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Dynamic switching of transcriptional regulators
between two distinct low-mobility chromatin states
Kaustubh Wagh1,2†, Diana A. Stavreva1†, Rikke A. M. Jensen1,3, Ville Paakinaho1,4,
Gregory Fettweis1, R. Louis Schiltz1, Daniel Wüstner3, Susanne Mandrup3, Diego M. Presman1,5*,
Arpita Upadhyaya2,6*, Gordon L. Hager1*

How chromatin dynamics relate to transcriptional activity remains poorly understood. Using single-molecule
tracking, coupled with machine learning, we show that histone H2B and multiple chromatin-bound transcrip-
tional regulators display two distinct low-mobility states. Ligand activation results in a marked increase in the
propensity of steroid receptors to bind in the lowest-mobility state. Mutational analysis revealed that interac-
tions with chromatin in the lowest-mobility state require an intact DNA binding domain and oligomerization
domains. These states are not spatially separated as previously believed, but individual H2B and bound-TF mol-
ecules can dynamically switch between them on time scales of seconds. Single bound-TF molecules with differ-
entmobilities exhibit different dwell time distributions, suggesting that themobility of TFs is intimately coupled
with their binding dynamics. Together, our results identify two unique and distinct low-mobility states that
appear to represent common pathways for transcription activation in mammalian cells.
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INTRODUCTION
The eukaryotic genome is highly organized across several length
scales. DNA wraps around nucleosomes to form chromatin,
which loops, forms topologically associating domains (TADs),
and is hierarchically packaged into chromosomes and chromosome
territories (1). This organization is crucial for the regulation of gene
expression. Genes that are present in more accessible regions or
within three-dimensional (3D) proximity of their cis-acting ele-
ments (enhancers, promoters) are more likely to be expressed (2).
Transcription factors (TFs) bind consensus motifs within enhanc-
ers and promoter-proximal regions, and this binding triggers the
recruitment of cofactors, remodelers, co-repressors, or coactivators,
all of which act in concert to regulate target genes (3). This is a
highly dynamic process with TFs only transiently interacting with
chromatin on a time scale of seconds (4–6). Chromatin itself is a
highly dynamic polymer, subject to thermal fluctuations and
active forces such as transcription (7), loop extrusion (8), DNA
damage repair, and replication (9). How TFs navigate this
complex nuclear microenvironment to find their binding sites
remains poorly understood.

Over the past decade, single-molecule tracking (SMT) has
emerged as a powerful tool to interrogate the dynamics of proteins
in living cells. In bacteria, TFs have been shown to undergo a com-
bination of 3D diffusion and 1D facilitated diffusion (sliding) to
find their target sites (10, 11). Eukaryotic nuclei present a much

bigger challenge to the TF search for relevant motifs since the
nucleus contains several levels of organization. Chromatin in eu-
karyotic cells exhibits complex dynamic signatures, showing micro-
meter-scale coherence on a time scale of 10 s (12), and recent SMT
studies have found that transcription (13) and loop extrusion (14)
constrain chromatin mobility. Classification of fast TF and histone
H2B trajectories into five mobility groups revealed a spatial pattern-
ing of mobility states (15), with lower-mobility states occupying the
nuclear periphery and perinucleolar regions, which are typically as-
sociated with heterochromatin. Similarly, fast SMT showed that nu-
cleosomes exhibit two mobility states on a time scale of 500 ms,
which were believed to represent spatially separate domains of
“fast” and “slow” chromatin, i.e., discrete spatial domains that
have different mobility states (16). In both these studies, single-mol-
ecule trajectories were sampled rapidly [100 Hz (15) or 20 Hz (16)]
and for short times (≤500 ms). However, TF dwell times have been
shown to obey power-law distributions, with some binding events
lasting for tens of seconds (17). To identify mobility states that are
important on these time scales, it is essential to study the molecules
that remain bound for similar times. Furthermore, chromatin is a
viscoelastic polymer showing different dynamic signatures at
short and long time scales (12, 18). This makes it important to com-
plement these fast SMT studies with those sampling longer TF
binding events to get a more complete picture of chromatin and
TF dynamics.

Despite extensive studies of chromatin dynamics, several ques-
tions remain open: Which modes of chromatin mobility can we
detect at time scales meaningful for TF binding? Are these mobility
states spatially separate or can individual nucleosomes switch
between them? Do TFs and co-regulators preferentially associate
with a subset of chromatin mobility states? For inducible TFs,
how do these associations change upon ligand activation? Which
domains of TFs are key determinants of mobility and chromatin
interactions?

Here, we use SMT along with a systems-level machine learning
algorithm to address these questions. First, we focus on H2B as a
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marker for chromatin and find that chromatin exhibits two distinct
low-mobility states. Individual H2B molecules dynamically switch
between these states, challenging the view that chromatin forms
long-lasting and spatially separated mobility domains (19). Next,
we used our analysis framework to study steroid receptors (SRs),
which are hormone-inducible TFs. We find that SRs, along with
other co-regulators, show the same two low-mobility states as
H2B, indicating that, on these imaging time scales, TF mobility
arises from the underlying mobility of chromatin. Similar to H2B,
chromatin-bound TFs and co-regulators can also switch between
these two states. Upon activation of SRs, the bound fraction and
the proportion of molecules in the lowest-mobility state increase
substantially, indicating that binding in this state is associated
with the active form of SRs. Focusing on the peroxisome prolifera-
tor–activated receptor gamma 2 (PPARγ2), we show that engage-
ment with chromatin in the lowest-mobility state requires an
intact DNA binding domain (DBD) and domains important for
the formation of heterodimeric protein complexes that enhance
chromatin binding and transcriptional output. We show that trajec-
tories with distinct overall mobilities exhibit different switching
characteristics and dwell time distributions. Last, we discuss our
results in the context of recent studies and propose an alternative
model for TF dynamics in eukaryotic cells.

RESULTS
Chromatin mobility is characterized by dynamic switching
between two distinct low-mobility states
We performed SMT on adenocarcinoma 3617 cells (20) expressing
HaloTag-protein chimeras (with H2B serving as a probe for chro-
matin) to determine the spatial mobility of proteins. We labeled the
HaloTag-protein chimeras with low concentrations (5 nM) of JF549
dye (21) and imaged cell nuclei using highly inclined laminated
optical (HILO) sheet microscopy (22) (Fig. 1A). We are most inter-
ested in the spatial mobility of bound events that last on the order of
tens of seconds, as they were shown to be correlated with transcrip-
tional outcomes (23). Because photobleaching prevents rapid
imaging for long times (24), we imaged the cells every 200 ms,
with short exposure times of 10 ms to minimize motion blur
(movie S1). Note that at these frame rates, fast diffusing molecules
will rapidly disappear from the focal plane (25). We estimated the
probability of a freely diffusing molecule to remain within our focal
volumewithin our sampling interval of 200 ms to be <10−9 (seeMa-
terials and Methods). Other studies have extensively characterized
these fast diffusive states for TFs while accounting for defocalization
(25–27). In this study, single molecules were tracked using a custom
algorithm (see Materials and Methods), and we performed various
quality controls to ensure that tracking errors were minimized (see
Materials andMethods, figs. S1 and S2, and table S1). By interspers-
ing short (10 ms) illumination pulses with long (200 ms) dark in-
tervals, we can obtain longer trajectories, with a small fraction
lasting up to 2 min (fig. S3). A representative temporal projection
of an H2B SMT image stack along with particle tracks is shown in
Fig. 1B.

