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Networks (or graphs) are used to model the dyadic relations between entities
in complex systems. Analyzing the properties of the networks reveal important
characteristics of the underlying system. However, in many disciplines, including
social sciences, bioinformatics, and technological systems, multiple relations exist
between entities. In such cases, a simple graph is not sufficient to model these
multiple relations, and a multilayer network is a more appropriate model. In
this paper, we explore community detection in multilayer networks. Specifically,
we propose a novel network decoupling strategy for efficiently combining the
communities in the different layers using the Boolean primitives AND, OR,
and NOT. Our proposed method, network decoupling, is based on analyzing
the communities in each network layer individually and then aggregating the
analysis results. We (i) describe our network decoupling algorithms for finding
communities, (ii) present how network decoupling can be used to express
different types of communities in multilayer networks, and (iii) demonstrate
the effectiveness of using network decoupling for detecting communities in
real-world and synthetic data sets. Compared to other algorithms for detecting
communities in multilayer networks, our proposed network decoupling method
requires significantly lower computation time while producing results of high
accuracy. Based on these results, we anticipate that our proposed network
decoupling technique will enable a more detailed analysis of multilayer networks
in an efficient manner.

KEYWORDS

multilayer network, community detection, network decoupling, homogeneous networks,
boolean combination

1. Introduction

The relations among entities in social and technological systems can be represented as
networks (or graphs), where each relation is an edge and each entity is a vertex. However,
in reality, most systems are defined, not by a single, but by multiple types of relations.
For example, a group of friends may be connected through multiple social networking
platforms such as Facebook, Twitter as well as by email. Technological networks such as
transportation networks can consist of airline, train, or bus routes. To accommodate multiple
types of relations, the systems are modeled as a set of networks. This set of networks, each
representing a different relation, forms a multilayer network. Here, we focus on homogeneous
multilayer networks (also known as multiplexes), where each network is composed of the
same set of nodes, but the structure of the network changes, based on the respective relations.
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The typical approach to analyzing multilayer networks is to
combine all, or a subset, of the layers to form a single network
(here termed as a composed network), and then apply the existing
analysis algorithms for single networks. Given an undirected
and unweighted network, the layers can be combined using the
primitive Boolean operations AND, OR and NOT.

1.1. Motivation

Most current multilayer analysis approaches implicitly assume
that the multilayer network is mapped to only one composed
network. In real life scenarios, however, queries on multilayer
networks can require testing over multiple composed networks
formed from different combinations of the layers. As an example,
consider a company deciding which routes (airplane, train, road,
etc.) to use for transporting material, under limited resources. They
may want to select combination of which two routes would give the
most connectivity. If the relations with respect to each condition is
represented as a layer, then () A~ n* composed networks have to be
analyzed, where 7 is the number of layers. Another example would
be a city trying to do a risk-benefit analysis of which businesses and
public places to re-open after lockdown. In this case, they would
want to identify the subset of places that maximizes the benefits but
lowers the risks. Assuming that each layer represents the possible
social interactions at each place, all possible combinations of the
layers have to be analyzed. Here the number of tests would be 2".

These examples demonstrate that the number of composed
networks increases exponentially with the layers of the multiplex,
and analyzing the entire set is computationally expensive. To date,
as discussed in Section 2.2, most multilayer analysis is based on
creating only one composed network, formed by combining all or a
subset of the layers using an OR operation. The problem of efficiently
creating different composed networks through varying combinations
of layers and operations has been rarely addressed.

1.2. Our contribution

Analysis of the different composed networks will incur some
redundant computations, since different composed networks can
have some of the layers in common. We propose to reduce
the number of redundant computations through a novel method
of network decoupling. In network decoupling, each individual
network layer is analyzed independently once and only once, and
then the results are combined as required. Network decoupling
(analyze and then combine) has several advantages as follows;

e Computational efficiency. Network decoupling reduces the
time for analysis. Analyzing each layer separately helps in
identifying the relevant edges per layer, and reduces the
number of edges to combine.

e Flexibility of combination. Network decoupling facilitates
incorporating changes to the multilayer network, such as
addition of a new layer or change in the structure of an old
layer. Using decoupling, only the added or changed layer has
to be analyzed, and combined as required.
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e Reduced information loss. When analyzing a composed
network, it is challenging to understand how the individual
layers contributed to the analysis. Using network decoupling,
since each layer is analyzed individually, their respective
contributions can also be identified.

1.3. Identifying communities in multilayer
networks

Here, we focus on computing communities in multilayer
networks using decoupling. Communities are groups of tightly
connected nodes. Using network decoupling, we first find the
communities in each individual network and then develop
aggregation functions, such that the communities from each layer
can be combined to produce the communities in the composed
network (Figure 1). The primary challenge is to design appropriate
aggregation functions, such that the communities obtained using
network decoupling are similar to those obtained by applying
community detection on the composed network'. Formally, our
problem can be stated as follows;

1.4. Problem statement
Given a set of layers Gy, Ga, ..., Gy, that are combined using
a Boolean operation @ to form the composed network, and
a community detection algorithm COMM, that is used to find
communities, develop an aggregation algorithm TIT, such that

COMM(ED(G))) ~ TTL,(COMM(Gy))

i=1

In other words, we aim to find an aggregation algorithm TII,
such that the results of finding the communities in the individual
layers and then aggregating them via TI, should be similar to
the communities obtained from the composed network where the
layers are combined using the Boolean operator €. Developing
the aggregation algorithm is challenging, since the structure of
the composed network can change after combination, and the
aggregation process has to account for that change when combining
the communities.

2. Overview of communities in
multilayer networks

We provide an overview of multilayer network, creation, type
of communities in MLN and how boolean operations can be used
to combine the layers.

1 We state that the communities should be similar rather than identical,
because community detection is non-deterministic, and even slight changes
in the algorithm or order in which the vertices are processed can slightly alter

the results.
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2.1. Creating multilayer networks

A multi-relational data set, can be represented as a
homogeneous multilayer network. Each feature is represented as
a separate layer. The set of entities remain the same in each layer.
The edges, based on relations between the entities, change across
the layers with respect to the corresponding feature.

We use the Internet Movie Database (IMDb) to illustrate how
a multiplex is constructed. The IMDDb is an online database that
contains information on television programs and movies including
actors, directors, genre, and year of release (IMDB-2018, 2018).
We create a multiplex where the entities represent actors and two
actors are connected to each other if they have acted in the same
movie. Each layer in the multiplex represents a movie genre, such
as comedy, drama, action, etc.

An example of the multilayer network is given in Figure 2.
We show two genres, comedy (f') and drama (f2) to form the
two layers, G; and G, respectively, and modeled the co-actor
relationship among 18 actors (denoted by nodes numbered from
1 to 18). Two actors are connected if they acted in movies of the
same genre. Note that although the same 18 actors are present in
both layers, the structure varies due to the difference in relations.
By taking the information from the two networks together we can
gain interesting insights to the data. For example, actors I3 and Ig
have never worked together in a drama, but have worked together
in a comedy. Also, observe that the actors I and I;4 have the most
connections in the drama genre, whereas actors Io, I1, and I;; are
the nodes with the most connections in comedy.

2.2. Pillar and semi-pillar communities in
multilayer networks

In recent literature, Hanteer (2020) and Braun et al. (2021)
have differentiated between the id of the entities and how they
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FIGURE 2
IMDb multiplex for co-actors with 18 actors and two genres:
comedy and drama.

appear in each layer. Specifically, in Magnani et al. (2021) an actor is
defined as an entity that can represent a particular person, animal,
organization, city, country etc. In Figures 3A, B, there are five actors
Al, A2, A3, A4 and A5 representing five different individuals.

We also differentiate between the actor and their existence in a
layer. A node is the existence of a given actor in a given layer. The
same actor present in different layers represents different nodes. In
Figures 3A, B, for each of the five actors Al, A2, A3, A4 and A5,
there is one node present in each layer. For example: for actor Al
we have nodes A1L1, A1L2, A1L3, A1L4 present in layers L1, L2,
L3 and L4, respectively. The node in layer k representing actor i, is
denoted as u;;. Using these definitions communities in multilayer
networks are defined in Magnani et al. (2021) as follows;
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FIGURE 3

Pillar (A) and semi-pillar community structure (B).
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2.2.1. Pillar community

The pillar community extends across all the layers. For each
actor that belongs to a community, all the nodes belonging to the
actor must belong to the same community. An example of pillar
community is presented in Figure 3A.

2.2.2. Semi-pillar community

The semi-pillar community extends across k layers where 2 <
k < Ni.Here, Np, is the total number of layers. As before, for each
actor that belongs to a community, all the nodes belonging to the
actor must belong to the same community for k layers. We see a
structure of semi-pillar community in Figure 3B.

2.3. Community detection in composed
networks

We now demonstrate how the different layers of the multiplex
can be combined, and how communities are detected in them.
Figure 4 shows the communities for the composed layers, Gianp2
(AND composition) and Gjorz (OR composition) for multiplex in
Figure 2.

Communities in AND-Composed Layers. AND composition
allows users to find communities that are related across all the
features. Algorithm 1 (termed C-SG-AND) shows the steps of
finding communities in the composed network, using a standard
community detection algorithm such as Infomap (Bohlin et al.,
2014). In an AND composition, the composed network is formed
of the edges that are common to all the networks, and then the
communities are found in the composed network. Some questions
that can be addressed by the AND composition are (based on data
sets in Section 4).

e Groups of actors who have expertise in working together in
both comedies and dramas (IMDb multiplex).

