be a regular family of rectangles of Q C R? with their
edges parallel to x or y-axis, where h > 0 is a parameter representative of the diameter of the
elements. For each non-negative integer k£ > 0, the Raviart-Thomas space of index k is given
by [3,22,23]

V), = {vh € H(div:Q); vi|p € Pryin(E) X Pogr1(E) for all E € sh}
and
Wi, = {wy, € L*(Q); wn|p € Pyx(FE) for all E € &,}
with

P = {pepen) = 5 agaty'},

0<i<k1,0<j<k2

the space of polynomials of degree < k; in « and < k3 in y. Obviously
dimVy|g =2k + 12 +2(k+1) =2(k + 1)(k + 2).

We denote by g (z) and pg(y) the polynomials of degree < k with respect to variable 2 and
y respectively, then any polynomials (pk k(2,9), gk.k(7,v)) € (Prx(E))? can be recast as

k=1 k koE-1
Piek(T,Y) W)+ aia™y, qew(zy) = (@) + YD bty (3.0)
=0 j=0 =0 j=0

Lemma 3.1. Let k > 0 be an integer. Then, any vector vy, € Vy, on an element E can be
decomposed as

k k.
vile = (pk(y), q < +1 )7:vl+1 J ZZ() 4T yJ+1>

i=0 j=0 1=0 j=0
2
(zz{am e o) 2
=0 j=0
= Hy t Pyt s,

with

Further there hold,

div(py + py) =0,  divvy|p = divpg = 2. (3.3)
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Proof. Recalling the definition of the space V},, we then rewrite v on an element E as

Kok
vile = (Pk( Z leauy k(@ +Z$izbijyj+l>

i=0  j=0

1=0

k k ) ) k k o
( D) +1ya,qk<x>+zzbi,jxlyﬂ+l)

=0 j=0 i=0 j=0

k k. k k
= (P() q ( ,gw”lyj, > bi,jwiy”l)

i=0j=0 " i=0 j=0

(Zz{aw ,J} z+1y370>
1=0 j=0

= Hy Tt pe Tt s
It can be easily checked that the vector

koko kook
j+1 i . i
B+ By = (Pe(y), (@) + <— T 0@ Ty YD e yﬁl)
=0 j=0

i=0 j=0

is divergence free and possesses (k+ 1)(k + 3) degrees of freedom, i.e., the first equality of (3.3)
is true. By a direct differentiation we may easily verify that the vector p, satisfies the second
equality of (3.3) and possesses (k + 1)? degrees of freedom. That completes the proof. O

From this Lemma, we may draw the following corollary to characterize the divergence free
vector v, € V.
Corollary 3.2. v € Vy, is divergence free if and only if
j+1 . .
aiJ:_Z'—‘r—lbi’j’ Z:O,l,-",k;jzo,l,"',k. (34)

Further, vy, can be characterized as

ko ko
. Jj+1 kL ikl
Vi, = (Drk, Qi k) + (- jE:O T 1bk, x E az BTy (3.5)

:O

by a pair of polynomials py . and qri with their coefficients a;; for i = 0,1,--- k= 1;j7 =
0,1,---,k and b, ; fori=0,1,--- k;j=0,1,--- ,k— 1. In (3.5), only axr = —bir is unde-
termined by the coefficients of pi. and gy k.

Proof. Noting that
Vi =y + fo + pg, divvy, =0 and  div(p, + py) =0,

we immediately obtain

divug = <ZZ{“M ]-+1 bij}a il J)
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k k
=> > {(i+ Daij + (G + Dbija'y’} = 0.

i=0 j=0
This is equivalent to

41
(z—l—l)a”—i-(j—l—l)b” :O or CLl'_’j = _%bi,jv fOI‘ Z,j:O,l, ,k.

For the second conclusion (3.5), we check carefully the structure of the divergence free vector
pq + e and find that

k k. k k
J+1 i+, i j
My + po =(pr(y), qr () + (— > T g YYD b yJ“)
—0 ;

i=0 j=0

k=1 k i+ k k—1
(pr(y), ar(2)) + (‘ Zz bi gty Z bijx ZJJJrl)
=0 j=0 =0 j=0
k it k
3=0 1=0
Applying (3.4) and noting ay x = —bg k, we obtain
k=1 k kE k—1
B+ po =(pr(y), ax(2)) + <Z Z gz tly’, Z bz‘,jﬂﬂlyﬁl)
i=0 j=0 i=0 j=0
L1
k+1 i k+1
+(_;k+1bkx Zk alk:vy )
k. ko
=(Pk.k> Gk, 1) <Z bk a® Z az kilflka)
—0 i=0

This implies that the divergence-free vector p; + 5 can be expressed as the sum of (pg k, qk.k)
(Pgx(E))? and the vector

koo ko
j+1 ; i+ 1 i
B <Z k—ﬂbk,jxkﬂij K yHl)

= ; k—l—l
whose 2k coefficients by 5,5 = 0,1,--- ,k — 1 and a;%,% = 0,1,--- ,k — 1 are determined by

those coefficients of the first summand (pgk,qrr) and only one coefficient ap = —bgy is
undetermined by (pk.k, Gk.k)-

Consequently, for all (p k, qr.x) € (Prx(E)? given by

k=1 k k k-1
Prek(@y) =) + DY aia ™y qer(ny) = ael@) + > bty
1=0 5=0 =0 j=0

we may define the finite element space

Ay Z{)\h € (LX) Al = (Pk ks Qi k)
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—j+1 it
Lkl g ikl k ki
_ < ‘ k——l-lbk’]x yJ7; n 10%,1@1; Y ) —i—bk)kx Y ( J,',y)} (37)
It is easily verified that
dimAy|p = 2(k +1)? + 1.