To quantify and characterize the mobility of H2B, we used a
systems-level classification algorithm [perturbation expectation
maximization version 2 (pEMv2)] to classify H2B trajectories into
different diffusive states (28). pEMv2 produces discrete mobility
states and posterior probability distributions that maximize a

defined log-likelihood function (28). Given a collection of trajecto-
ries without any a priori knowledge of the underlying diffusive
states, pEMv2 uses machine learning along with a Bayesian infor-
mation criterion (BIC) to uncover a set of diffusive states from a
complex distribution of diffusivities. To minimize errors due to
transitions within a track, while retaining sufficient numbers of
data points for classification, we split our tracks into sub-tracks of
seven frames each (fig. S4A) (29). Because pEMv2 is a probabilistic
algorithm, we assign each sub-track to the state for which it has the
highest posterior probability, filtering out sub-tracks with similar
probabilities of belonging to multiple states (fig. S4, B and C; see
Materials and Methods for details). After classification by pEMv2,
we removed any states with a population fraction smaller than 5%
(see Materials and Methods; fig. S4C). We then used the ensemble
mean-squared displacement (MSD) of these states to compare dif-
fusive states across proteins and conditions. The MSD curve serves
as a goodmetric for the exploration size and diffusivity of an ensem-
ble of particles (30). First, we compared the MSD for all (unclassi-
fied) H2B tracks with that reported in the literature. For a time lag of
0.6 s, H2B has an MSD of ~0.013 μm2 (fig. S2C), which is in good
agreement with previous studies that report similar MSDs on a time
scale of 0.5 to 0.6 s (14, 31). Next, we used pEMv2 to identify dis-
crete mobility states.

We found that the ensemble of H2B trajectories converged to
seven mobility states, but the bulk of sub-tracks were classified
into two states (fig. S4C) based on the posterior probability of as-
signment to particular states (see Materials and Methods). Inspec-
tion of the ensemble MSD for both these states (Fig. 1C; henceforth
referred to as states 1 and 2), as well as randomly sampled sub-tracks
(Fig. 1D) shows that state 2 has a higher exploration radius than that
of state 1 and that these states are distinct. States 1 and 2 each
account for ~35% of all sub-tracks while ~30% of H2B molecules
are unbound (see Materials and Methods) (Fig. 1E). Our data
agree with recent studies (16, 29), which showed that H2B exhibits
two distinct mobility states. These states were attributed to spatially
separated domains of fast and slow chromatin (16). However, the
bulk of the data in that study represents relatively short tracks that
last less than 500 ms (16). While each of our sub-tracks is of a com-
parable length (1.2 s), the parent tracks are longer, with a few lasting
even up to 2 min (Fig. 1, F and G, and fig. S3).

To determine whether the twomobility states correspond to spa-
tially separated chromatin domains that persist over seconds, we an-
alyzed the dynamics of the two low-mobility states within
individual tracks. We generated a temporal reconstruction of state
dynamics by coloring in sub-tracks by the color of the state they are
assigned to (fig. S4, D and E). Notably, we found that the same H2B
molecule dynamically switches between both low-mobility states as
shown for representative tracks in Fig. 1F. Note that while we have
picked spatially separated sub-tracks for ease of visualization (Fig.
1F, top), state 1 and state 2 sub-tracks overlap throughout the
parent track [Fig. 1F (bottom), fig. S4D, and movies S2 to S4].
While this argues against large-scale spatial separation, our
imaging modality does not have the z-resolution to preclude the
possibility of smaller-scale spatial separation in three dimensions.
More generally, across an ensemble of the 50 longest tracks, we ob-
served similar switching behavior between these two states
(Fig. 1G).

We then quantified the transition probabilities for all tracks that
contain at least three sub-tracks (see Materials and Methods). To
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Fig. 1. Histone H2B shows two distinct low-mobility states. (A) Schematic of SMT experiment. (B) Left: Time projection of a representative H2B-Halo SMTmovie (right)
overlaid with tracks. (C) Ensemble MSD for histone H2B (Ncells = 149, Ntracks = 25,298, and Nsub-tracks = 88,934). Error bars denote SEMs. (D) Sample tracks assigned to low-
mobility state 1 (red) and low-mobility state 2 (blue) for H2B. (E) Pie chart of proportions of H2B sub-tracks assigned to different mobility states. (F) Top left: Representative
long H2B track. Top right: Sub-tracks of length 3.6 s color-coded by state assignment (state 1 in red and state 2 in blue) to illustrate differences between the spatial extent
of the two states. Bottom left: A representative 16 s H2B track. Bottom right: The same track with the sub-tracks color-coded by state assignment, showing spatial overlap
between the two low-mobility states. (G) Temporal reconstruction of the 50 longest tracks for histone H2B. (H) Transition probabilities for H2B among states 1 and 2 and all
other states. Cyan swarm charts represent transition probabilities calculated from 1000 randomized ensembles. The numbers above the bars represent the proportion of
randomized trials that have a higher transition probability than the respective calculated transition probability.
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determine whether these transition probabilities are statistically sig-
nificant, we performed a permutation test: We generated 1000 en-
sembles of randomly permuted sub-tracks and calculated the
transition probabilities for these ensembles (see Materials and
Methods). This approach has been used previously to test the stat-
istical significance of transition matrices in atmospheric Markov
chains (32). Our analysis shows that H2B molecules in states 1
and 2 prefer to remain in the same state (Fig. 1H) with a higher
probability than would be expected from random ensembles with
the same population fractions (Fig. 1H). On the other hand, while
we do observe transitions from state 1 to state 2 and vice versa, our
permutation test shows that these transitions occur less frequently
than in a random ensemble (Fig. 1H).

Together, our data suggest that rather than forming large-scale
spatially separated domains of higher or lower mobility, chromatin
can switch dynamically between these twomobility states. However,
this only becomes apparent when we track nucleosomes over longer
time scales.

SRs exhibit the same two low-mobility states as H2B, with
ligand-dependent population fractions
Having established that H2B has two dynamic mobility states, we
turned our attention to TFs. How is TF mobility different from
that of H2B? Do active and inactive forms of a TF behave differ-
ently? To answer these questions, we applied our analysis frame-
work to study multiple SRs, which are class I nuclear receptors
that bind hormone response elements (HREs) as homodimers or
homotetramers (33, 34). Some SRs, such as the glucocorticoid re-
ceptor (GR) and the androgen receptor (AR), are predominantly cy-
toplasmic in the absence of hormone with a small nuclear fraction,
while the estrogen receptor (ER) is mostly nuclear (35). In the case
of the progesterone receptor (PR), it can be either predominantly
cytoplasmic or nuclear, depending on the isoform (36). Agonist
binding triggers a conformational change, nuclear translocation
(for GR, AR, and PR), oligomerization, and binding to HREs. We
tracked unliganded ER and the small nuclear fraction of unliganded
GR, PR, and AR and contrasted these with their corresponding
ligand-activated receptors.

All tested SRs, with and without activation by hormone, exhibit
two distinct low-mobility states and a small population of one or
two higher-mobility states (Fig. 2, A to I, and fig. S5). Because of
our slow imaging rate, any fast-diffusing molecules will rapidly
move away from the focal plane (25). Because a majority of the
sub-tracks belong to the two low-mobility states (fig. S5, A to H),
we focus on these for the rest of the study. As can be seen qualita-
tively from sample tracks belonging to these states (Fig. 2A) and
quantitatively from ensemble MSD plots (Fig. 2, B to I), these
states have different mobility signatures. On comparing these with
the states recovered for H2B, we find that all the examined SRs
exhibit the same two low-mobility states as H2B on our observation
time scales (Fig. 2, B to I).