Frontiersin Big Data

e Authors who have co-authored a paper published in all of these
conferences: ICDM, SIGMOD and VLDB (DBLP multiplex).

e Accidents that have similar conditions for all of these features:
light conditions, weather conditions, road conditions, and
speed limit (Accident Multiplex).

Communities in OR-composed layers. OR-composition forms a
composed network that includes an edge if it appears in at least one
of the layers. Algorithm 2 shows the steps of this single network
based community detection using the OR operation, termed as C-
SG-OR. In an OR composition, the composed network is formed
of the union of the edges from all the networks, and then the
communities are found in the composed network. Examples of
queries that can be addressed by the OR composition are;

e Actors who have acted together in either a comedy or drama
(IMDb multiplex).

e Authors who have co-authored a paper published in at least
one conference (DBLP multiplex).

e Accidents that have at least one condition in common
(Accident Multiplex).

2.3.1. Bridge edges

We term the external edges that connect two communities as
bridge edges. Formally, if there exists an edge, (u;;, uﬁc) such that u;{
€ ¢} (community m in layer k) and u]k € C7, (community # in layer
k) where m # n, then this edge is a bridge edge. In the AND and OR
composed-layer of Figure 4, the actors I; and I5s belong to different
communities, but are connected by a bridge edge. The actors Iy and
I5 have a bridge edge in the OR composed network, but not in the
AND-composed network.

The AND composed networks have smaller, but more
communities, than the OR composed networks. In general, the
communities in the AND composed layer form subsets of the
communities in the OR composed layer. We will leverage this
property to develop our aggregation algorithms.
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3. Materials and methods

The traditional method of first forming the composed network
and then analyzing can be computationally expensive when
multiple composed networks have to be considered. This approach
can lead to redundant operations. Consider a multiplex with
four layers G;, Gz, Gz, and Gy. Also consider two composed
networks formed from the multiplex, namely, Gianp2anps and
G1aND24ND4- In this case, the composed layer related to Gianp2
remains unchanged, but has to be recomputed, leading to
extra computations.

We propose network decoupling for efficient community
detection on multiplex networks. The communities in each layer
are identified separately and the results are then aggregated to
obtain the results with respect to the composed network. Figure 4
shows the communities in each layer of the IMDb network.

The challenge is to develop aggregation algorithms, that can
correctly aggregate the communities from each of the layers to
obtain the communities over the composed network. We now
present the aggregation methods for AND and OR composition.
For ease of understanding we will discuss the algorithms with
respect to two layers. Note, however, that our algorithms can be
easily extended to multiple layers.

3.1. Community detection in composed
networks formed using the AND operation

We presented a vertex-based method for finding communities
in composed networks formed using AND operations (termed as
AND_composed network) in Santra et al. (2017). We first discuss
this work for completeness. Our algorithm relies on finding self
preserving communities.

3.1.1. Self preserving communities

A community is self preserving if the vertices in it are so
tightly connected such that any connected subset of the vertices
will form a smaller community rather than joining an existing
larger community. Formally, consider a graph G, containing a
community whose vertices are given by the set C. Consider a
subset of vertices C; C C, such that the subgraph induced by
Cs is connected, and |C;|] > 3. Remove the subgraph induced
by the set of vertices C \ C; from the original graph, and then
compute the communities again on the new graph G. If for all
subsets C; C C, C; forms separate community(ies) rather than
being fully or partially merged with other communities, then Cis a
self-preserving community. Algorithm 4 outlines the steps to detect
all self-preserving communities of a given graph.

A self-preserving community indicates that the community is
loosely connected with the remainder of the network. Removing
parts of the community will not change the structure or
composition of the other communities in the graph. Thus, the
subgraph forming a self-preserving community is not affected by
changes to the remainder of the network. The communities in Layer
2 in Figure 4, are all self-preserving, as tested by Louvain (Blondel
et al, 2008) and Infomap (Bohlin et al, 2014). That is, every
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community is tightly connected and for none of the communities,
there does not exist any subset of vertices, which when removed
from the original graph cause the original community to lose its
tightness and merge fully or partially with other communities 2.

When two layers are combined using an AND operation, then
certain edges are deleted from each layer, and thus from certain
communities. If the communities are self preserving, then this
deletion will only affect that community and not the others. This
is the main result of Santra et al. (2017), which is if the communities
from the layers are self preserving, then the communities of the AND-
composed graph can be obtained by taking the intersection of the
vertices of the communities from the individual layers.

3.1.2. Vertex based intersection (CV-AND)

In our paper (Santra et al., 2017), we proposed intersecting the
communities based on their vertices. We term this algorithm as CV-
AND (see Algorithm 3). Here we consider pairs of communities,
one from the first layer and the other from the second layer,
and obtain the new community by taking the common vertices
among the pair. The primary drawback of this method is that
if the communities are not self preserving, the results may not
be accurate.

As an example, consider the community C; in the comedy layer
of the network (Figure 4), which is made of the nodes {Is, I,
Iis, Iis, I17, I1s}. This community is not self preserving, as when
the subgraph induced by the subset of nodes {Is, I16} is removed
the layer Gj, then its intra-community edge connectivity becomes
less tight as compared to its connectivity with other communities
and CJ gets merged with C} to form one single community, thus
violating the condition of self-preservation. In this case, applying
CV-AND on community C; from the comedy layer and community
C‘z1 from the drama layer, which have the same vertices, gives one
large community, { Is, I11, ©Ii5.l16,[17,[18}. In reality, as seen in
Figure 4, two separate communities are formed, { Is,I17,I1g} and {
I, Iis,Iie}. This is a subtle but important difference because the
community id determines whether two entities are similar. If two
disconnected groups of vertices are placed in the same community
(as is possible when using CV-AND), then, two dissimilar groups
are marked to be similar, which is incorrect.

3.1.3. Edge based intersection (CE-AND)

We address these limitations by developing a community
detection method, CE-AND (see Algorithm 5), that is based on
the intersection of edges rather than vertices as follows. Here we
consider pairs of communities, one from the first layer and the
other from the second layer, and obtain the new community
by taking the common edges among the pair. For every pair of
communities, C/"(V/",E!") from layer G; and Cf(V]ﬁ,Ej”) from
layer Gj, the edge-based community intersection, E* N EJ’.“, will

produce k disconnected edge-sets, E}ANDJ., E,;AND]-, s EfANDj.

2 The notion of tightness can be quantified by density, modularity (Blondel
et al, 2008), average flow (Bohlin et al., 2014), and so on. Additionally,
self-preservation of communities can be verified using any well-established

community detection algorithms like Infomap and Louvain.
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Composed Layer Communities of the Multiplex shown in Figure 2. Top Left: Communities in AND composed layer. Bottom Left: Communities in OR
composed Layer. Top Right: Communities in Comedy layer of the IMDb Multiplex. Bottom Right: Communities in Drama layer of the IMDb Multiplex.

Require: Layers Gi,Gy,...Gy
Ensure: return L'?,Iz\{?.,x - a list of communities
1: G1AND2..ANDx < {G1 AND G, ...AND Gx}

{ GiaNp2.aNDy contains edges that exist in all the

networks G;, Gz, .. Gj.}
2: LYP = COMM(Gianpz..ANDx)

{Find communities in Gianpa.ANDx- }

Algorithm 1. Algorithm for C-SG-AND.

Require: Layers Gj,Ga,...Gyx

Ensure: return LYY - a list of communities

1:  Giore.orx < {Gi OR Gy ...OR Gy}
{ Giore..orx contains edges that are in at least one
of the networks G;, Gy, ., Gy}

2: L?,imﬁ = COMM (Gi0R2...0Rx)

{Find communities in Giora..ORx- }

Algorithm 2. Algorithm for C-SG-OR.

These edge sets will form the AND-composed communities,
C}ANDJ-, CiL‘NDj, . C{-‘ANDJ-. Figure 5 shows how the communities are
obtained for the example network using CE-AND. Comparing this
result to that in Figure 4, we see that most of the communities are
obtained with the exception of the singleton node 8. The common
bride edge (4, 5) is also missing.

3.1.4. Proof of correctness

Algorithms 3, 5 produce a set of disjoint clusters. Algorithm 1
produces a set of communities in the AND-composed network. We
consider these communities as the ground truth. We label an edge
as internal (if both end points are in the same community) and
external or bridge otherwise.

Frontiersin Big Data 06

Require: Communities from layers G; and Gj:

coMM(G;) = {CHVLED, CA(VEED), ..., CHVEED},
comM(Gj) = {C/(VLE)), C(VLE), ..., C(V].ED}
Ensure: return LEjV_AND - a list of communities

1. LiCjV—AND —y
{Initialize the set of communities to empty set.}
2: for each community pair say, C‘f and C}I do

\q 4 q
3 af =vi nvh
{Create new combined community by taking the
common vertices of every pair of communities.}
CV—AND CV—AND i
Li,j = Li,j U Ci,j
{Add new community to the set of communities.}

5: end for

Algorithm 3. Algorithm for CV-AND.

We assume that the communities in the individual layers and
the composed network have high clustering coefficients. That is,
we do not consider accidental communities such as an edge or a
line graph, that are formed due to an algorithmic artifact rather
than the structure of the network. If such trivial communities are
formed, we consider each vertex in them as a singleton community.
The clusters formed by the intersection algorithms do not have
this restriction, since they are not obtained using community
detection algorithms.