Remark 3.3. The dimension of Ay|g is 2(k + 1) 4 1, which is 2k + 1 degrees of freedom
less than that of V},|g, as well as 2k + 5 degrees of freedom less than that of (Pey1x+1(E))%.
Obviously, (P x(F))? and the subspace {v;, € Vj;divv, = 0} of V}|g are contained in Ay|g.

Example 3.4. Let £k = 0. Then,
An = {m € (L)% pyl = (a0, bo) + boo(—,9), E € &}

with dimAp|g = 3, which is of 2k + 1 = 1 freedom of degree less than that of V;,|g.
Let k£ = 1. We write

p1,1($7 y) =p1(y) + x(ao,o + ao,ly% Q1,1(l‘, y) = qi(x) + y(bo,o + b1,ol’)-

Then,

1
Ap = {Hh € (LX) puple = (P11, q1,1) — 5(51,0352,@0,1242) +b112y(—z,y), E € 5h}
in which, only b; 1 is undetermined by the coefficients of p1 1 and ¢1,1. Evidently, dimAp|g =9,

which has 2k + 1 = 3 degrees of freedom less than that of V,|g.

As expected, thus redesigned A} combinning with Vj, x W), satisfies the inf-sup condition,
and hence ensures the solvabilty of the EMFEM.

Theorem 3.5. Assume that k > 0 is an integer and the finite element space Ay, is defined by
(3.7). Then, the mized finite element space Vi, x A X Wy, satisfies the inf-sup condition, that
is, for sufficiently small h > 0,

B 1
inf  sup (Th: vn)

> . 3.8
B S TralloIvalmae — 22 (3:8)

Proof. For any vy, € Vp, we have the decomposition (3.2) on an element F € &, as Lemma
3.1 stated,

Vale = py+ po £ s
with gy = (p3,0). For each fixed y, we let P : L?(E) — P(E) denote the orthogonal projection

operator in z-direction. Then, P u3 can be written as

k

Pips = Z ¢ija'y’ € Pri(E), (3.9)
i,j=0

and further, the standard scaling argument and (3.3) ensure that the following projection
estimate holds,

Ous
— P%,|| < Chl| 222
s — Py us < H D

= Ch||divvy]. (3.10)
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Noticing that g, + pg + (P s, 0) belongs to Ap, hence we can take
Bnle = py + po + (P ps, 0)
and rewrite the decomposition of v;|g as

Vile = py + o + ps = pple + (1s — Prus, 0), (3.11)
and thus,

Vel = (ks n) & + 2k, (03 = Pyt s, 0) e + [l (13 — Py s, 0)| -

Using the Hélder inequality and the projection estimate (3.10), we obtain, for sufficiently
small h > 0,

1 . .
3 leallE = CRdivvallE < Vil < 2llpalls + CR?|[divealE,
or equivalently,

1 :
5 leallE + (1= Ch%)[divva||%

. 1 .
<Ivally + ldivvallz < Slaalz + 1+ CR?)||dive 3. (3.12)
Analogously, we derive the estimate for (uy, vn) g,
o 1 .
(s Vi) = (s ) + (s (3 = P13, 0) > Sl | — CB2|[divval|E. (3.13)
Combining these estimates, then taking w, = —divvy, and selecting h > 0 small enough such

that 1 — Ch? > 1, we obtain

(o) B — (wh, divva) B = (g, Vi) e + [|divva |5

1
>l + (1= O3 ldivva

1
25 IvallE + Idivvallz} = 5 thHH(d]vE)’ (3.14)
and
lnll + llwnllE = lpallE + ldivealf < 2{lval + [diva|E}- (3.15)
Consequently, (3.14) and (3.15) imply that, for all 74, = (@, ws) € Uy, = Aj, x W,
B
inf  sup (71, vn)

VhEVH ThEUh HTh”UHVh”H div;Q2)

_ it (B, Vi) — (W, V - vp)

VeV, wh>eAhxwh [ |12 + llwn ([ vall a2 @ivie)

(l’l’hvvh) - (wh’ V- Vh)
Z a8 T+ T Plval v

2||VhHH(d1VQ) — 1
= V2UVillf ey 2V2

which completes the proof. g
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3.2. Three dimensional Case

Analogues to the previous subsection, we let £, be a rectangular partition for ¢ R? with
its space parameter h > 0 and define the Raviart-Thomas space on a cuboid E [3,23],

Vh = {Vh S H(diV;Q);Vh|E (S Pk-i—l,k,k(E) X Pk,k-',—l,k(E) X Pk7k7k+1(E),E S 5h},