To better understand the biological origin of these mobility
states for SRs, we compared the population fractions of the states
before and after hormone activation. All four SRs show an increase
in the overall bound fraction upon activation (Fig. 2, J toM). All SRs
show a marked increase in the proportion of the lowest-mobility
state (state 1): 10-fold for GR (Fig. 2J), 3.3-fold for ER (Fig. 2K),
3.5-fold for AR (Fig. 2L), and 4-fold for PR (Fig. 2M). These are
accompanied by a smaller increase in the relative proportion of

state 2: 2.5-fold (GR), 2.1-fold (ER), 1.5-fold (AR), and 2.2-fold
(PR) (Fig. 2, J toM). Note that 3617 cells do not express endogenous
AR and PR (37, 38) and therefore may not provide a native chroma-
tin context for AR and PR binding. This likely results in the relative-
ly low population fractions observed for state 1 in these cells (Fig. 2,
L and M). As noted above, GR, AR, and PR are primarily cytoplas-
mic in the absence of hormone. Thus, the unliganded GR, AR, and
PR tracks come from the small nuclear fraction of the receptor,
which results in substantially fewer tracks per cell as compared to
their liganded counterparts (fig. S1, C to J). Accurate estimation
of the unbound fraction will require faster imaging rates and will
likely result in an even smaller bound fraction, which will exaggerate
any differences in the population fraction of liganded versus unli-
ganded GR, AR, and PR. As ER is always nuclear, we can track a
similar number of molecules in both unliganded and liganded
states and found that ER exhibits similar changes in state 1 propor-
tions upon activation as the other SRs. Together, these data suggest
that the tendency for SRs to bind in state 1, the lowest chromatin
mobility state, better correlates with their activation status than
does state 2, which implies that either binding of activated SR to
chromatin constrains its mobility and/or activated SRs are more
capable of interacting with chromatin in state 1.

We used two alternative methods to test the generality of our ob-
served mobility states. Given a collection of trajectories, we can cal-
culate the self part of the van Hove correlation (vHc) function or
step-size distribution. The empirical vHc can then be approximated
as a superposition of Gaussian basis functions (see Materials and
Methods), from which we can iteratively calculate the distribution
of MSDs that gives rise to the calculated vHc. We used the iterative
algorithm developed by Richardson (39) and Lucy (40) and success-
fully implemented it to study nucleosome dynamics (16) and to cal-
culate the distribution of MSD (or, equivalently, the diffusivity
distribution). We refer to this analysis as “RL analysis” in the rest
of the manuscript. We find once again that the predicted MSD dis-
tribution for H2B, shown here for a time lag of 0.8 s (fig. S6A) has
two main populations, confirming the two states recovered from
pEMv2. The bimodal distribution of MSDs was observed for
other time lags (0.6 and 1.0 s) as well (fig. S6), indicating the gen-
erality of our findings. A similar analysis for hormone-activated SRs
(GR, ER, AR, and PR) also showed two distinct low-mobility states
supporting our pEMv2 results (fig. S6). Consistent with the thinly
populated higher-mobility states detected by pEM, we observe some
higher-mobility states in the distribution of MSDs as well (fig. S6).

Fitting displacement histograms to diffusion models has been
used to estimate multiple mobility states within an ensemble of tra-
jectories (25, 31). However, this approach requires a priori knowl-
edge of the number of diffusive states and assumes that
displacements are independent (Markovian dynamics), which,
therefore, can only account for normal diffusion. The viscoelastic
nature of chromatin as well as static and dynamic localization
noise may render the protein displacements non-Markovian (41).
However, pEMv2 accounts for these constraints (11, 12). We then
asked whether the states identified by pEMv2 are consistent with
multistate diffusion models. We sorted the sub-tracks into the
two states defined by pEMv2 and fit displacement histograms of
these ensembles of sub-tracks to a two-state model using Spot-On
(25). Fitting to a three-state model resulted in only two distinct
states. We compared the Spot-On diffusion coefficients and locali-
zation errors with those obtained from pEMv2 (fig. S6, P and Q).
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Fig. 2. Steroid receptors also exhibit two low-mobility states, with ligand-dependent population fractions. (A) Sample tracks for the GR. Left: Low-mobility state 1.
Middle: Low-mobility state 2. Right: High-mobility state. (B to I) EnsembleMSD for indicated steroid receptor (solid lines) and histone H2B (dashed lines). Error bars denote
SEMs. (B) Untreated GR (Ncells = 35,Ntracks = 386, and Nsub-tracks = 962). (C) Untreated ER (Ncells = 49,Ntracks = 4057, and Nsub-tracks = 9551). (D) Untreated AR (Ncells = 51, Ntracks

= 1394, and Nsub-tracks = 4001). (E) Untreated PR (Ncells = 37, Ntracks = 1371, and Nsub-tracks = 3197). (F) GR activated with dexamethasone (Dex) (Ncells = 238, Ntracks = 30,652,
and Nsub-tracks = 81,172). (G) ER activated with 17β-estradiol (E2) (Ncells = 50,Ntracks = 8147, and Nsub-tracks = 24,299). (H) AR activated with dihydrotestosterone (DHT) (Ncells =
38, Ntracks = 5160, and Nsub-tracks = 12,697). (I) PR activated with progesterone (Prog) (Ncells = 41, Ntracks = 4951, and Nsub-tracks = 14,899). (J to M) Comparative bar charts
showing population fractions of various states for the indicated steroid receptors.
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We find a strong correlation between the diffusion constants recov-
ered from both methods (R2 = 0.93764, correlation coefficient =
0.9683; fig. S6P). We then compared the localization error calculat-
ed by pEMv2 from all the input tracks to those recovered from Spot-
On. We find that the localization errors also show a very strong cor-
relation (R2 = 0.98467, correlation coefficient = 0.9923; fig. S6Q). In
conclusion, we find that all tested methods converged on the detec-
tion of two low-mobility states.

SRs dynamically switch between the two low-mobility
chromatin states
Because we observe H2B molecules switching between the two low-
mobility states, we next examined whether SRs also exhibited
similar switching behaviors. Visual inspection of tracks showed
that the same GRmolecule could switch between these twomobility
states (Fig. 3, A and B), with the state 2 sub-tracks exhibiting larger
jumps (Fig. 3B). We then compared the switching behavior of SRs
before and after hormone stimulation.

Quantifying the probability of transitions between these states,
we observed that GR (fig. S7, A and B), ER (fig. S7, C and D),
and PR (fig. S7, E and F) molecules in states 1 and 2 prefer to

remain in the same state, while transitions into state 2 are dominant
for AR (fig. S7, G and H). Ligand activation results in an ~13% in-
crease in state 1 to state 1 transitions for GR and a corresponding 6%
increase for ER (fig. S7, A to D), while AR and PR show very subtle
differences with and without agonist (fig. S7, E to H). For unli-
ganded SRs, state 2 to state 1 transitions are not significantly differ-
ent at the 99% confidence level from those obtained for ensembles
of random permutations (fig. S7, A, C, E, and G; see Materials and
Methods). However, upon ligand activation, these transitions occur
with a higher probability than corresponding transitions for unli-
ganded SRs (fig. S7) but occur less frequently than the random en-
semble. These data suggest that activation of SRs by hormone results
in an increase in transitions into state 1 and that these transition
probabilities are significantly different from those in a random
ensemble.

Collectively, our data show that SRs bind to both low-mobility
chromatin states. Furthermore, SRs frequently switch between
these chromatin states, underscoring the fact that these states are
not spatially separated. Ligand activation markedly increases the
population fraction of SRs in state 1, implying that the propensity
of SRs to bind to state 1 chromatin increases substantially upon

Fig. 3. TFs dynamically switch between two low-mobility states. (A) Sample GR track (same as the track shown in fig. S4D). (B) Sub-tracks of length 2.4 s from the same
track as in (A) are color-coded by state assignment (state 1 in red and state 2 in blue). (C to F) Temporal reconstruction for the 50 longest tracks for steroid receptors. Left:
Without hormone. Right: Upon activation by hormone. (C) GR. (D) ER. (E) AR. (F) PR.
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hormone activation. The remarkable similarities between TFs and
H2B dynamics led us to propose that the TFs, by virtue of being
bound to chromatin, exhibit the same mobility states as chromatin.