We now present a proof of how well the clusters obtain by
Algorithm 5, correspond to the ground truth communities. Let the
set of communities obtained from the composed network be I'. Let
the set of clusters obtained using the CE-AND algorithm be W.

Lemma 3.1. For any given cluster X € W, there will exist a set of
communities {CX, . .. Cff,}, where ClX eTI',1 < i< m,that forma
partition of the vertices in X, if and only if, the set of edges common
to all layers have the same label in all the layers.

frontiersin.org


https://doi.org/10.3389/fdata.2023.1144793
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Santra et al.

Require: Graph, G(V,E)
Ensure: return SPC - a set of self-preserving
communities
1: SPC = ¢
{Initialize the set of self-preserving communities
to an empty set.}
2: C = COMM(G)
3: for each community C,(V,,E,) € C do
4:  sp_check = true
5: for each V; C V,, where |[V{ > 3 do
6: E; =0
7: for each edge (u,v) € E, do
8: if u € Vi and v € V; then
9: E; = E; U {(u,v)}
10: end if
11: end for
12: if G(V,,E;) is a connected graph then
13: Vo=V (V, \ V)
14: E =19
15: for each edge (u,v) € E do
16: if u € V. and v € V' then
17: E = E U {(u,v)}
18: end if
19: end for
20: C' = COMM(G'(V',E))
{for each connected subset of at least 3
vertices from a given community, remove the
subgraph induced by the vertices not present
in the chosen subset from the original graph,
and then find the communities.}
21: for each C.(V,E) € C do
22: if (V,NV, # ¥ and E,NE, # #) and (V,\V, #
¢ and E,\E, # {)) then
23: sp_check = false
24: break
25: end if
26: end for
{check if there exists a new community that
has partial overlap with the given community
(Cp) . If yes, then this will mean that there
exists a subgraph of the given community
denoted by G(VEs) that merges fully or
partially with other communities, and hence
Cp is not self-preserving.}
27: end if
28: end for
29: if sp check = true then
30: SPC = SPC U {C,}
31: end if
32: end for

Algorithm 4. Algorithm for detecting self-preserving communities.

Proof. We first prove the condition that if the common edges have
the same label in all the layers, then the set of the union of vertices

in{CX,... CX} will form a partition of the vertices in X € W.

Frontiersin Big Data

07

10.3389/fdata.2023.1144793

Require: Communities from layers G; and Gj:

coMM(Gj) = {CHVLED), CXVELED, ..., CHVEED},
N 1yl pl 2(v2 12 VoY B

com(G) = {CH(VLE), GLE), ..., C(V.E))
Ensure: return LiCJ-EfAND - a list of communities

1: L[_(;_E—AND -

{Initialize the set of communities to an empty
set.}

2: for each community pair say, Cf and C]'? do

3 (a1} = (B nED

{Create list of k new communities by taking the
common edges of every pair of communities.}
LEFAND o [CEAND iy

{Add new communities to the set of communities.}

5: end for

Algorithm 5. Algorithm for CE-AND.
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FIGURE 5
AND-composition communities of the multiplex in Figure 2, using
CE-AND method.

Let the set of vertices belonging to the cluster X be Uy. Let the
set of vertices belonging to community CX be V¥, and UZ1" (V) =
V¥, i.e., the union of these vertices in V. Since the communities are
disjoint to prove that Vi is a partition of Uy, we have to prove that
Vy = Uy.

It is easy to show that there exists a set of communities such that
Ux C Vx. We simply select the communities such that all vertices
in Uy are included.

We prove Vx € Ux by contradiction. Let v be a vertex that
is in set Vx but not in Uy. Since CE-AND retains all the common
internal edges, and v is not in Uy, therefore v will be connected to
its neighbors in Vy by one or more external (or bridge) edges. Since
we assume that all common edges have the same labels, therefore
in none of the layers v is tightly connected to any subset of V.
Moreover, the communities in the composed network have high
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clustering co-efficient (or are singletons). Since v is not tightly
connected to vertices in Vx it cannot be part of the community.
Thus our assumption was wrong, and Vx C Uy. Taken together,
Vx € Ux and Ux C Vx; thus Ux = Vy, and Vx is a partition
of Ux.

For the only if part we show that if the common edges do not
have the same labels in all the layers, then there may not exist a set of
communities that form a partition of the vertices in a given cluster.

We provide such an example in Figure 6. The left-hand panels
of Figure 6 shows two layers. The top right panel shows the
communities obtained by the standard single network approach
(C-SG-AND). The bottom right panel shows the communities
obtained by CE-AND.

The community C3;_,yp produced by C-SG-AND contains
the edges (h, o) and (], s) that act as bridges in Layer L1 and L2. CE-
AND is not able to detect this community and instead produces two
communities, C‘éE_ anp and CéE_ anp» Which should be merged
into one by taking the bridge edges into account.

Also consider the community C¥;_ ,y, which consists of the
edges (a, i) and (e, m) that are bridges in Layer L1, but are part of
the community C3 in Layer L2. As only those edges that are within
community in all layers are considered, CE-AND produces two
communities, CZCE_AND and C%E_AND. O

3.2. Community detection in composed
networks formed using the OR operation

We now consider how to obtain communities in composed
networks formed using the OR operation (termed as OR composed
networks). The number of edges in the OR-composed network is
the union of the edges in each layer. For any two layers G; and G;j,
the total number of edges is |E; U Ej|.

The computational complexity of community detection
algorithms are at least proportional to the size of the graph. The
denser the graph, the more time will be required to find the
communities. Thus for the OR-composed case, our goal is not only
to lower the time by reducing the need to recompute different
compositions of layers, but also to reduce the size of the graph to
be analyzed.

To obtain communities of OR Composed Layers, we propose
the CE-OR algorithm (Algorithm 6; Figure 7). This method reduces
the size of the graph to be analyzed by processing the common
communities as a single node. The steps of the CE-OR algorithm
are as follows;

3.2.1. Overview of CE-OR

Find the common communities in all the network layers (Line
1) by using CE-AND. Then construct a metagraph (OR-MG), as
follows. Each metanode represents a set of vertices. Combine the
vertices of each common community into a metanode (Line 2-4).
Vertices that are not assigned into communities are each separately
assigned to a metanode (Line 5-9). Connect two metanodes, U
and V via a metaedge, if there exists an internal edge, in at least
one of the layers between an element (node) of U and an element
(node) of V (Line 10-14). Apply appropriate weights to these edges
(Line 15). Apply community detection on the metagraph (Line
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Require: Communities from layers Gi(V,E;) and Gj(V,Ej):

COMM(G;) = {CH(V}LE!), CHVEED, ..., CI(VLE)},
N 1yl pl 2(v2 12 VoY B

com(G) = {CH(VLE), GALE), ..., C(V.E))
Ensure: return LgEiOR - a list of communities

{ Find common communities using CE-AND}
1: Apply CE-AND on COMM(G;) and COMM(G;) to get
L[_(;_E—AND
Construct OR-MG(Vor—mG> Eor—mG)
{Assign nodes of each common community as a meta
node}
2: for each community Ci(Uy, Ex) € ijE*AND do
3:  Vor-mc = Vor-mc U Ui
4: end for
{ Assign the vertices not in any common community
as a meta node}
for each vertex u ¢ Cy ,VCk EL,SEiAND do
Uy =¢ {Create null set}
Uy =UgUu {Add u to the set}

Vor-mc = Vor-mc U Uk

O W 39 o U

end for

{Add Edges in the metagraph. Two metanodes, (U,V)
are connected if there is an intra-community edge
from one constituent node of U to a constituent
node of V in any one of the layers.}

10: for all all metanode pairs (U,V) € Vor—mc do

11: if 3 w,v,r: (u,v) € Ef or (u,v) € E/, u € U and v € V
then

12: Eor-mG = Eor-mc U (U, V)

13: end if

14: end for

15: Insert weights on the edges of OR-MG

16: L = COMM (OR-MG)

17: Expand the community representative nodes in each

community from L to get LgEiOR

Algorithm 6. Algorithm for CE-OR.

16). The communities in the OR-composed network are obtained
by expanding the metanodes in the communities obtained by the
CE-OR algorithm.

3.2.2. Assigning weights to metaedges

The metanodes represent vertex sets of varying sizes, and the
number of edges between them represent the degree of similarity.
Although the original graph is unweighted, the edges in the
metagraph are weighted to quantify the extent of this similarity. A
critical component of the CE-OR algorithm is based on correctly
assigning these weights. We connect two meta nodes only if at
least one pair of vertices from each meta node are connected by
an internal edge, in at least one of the layers.

For any meta edge (A, B), let V4 and Vp be the set of nodes in
the meta communities A and B, respectively. Further, let the set of
all edges (internal with respect to at least one layer) between V4
and Vp be E4 . We use the following two strategies to compute the
weight of the metaedge;
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FIGURE 6
Effect of bridge edges on AND composition

Correct Communities in GREEN
Incomplete/Incorrect Communities in RED

o Aggregation is the number of edges between the two
communities; w,(A, B) = |E4 gl

e Fractional is the fraction of connected nodes between the two
|Ea,B]
[Val#[ V|

communities; wy(A, B) =

Figure 7 illustrates how the CE-OR algorithm is applied to
the OR-composed layers of the IMDb graph. First the CE-AND
communities obtained in Figure 5 and the vertex Ig are used to form
the metanodes (Figure 7A). These nodes are connected based on
the internal edges. The edges are weighted using wy (Figure 7B).
A community detection algorithm on the metagraph produces the
communities of the OR-composed layers (Figure 7C). Comparing
with the communities obtained by the C-SG-OR method in
Figure 4, to those obtained by expanding the communities in the
metanodes (Figure 7D), we see that all the communities have been
obtained. However, the bridge edges between the communities
are missing.