Wy, = {wh S LQ(Q);U)HE S Pkykyk(E),E S gh}

with Py, ks ks (E) being the space of polynomials of degree < k1 in x, < kg in y and < k3 in z.
Obviously

dimVy,|p =3(k+1)* + 3(k + 1)%

We denote by pg 1 (y, 2), @k (2, x), and r k(x,y) the polynomials of degree < k in each di-
rection with respect to two variables (z,y), (y, 2) and (z, ) respectively, then recast px. ik, Qk.k
and 7y ik as

k
Pk (2, Y, 2) = Prk(y, 2) + Z Z ai,j,lxiJrlyjzlv (3.16a)
=0 j,l=0
ko k-1
ek (2,9, 2) = Qi (z,) + > b juaty’ T2, (3.16D)
4,1=0 j=0
ko k-1
Tk (T, Y, 2) = Tk (T,Y) + Z cijriyl 2T (3.16¢)
2,j=0 =0

Lemma 3.6. Let k > 0 be an integer. Then, any vector v, € V;, on an element E can be
decomposed as

Vile =0rk (Y 2), ek (2, %), Tk (2, Y))

k . k
3 J+1 L1 i1l Z LY e 1+1
+ <— (H—lbljl—F +1CZJ i+ J b .7+ lI y-72+
1,5,1=0

1,5,1=0 i,5,1=0
: J+1 I+1
+ ( Z (a7’7-]’l + _|_ 1 b )j7l + Z+ 1Ci;j7l)xl+ly]2l7 07 O)
1,5,1=0
=iy + o+ g (3.17)
with
k
j+1 [+1 i )
B3 = (p3,0,0) and ps= ‘;0 (az,],l + = ix 1b il i 1Cz,], ).’L‘ +1yjzl.
i,j,l=
Further there hold,
. 0 . i
div(pey + py) =0, % = divpy = divvy|g. (3.18)

Proof. Recalling the definition of the space V},, we then recast v, on an element E as

(Prk (Y5 2), ek (2, %), 11 i (2, y))
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k k
Z 1y L 141
( Z @i jix" E : bi jux ‘! E Cij, 1% W'z )

1=0 5,1=0 i,7,0=0 4,5,l=0

=(Prx (Y, 2), ek (2, 2), Tk (2, )

§ : +1 +1 l +1
< ai,j i’ E : bijax "y E Ci, 1t s )
,5,1=0

1gl0 ,5,1=0

=(rk (Y, 2) ek (2, 2), Tk (2, Y))

G| I+1 k
_ —bi' il Z+1 jl b J+1l 1+1
+< 2 ot e 3 > cigur'y’z

,5,1=0 ,7,0=0

k
j+1 [+1 z+1
+ <‘;0(a”l+ +1b17j71—|— +1ngl) O 0

=py + Mo+ M-

It can be easily checked that the vector

My + o = (Prk (Y, 2), ek (2,2), 11k (2,9))

ko k
Jj+1 [+1 ity 1,1 1+1
+<_ Z(l+1blevl+ +1C'LJ Z b J Z lnyZ

i,7,l=0 i,7,l=0 i,7,l=0

is divergence free and possesses 2(k + 1) + 3(k + 1)? degrees of freedom, and thus satisfies the
first equality of (3.18). The vector

k .

Jj+1 I+1 i

Mg = ( Z (@i g1 + i—bi,j,l + - +1CZJI) 2 y721,0,0 ) = (u3,0)
i,j,1=0

possesses (k+1)3 degrees of freedom and satisfies the second equality of (3.18). That completes
the proof. O

From Lemma 3.6, we may draw the following corollary to characterize the divergence free
vector v, € V.

Corollary 3.7. v, € Vy, is divergence free if and only if

Ciyjal:O7 iajvk:();lv"' ;k- (319)

Further, vy, can be characterized as

k.
_ J+1 l+1 k1, 51
Vh|E = (pk,k,k,Qk,k,k,Tk,k k ( ]zz::o T 1 k—i— 1ij l) Yy z,
fi+1 I+1 k
— Z k——i-l(ai’k’l + - T 1011@1) oyttt Z Ci j kX" y zk“) (3.20)
i,1=0 i,j=0

by a triple (Dk .k, Qe k.l Th k) With their coefficients a; ;1,1 =0,1,---  k—=1,1,57=0,1,--- , k;
biji,4,1=0,1,---,k,3=0,1,--- k=1 and ¢; j1,%,5=0,1,--- ,k, 1 =0,1,--- [k —1.
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In (3.20), only those (k+1)? coefficients ¢; j fori,j =0,1,--- , k and one of the coefficient
Ak ke OT bi gk satisfying ag gk + bkik + chrr = 0 are undetermined by the coefficients of
(Pk,k ks Qb o> Th ke )

Proof. Noting that

Vi = W+ po + s, div(p, + py) =0 and  divvy, =0,

we immediately obtain

k
. ops 0 j+1 I+1 1
divps = o 92 g ( ai i+ = i 1b il - T C | Flyizlt = 0.

This is equivalent to

j+1 [+1

i —b;
aq 2l + + 1 7,5, + - i+ 1

1 Gl = 07 i7j,l:O71,... 7k,
from which the conclusion (3.19) follows directly.

For the second conclusion (3.20), we check carefully the structure of the divergence free
vector p; + pt, and find that

Hy + g
:(pk k(Y 2), gk, k(z,2), 7k k(fl?,y))
k
+ 1 l+1
Z j ).77l + + 107/7]) l+l Z b 7])[{,[; y]+1 ! Z CZ;]J‘T y Zl+1)
w,lZO 1,5,1=0 1,5,1=0
(Pk k(Y )an (z,2), 7% k(fl? Y))
k=1 & k—1 k k—1 k
+1 l+1 . . o .
i=0 g,z:o j=014,1=0 1=0 4,j=0
a j + 1 [+1 b b
Z E+1 Dr s k+1ckﬂl) NS szkﬂ"zyk“ l Z sy’ 25,
4,1=0 i,1=0 i,j=0
(3.21)

We then apply (3.19) to obtain

o~

Pk (Ys 2)s Qi (2, @), ek (2, 7))

k
Z J—i—l bi s+ lilcw) gitlyd sl Z Z b j i1 Z Z C”ny zl“)

Myt o =

s

,_.