Other transcriptional regulators also exhibit two distinct
mobility states
Because we observed two distinct mobility states for SRs, which rep-
resent SRs bound to chromatin exhibiting different mobility states,
we hypothesized that other transcriptional regulators should also
exhibit these two states. To test this hypothesis, we performed
SMT experiments and subsequent analysis on several nuclear pro-
teins that bind DNA or chromatin and perform different functions.

RELA/p65 is an important subunit of the nuclear factor κB (NF-
κB) TF, which is activated in response to many external stimuli (42).
GR-interacting protein 1 (GRIP1), also known as nuclear receptor
coactivator 2 (NCoA2) is a co-regulatory protein that is recruited to
DNA by nuclear receptors in response to ligand-activation (43).
GRIP1 facilitates nuclear receptor–mediated gene regulation by
acetylating histone tails, thereby modulating chromatin accessibility
(43). Mediator of RNA polymerase II transcription subunit 26
(MED26) is a subunit of the mediator complex that assists RNA po-
lymerase II (RNA Pol II)–mediated transcription by recruiting ac-
cessory proteins that promote transcriptional elongation (44). SWI/
SNF-related, matrix-associated, actin-dependent regulator of chro-
matin, subfamily A, member 4 (SMARCA4, also known as BRG1) is
an adenosine triphosphate–dependent remodeler that is a part of
the SWI/SNF complex. SMARCA4 modulates gene expression by
changing chromatin accessibility through its remodeling activity
(45). CCCTC-binding factor (CTCF) is important for 3D genome
organization, leading to the formation of enhancer-promoter loops
and regulating the structure of TADs (1). Many of these regulators
have been the focus of previous SMT studies—RELA (46), GRIP1
(24), SMARCA4 (17, 24), and CTCF (17, 26, 47)—but with a focus
on either measuring dwell times (17, 24, 46, 47) or fast diffusing
molecules (26).

For this diverse set of transcriptional proteins with widely
varying functions, we observed two qualitatively similar low-mobil-
ity states as histone H2B (Fig. 4 and fig. S8). As seen with SRs, these
transcriptional regulators also switch between the two low-mobility
states (fig. S9), with molecules preferentially remaining in the same
state (fig. S9), except RELA and SMARCA4, which show a slight
preference to switch from state 1 to state 2 [fig. S9, A and D
(right)]. These data suggest that all detected TF and co-regulator dy-
namics reflect the mobility of the local chromatin environment.

PPARγ2 requires an intact DNA binding and
oligomerization domain to bind to state 1 chromatin
To understand the factors that determine the partitioning of TFs
into the two mobility states, we focused on PPARγ2, which is a
class II nuclear receptor that binds chromatin as a heterodimer
with the retinoid X receptor [RXR; Fig. 5A, right (inset)] (48). In
particular, the existence of well-characterized interacting partners
and DNA binding and heterodimerization mutants allows for a sys-
tematic study of PPARγ2’s mobility states. We chose 3T3-L1 mouse
pre-adipocytes as our model cell line to study PPARγ2 because
PPARγ2 is functionally important for adipogenesis (49, 50). This
allows us to study a TF with functional relevance in its native chro-
matin context.

PPARγ2 is one of two PPARγ isoforms expressed from the
PPARG gene. PPARγ2 contains 30 additional amino acids on its
N-terminal end as compared to PPARγ1 (Fig. 5B). PPARγ1 is ex-
pressed in almost all tissues, but PPARγ2 is predominantly found in
adipose tissue and is important for adipocyte differentiation, fatty
acid storage, and glucose metabolism and is a known therapeutic
target for diabetes (51, 52). During adipogenesis, PPARγ2 and
CCAATenhancer-binding protein α (C/EBPα) act in concert to reg-
ulate genes essential for this process (53).

We first transiently expressed HaloTag-fused H2B and PPARγ2
chimeras in 3T3-L1 cells, performed SMT, and analyzed the data
with the above-described workflow. As observed in 3617 cells,
PPARγ2 and H2B exhibit the same two low-mobility states (Fig.
5A, left). Both PPARγ2 and H2B in 3T3-L1 cells exhibit switching
between the two lowest-mobility chromatin states as seen for other
chromatin-bound TFs and H2B [Fig. 5A (right) and fig. S10, A and
B]. While H2B molecules in both state 1 and state 2 preferentially
transition to the same state (fig. S10A), PPARγ2 molecules in state 1
remain in state 1 ~70% of the time but show an equal transition
probability from state 2 into both states 1 and 2 (fig. S10B).

To test the role of the DBD and the heterodimerization domain
(HET) in the two low-mobility states, we first mutated the 159th
amino acid from cysteine to serine (C159S; henceforth referred to
as DBDmut), which has been shown to disrupt the zinc finger and
prevent sequence-specific chromatin interactions in vitro, and ab-
rogate transcriptional responses [Fig. 5, B and C (right, inset)] (54).
Disruption of the DBD results in a marked reduction in the overall
bound fraction and, particularly, the population fraction of state 1 as
compared to that of wild-type PPARγ2 (PPARγ2-WT) (Fig. 5, C
and H). However, we do not completely lose the bound fraction
or the binding in state 1 (Fig. 5, C and H). This is consistent with
previous studies that showed that RXR binding to the 3′ half-site of
PPAR response elements is more important than PPARγ2 binding
to the 5′ half-site for the PPARγ2:RXR complex to stabilize engage-
ment with chromatin (54). We also observed an ~18% increase in
the probability of state 2 molecules to remain in state 2, along with a
concomitant decrease of ~19% in the state 2 to state 1 transition
probability (fig. S10, B and C). This suggests that the DBD is impor-
tant for PPARγ2 to transition from state 2 to state 1.

Mutation of the 470th amino acid from leucine to arginine
(L470R; henceforth referred to as HETmut) eliminates the hetero-
dimerization interface with RXR and has been shown to be tran-
scriptionally inactive [Fig. 5, B and D (right, inset)] (55, 56). We
analyzed this construct to find very similar results to those obtained
for the DBD mutant. The overall bound fraction was much smaller
than that of PPARγ2-WT, but the same as that of PPARγ2-DBDmut
(Fig. 5H). The relative proportion of state 1 was also similar to that
of PPARγ2-DBDmut (7%), indicating that monomeric PPARγ2 is
still capable of interacting with chromatin, potentially through its
intact DBD (Fig. 5H).

By introducing both the DBD and HET mutations simultane-
ously [PPARγ2-DBD + HETmut; Fig. 5, B and E (right, inset)],
we observed that the PPARγ2-DBD + HETmut has an even
smaller bound fraction and a vanishingly small proportion of
state 1 as compared to those for PPARγ2-WT (Fig. 5, E and H).
While canonical models of TF-chromatin interactions focus on
the binding of a factor through the DBD, recent studies have impli-
cated intrinsically disordered regions (IDRs) within a TF in direct-
ing binding specificity near cognate binding sites (57, 58). PPARγ2-
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DBD + HETmut still exhibits binding in state 2, which could result
from chromatin interactions through IDRs.