3.2.3. Proof of correctness

We prove the correctness of our proposed CE-OR algorithm,
by comparing the communities obtained by CE-OR to those
obtained by executing community detection on the composed
network. We define a metanode cluster, Y, as all the metanodes
in a connected component of the metagraph. Let the communities
obtained through the C-SG-OR algorithm be A.
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Lemma 3.2. For a given metanode cluster Y, there will exist a set
of communities {CY, . .. C};}, where CiY € A,1 < i < m,such that
{cy, ... C};} forms a partition of the vertices in Y, if and only if; all
the internal edges of the communities in A were internal edges in
at least one of the layers.

Proof. Let Uk be the set of vertices belonging to the metanode
cluster Y, and let Vg be the union of the vertices in the communities
{CY,...CY}. For the if direction it is sufficient to prove that Vi =
Uk.

Uk S Vg, can be easily obtained by selecting the communities
to form Vi such that all vertices of Uk are included. To prove
Vk < Uk by contradiction, we assume that there exists a
vertex u € Vg, that is not in Ug. This means that u is
connected to at least one vertex in Vi by bridge edges (or not
connected at all). Thus at least one of the communities has an
internal edge that was bridge edge in all the layers. This goes
against our criteria that all internal edges for communities in
the composed network, should be internal in at least one of the
layers. Thus our assumption is wrong and Vx < Ug. Since
the communities are disjoint and Ug = Vk, thus the statement
is proven.

To prove the only if direction, we show that if the communities
in the OR-composed layers have internal edges that were bridge
edges in all the layers, then there may not exist a set of
communities that form a partition for the vertices in a given
metanode clusters.
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FIGURE 7
Illustrative flow (A—D) of CE-OR algorithm on the example graph.
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Effect of bridge edges on OR composition

An example of this is given in Figure8. The left-hand  single network approach (C-SG-OR). The bottom right
of panels show two layers of the network. The top right panel shows the communities obtained by our proposed
panel shows the communities obtained by the standard  CE-OR method.
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Consider the community Cj; o, generated by C-SG-
OR approach that has edges (i, 1), (h, m), (j, o) and (I,
t) which are not internal edges in any of the layers, and
are present as bridge edges in only one of the layers.
These edges will not be part of the metagraph and thus
CE-OR does not know that CE-OR, thus,
generates three communities CZCE_OR, C3CE_OR and C‘éE_OR,

they exist.

instead of merging them into one community, as per the
C-SG-OR method.

However in the community Ci; o, generated by C-SG-
OR, the edges (a, b) and (d, f) are bridge edges in one
layer but are intra-community edges in another layer. Therefore
these edges will be part of the metagraph. Thus CE-OR
can use these edges and correctly generate the community

1
CCE —OR-*

3.2.4. Implications and limitations

The implication of Lemma 3.1 and Lemma 3.2 is that the
CE-AND or CE-OR operations are successful if they create
clusters that contain one or more communities in the composed
networks in their entirety. Thus the communities can be
divided into groups, such that each group can be mapped
to exactly one cluster formed by the CE-AND or CE-OR
operation. Therefore, the vertices in the composed network can
be partitioned into subgraphs, with each subgraph relating to a
cluster. Hence CE-AND and CE-OR operations are successful
when each layer is formed of several loosely connected subgraphs,
and bridges connecting the subgraphs do not change across
the layers.

The primary limitations of our CE-AND and CE-OR algorithms
is due to the non-inclusion of bridge edges. In the AND-
composed network, we rationalize this non-inclusion by positing
that communities formed solely of bridge edges cannot be dense,
and hence are not strong communities. In the OR-composed
network, we only exclude an edge if it is a bridge edge in all
the layers.

3.3. CE-OR as a building block for pillar and
semi-pillar communities

We demonstrate how CE-AND and CE-OR can be used
as building blocks for the pillar and semi-pillar communities
described in Section 2.2. Note that pillar and non-pillar
communities are not dependent on how the networks/layers are
combined, but on which communities are common across a given
set of layers.

3.3.1. Creating pillar communities

Since in pillar communities the same set of vertices form
communities in every layer, therefore as per Lemma 3.1, the
communities formed by CE-AND will be pillar communities.
However, due to the strict restrictions of the CE-AND criteria, i.e.
the edge has to be present in every layer, some vertices from pillar
communities may be missed. To obtain these missing vertices, we
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then extend the communities found in CE-AND as per Algorithm 6
to form CE-OR communities. As per our experimental results
in Section 4.2.2, we observe that CE-OR provides more accurate
pillar communities.

3.3.2. Creating semi-pillar communities

To find the semi-pillar communities, we take combination of
all possible p layers from k layers, where 2 < p < k. For each
combination of layers we compute the communities using CE-
AND. Note that since we use the decoupling method, therefore
we need to compute the communities in each layer exactly once,
and then combine the results. We identify the communities with
the highest number of nodes, and extend them when possible
using CE-OR. These communities across the layers form the
semi-pillar communities.

4. Empirical results

We present the performance and accuracy of our CE-AND and
CE-OR methods. First, we compare with the communities obtained
from composed network created using AND/OR operations to
merge the layers. Second, we compare with the ground truth
pillar and semi-pillar communities given in Magnani and Rossi
(2013). We use the popular community detection algorithm
Infomap (Bohlin et al.,, 2014), both to find the communities in
the single network approach (C-SG-AND, C-SG-OR) and the
network decoupling approach(CE-AND, CE-OR). Our algorithms
are implemented in C++ and were executed on a Linux machine
with 8 GB RAM and installed with UBUNTU 16.10.

4.1. Comparison with communities on
composed networks

Data sets used. We performed our experiments on multiplexes
created from three real-world and one synthetic data set. To test on
larger networks with more vertices, we created the synthetic data
using the RMAT Chakrabarti et al. (2004) graph generator. The
details of the data sets are as follows;

e IMDb: From the IMDD data set (IMDB-2018, 2018), the nodes
in the multiplex represented the actors. In the first layer, (L1,
co-acting) two nodes are connected if they co-acted in at least
one movie. In the second layer, (L2, rating) two nodes are
connected if the average ratings of their movies were similar.
In the third layer, (L3, genre) two nodes are connected if they
acted in movies of similar genres. For every actor, a vector was
generated with the number of movies for each genre he/she has
acted in. Two actors are connected if the Pearson’s Coeflicient
between their corresponding genre vectors was at least 0.9°.
Vertices:9,485; Edges in L1:45,581; Edges in L2: 13,945,912;
Edges in L3:996,527.

3 The choice of the threshold is based on how actors are weighted against

the genres.
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Comparison of accuracy of CE-AND and CV-AND based on NMI and m-NMI.
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e DBLP: From the DBLP data set of academic publications (dat,
2013), we selected all papers published from 2000 to 2018
in three conferences VLDB (L1), SIGMOD (L2) and ICDM
(L3). Two authors (nodes) were connected if they had co-
authored a paper for the conference corresponding to the
layer. Vertices:17,204; Edges in L1:5,831; Edges in L2: 17,737;
Edges in L3:12,986.

e Accident: From the data set of road accidents that occurred
in the United Kingdom in 2014 (UKRoadData, 2014), two
nodes (representing accidents) are connected in a layer if
they occurred within 10 miles of each other and have similar
Light (L1), Weather (L2) or Road Surface Conditions (L3).
Vertices:5,000; Edges in L1:193,860; Edges in L2: 235,175;
Edges in L3:216,397.

e RMAT: The RMAT generator creates networks based on the
Kronecker product of a matrix. We set the number of vertices
to 2!° and the edges to roughly eight times the number of
vertices. We set the probabilities in each quadrant of the
matrix as a=0.65, b=c=d=0.15 to create a scale-free graph.

The first layer (L1) was the graph obtained by the
generator. We applied cross perturbation to create layers (L2
and L3), as follows We selected two edges (a, b) and (c, d),
and replaced them with new edges (a, ¢) and (b, d). Thus
the number of edges and the degree distribution remain the
same but the structure changes. In layer L2 we applied this
perturbation to 1% of the edges and in layer L3 to 5% of
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the edges. Vertices:32,768; Edges in L1:230,445; Edges in L2:
230,445; Edges in 1.3:230,445.

Ground Truth and Accuracy Metrics: We use the communities
obtained using C-SG-AND and C-SG-OR as the ground truth.
We disregard singleton communities. We use two metrics to
evaluate the accuracy of the communities - i) Normalized Mutual
Information (NMI) that measures the quality with respect to the
participating entity nodes only and ii) modified-NMI that also takes
into account the topology of the communities. For both metrics
higher is better, with maximum value of 1 and minimum of 0
[definitions in Labatut (2015)]. Each multiplex has 3 layers. Thus, a
total of 4 compositions are possible (3 for 2-layers and 1 3-layers).
We compare results for 8 (4 combinations X 2 Boolean operations)
composed networks.

4.1.1. Accuracy of the aggregation algorithms

For the AND-composed networks we show in Figure 9, the
average NMI and m-NMI of all the four multiplexes with respect
to the ground truth for the CV-AND and CE-AND methods. The
results show that the accuracy obtained with CE-AND is higher than
that from CV-AND.