=0 ],l:0 7=014,l=0 1=0 1,57=0
k
J+1 [+1 SN
_ b j
+( JlZ:O(k+1 kil k+101w,l) Y2,
k
Jj+1 [+1 gkt k1
— —(a;, =+ - Ci, k1T C; x' Z
“Z:()k_i_l( kil +1) kITY ]ZO Ty

This implies that the divergence-free vector p; + py can be expressed as the sum of a vector
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(Prok ks Qe ks Th k) € (Prkk(E))? with the known coefficients

a;j; fori=0,1,---,k—1and j,l =0, k;
biji forj=0,1,--- k—Tlandil=0,--- k;
Ciju forl=0,1,-- k—Tandi,j=0,--k

and the vector

k .
1 I+1 _
<_ Z(Lbk o ety

jl:Ok—i—l k—i—l
| I+1 b

) LA )
7,0=0 1,7=0

If we leave the (k+ 1)? coefficients ¢; j  for i,j = 0,1---,k as the degrees of freedom, then the
2(k 4+ 1)? coefficients of the second summand

j+1 [+1 .
- b ; l=0,1---k d
(k+1 kavl+k+1ckaﬁl)7 Js ) 9 an
j+1 l+1 .
— 7 . 1 \Wg & ) 7120717"'7k
g ikl T Cik),
are determined by those coeflicients of the first summand (pg ki, Gk k ks Tk k k), €XCEPE Gk ko k
and by, , which satisfy the constraint ag kx = —(bk.kk + Ck k%) Thus, the degrees of freedom
of the second summand is (k 4+ 1)? + 1. This completes the proof. O

Consequently, for all (pg k.k, @k k> Tk k k) € (Perr(E))? given by (3.16) we may define the
finite element space

koo
n +1 l+1 )
Ap = {)\h € (L*(0))™; Anle = (Dkok ks Qo> Thokok) + <— Z (j—bk ——cp )"yl 2

ot k+1 k +1
fi+1 I+1 k
-3t s Y e ) | 2
i,0=0 1,7=0
As stated in Corollary 3.7, only the (k+1)? coefficients ¢; j x,i,j = 0,1, , k and one of ay

or bk,k,k satisfying k. k. k +bk,k,k +Cr k= 0 are undetermined by the triple (pk,k,k; Qi ke k Tk,k,k)-
Thus,

dimAp|p = 3(k+1)% + (b + 1)% + 1,
which is 2(k + 1) — 1 degrees of freedom less than that of V,|g.
Example 3.8. Let £k = 0. Then,
Ah = {H’h S (LQ(Q))Ba H/h|E = (CL(), bOa CO) + (_(bl + Cl)'rv blya Clz)a Ee 5]1}

with b; and ¢; undetermined. Evidently, dimAy|z = 5, which is of 2(k + 1)2 — 1 = 1 freedom
of degree less than that of V| g.
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Let k = 1. We may write
p111(2, Y, 2) = p1,1(y, 2) + 2(a0,0,0 + ao,1,0y + a0,0,12 + a0,1,1Y%2),
q1.1(7,y,2) = qui(z,x) + y(bo,o,0 + b1,0,02 + bo,0,12 + b1,0,172),

riaa(z,y,2) =12, y) + 2(c0,0,0 + €1,0,0% + €o,1,0¥ + €1,1,02Y),

Then,
Ap = {Hh € (LQ(Q))Q;HHE = (p1,1,1,(J1,1,1,7”1,1,1) + (1, po, p3), E € gh},
where
1 2 2 1 2 2
p1 = —§(b1,0,0 +ci00)2” — (§b1,0,1 +eci01)r 2 — (b11,0 + 501,1,0)17 y— (b1 +c11,1)x°yz,
1 1 1 1 1
Lo = _5((1071,0 + co,l,o)y2—§(ao,1,1+2co,1,1)y22—§(01,1,0-1-501,1,0)&53/2—5(al,l,l +en)ay’s,
p3 == 00,0,122 + 00,1,12422 + C1,o,13322 + 01,1,1:17yz2-

From this expression, we clearly see that the 5 independent degrees of freedom are ¢ 0,1, ¢0,1,1,
€1,0,1,¢1,1,1 and one of by 1,1 or aq,1,1 satisfying aq1,1,1 +b1,1,1+¢1,1,1 = 0. Therefore, dimAy|g =
3(k+1)3+ (k+1)? + 1 = 29, which has 2(k + 1)?> — 1 = 7 degrees of freedom less that that of
Vh|E-

As expected, one can prove, analogues to the proof of Lemma 3.5 for two dimensional case,
that thus selected Aj; combinning with Vj;, x W), satisfies the inf-sup condition, and hence
ensures the solvabilty of the EMFEM.