Similar to PPARγ2-DBDmut, PPARγ2-HETmut has an im-
paired ability to transition from state 2 to state 1 (fig. S10D). As
compared to PPARγ2-WT, PPARγ2-DBD + HETmut shows a 31
to 40% decrease in transitions into state 1 and a 34 to 38% increase
in transitions into state 2 (fig. S10E). PPARγ2-DBD + HETmut
molecules preferentially switch to state 2 from all states (fig.
S10E). Because we have seen that an increase in the proportion of
state 1 along with increased transitions into state 1 (from both states
1 and 2) are associated with the active form of SRs (Figs. 2 and 3, and
fig. S7), these data also support the hypothesis that TF engagement
with chromatin in state 1 correlates with transcriptional activity.
Because these mutations reduce the ability of PPARγ2 to interact
with chromatin, we also tested the opposite perturbation: What
happens to the two states if we facilitate PPARγ2 binding?

C/EBPα and PPARγ2 have been shown to participate in dynamic
assisted loading at closed chromatin sites by recruiting remodelers
(Fig. 5F) (50). To further test our hypothesis, we overexpressed en-
hanced green fluorescent protein (EGFP)–fused C/EBPα, which
should promote PPARγ2-chromatin interactions in state 1 (Fig.
5F). Consistent with our hypothesis, overexpression of C/EBPα re-
sulted in an increase in the overall bound fraction of PPARγ2 (Fig.
5H) and a 1.4-fold increase in the proportion of state 1 (Fig. 5H). In
contrast to the PPARγ2-DBD + HETmut data, overexpression of

EGFP-C/EBPα results in a 9 to 16% increase in transitions into
state 1 along with an 11 to 17% decrease in transitions to state 2,
with all states showing a preference to switch to state 1 (fig.
S10F). Together, our data indicate that binding in state 1 requires
an intact DBD and heterodimerization domain and that active
TFs show a higher proclivity for this state than do inactive TFs.

Tracks with different exploration radii exhibit different
switching characteristics and dwell times
After analyzing sub-tracks using pEMv2, we found that all tested
molecules dynamically switch between two low-mobility states.
We then used the Richardson-Lucy (RL) analysis to confirm that
two states can be recovered from the calculated vHc function (fig.
S6). Since the RL analysis produces a distribution of MSDs, we can
use the minima in the MSD distribution to classify full-length
tracks, rather than sub-tracks, into lower (henceforth referred to
as RL group 1) or higher mobility (henceforth referred to as RL
group 2) populations (fig. S11, A to C). We calculate the MSD for
each track at a time lag of 0.8 s and classify the track into RL group 1
or 2 as shown in fig. S11 (A to C). Because these tracks consist of
sub-tracks previously analyzed by pEMv2, we can examine the
pEMv2 population fractions and the state-switching characteristics
within each RL group.

Analysis of these populations revealed that molecules belonging
to RL group 1 (i.e., with MSD at 0.8-s time lag lower than 0.0075

Fig. 4. Other transcriptional regulators also exhibit two distinct low-mobility states. (A to E) Ensemble MSD plots for the indicated transcriptional co-regulator (solid
lines) and histone H2B (dashed lines). Error bars denote SEMs. (A) RELA/p65 activated with TNFα (Ncells = 67, Ntracks = 9524, and Nsub-tracks = 24,634). (B) GRIP1 (Ncells = 36,
Ntracks = 4847, andNsub-tracks = 14,010). (C) MED26 (Ncells = 57,Ntracks = 11,429, and Nsub-tracks = 29,085). (D) BRG1/SMARCA4 (Ncells = 22,Ntracks = 3179, andNsub-tracks = 8112).
(E) CTCF (Ncells = 69, Ntracks = 10,457, and Nsub-tracks = 34,503). (F) Comparative bar chart showing population fractions for the indicated co-regulators.
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Fig. 5. State 1 for PPARγ2 requires intact DBD and the ability to form heterodimeric complexes. (A) Left: Ensemble MSD of H2B (dashed lines, Ncell = 54, Ntracks =
8522, and Nsub-tracks = 29,262) and wild-type PPARγ2 (solid lines, Ncells = 127, Ntracks = 20,983, and Nsub-tracks = 62,848). Error bars indicate SEMs. Right: Temporal recon-
struction of the 50 longest tracks along with (inset) a cartoon depicting PPARγ2 binding to PPAR response elements (PPRE). (B) Schematic of point mutations to abrogate
the DBD and heterodimerization domains of PPARγ2. (C to E) Left: EnsembleMSD for indicated PPARγ2mutant. Error bars denote SEMs. Right: Temporal reconstruction of
the 50 longest tracks colored by state assignment: (C) PPARγ2-DBD mutant (PPARγ2-DBDmut) (Ncells = 38, Ntracks = 3721, and Nsub-tracks = 9872), (D) PPARγ2-heterodime-
rizationmutant (PPARγ2-HETmut) (Ncells = 28, Ntracks = 1728, and Nsub-tracks = 4049), and (E) PPARγ2-DBD + HETmutant (Ncells = 46,Ntracks = 1695, and Nsub-tracks = 4046). (F)
Assisted loadingmodel for C/EBPα-mediated PPARγ2 loading. (G) Left: Ensemble MSD for PPARγ2-WTwith overexpression of GFP-C/EBPα (Ncells = 89, Ntracks = 18,912, and
Nsub-tracks = 63,842). Error bars denote SEMs. Right: Temporal reconstruction of the 50 longest tracks. (H) Comparative population fractions for all PPARγ2 variants.
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μm2) were predominantly in state 1 (Fig. 6, A and B, and fig. S11D).
Molecules belonging to RL group 2 (i.e., with MSD at 0.8-s time lag
between 0.0075 and 0.028 μm2) exhibited appreciable fractions of
both state 1 and state 2 (Fig. 6, C and D, and fig. S11E). Molecules
in RL group 1 preferentially transition to state 1 (Fig. 6, E and F, and
fig. S11F), while those in RL group 2 exhibit a significantly higher
probability of switching between these two states (Fig. 6, G and H,
and fig. S11G). This can also be seen by comparing the population
fractions of the different mobility states within the two groups (Fig.
6, I and J, and fig. S11H).

Classification of tracks into RL groups allows us to calculate the
survival distribution (dwell times) of H2B and GR within each of
these groups. The dwell timesmeasure the length of time that a mol-
ecule remains within the focal volume before being lost because of
photobleaching or unbinding and diffusing out (59). First, by fitting
the H2B survival distribution of all tracks to a triple exponential dis-
tribution, we estimated the photobleaching time constant (see Ma-
terials and Methods) as previously described (17). We then
classified the H2B tracks into the two RL groups and calculated
the photobleaching-corrected survival distribution of each of the
groups. We find that tracks in both RL groups show similar survival

Fig. 6. Tracks with different exploration radii exhibit distinct switching patterns. (A to D) Temporal reconstruction of the 50 longest tracks of single molecules
belonging to RL group 1 (overall lower mobility) (A and B) and to RL group 2 (overall higher mobility) (C) and (D). The tracks are color-coded to show the pEM-identified
states of the 1.2-s segments making up the entire track. State 1 is depicted in red, and state 2 is in blue. Higher-mobility states are colored green and yellow: (A) and (C)
H2B. (B) and (D) GR activated with Dex. (E to H) Transition probabilities calculated for molecules in RL group 1 (E) and (F) and RL group 2 (G) and (H). Transitions into pEM
state 1 are shown in red; those into state 2 are shown in blue, and others are in gray. Cyan swarm charts show the results of the transition probability calculation for 1000
randomly permuted ensembles. Numbers above the bars display the proportion of these trials with a transition probability higher than the respective calculated tran-
sition probability: (E) and (G) H2B and (F) and (H) GR activated with Dex. (I and J) Fraction of tracks in pEM state 1 (red), pEM state 2 (blue), and pEM state 3 (green) for
trajectories classified into RL groups 1 and 2 for H2B (I) and GR activated with Dex (J). (K and L) Photobleaching corrected survival probability distributions of dwell times
for tracks classified into RL group 1 (magenta) and RL group 2 (cyan). Dashed lines indicate the 99% confidence interval. (K) H2B and (L) GR activated with Dex. The black
line in (L) represents a power-law fit to the survival distribution for RL group 2 with an exponent β = −0.65 ± 0.01.
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distributions, with both distributions showing a plateau at longer
times, as expected for long-lived molecules (Fig. 6K) (17). The
same analysis on GR tracks shows that while RL group 1 plateaus
at long times (like H2B), RL group 2 exhibits a power-law survival
distribution with an exponent of β = −0.65 ± 0.01 (Fig. 6L). There-
fore, TF molecules that are bound to less mobile chromatin show
limited switching and histone-like dwell times. However, TFs
bound to more dynamic chromatin (with overall higher MSDs
and more frequent transitions between the mobility states) show
similar mobility transitions but are not as long lived (exhibiting
power-law dwell times; Fig. 6L). In this sense, while the switching