For the OR-composed networks we show in Figure 10, the
average NMI and m-NMI of all the four multiplexes with respect to
the ground truth for the two weighting metrics; Aggregation (w,)
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and Fractional (Wf). The results show that the accuracy obtained
using both the metrics are similar.

Table 1 shows the accuracy for the different multiplexes with
respect to CE-AND for the AND composition and CE-OR with
Fractional Weights. Nearly all the values are high, > 70%. Some
low values occur for the CE-OR method. An egregious example
is IMDDb (L1, L2) for which the accuracy results are less than 1%!
In this case the metagraph had 193 nodes, and on running the
community detection algorithm 56 communities were obtained.
However, the ground truth communities obtained by C-SG-OR had
only 2 communities. This happened because there existed many
bridge edges in the layers that were not included in the metagraph.
Moreover, because the communities represented in the metanodes
were small in size, the edge weights were also lower and thus the
communities could not combine.

4.1.2. Performance of the aggregation algorithms

We now compare the time taken to obtain the communities
using the aggregation methods (CV-AND, CE-AND and CE-OR)
with respect to C-SG-AND and C-SG-OR. Figure 11 shows that the
time to compute the communities over all the different composed
layers is significantly lower for both CV-AND and CE-AND
methods than C-SG-AND. When the layers are sparse, CE-AND
will be faster than CV-AND, as can be seen for DBLP multiplex.
However if the network layers are dense, then the edge-based
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intersection approach of CE-AND has a higher cost as compared
to the CV-AND.

Figure 12 gives the time for executing CE-OR. For CE-OR, CE-
AND is used as a subroutine. One scan of community edges is
required to generate the meta graph (OR-MG) on which we apply
Infomap. If the layers are sparse and the multiplex contains many
bridge nodes, then cost of generating the meta graph and applying
Infomap will become an overhead as compared to simply applying
Infomap on OR graph (C-SG-OR approach). This can be seen
from the DBLP multiplex where sparse layers (density of densest
layer (SIGMOD) = 0.0001) make the CE-OR 67% less efficient as
compared to C-SG-OR. However, for multiplexes with fewer bridge
edges (IMDb, Accident), CE-OR is significantly faster.

4.2. Comparison with existing multilayer
community detection algorithms

We compare the performance of our proposed decoupling
based community detection algorithms against 16 community
detection algorithms for multiplexes presented in (Magnani et al.,
2021). We discuss how our multi-layer Boolean operation-based
community definition can be used as a building block finding pillar
and semi-pillar communities. We illustrate through experiments
that our CE-OR algorithm achieves a better accuracy as compared to
the baseline algorithms across a number of ground truth data sets.

frontiersin.org


https://doi.org/10.3389/fdata.2023.1144793
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Santra et al.

10.3389/fdata.2023.1144793

TABLE 1 Accuracy Values using CE-AND and CE-OR on the different compositions of the data sets.

Multiplex L1, L2, L3
NMI m-NMI
Accuracy Values using CE-AND
IMDB 0.97 0.93 0.98 0.97 0.88 0.86 0.99 0.99
DBLP 0.92 0.84 0.99 0.96 0.98 0.96 0.98 0.95
Accident 0.96 0.98 0.94 0.98 0.91 0.96 0.88 0.95
RMAT 0.92 0.82 0.90 0.79 0.90 0.78 0.90 0.77
Accuracy Values using CE-OR using Fractional Weights
IMDB <0.01 <0.01 0.97 0.99 1 1 1 1
DBLP 0.83 0.79 0.87 0.80 0.75 0.60 0.71 0.56
Accident 0.88 0.93 0.94 0.98 0.98 0.99 0.86 0.93
RMAT 0.74 0.64 0.76 0.59 0.75 0.55 0.73 0.54

4.2.1. Ground truth data sets and metric

We use two real world data sets: AUCS and DKPOL and
four synthetic data sets: PEP, PNP, SEP and SNP for calculating
the accuracy of the proposed aggregation algorithms. Information
about the real world data sets along with their ground truth
community structure, as well as the code for generating the
synthetic data sets and their communities are available in: https://
bitbucket.org/uuinfolab/20csur/src/master/ (Magnani et al., 2021).
The real world data set AUCS is 90 percent pillar partitioning, real
world data set DKPOL and synthetic data sets PEP, PNP are 100
percent pillar partitioning. The synthetic data sets SEP and SNP
have percentage of pillars column set to 0 since the data set is
semi-pillar partitioning. More details are available in Magnani et al.
(2021).

We use the omega index for comparing the results of our
decoupling methods with respect to ground truth community
structure for a data set. We select this metric to be consistent with
the measures in Magnani et al. (2021). We evaluate the performance
of our algorithm with respect to the existing algorithms in 4.2.2.

Omega index value is calculated by taking the mean of the
number of agreements on two community sets C; and C, and
normalizing by the expected number of agreements between the
two community sets. When two nodes are present together in the
same number of communities (j) in both community sets, it is
called an agreement. The value of omega index ranges between 0
and 1. Here, 1 means two sets of communities are identical to each
other. Formally, the omega index is computed as;

Omega(Cy, Cp) = LG o ipecel61.C)
Observed(Cy, Cy) = I\l, Z]l.:O(Aj)
Expected(Cy, Cy) = # Z]lvzo N;1Nj; and,

I = the maximum number of times a node pair appears

where,

together in both C; and C, at the same time,

N = total number of possible node pairs,

Aj = number of node pairs that are grouped together j times in
both communities, and

Nj1, Nj2 = number of node pairs that have been grouped
together j times in C;, Cy, respectively.
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4.2.2. Accuracy results

We have the ground truth communities available for real world
and synthetic data sets. We apply our aggregation algorithms (CE-
OR) on the data set AUCS which is 90 percent pillar, DKPOL, PEP
and PNP which are 100 percent pillar, and SEP and SNP, which are
semi-pillar.

We compared the accuracy of 17 community detection
algorithms along with our proposed CE-OR aggregation algorithm
over real world and synthetic data sets which have ground truth
community structure available. The algorithms used are: flat_nw
and flat_ec (Berlingerio et al.,, 2011), abacus (Berlingerio et al,
2013), cpm (Afsarmanesh and Magnani, 2016), glouvain (Mucha
et al, 2010), infomap (De Domenico et al, 2015), scml (Dong
et al, 2013), pmm (Tang et al, 2009) (Tang et al, 2012),
lart (Kuncheva and Montana, 2015), emcd (Tagarelli et al,
2017), mlp (Boutemine and Bouguessa, 2017), and multiplex-
leiden (Gurov et al., 2022). The results show that on an average the
CE-OR (Metric-Aggregate) algorithm has 89% accuracy and CE-OR
(Metric-Fraction) algorithm has 82% accuracy, which is significantly
higher than the other methods.

In Figure 13, we present the accuracy (omega index values)
values for the 16 existing community detection algorithms along
with our proposed CE-OR aggregation algorithm for each data set.
However, for AUCS data set, CE-OR does not perform better than
many of the existing algorithms as AUCS does not have complete
pillar partitioning. Our CE-OR algorithm improves the accuracy
for data sets with 100% pillar partitioning community structure or
known semi-pillar community structure. All other data sets with
pillar partitioning the accuracy of CE-OR ranges from 85% (DKPOL)
to 100% (PEP).

5. Networks composed using
extended boolean expressions

We now define the NOT composition, and demonstrate our
proposed network decoupling methods can be used to efficiently
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Efficiency of CE-OR as compared to C-SG-OR.
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FIGURE 13

Accuracy (Omega index value) of different algorithms (existing algorithms along with CE-OR) for ground truth data sets.

groups of nodes that are not strongly connected. Examples of queries

and accurately analyze networks composed of a combination of

that can be answered using NOT are

Boolean expressions.

e Groups of actors who have not acted together in a comedy

(IMDb multiplex)
e Groups of authors who have never co-authored a paper in

5.1. NOT composition

VLDB (DBLP multiplex)
e Groups of accidents that did not have same Light condition

NOT of a layer will represent the complement of the edge set of

that layer, i.e. the new layer will have all those edges that are not part

(Accident multiplex)

of the original layer. Communities in a NOT layer will represent the

frontiersin.org

16

Frontiersin Big Data


https://doi.org/10.3389/fdata.2023.1144793
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Santra et al.

With respect to the single graph approach, these types of
analysis can be handled by first generating the NOT layer and
then applying community detection. AND, OR and NOT can
be applied in different combinations, expanding the spectrum
of analysis options. Although taking the complement of a layer
is expensive and increases the number of edges in that layer,
the cost depends on the graph density of the layer. Also,
rewriting the expressions using the De Morgan’s law can reduce
the costs.

5.2. General boolean expression: accuracy,
efficiency and drill down analysis

We demonstrate how general Boolean expressions can be
computed using the decoupling approach. We use the DBLP
multiplex with authors who publish papers at different conferences
to address interesting analysis objectives. We consider all papers
that were published from 2003 to 2007 in two high ranked
conferences (VLDB and SIGMOD) and two medium ranked
conferences (DASFAA and DaWaK). Based on whether two
authors (nodes) have co-authored a paper in a particular
conference, four layers were generated - all with the same
5116 vertices. VLDB (L1; Edges 3912; Communities 327),
SIGMOD (L2 Edges 3303; Communities 254), DASFAA (L3
Edges 1519; Communities 229) and DaWaK (L4 Edges 679;
Communities 154).