Theorem 3.9. Assume that k > 0 is an integer and the finite element space Ay, is defined by
(3.7). Then, the mized finite element space Vi, X Ay x Wy, satisfies the inf-sup condition, that
is, for sufficiently small h > 0,

B(Th, ’Uh) 1

inf  sup > . 3.23
VeV r,ev, ITrllullVellma@ivio) — 2v2 (8:23)

Proof. The proof is completely analogues to the proof of Theorem 3.5, and thus omitted.[]

3.3. Main Conclusions

In this subsection, we shall present the solvability of the EMFEM (2.7) or (2.8), and show
that thus selected Aj possesses the same approximate capability as the traditional EMFEM
does. For this purpose, we combine Theorem 2.3 for the coerciveness of A(-, -) over Zj,, Theorem
3.5 and Theorem 3.9 for the inf-sup conditions of B(-,-) over V, x Uy, then apply the Brézzi
theorem (see Theorem 1 in [4], Theorem 2 in [23], Theorem 1.2 and Proposition 2.4 in [3]), to
obtain the following theorem.

Theorem 3.10. Assume that the assumptions (2.6) on the coefficients a(x),b(x) and c(x) are
valid, (o,x) with x = (X, u) is the solution to (2.2) or (2.4). Then, there exists a unique
solution (op,xp) € Vi x Uy with x;, = (Ap,up) to the EMFEM (2.7) or (2.8). Further,
there exists a positive constant Cy independent of the space parameter h such that the following
approximate property holds, for sufficiently small h > 0,

_ o _ <C{'f . o inf |x — }
lo = onllsaiviey + l1x = xull < Cry f llo = vallua@ ,sz>+“ir€thllx pol (3.24)



832 J. CHEN, Z.J. ZHOU, H.Z. CHEN AND H. WANG

We conclude this section by two remarks, of which one concerns an explanation for minimum
degrees of freedom of Ay and the other is related to an alternative proof for the solvability of
the EMFEMs.

Remark 3.11. Ay|g contains (P x)? or (Pgrx)? as its subset so that it can keep the same
approximate capability as Wy|g does. On the other hand, Ay|g also contains the divergence-
free vector space

{Vh € Vy;divvy, = 0}

so that it can ensure the validity of the inf-sup condition, and thus the solvability of the
EMFEM (2.7) or (2.8). In this sense, we say that thus selected Ap|g possesses minimum
degrees of freedom.

Remark 3.12. If we do not pursue sedulously the presence of inf-sup condition, we may give
an alternative proof for the solvability of the EMFEM (2.7) as did in [9], which looks much
more compact and direct, see the detailed proof of Theorem 4.2 in the next section.

4. New A, with Minimum Degrees of Freedom for Triangular
Partition

In this section, we shall choose A} as the space of the piecewise polynomials of degree < k
for triangular partition of @ C R d = 2,3, then prove the solvability of the EMFEMs (2.7)
or (2.8) without using the Brézzi inf-sup theorem. Further, we prove, in two dimensional case,
thus selected Aj, combined with the standard Raviart-Thomas space Vj, x W), still satisfies the
inf-sup condition.

We let &, be a regular family of triangulations of @ C R? with A > 0 representing the
diameter of the elements. For each non-negative integer k, the Raviart-Thomas space of index
k is given by [3,22,23]

V), = {vi, € H(div; Q); vi|r € (P:(E))? + xPx(E) for all E € &,},
Wy, = {wh S L2(Q);wh|E S Pk(E) for all £ € 5h}~
Obviously, we have

(k+1)(k+3), d=2,
dlIth|E = 1
i(k +1)(k+2)(k+4), d=3.
4.1. New A; and a Direct Proof for Solvability

Recalling the construction of Vi, x W, in [23] for d = 2, [22] for d = 3 and Corollary 3.1
of [3], we know that

{Vh|E S Vh|E;diVVh|E = O} C ((Pk(E))d

Therefore we may redesign the third finite element space Ay as

An = {py, € PO pyle € (Pu(E))?, for E € &,}. (4.1)
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Certainly, thus redesigned A}, contains all divergence free vectors of Vy, as its subset, and

(k+1)(k+2), d=2,
dlmAh|E = 1
§(k +1)(k+2)(k+3), d=3,
which has k + 1 and 3(k + 1)(k + 2) degrees of freedom less than that of V;|g for d = 2 and
d = 3, respectively.

Example 4.1. Let £ = 0. Then, for d = 2,
Awle = {(ao, bo); ao, bo € R}

and for d = 3,
Anle = {(ao, bo, co); ao, bo, co € R},

which have 1 degree of freedom less than those of Vj,|g, respectively. Thus, the piecewise
constant spaces are retrieved in applications.

As mentioned in Remark 3.12, we next present the solvability of the EMFEM (2.7) without
applying the inf-sup theorem.

Theorem 4.2. Assume that k > 0 and Wy, x Ap X Vy, are defined as above. Then, there exists
a unique solution (up, Ap,0r) € Wi, X Ay, X 'V, to the EMFEMs (2.7).

Proof. Tt suffices to prove that there exists only zero solution to (2.7) if ¢ = 0, f = 0. For
this purpose, we take pu;, = Ap in (2.7a), v, = o in (2.7b) and w = wy, in (2.7¢), then add to
give,

(aXn, An) + (dup,up) + (bup,op) = 0.

Then, applying Lemma 2.3 and the assumptions on the coefficients a, b and d we derive
0= (aXn, A) + (dun, up) + (bup, 1) = Cofllunl|® + [ Mnl*},

which implies
Up = 0, )\h =0.