is reflective of the dynamics of the underlying chromatin mobility,
the overall dwell times are reflective of the binding, which can either
be similar to histones (tightly bound) or power-law (sampling a
broad range of affinities). Thus, the duration of time spent in
either of the mobility states can be exponentially distributed, but
the overall bound time can be power-law distributed (17). Combin-
ing track-level and sub-track–level analyses thus provides a powerful
tool to distinguish between persistent and transient engagement
with state 1.

Fig. 7. Two-state model for chromatin and transcriptional regulators. (A) Over short time scales (~1.2 s), chromatin mobility is constrained within chromatin explo-
ration domains. (B) Within these domains, TFs/cofactors engage with chromatin, and the TF-chromatin complex can exist in one of two low-mobility states. Left: The
higher of these twomobility states (state 2) has an exploration diameter of ~250 to 350 nm at 1.2 s. The trajectory shows the motion of a single TF/cofactor molecule over
time. The lower-mobility state (state 1) has an exploration diameter of ~130 to 180 nm, and the motion of a single TF/cofactor molecule is represented in the right panel.
Chromatin and associated TFs/cofactors can dynamically switch between these two mobility states. TF binding can promote a switch from state 2 to state 1 or unbind
from state 2 chromatin and bind to state 1 chromatin within the localized chromatin domain. (C) The MSD plot of tracks classified by perturbation expectation maxi-
mization (pEMv2) is used to visualize the two different mobility states under the time scale of a single sub-track (1.2 s). The exploration diameter of the states is estimated
as d ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSDð1:2 sÞ

p
.
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DISCUSSION
SMT is a powerful technique to study the intranuclear dynamics of
individual proteins at the nanoscale with high temporal resolution.
Here, using SMT along with a machine learning–based classifica-
tion algorithm, we identify two distinct low-mobility states for
histone H2B (Fig. 1). Previous studies have also found multiple mo-
bility states for H2B (15, 16). However, unlike that in (15), our
model is not constrained to a fixed number of states. We allow
our algorithm to explore up to 15 different states and find that
only two states meet our statistical criteria (fig. S4C). Given the dif-
ferences in imaging conditions and analysis techniques, it is not
straightforward to compare our two low-mobility states with the
five states described in (15). The spatial patterning of different mo-
bility states was also reported with very short tracks (<500 ms) (15,
16). Because chromatin is a viscoelastic polymer (19), the short and
long time scale dynamics are likely to provide very different infor-
mation. Here, we examine longer time scales on the order of tens of
seconds and up to 2min. Although we analyze 1.2 s sub-tracks using
pEMv2, tracking the same molecule over longer times allows us to
identify hitherto hidden transitions between the two low-mobility
states. We find that unlike previous models (16), H2B does not form
spatially separated domains of fast and slow chromatin. Instead, in-
dividual H2B molecules could dynamically switch between the two
low-mobility states (Fig. 1, F to H).

We showed that multiple TFs and co-regulators switch between
the same two mobility states as H2B (Figs. 2 to 5). These data indi-
cate that presumed bound events can exhibit distinct mobility states.
Using ligand-activated SRs, we determine that the active form of the
TF binds more in the lowest-mobility chromatin state as compared
to its inactive counterpart (Fig. 2). PPARγ2 mutants show that
binding in state 1 requires an intact DBD and an RXR heterodime-
rization domain (Fig. 5). To confirm that this state is associated with
an active TF, we showed that overexpression of EGFP-tagged C/
EBPα, a TF that is known to cooperate with PPARγ2 at the chroma-
tin level and facilitate its binding to dual target sites in chromatin
(50), leads to an increase in the proportion of PPARγ2 molecules in
state 1.

Together, our data suggest a two-state model for the mobility of
chromatin wherein TFs, by virtue of being bound to chromatin,
exhibit the same mobility states as chromatin. Moreover, chromatin
and bound TFs can transition between these two mobility states due
to processes yet to be determined. Chromatin is a viscoelastic
polymer that has been shown to exhibit sub-diffusive dynamics
(18). On our experimental time scales, chromatin explores a finite
region of space that we call a chromatin exploration domain (CED;
Fig. 7A). Within these CEDs, chromatin can exist in one of the two
mobility states. On a time scale of 1.2 s, the lowest-mobility state has
an exploration diameter of ~130 to 180 nm, while the higher-mo-
bility state has an exploration diameter of ~250 to 350 nm (Fig. 7, B
and C). Superresolution microscopy has revealed sub-TAD chro-
matin nanodomains (CNDs) encompassing 10 to 100 kb of DNA
(60) and smaller nucleosome clutch domains (61, 62). While it is
tempting to relate our CEDs to CNDs and clutch domains, CEDs
represent a temporal exploration size that depends on the time
scale of interrogation. CNDs and nucleosome clutches refer to the
spatial extent of nucleosomal aggregates in a static snapshot of the
cell. Simultaneous tracking of nucleosomes and the CNDs/clutch
domains at different time scales will help distinguish between the

mobility of CNDs/clutch domains and that of their constituent
nucleosomes.

Our data suggest that the observed mobility states of TFs and
other transcriptional regulators result from the underlying mobility
of chromatin itself. However, as shown by our results from ligand
activation and mutations, the propensity of TFs to engage with one
type of mobile chromatin versus another depends on their activa-
tion status and the presence of intact DBD and oligomerization
domains. We also anticipate that TF binding can, in turn, influence
chromatin makeup and dynamics. This process would require the
TF to recruit cofactors and the transcriptional machinery, which
will further depend on their activation status and the intactness of
the DBD and other domains. The lack of state 1 for PPARγ2-DBD +
HETmut could thus be a combination of the protein being unable to
bind to chromatin in state 1 and not being able to convert state 2
chromatin to state 1 chromatin, but further work is necessary to dis-
tinguish between these possibilities.

Experimentally, whether TF binding can cause changes in chro-
matin mobility remains unclear. However, there is mounting exper-
imental evidence in favor of this. RNA Pol II–mediated
transcription has been shown to constrain nucleosome mobility
(7, 13, 63). Consistent with this result, TF binding and subsequent
recruitment of the transcriptional machinery could trigger a transi-
tion of the local chromatin polymer (and of the bound TF) from
state 2 to state 1 (Fig. 7B). Similarly, loop extrusion and nucleo-
some-nucleosome interactions have also been shown to constrain
nucleosome mobility (14). However, directly establishing this will
require advances in imaging to allow simultaneous tracking of a
TF and a specific genomic locus at high spatial and temporal
resolution.