Few interesting analysis objectives that can be computed
on the

DBLP multiplex using Boolean expressions are

as follows:

e Which collaborating groups who have published in both the
highly ranked conferences, but have never published in either of
the medium ranked conferences?

e Which co-author groups have only been able to publish in the
low to medium rank conferences?

e Which author groups have published only in VLDB?

Based on the requirements of the analysis, it is important
to figure out (a) the multiplex layers required and (b) the
order in which the layers have to be composed using AND,
OR, NOT. For the first analysis, “Which are collaboration
groups who have published in both the highly ranked
conferences, but have never published in either of the
medium ranked conferences?”, we will compare the evaluation
process for the traditional single graph approach and the
graph  approach
(SG): For the SG approach, the Boolean expression will

proposed  decoupling approach.  Single
correspond to

SG: COMM|[(VLDB AND SIGMOD) AND NOT (DASFAA OR

DaWaK)]

This corresponds to first generating the required
composed  single graph and then  applying the
community detection algorithm to find the final set of
communities. These communities acts as the ground
truth. We wused Louvain Blondel et al. (2008) to find

the communities.
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5.2.1. Network decoupling approach

Using network decoupling, this expression will correspond to
DEC1: COMM(VLDB) CE-AND COMM(SIGMOD) CE-AND
COMM (NOT (DASFAA OR DaWaK))

That is, the layer-wise communities are composed to obtain
the final set of communities. Alternatively, De Morgan’s Laws can
be applied to obtain another expression for the decoupling based
boolean composition -

DEC2: COMM(VLDB) CE-AND COMM(SIGMOD) CE-AND
COMM (NOT(DASFAA)) CE-AND COMM(NOT (DaWakK))

We compare the efficiency of DEC1 and DEC2 with the
single graph approach. We will evaluate the NOT (DASFAA OR
DaWaK) by using the traditional OR of two layers and then take its
complement. DEC2 uses the decoupling approach using operators
CE-AND, and NOT as discussed in this paper. The layers of DBLP
used above are very sparse, especially DASFAA and DaWaK. Hence,
DEC2 will not be as efficient as DEC1 since it has to compute the
complement of two layers (resulting in dense graphs) and then
apply the decoupling approach. DECI, on the other hand, has only
one complement to compute.

5.2.2. Accuracy results

For accuracy, the NMI and m-NMI values for the communities
obtained by DECI and DEC2 have been compared against the
communities obtained by SG. Both method, DEC1 and DEC2,
provide more than 95% accuracy.

5.2.3. Performance results

Both DEC1 and DEC2 resulted in the same set of communities.
In DECI, the number of CE-AND compositions are 2 whereas in
DEC2 there are 3. Moreover, as the layers of the DBLP multiplex
are sparse, their complement is dense. Thus, in DEC2 the Louvain
is applied to two dense NOT layers. Thus, DEC2 will have a higher
cost as compared to DEC1. Our results show that DEC1 is 2 times
faster than DEC2. Therefore, it is very important to understand
when to rewrite the expression (using De Morgans, Distribution,
etc.) especially when the NOT operator is used on a composition
of layers. Finally, it is interesting to note that even with 2 dense
graphs, DEC2 comes out better than the single graph approach. This
further validates our decoupling approach even in the presence of
NOT operator.

5.2.4. Drill-down analysis

One hundred and two communities are obtained from DEC1
and DEC2 that satisfy the requirement. Figure 14 shows few
well-known groups most of whose members had collaborated
on a paper that was published in both VLDB and SIGMOD,
but never in DASFAA or DaWaK in the period from 2003
to 2007.

e Figure 14A community has researchers like Surajit
Chaudhari who won the VLDB 10-Year Best Paper
Award (2007) with Vivek Narasayya and VLDB Best Paper
Award (2008) with Nicolas Bruno, apart from winning ACM
SIGMOD Contributions Award (2004).
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FIGURE 14

Drill-down analysis: prominent author groups. (A—C) represent author groups where most of them are published in VLDB and SIGMOD but never in

DASFAA or DaWaK (time: 2003 to 2007)
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e Figure 14B has researchers like Divyakant Agrawal who has
24000+ citations (Google scholar).

e Peter A. Boncz and Stefan Manegold from Figure 14
(c) published a highly cited paper (350+ citations for
MonetDB/XQuery) in SIGMOD 2006, and also won the
VLDB 10-year award.

6. Related work

Recently, many analytical tasks have used multilayer networks
to handle varying interactions among the same or different sets
of entities such as co-authorship network in different conferences
(Boden et al, 2012), citation network across different topics
(Ng et al,, 2011), interaction network based on calls/bluetooth
scans (Dong et al., 2012) and friendship network across different
social media platforms Magnani and Rossi (2013). Review of
current work on multilayer networks are given in Boccaletti et al.
(2014), Kivel et al. (2014), Kim and Lee (2015). Related software
include Muxviz (De Domenico et al,, 2014; Domenico, 2014),
MAMMULT (Battiston et al., 2014; Nicosia and Battiston, 2015)
and Pymnet (Kivel, 2018).

Community detection on a simple graph involves identifying
groups of vertices that are more connected to each other than to
other vertices in the network. Most of the work in the literature
considers single networks where the objective is to optimize
parameters such as modularity (Clauset et al., 2004) or conductance
(Leskovec et al, 2008). As the combinatorial optimization of
community detection is NP-complete (Brandes et al., 2003), a
large number of competitive approximation algorithms have been
developed (see reviews in Fortunato and Lancichinetti, 2009; Xie
etal., 2013.)

Frontiersin Big Data

Recently, algorithms have been
extended to Homogeneous MLNs (see reviews Fortunato and
Castellano, 2009; Kim and Lee, 2015.) Algorithms based on

matrix factorization Dong et al. (2012), cluster expansion

community detection

philosophy (Li et al., 2008), Bayesian probabilistic models (Xu
et al,, 2012), regression (Cai et al., 2005) and spectral optimization
of the modularity function based on the supra-adjacency
representation (Zhang et al., 2017) and a significance based score
that quantifies the connectivity of an observed vertex-layer set
through comparison with a fixed degree random graph model
(Wilson et al, 2017) have been developed. However, all these
approaches analyze a MLN either by aggregating all (or a subset
of) layers of a HOMLN using Boolean and other operators or by
considering the entire MLN as a whole, leading to issues with
respect to loss of information and computational inefficiency.

Recent works include Jin et al. (2019) using a Bayesian
probabilistic model based on multiplex semantics to find
communities in multiplex networks, DeFord et al. (2019) using
spectral clustering approach and Li et al. (2023) using motifs
for identifying higher-order interaction in each layer, and then
agglomerateing the layers. A new algorithm named semidefinite
programming (SDP) was proposed in Tang et al. (2023) that
uses the node attributes and network structure information
to identify communities on node-attributed networks and the
multiplex network. The authors in Lyu et al. (2022) proposed
a technique named evolutionary multiplex optimization to
identify communities in a multiplex network that solves the
problem of community detection in each layer as a multitask
optimization problem.

To identify the communities in the temporal multiplex graph,
the authors in Rebhi et al. (2021) proposed a two-step method to
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detect communities in a temporal multiplex network where the
first step uses a new hybrid community detection algorithm to
identify partition and the second graph identifies the final stable
communities. Ideas like semi-aggregation have also been used in
Kis and Gasko (2020) where each layer is altered based on the
structure of the layers on other layers. A new stochastic block
model-based community detection algorithm is proposed in Liu
et al. (2020) that uses a two-stage procedure avoiding the concept
of same node membership. The authors in paper (Huang et al,
2019) propose a model based on the concepts of generic localized
community label constraints, the Stochastic Block Model, and
the Belief Propagation algorithm. The bayesian model has been
found to effectively identify community structure from a multiplex
network in Amini et al. (2022). A supervised algorithm based
on layer convex flattening and modularity optimization of the
network, as shown in Gurov et al. (2022), has been developed for
community detection in multiplex networks.

Bio-inspired optimization has successfully solved the problem
of community detection in network that we observe from the
work Osaba et al. (2020) where the authors present in detail
the problem of community detection from view of bio-inspired
computation. Works like Al-sharoa and Rahahleh (2023) show
a deep robust auto-encoder nonnegative matrix factorization
(DRANMEF) approach consisting of a deep structured decoder
and encoder components to detect the community structure
in networks.

7. Discussion and future work

We presented algorithms for efficiently finding communities in
Boolean composed layers of multiplex networks. The results show
that for most cases our algorithms are significantly faster than the
standard methods and produce results of similar quality. The only
cases that our algorithm fails is when the layers have significantly
more bridge edges. We further demonstrated that our network
decoupling methods can be used as building blocks for different
types of multilayer communities in literature, such as pillar and
semi-pillar communities. In these cases too, network decoupling
produces results with higher accuracy compared to other baseline
methods. The only case our method produces lower accuracy is
when a network designated to have pillar communities does not
have the complete pillar information. Given these results we can
posit that network decoupling is an effcient and effective method
for finding communities in homogeneous multilayer networks.

In future, we will investigate how to include some percentage
of bridge edges without increasing the computation time. We also
plan to explore adaptive techniques that can select between the

References

Afsarmanesh, N., and Magnani, M. (2016). Finding overlapping communities in
multiplex networks. arXiv [Preprint] arXiv.