Kicking u, = 0 back to (2.7¢), we obtain that o, satisfies, by Corollary 3.1 in [3] and (2.7a),
V-o,=0, onpc (P(E)? and (o, m,) =0, € Ay.

Therefore, recalling the definition of Ay, we then can take p; = o to force o, = 0. That
completes the proof. O

Remark 4.3. We have obtained the solvability of the EMFEMs without the inf-sup condition
and can conduct numerical analysis as in [9] to derive an optimal convergence result. However,
as pointed out in [3]: the inf-sup condition is closely related to the behavior of the smallest
nonzero eigenvalue. This eigenvalue is nothing but the positive constant in the inf-sup condition
and must remain bounded away from zero when the dimensions of the spaces increase. The loss
of the inf-sup condition may leads extra artificial (nonphysical) constraints on the boundary
conditions or locking phenomenon.

Therefore, we should further discuss the validity of the inf-sup condition on the newly defined
space Vy x Uy or Vi x Ay, x Wy, for triangular partitions.
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4.2. The Inf-Sup Condition for Two Dimensional Space

We begin this subsection by defining the space over the domain ) C R?,
Sy, = {sn € H*(Q); sn|g € Ppy1(E) for all E € &,},
and the discrete gradient operator grad,, : Wj, — V}, by the equation [5,13]
(grad,wp, vp) = —(wp, divvy,), Vv, € V.
We immediately have the discrete Helmholtz decomposition [5,13]

Vi, = grad;, Wy, @ curlSy,

(4.2)

(4.3)

where the decomposition is orthogonal with respect to both the L?(Q)x L?(£2) and the H(div; Q)

inner products.

To prove that the inf-sup condition is valid over the space Vj, x Uy, we first give an estimate

for wy, bounded by grad,wy,.
Lemma 4.4. Let grad,w, be defined via the relation

(grad,wp, vi) = —(Wh, divvy),Vvy, € V.
Then, there exists a positive constant Cy independent of h such that

[wn]l < Collgrad,wn||.

Proof. Letting (&;,,nn) € Vi, X W}, be the mixed finite element solution to the equation

An =wy in Q,
n=20 on 012,

then, we have
(&nsvi) = —(n, divve), ¥vi € Vi,

(diveg,,, wp) = (Wh, wp), Ywp, € Wh,
An equivalent formulation is [13]
&, = grad,np, divg;, = Wy,
Further, using a standard stability analysis, we have
€5 I (aivs) + 1]l < Collwn ||
Take vj, = &;, in the definition of grad,w; and use (4.6) and (4.7) to derive
(W, Wn) = —(grad, Wh, ;)
<llgrad),wa €41l < Collgrady,wn|||[ws |

which implies the desired estimates.

With the help of this lemma, we proceed with the validity of the inf-sup
Vh X Uh.

(4.4)

condition on
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Theorem 4.5. Let U, = A x Wy. Then, the mized finite element space Vy, x Uy satisfies
the inf-sup condition

B
inf  sup _B(rnvi) > o, (4.9)
vieVa e, [Tallullvallv
_ 1 o ‘ ‘
where ag = (.00 for the positive constant Cy given in Lemma 4.4.

Proof. For any v, € Vj, with its Helmholtz decomposition v, = grad,;wy, + curls,, then by
divecurls, = 0 and the orthogonal decomposition of vy, we have

divvy, = divgrad,wy,
(curlsy, vp) = (curlsy, grad, Wy, + curlsy) = (curlsy, curlsy)

(grad,wp, grad,wp,) = —(Wh, diverad,wp,).
We take p;,, = curlsy, and wy, = Wy, — divvy, then manipulate in the following way

(p’hv Vh) - (wha diVVh)

=, y) — (wn, divvy) (by the orthogonality)
=(pp,, pp, )+ (grad, wp, grad, wy, ) —(grad, w, grad, wp ) — (wp,, divvy,)

=(pp,, pby,) + (grad, @, grad, ) + (Wr, divvy) — (wp, divvy,) (by the definition (4.2))
=(tp, ) + (grad,Wh, grad,Wn) — (wp — W, divvy)

+
+
=(py,, py,) + (grad, Wy, grad,wy) + (divvy, divvy,)
=(V1, Vp) + (divvy, divvy) (by the orthogonality)
=Vl aivse) (the norm of H(div;{2))
and
(1, p2y) + (wn, wn)

=(pp,, p,) + (@p — divvy, w, — divvy,)

<2{(py,, ) + (@, Wp) + (divvy, divey)}

<max{2, Co }{(pp, np,) + (grad,ws, grad,wy) + (divvy,, divvy,)} (by Lemma 4.4)

=max{2, CO}”V}L”%—I(div;Q) (by the orthogonality),
where Lemma 4.4 is used to bound wy. Thus,

B(Th, Vh)

inf  sup —
eV ,eu, [ITrllullValla@ivio)

~ i su (g, Vi) — (wp, V - vi)

_ p —
Vi€V T,eU, /||y ]12 + [wnl?[Vh [ Haivio)

||vh||%—l(div;£2)

max{2, Co}||¥h ||%—I(div;£2)

> inf
VeV
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1
= (4.10)
v/max{2, Cy}
which shows the inf-sup condition is valid over Vj, x Uy, by taking ag = S S— ]

v/max{2,Co}"

Remark 4.6. If the decomposition (4.3) of V), for 3-dimension case still holds, we would
analogously prove the inf-sup condition as stated in Theorem 4.5.