We hypothesize that any transition to state 1 is the result of a
combination of processes, composed of but not limited to TF
binding, RNA Pol II elongation, and loop extrusion. The following
predictions emerge from this model. Inhibition of RNA Pol II with
pharmacological drugs such as α-amanitin or DRB, both of which
inhibit RNA Pol II elongation through different mechanisms,
should result in an increase in the population fraction of state 2
and a reduction in the population fraction of state 1. Without our
classification scheme, this would appear as an increase in the overall
MSD of H2B, as recently reported (13). Similarly, rapid degradation
of the RNA Pol II subunit RPB1 or the cohesin complex subunit
RAD21 using the auxin-inducible degron system would also
result in an increase in the population fraction of state 2 relative
to that of state 1 (13, 14).

Our PPARγ2 mutagenesis experiments suggest that binding in
state 2 is independent of the DBD and heterodimerization
domains. Because IDRs within TFs have been shown to direct TF
binding independent of the DBD, we propose that regions within
IDRs of TFs might be responsible for binding state 2 chromatin.
However, the recruitment of cofactors is necessary for the conver-
sion of state 2 chromatin to state 1. Targeted deletions within TF
IDRs will help test this hypothesis and will be the subject of
future studies.

As we have shown previously, TFs exhibit power-law distributed
dwell times (17, 23). This broad distribution of dwell times renders
it impossible to distinguish between specific and nonspecific
binding based on residence times alone. Different response ele-
ments are likely to present TFs with a broad affinity landscape.
On the other hand, measuring the spatial mobility of TFs allowed
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us to identify two distinct mobility states across several classes of
TFs in two cell lines. This opens other lines of inquiry hitherto un-
available through SMT.

By classifying H2B and GR tracks into two RL groups, we show
that depending on their overall mobility, particles exhibit different
binding modes, as measured by survival distributions (Fig. 6, K and
L). Regardless of mobility, H2B remains bound to chromatin longer
than our imaging time. As observed from the trajectory level RL
analysis, H2B molecules that exhibit lower MSDs (RL group 1)
tend to remain in the lowest-mobility state, while molecules that
exhibit higher MSDs (RL group 2) switch between two mobility
states. Accordingly, TF molecules that are bound to less mobile
chromatin show limited switching and histone-like dwell times.
However, TFs bound to more dynamic chromatin (with overall
higher MSDs and more frequent transitions between the mobility
states) show similar mobility transitions but are not as long-lived
(exhibiting power-law dwell times). Thus, while state switching is
reflective of the dynamics of the underlying chromatin mobility,
the overall dwell times are reflective of the binding, which can be
either long-lived (tightly bound) or power-law (sampling a broad
range of affinities). Measuring TF dwell times in each mobility
group under appropriate biological perturbations might help distin-
guish between different types of binding, which cannot be done
from ensemble measurements of dwell times.

In this study, we have focused on long-binding events. A long-
standing question in the field is how TFs scan the 4D genome in
search of their binding sites. TF motifs are typically 8 to 20 bp in
length and are embedded within a sea of nonspecific sequences
(5). Theoretical considerations show that if TFs were to rely solely
on Brownian motion to encounter their binding sites, they would
take days to find a single specific binding site (5). Biophysical
models of this apparent paradox suggest that bulk diffusion
allows TFs to localize close to their specific sites, following which,
they rely on 1D sliding, facilitated diffusion, and hopping to find
their target motifs (64, 65).While these models are very provocative,
little direct experimental evidence is currently available. As imaging
technologies develop and we push temporal and spatial resolutions
to scales that are relevant for these processes, analysis tools present-
ed here can help uncover modes of motion that remain elusive in
conventional SMT studies. For example, using fast imaging,
CTCF was shown to use anomalous diffusion along with transient
trapping in CTCF clusters to boost its search efficiency, an interac-
tion that depended on CTCF’s internal RNA binding region (26).
Applying these techniques to study TF dynamics in the context of
development, disease, and evolution can provide awindow into fun-
damental biological processes through the lens of individual TFs,
paving the way for the development of targeted therapeutics for dis-
eases driven by TFs gone awry.

Limitations
To get a complete picture of TF dynamics from search to binding,
we must be able to image with very high spatiotemporal resolution.
Sparse labeling allows us to achieve sub-pixel localization, but our
temporal resolution still suffers from photobleaching. By fitting the
H2B survival distribution to a triple exponential function as de-
scribed previously (17), we estimate our photobleaching rate to be
13.03 ± 0.15 s (~9 sub-tracks), which is adequate for all the measure-
ments reported in this study. We mitigate some of this by imaging
with longer dark periods (200 ms) to capture long-lived binding

events. However, this does not allow us to capture fast diffusing
molecules because they move out of the imaging volume on these
time scales. As described in Materials and Methods, the probability
of a freely diffusing GR molecule to remain in the focal volume
during our sampling interval is less than 10−9. Faster imaging will
be required to quantitatively assess these states. Because of this, we
restricted our analysis to the two lowest-mobility states. The mobil-
ity characteristics of slow-moving bound molecules should not
depend on photobleaching and differential defocalization of the
two low-mobility states. However, we note that TF molecules with
different overall mobilities do exhibit distinct temporal dynamics
(Fig. 6L). MINFLUX tracking (66, 67) is currently the most prom-
ising nanoscopy technique that offers nanometer-scale spatial res-
olution with a temporal resolution of hundreds of microseconds.
Developments in fluorophore chemistry that improve the bright-
ness and photostability of fluorophores will make longer imaging
more feasible on instruments such as MINFLUX, and researchers
will be able to interrogate both long- and short-time behaviors in
the same set of tracks.

While our analysis provides evidence for two distinct mobility
states in the nucleus, our MSD curves span only six time lags.
With only six time lags, we cannot comment on the nature of the
mobility states. To use the MSD to reliably distinguish between dif-
ferent physical models such as sub-diffusion, fractional Brownian
motion, and confined diffusion, we need at least three decades of
time lags (68). Non-MSD approaches to estimate diffusive parame-
ters perform better than traditional MSD analyses but still require at
least two decades of time lags (69). It is possible to achieve these
long time scales by tracking sub-nuclear structures like telomeres,
which can be labeled by the binding of multiple fluorescent proteins
such as telomeric repeat factor 2 (TRF2) (70). However, photo-
bleaching keeps these time scales outside the purview of SMTexper-
iments. As can be seen from our analysis of long tracks, even with
200-ms dark periods, we can only span a 20-fold range of time lags.

Our study and all the SMT studies cited here (13–16, 23–27, 29,
30, 46, 47) have been conducted in 2D cross-sections of the nucleus,
and it is possible for diffusing molecules to appear confined when
projected in 2D. The higher-mobility states recovered from pEMv2
for most TFs (colored green and yellow in all the figures) could rep-
resent a combination of this population of diffusive molecules along
with tracking errors. This is supported by the fact that the propor-
tion of these states is unchanged under all the perturbations. The
only way to conclusively determine what these states represent
will be to perform fast 3D tracking. While we have shown here
that 2D tracks of H2B and TFs do not exhibit any large-scale
spatial separation, 3D tracking will be essential to test whether
there could be any smaller-scale spatial separation of different mo-
bility states.

Last, 2D tracking poses another notable challenge. When
imaging molecules at the nuclear periphery or in perinucleolar
regions, these molecules will undergo diffusion along an effective
2D surface. When these events are imaged in 2D, we are looking
at the 1D intersection of the surface and the focal plane. These
events will preferentially appear to be in a very low-mobility state
because this is effectively 1D motion. One must be careful to attri-
bute these to the more compact nature of heterochromatin (15)
without performing appropriate comparisons with 3D tracking.
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MATERIALS AND METHODS
Cell lines and cell culture
3617 mouse adenocarcinoma cells (20) were grown in high-glucose
Dulbecco’s modified Eagle medium (DMEM; Gibco, #11960044)
supplemented with 10% fetal bovine serum (FBS), 2 mM L-gluta-
mine (Gibco, #25030081), 1% MEM non-essential amino acids
(Gibco, #11140050), and 1 mM sodium pyruvate (Gibco,
#11360070) at 37°C in a CO2 controlled incubator. 3617 cells
contain stably integrated GFP-GR under a tetracycline-off system
(71). To prevent the expression of GFP-GR, these cells were
grown in the presence of tetracycline (5 μg/ml).