Al-sharoa, E., and Rahahleh, B. (2023). Community detection in networks through
a deep robust auto-encoder nonnegative matrix factorization. Eng. Appl. Artif. Intell.
118:105657. doi: 10.1016/j.engappai.2022.105657

Amini, A., Paez, M., and Lin, L. (2022). Hierarchical stochastic block
model for community detection in multiplex networks. Bayesian Analy. 1, 1-27.
doi: 10.1214/22-BA1355

Frontiersin Big Data

10.3389/fdata.2023.1144793

network decoupling and standard methods as suitable. Finally,
we also aim to develop methods to include meaningful NON-
BOOLEAN combinations for weighted networks.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

AS and FI conducted the experiments and wrote the paper. SC,
SB, and KM helped in designing the experiments. SC and SB helped
in writing and editing. All authors contributed to the article and
approved the submitted version.

Funding

This work was funded by NSF CCF#1955798, CCF#1955971,
and CCF#2132507.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.
1144793/full#supplementary-material

Structural measures
10.1103/PhysRevE.89.

Battiston, F., Nicosia, V.,
for multiplex networks. Phys. Rev.

and Latora, V. (2014).
89, 032804. doi:

032804

Berlingerio, M., Coscia, M. and Giannotti, F. (2011). “Finding
and  characterizing communities in  multidimensional  networks” in
2011 international —conference on advances in social networks analysis

and  mining. IEEE,  490-494.  doi:  10.1109/ASONAM.

2011.104

Kaohsiung:

frontiersin.org


https://doi.org/10.3389/fdata.2023.1144793
https://www.frontiersin.org/articles/10.3389/fdata.2023.1144793/full#supplementary-material
https://doi.org/10.1016/j.engappai.2022.105657
https://doi.org/10.1214/22-BA1355
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1109/ASONAM.2011.104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Santra et al.

Berlingerio, M., Pinelli, F., and Calabrese, F. (2013). Abacus: frequent pattern
mining-based community discovery in multidimensional networks. Data Min. Knowl.
Discov. 27, 294-320. doi: 10.1007/s10618-013-0331-0

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Statist. Mech. 2008, P10008.
doi: 10.1088/1742-5468/2008/10/P10008

Boccaletti, S., Bianconi, G., Criado, R., del Genio, C., Gmez-Gardees, J., Romance,
M., et al. (2014). The structure and dynamics of multilayer networks. Phys. Rep. 544,
1-122. doi: 10.1016/j.physrep.2014.07.001

Boden, B., Giinnemann, S., Hoffmann, H., and Seidl, T. (2012). “Mining
coherent subgraphs in multi-layer graphs with edge labels,” in Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: Association for Computing Machinery, 1258-1266.
doi: 10.1145/2339530.2339726

Bohlin, L., Edler, D., Lancichinetti, A., and Rosvall, M. (2014). “Community
detection and visualization of networks with the map equation framework,
in  Measuring Scholarly Impact: Methods and Practice, Ding, Y., Rousseau,
R, and Wolfram, D. (eds.). Cham: Springer International Publishing, 3-34.
doi: 10.1007/978-3-319-10377-8_1

Boutemine, O., and Bouguessa, M. (2017). Mining community structures in
multidimensional networks. ACM Trans. Knowled. Discov. Data (TKDD). 11, 1-36.
doi: 10.1145/3080574

Brandes, U., Gaertler, M., and Wagner, D. (2003). “Experiments on graph clustering
algorithms,” in 11th Europ. Symp. Algorithms. Berlin, Heidelberg: Springer, 568-579.
doi: 10.1007/978-3-540-39658-1_52

Braun, G., Tyagi, H., and Biernacki, C. (2021). “Clustering multilayer graphs with
missing nodes,” in International Conference on Artificial Intelligence and Statistics. New
York City, NY: PMLR, 2260-2268.

Cai, D., Shao, Z., He, X, Yan, X,, and Han, J. (2005). “Mining hidden community
in heterogeneous social networks,” in Proceedings of the 3rd International Workshop
on Link Discovery, LinkKDD 05. New York, NY, USA: Association for Computing
Machinery, 58-65. doi: 10.1145/1134271.1134280

Chakrabarti, D., Zhan, Y., and Faloutsos, C. (2004). R-MAT: A Recursive Model for
Graph Mining. Philadelphia, PA: STAM, 442-446. doi: 10.1137/1.9781611972740.43

Clauset, A., Newman, M. E., and Moore, C. (2004). Finding community structure in
very large networks. Physical Rev. 70, 066111. doi: 10.1103/PhysRevE.70.066111

DBLP. (2013). DBLP Dataset. Available online at: http://dblp.uni-trier.de/xml/

de Domenico, M. (2014). MuxViz: Framework for the Multilayer Analysis and
Visualization of Networks. Universidad Rovira i Virgili. Available online at: http://
muxviz.net/

De Domenico, M., Lancichinetti, A., Arenas, A., and Rosvall, M. (2015). Identifying
modular flows on multilayer networks reveals highly overlapping organization in
interconnected systems. Phys. Rev. 5,011027. doi: 10.1103/PhysRevX.5.011027

De Domenico, M., Porter, M. A., and Arenas, A. (2014). MuxViz: a tool for
multilayer analysis and visualization of networks. J. Complex Networ. 3, 159-176.
doi: 10.1093/comnet/cnu038

DeFord, D. R, Pauls, S. D., et al. (2019). Spectral clustering methods for
multiplex networks. Physica A: Statistical Mechanics and its Applications 533(C).
doi: 10.1016/j.physa.2019.121949

Dong, X., Frossard, P., Vandergheynst, P., and Nefedov, N. (2012). Clustering with
multi-layer graphs: a spectral perspective. IEEE Trans. Signal Process 60, 5820-5831.
doi: 10.1109/TSP.2012.2212886

Dong, X., Frossard, P., Vandergheynst, P., and Nefedov, N. (2013). Clustering on
multi-layer graphs via subspace analysis on grassmann manifolds. IEEE Trans. Signal
Process 62, 905-918. doi: 10.1109/TSP.2013.2295553

Fortunato, S., and Castellano, C. (2009). “Community structure in graphs,” in
Ency. of Complexity and Systems Science. New York, NY: Springer. 1141-1163.
doi: 10.1007/978-0-387-30440-3_76

Fortunato, S., and Lancichinetti, A. (2009). “Community detection algorithms:
A comparative analysis: Invited presentation, extended abstract,” in Proceedings of
the Fourth International ICST Conference on Performance Evaluation Methodologies
and Tools, VALUETOOLS °09. ICST, Brussels, Belgium, Belgium: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering.

doi: 10.4108/ICST.VALUETOOLS2009.8046

Gurov, A., Evmenova, E., and Chunaeyv, P. (2022). Supervised community detection
in multiplex networks based on layers convex flattening and modularity optimization.
Procedia Comput. Sci. 212, 181-190. doi: 10.1016/j.procs.2022.11.002

Hanteer, O. (2020). A Practical and Critical Look at the Problem of Community
Discovery in Multi-layer Networks. Copenhagen: University Of Copenhagen.

Huang, Y., Panahi, A, Krim, H.,, and Dai, L. (2019). Community detection
and improved detectability in multiplex networks. IEEE Trans. Netw. Sci. Eng. 7,
1697-1709. doi: 10.1109/TNSE.2019.2949036

IMDB-2018 (2018). The Internet Movie Database. Available online at: http//ftp.fu-
berlin.de/pub/misc/movies/database/ (accessed June 29, 2017).

Frontiersin Big Data

10.3389/fdata.2023.1144793

Jin, D., Wang, K., Zhang, G., Jiao, P., He, D., Fogelman-Soulie, F., et al. (2019).
Detecting communities with multiplex semantics by distinguishing background,
general, and specialized topics. IEEE Trans. Knowl. Data Eng. 11, 2144-2158.
doi: 10.1109/TKDE.2019.2937298

Kim, J., and Lee, J. (2015). Community detection in multi-layer graphs: a survey.
SIGMOD Rec. 44, 37-48. doi: 10.1145/2854006.2854013

Kis, N., and Gasko, N. (2020). “Community detection in multiplex networks
with a genetic algorithm using a semi-aggregate method,” in 2020 IEEE 18th World
Symposium on Applied Machine Intelligence and Informatics (SAMI). Herlany: IEEE,
245-250. doi: 10.1109/SAMI48414.2020.9108736

Kivel, M. (2018). Pymnet: Free Library for Analysing Multilayer Networks. Available
online at: https://github.com/bolozna/multilayer-networks-library (accessed April 27,
2023).

Kivel, M., Arenas, A., Barthelemy, M. Gleeson, J. P., Moreno, Y., and
Porter, M. A. (2014). Multilayer networks. J. Complex Networks 2, 203-271.
doi: 10.1093/comnet/cnu016

Kuncheva, Z., and Montana, G. (2015). “Community detection in multiplex
networks using locally adaptive random walks,” in Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2015.
Paris: IEEE, 1308-1315. doi: 10.1145/2808797.2808852

Labatut, V. (2015). Generalised measures for the evaluation of community detection
methods. Int. J. Social Network Mining 2, 44-63. doi: 10.1504/IJ]SNM.2015.069776

Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. (2008). Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Math. 6, 29-123. doi: 10.1080/15427951.2009.10129177

Li, C, Guo, X, Lin, W., Tang, Z., Cao, J., and Zhang, Y. (2023). Multiplex
network community detection algorithm based on motif awareness. Knowl.-Based Syst.
260:110136. doi: 10.1016/j.knosys.2022.110136

Li, H.,, Nie, Z., Lee, W.-C,, Giles, L., and Wen, J.-R. (2008). “Scalable community
discovery on textual data with relations,” in Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM 08. New York, NY, USA: Association
for Computing Machinery, 1203-1212. doi: 10.1145/1458082.1458241

Liu, C., Wang, W., Cannistraci, C. V., Jin, D., and Sun, Y. (2020). “Layer clustering-
enhanced stochastic block model for community detection in multiplex networks,” in
The 8th International Conference on Computer Engineering and Networks (CENet2018).
Cham: Springer, 287-297. doi: 10.1007/978-3-030-14680-1_32

Lyu, C,, Shi, Y., Sun, L., and Lin, C. -T. (2022). “Community detection in multiplex
networks based on evolutionary multi-task optimization and evolutionary clustering
ensemble,” in IEEE Transactions on Evolutionary Computation (IEEE).