4.3. Main Conclusions

In this subsection, we shall present the solvability of the EMFEM (2.7) or (2.8) for the trian-
gular partitions, and show that thus redesigned A} possesses the same approximate capability
as the traditional EMFEMs do, by combining Theorem 2.3 and Theorem 4.5 with the Brézzi
theorem (3,4, 23].

Theorem 4.7. Let Q C R2. Under the same assumptions as in Theorem 3.10, the EMFEMs
(2.7) permits a unique solution (op, X)) € Vi X Uy, with x;, = (An, up) satisfying the following
approximate property,

llo = onllr@iviey + 1x = xull < C1f 1l o =vallm@ive) + ot Ix = mully- (a11)

Evidently, thus selected A, can keep the same approximate capability as W} does and
possesses minimum degrees of freedom in the sense of Remark 3.11.

5. Numerical Experiments

In this section, we shall carry out three numerical examples to test the validation of the
EMFEM, of which the first two are for elliptic equations of second-order in 2-D with triangular
and rectangular partitions respectively and the last one is for fractional differential equation in
1-D. All the numerical experiments are implemented by Matlab R2014a on a Lenovo-PC with
Intel(R) Core(TM) i7-4720HQ of 2.60GHz CPU and 8 GB RAM.

Example 5.1 (Triangular partitions). In this example we set Q = [0,1] x [0,1],a(x) =
1+ 2% + 23 and ¢(x) = d(x) = 0. The right hand term f can be calculated by inserting above
information into the governing equation.

In this example we consider two cases, i.e., pure diffusion and advection diffusion. The
discrete space V, x W), are chosen as the lowest order Raviart-Thomas mixed finite element

2
spaces, while the space Ay, C (LQ(Q)) is defined as the piecewise constant vector space with

local basis function ¢; = (1,0)7 and ¢2 = (0,1)7 in each element.

(a) Firstly we set b = [0,0]7. The governing equation is pure diffusion. The exact solution is
given as follows

u(x) = sin(mzy) sin(rzs).

The errors of u — up, 0 — op, A — A, are presented in Table 5.1 with different mesh size.
We can see that the convergence rates are in agreement with the theoretical findings.
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Table 5.1: Errors and convergence rates of 4 — up, 0 — op, A — Ap.

h |lu— unl| rate llo — ol rate [IA = Al rate
% 5.220E-2 3.657E-1 2.617E-1
1

2.620E-2  0.9945 1.832E-1 0.9972 1.312E-1 0.9961
=~ 1.740E-2 1.0094 1.222E-1 0.9987 8.750E-2  0.9991
&~ 1.310E-2 09867 9.160E-2 1.0019 6.560E-2  1.0013
& 1.050E-2 09915 7.330E-2 0.9988 5.250E-2  0.9983

Table 5.2: Errors and convergence rates of u — up, 0 — op, A — Ap,.

hlu— unl| rate llo — ol rate [IA = Al rate
% 1.037E-1 1.4016 1.0289

% 5.220E-2  0.9903 7.028E-1 0.9959 5.184E-1  0.9890
3% 3.490E-2  0.9929 4.687E-1  0.9991 3.461E-1 0.9964
ﬁ 2.620E-2  0.9967 3.516E-1 0.9993 2.597E-1  0.9983
% 2.090E-2 1.0128 2.813E-1 0.9997 2.078E-1  0.9991

(b) Secondly we choose b = [1,1]7. The governing equation is advection diffusion. The exact
solutions is defined by

u(x) = sin(27z1) sin(27zs)
The errors of u — up, 0 — o, A — Ay, are listed in Table 5.2 with different mesh size. It is

easy to see that the convergence rates are optimal.

Example 5.2 (Rectangular partitions). In this example we set Q = [0,1] x [0,1],a(x) =
1+ 2122 and ¢(x) = d(x) = 0. The right hand term f can be calculated by inserting above
information into the governing equation.

In this example we still consider two cases, i.e., pure diffusion and advection diffusion. The
discrete space V, x W), are chosen as the lowest order Raviart-Thomas mixed finite element

2
spaces, while the space A C (L2(Q)) is defined as Example 2.3 in Section 2. For k = 0

the dimension of the local space is 3 in each element. Let ¢,k = 1,2,3,4, denote the local
basis functions of the vector space V, in the lowest order Raviart-Thomas mixed finite element
spaces. Then the local basis functions ¢;,i = 1,2, 3, of A are constructed as ¢; = ¥; — 4.

(a) Firstly we set b = [0,0]7. The governing equation is pure diffusion. The exact solution is
defined below

u(x) =z1(1 — 21)x2(1 — 22).

The errors of u — up,0 — o, A — A\p, are displayed in Table 5.3 with different mesh size. We
can observe that the convergence rates are in agreement with the theoretical findings.