Magnani, M., Hanteer, O., Interdonato, R., Rossi, L., and Tagarelli, A. (2021).
Community detection in multiplex networks. ACM Computing Surveys (CSUR) 54,
1-35. doi: 10.1145/3444688

Magnani, M., and Rossi, L. (2013). “Formation of multiple networks,” in Social
Computing, Behavioral-Cultural Modeling and Prediction, Greenberg, A. M., Kennedy,
W. G,, and Bos, N. D. (eds.). Berlin, Heidelberg: Springer Berlin Heidelberg, 257-264.
doi: 10.1007/978-3-642-37210-0_28

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela,
].-P. (2010). Community  structure  in time-dependent, multiscale,
and multiplex networks. Science 328, 876-878. doi: 10.1126/science.
1184819

Ng, M. K.-P,, Li, X,, and Ye, Y. (2011). “Multirank: Co-ranking for objects
and relations in multi-relational data,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 11. New
York, NY, USA: Association for Computing Machinery, 1217-1225.

Nicosia, V., and Battiston, F. (2015). Mammult: Collection of Programs (c and
python) for the Analysis and Modeling of Multilayer Networks. Available online at:
http://complex.fin.ub.es/lasagne/news_full. php?q=MAMMULT (accessed October 31,
2015).

Osaba, E., Del Ser, ], Camacho, D., Bilbao, M. N, and Yang, X.-S.
(2020). Community detection in networks using bio-inspired optimization:
Latest developments, new results and perspectives with a selection of recent
meta-heuristics. Appl.  Soft Comput. 87, 106010. doi: 10.1016/j.as0c.2019.
106010

Rebhi, W, Ben Yahia, N., and Bellamine Ben Saoud, N. (2021). Stable communities
detection method for temporal multiplex graphs: heterogeneous social network case
study. Comp. J. 64, 418-431. doi: 10.1093/comjnl/bxaal62

Santra, A., Bhowmick, S., and Chakravarthy, S. (2017). “Efficient community re-
creation in multilayer networks using boolean operations,” in Procedia Computer
Science, 108:58-67. International Conference on Computational Science, Zurich,

Switzerland: ICCS, 12-14.

Tagarelli, A., Amelio, A.,, and Gullo, F. (2017). Ensemble-based community
detection in multilayer networks. Data Min. Knowl. Discov. 31, 1506-1543.
doi: 10.1007/s10618-017-0528-8

Tang, F., Wang, C,, Su, J., and Wang, Y. (2023). Semidefinite programming based
community detection for node-attributed networks and multiplex networks. Commun.
Stat. Simul. 52, 68-83. doi: 10.1080/03610918.2020.1847291

frontiersin.org


https://doi.org/10.3389/fdata.2023.1144793
https://doi.org/10.1007/s10618-013-0331-0
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1145/2339530.2339726
https://doi.org/10.1007/978-3-319-10377-8_1
https://doi.org/10.1145/3080574
https://doi.org/10.1007/978-3-540-39658-1_52
https://doi.org/10.1145/1134271.1134280
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1103/PhysRevE.70.066111
http://dblp.uni-trier.de/xml/
http://muxviz.net/
http://muxviz.net/
https://doi.org/10.1103/PhysRevX.5.011027
https://doi.org/10.1093/comnet/cnu038
https://doi.org/10.1016/j.physa.2019.121949
https://doi.org/10.1109/TSP.2012.2212886
https://doi.org/10.1109/TSP.2013.2295553
https://doi.org/10.1007/978-0-387-30440-3_76
https://doi.org/10.4108/ICST.VALUETOOLS2009.8046
https://doi.org/10.1016/j.procs.2022.11.002
https://doi.org/10.1109/TNSE.2019.2949036
http//ftp.fu-berlin.de/pub/misc/movies/database/
http//ftp.fu-berlin.de/pub/misc/movies/database/
https://doi.org/10.1109/TKDE.2019.2937298
https://doi.org/10.1145/2854006.2854013
https://doi.org/10.1109/SAMI48414.2020.9108736
https://github.com/bolozna/multilayer-networks-library
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1145/2808797.2808852
https://doi.org/10.1504/IJSNM.2015.069776
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1016/j.knosys.2022.110136
https://doi.org/10.1145/1458082.1458241
https://doi.org/10.1007/978-3-030-14680-1_32
https://doi.org/10.1145/3444688
https://doi.org/10.1007/978-3-642-37210-0_28
https://doi.org/10.1126/science.1184819
http://complex.ffn.ub.es/lasagne/news_full.php?q=MAMMULT
https://doi.org/10.1016/j.asoc.2019.106010
https://doi.org/10.1093/comjnl/bxaa162
https://doi.org/10.1007/s10618-017-0528-8
https://doi.org/10.1080/03610918.2020.1847291
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Santra et al.

Tang, L., Wang, X,, and Liu, H. (2009). “Uncoverning groups via heterogeneous
interaction analysis,” in 2009 Ninth IEEE International Conference on Data Mining.
Miami Beach: IEEE, 503-512. doi: 10.1109/ICDM.2009.20

Tang, L, Wang, X, and Liu, H. (2012).
heterogeneous interaction analysis. Data Min.
doi: 10.1007/s10618-011-0231-0

UKRoadData. (2014). Road Safety — Accidents 2014. United Kingdom Department

of Transport. Available online at: https://data.gov.uk/dataset/road-accidents-safety-
data/resource/1ae84544-6b06-425d-ad62-c85716a80022

Community detection via
Knowl. Discov. 25, 1-33.

Wilson, J. D., Palowitch, J., Bhamidi, S., and Nobel, A. B. (2017). Community
extraction in multilayer networks with heterogeneous community structure. J. Mach.
Learn. Res. 18, 5458-5506.

Frontiersin Big Data

21

10.3389/fdata.2023.1144793

Xie, J., Kelley, S., and Szymanski, B. K. (2013). Overlapping community detection in
networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45, 43:1-43.
doi: 10.1145/2501654.2501657

Xu, Z., Ke, Y., Wang, Y., Cheng, H, and Cheng, J. (2012). “A model-
based approach to attributed graph clustering” in Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data,
SIGMOD 12. New York, NY, USA: Association for Computing Machinery,
505-516.

Zhang, H.,, Wang, C.-D., Lai, J-H, and Philip, S. Y. (2017).
Modularity in  complex multilayer networks with  multiple aspects:
a static perspective. Appl. Informat. 4, 7. doi: 10.1186/s40535-017-
0035-4

frontiersin.org


https://doi.org/10.3389/fdata.2023.1144793
https://doi.org/10.1109/ICDM.2009.20
https://doi.org/10.1007/s10618-011-0231-0
https://data.gov.uk/dataset/road-accidents-safety-data/resource/1ae84544-6b06-425d-ad62-c85716a80022
https://data.gov.uk/dataset/road-accidents-safety-data/resource/1ae84544-6b06-425d-ad62-c85716a80022
https://doi.org/10.1145/2501654.2501657
https://doi.org/10.1186/s40535-017-0035-4
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Efficient community detection in multilayer networks using boolean compositions
	1. Introduction
	1.1. Motivation
	1.2. Our contribution
	1.3. Identifying communities in multilayer networks
	1.4. Problem statement

	2. Overview of communities in multilayer networks
	2.1. Creating multilayer networks
	2.2. Pillar and semi-pillar communities in multilayer networks
	2.2.1. Pillar community
	2.2.2. Semi-pillar community

	2.3. Community detection in composed networks
	2.3.1. Bridge edges


	3. Materials and methods
	3.1. Community detection in composed networks formed using the AND operation
	3.1.1. Self preserving communities
	3.1.2. Vertex based intersection (CV-AND)
	3.1.3. Edge based intersection (CE-AND)
	3.1.4. Proof of correctness

	3.2. Community detection in composed networks formed using the OR operation
	3.2.1. Overview of CE-OR
	3.2.2. Assigning weights to metaedges
	3.2.3. Proof of correctness
	3.2.4. Implications and limitations

	3.3. CE-OR as a building block for pillar and semi-pillar communities
	3.3.1. Creating pillar communities
	3.3.2. Creating semi-pillar communities


	4. Empirical results
	4.1. Comparison with communities on composed networks
	4.1.1. Accuracy of the aggregation algorithms
	4.1.2. Performance of the aggregation algorithms

	4.2. Comparison with existing multilayer community detection algorithms
	4.2.1. Ground truth data sets and metric
	4.2.2. Accuracy results


	5. Networks composed using extended boolean expressions
	5.1. NOT composition
	5.2. General boolean expression: accuracy, efficiency and drill down analysis
	5.2.1. Network decoupling approach
	5.2.2. Accuracy results
	5.2.3. Performance results
	5.2.4. Drill-down analysis


	6. Related work
	7. Discussion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