(b) Secondly we choose b = [1,1]7. The governing equation is advection diffusion. The exact
solution is chosen as follows

u(x) = sin(3mz1) sin(3mzs)

The errors of u — up, 0 — op, A — Ay are listed in Table 5.4 with different mesh size. Again
we can find that the convergence rates are optimal.
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Table 5.3: Error of u — up,0 — op, A — An.

h o lu— usnl rate llo — onl| rate A = Al rate
% 4.280E-3 1.747E-2 1.967E-2
75 2.150E-3  0.9932 8.760E-3  0.9958 9.850E-3  0.9978
= 1.430BE-3 10057 5.840E-3 1.0000 6.570E-3  0.9987
+ 1.080E-3  0.9757 4.380E-3  1.0000 4.930E-3  0.9982
= 8.604E-04 1.0182 3.510E-3 0.9923 3.940E-3  1.0045
Table 5.4: Error of w — up,0 — op, A — An.

h Jlu — upl rate lloc — ol rate [IA = Al rate
% 1.896E-1 2.3021 2.4831

% 9.580E-2  0.9848 1.1561 0.9936 1.2727 0.9642
% 6.400E-2  0.9948 7.714E-1 0.9978 8.524E-1  0.9885
4—10 4.810E-2  0.9927 5.788E-1 0.9984 6.403E-1  0.9945
= 3.840E-2 1.0093 4.631E-1 0.9994 5.127E-1  0.9959

Example 5.3 (Fractional diffusion model). Let = [0,1],7 = 1. Consider the following
fractional diffusion equation of order 2 — 3 for 0 < 8 < 1,

ou d 1 ¥ 1 du du )
E_EF([?)/O (x—s)lfﬁﬂ(s)ds—i_?)%:f(x) in Q x [0,1],
u(z) =0, x=0and 1,
u(z,0) = 23(1 — x)?, in Q. (5.1)

The exact solution is prescribed to be u(x,t) = 22(1 — x)%e’, and therefore A, o and the source
term f can be calculated accordingly from the governing equation,

Az, t) = (22 — 622 + 423)e!,

O'(ZC,t) _ _{24913+5(10)(1z)3+5 _12 0zt _(1—0)(1—2)?TP + 2915+17(179)(17I)B+1 }et

'(4+p) T'(3+8) '(2+8)
+bz?(1 — x)2el,

T(B+3) T(B+2) L(B+1)
+b(2z — 622 + 423)e! + 2%(1 — x)%el.

Fla,t) = _{24 9zP 24 (1-0)(1—2)? > 129z5+1+(1—9)(1—m)ﬂ+1 + 2emﬂ+(1—9)(1—z)5 }et

In this example, we use the lowest Raviart-Thomas space W} x Vj, with the space index
k = 0, that is, V}, is the piecewise linear polynomial space as well as W}, is the piecewise
constant space. Ay is taken to be the piecewise constant space. We partition [0, 7] uniformly
with time step 7 = h and use the backward Euler scheme to discrete the temporal derivative.
The spacial errors and convergence rates for § = %,% at t = T = 1 are presented in Table
5.5. The numerical results in Table 5.5 show that the convergence rates for the unknown u, the
spacial derivative A and the fractional flux o at ¢t = T = 1 is 1, which are in agreement with
the theoretical findings predicted by Theorem 4.7.
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Table 5.5: Spatial errors and convergence rates at t =T = 1.

B8 h [lu — up| rate A = Agl| rate lo — onllgi) rate
% 27%  6.6255E-03 2.3632E-02 1.7993E-01
275  3.2268E-03 1.038 1.1523E-02 1.036 9.2358E-02 0.962
275  1.6001E-03 1.012 5.6926E-03 1.017 4.7994E-02 0.944
277  7.9816E-04 1.003 2.8294E-03 1.009 2.5285E-02 0.925
278  3.9881E-04 1.001 1.4107E-03 1.004 1.3492E-02 0.906
279 1.9937E-04 1.000 7.0440E-04 1.002 7.2783E-03 0.890
% 271 6.4674E-03 2.3478E-02 1.2406E-01
275 3.1863E-03 1.021 1.1704E-02 1.004 6.2922E-02 0.979
275  1.5865E-03 1.006 5.8584E-03 0.998 3.1710E-02 0.988
277  7.9237E-04 1.002 2.9343E-03 0.997 1.5937E-02 0.993
278  3.9607E-04 1.000 1.4695E-03 0.998 7.9982E-03 0.995
27% 1.9802E-04 1.000 7.3575E-04 0.998 4.0105E-03 0.996

6. Concluding Remarks

We propose the new finite element space Ay, so that it, as coupled with the Raviart-Thomas
spaces, can preserve the same approximate capability as the traditional mixed methods do as
well as ensure the solvability of the EMFEM for linear elliptic problems of second-order. The
strong requirement Vj C Ay in [9] is weakened and the new Aj possesses minimum degrees
of freedom. The redesigned Aj combined with the Raviart-Thomas mixed space satisfies the
coerciveness condition and the inf-sup condition. We also prove the existence, uniqueness and
the same approximate capability of the EMFEM solution as the traditional mixed methods
[9,10], by an application of the coerciveness and the inf-sup condition for rectangular partitions
of Q € R% d = 2,3 and triangular partitions of Q C R2. In this way, the EMFEM in [9] is
generalized to those finite element spaces A; with lower indices, such as the commonly used
piecewise constant space, to reduce computation cost and improve the stability of the EMFEM
obviously.

This approach can be extended to other mixed finite element spaces, for examples, the BDM
elements and the BDDF elements |2, 3].

Although the solvability for triangular partitions, even for general partitions in R? d = 2, 3,
can be proved by a direct proof, the proof based on the inf-sup condition for triangular partitions
in R? is still left open due to the lack of knowledge on the orthogonal decomposition of the
space Vy,.
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