The 3T3-L1 mouse pre-adipocyte cell line (ATCC) was cultured
in DMEM supplemented with 10% calf serum (Gibco, #26170043),
1% MEM non-essential amino acids, 1 mM sodium pyruvate, pen-
icillin (50 U/ml), and streptomycin (50 μg/ml; Gibco, #15070063) at
37°C in a CO2 controlled incubator.

Animal experiments
No animals were used in this work.

Plasmid constructs
H2B
pHalo-H2B was generated by polymerase chain reaction (PCR) am-
plification of the H2B coding region from an H2B-GFP template
and cloned into a pFC14A backbone (Promega, Madison, WI,
USA) to fuse the HaloTag to the C terminus of H2B (31).
Steroid receptors
The pHaloTag-GR plasmid expresses rat GR fused to HaloTag
(Promega, Madison, WI, USA) in the C terminus regulated by a
CMVd1 promoter and has been described previously (72). pHalo-
PR expresses human PR isoform beta fused with HaloTag at the N
terminus, regulated by a CMV promoter (24). pHalo-PR open
reading frame (ORF) clone was purchased from Promega
(Promega, #FHC24423). pHalo-ER expresses human ERα fused to
HaloTag in the C terminus regulated by a CMVd1 promoter and has
been described previously (24, 73). pHalo-AR expresses human AR
with HaloTag fused to the C terminus. This plasmid was custom-
made by Promega and has been reported previously (24).
PPARγ2 and mutants
pHalo-PPARγ2 expresses human PPARγ isoform 2 fused to
HaloTag in the N terminus under a CMVd1 promoter (Promega
ORF clone #FHC08305). PPARγ2 mutants were generated by nu-
cleotide substitution using the QuikChange II XL Site DirectedMu-
tagenesis Kit (StrataGene, La Jolla, CA, USA) following the
manufacturer’s protocol. PCR primers were designed using Quik-
Change Primer Design Program. The primer sets used to generate
the mutants were as follows: PPARγ2-C159S (DBDmut) (1, 5′-CC
GGAAGAAACCCTTGGATCCTTCACAAGCATG-3′ and 2, 5′-C
ATGCTTGTGAAGGATCCAAGGGTTTCTTCCG-3′) and
PPARγ2-L470R (HETmut) (1, 5′-CCGTGACAATCTGTCTGCG
GTCTGTCATTTTCTGG-3′ and 2, 5′-CCAGAAAATGACAGAC
CGCAGACAGATTGTCACGG-3′). All mutations were verified
by sequencing.
Co-regulators
pHalo-RELA expresses human NF-κB subunit p65 fused with
HaloTag at the N terminus in a pFN22K backbone. This construct
was purchased from Promega. pHalo-GRIP1 expresses mouse
GRIP1 with an N terminus HaloTag fusion regulated by a

CMVd1 promoter. This was generated by PCR amplification of
the GRIP1 coding region from an EGFP-GRIP1 template and sub-
sequent cloning into a pFN22K backbone using Sgf I and Pme I re-
striction sites (24). pHalo-SMARCA4 expresses human SMARCA4
with HaloTag fused to the N terminus under a CMVd1 promoter
(Promega ORF FHC12075). pHalo-MED26 expresses human
MED26 fused with a HaloTag at the N terminus and was a gift
from J. Conaway’s laboratory. pHalo-CTCF expresses mouse
CTCF with HaloTag fused to the C terminus. This was generated
by PCR amplification of the CTCF coding region from a CTCF-
EGFP template (74) and cloned into the pHalo-GR backbone,
which was cut using the Pvu I and Xho I restriction enzymes
(New England Biolabs, Ipswich, MA) and has been described pre-
viously (17).
EGFP construct
EGFP-C/EBPα expresses rat C/EBPα with an EGFP fusion on the N
terminus (this was a gift from F. Schaufele, University of California
San Francisco, San Francisco, CA, USA) and has been described
previously (75).

Transient transfections and agonist treatments
3617 and 3T3-L1 cells were plated in LabTek II (Thermo Fisher Sci-
entific, Waltham, MA, USA) or Cellvis (Mountain View, CA, USA)
chamber slides for 24 hours before transfection. For 3617 cells, the
indicated plasmids were transiently transfected using jetPRIME
reagent (PolyPlus, New York, NY, USA) following the manufactur-
er’s protocol. The protocol was optimized to prevent overexpression
of HaloTag-protein chimeras (24). Cells were incubated in the jet-
PRIME reaction mixture containing 500 ng of DNA for 4 hours.
The medium was then replaced with phenol red–free DMEM con-
taining charcoal-stripped FBS (Life Technologies, Carlsbad, CA,
USA) supplemented with 2 mM L-glutamine, 1% MEM non-essen-
tial amino acids, 1 mM sodium pyruvate, and tetracycline (5 μg/ml),
and the cells were allowed to recover overnight.

For 3T3-L1 cells, 24 hours after plating, the medium was
changed to optiMEM (Gibco, #31985070), and the cells were trans-
fected with the indicated HaloTag- and/or EGFP-protein chimeras
using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA,
USA) following the manufacturer’s protocol. Briefly, for HaloTag-
protein fusions, we used 750 ng of DNA per 100 μl of Lipofectamine
2000 transfection mix. For EGFP-protein constructs, we used 4.5 μg
of DNA per 100 μl of transfection mix. After incubating the cells in
the transfection mix for 4 hours, the medium was replaced with
fresh phenol red–free growth medium, and the cells were allowed
to recover overnight.

Before imaging, the cells were incubated in amedium containing
5 nM Janelia Fluor 549 (JF549) HaloTag ligand (21, 59) for 20 min.
The cells were then washed three times with phenol red–free
medium and returned to the incubator for 10 more minutes. Cells
were then washed once more. 3617 cells were either left untreated or
treated with the indicated hormone (100 nM): dexamethasone
(Dex), 17β-estradiol (E2), dihydrotestosterone (DHT), or progester-
one (Prog) for 20 min before imaging. Dex, E2, DHT, and Prog were
purchased from Sigma-Aldrich (St. Louis, MO, USA). 3617 cells ex-
pressing Halo-RELA were treated with tumor necrosis factor–α
(TNFα; 30 ng/ml; Sigma-Aldrich, St. Louis, MO, USA) for 30
min before imaging. 3T3-L1 cells were all treated with 1 μM
BRL49653/rosiglitazone (Rosi; Cayman Chemical Company, Ann
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Arbor, MI, USA) for 1 hour. Between 2 and 10 biological replicates
were collected per condition.

Microscopy
All samples were imaged on a custom-built HILOmicroscope in the
LRBGE Optical Microscopy Core at the National Cancer Institute
(NCI), National Institutes of Health (NIH). Detailed information
can be found in (59). Briefly, the microscope has a 150× 1.45 nu-
merical aperture objective (Olympus Scientific Solutions,
Waltham, MA, USA); an Okolab stage-top incubator for tempera-
ture, and 5% CO2 control (Okolab, Pozzuoli NA, Italy). The micro-
scope is equipped with a 561-nm laser (iFLEX-Mustang, Excelitas
Technologies Corp., Waltham, MA, USA) and an acousto-optical
tunable filter (AOTFnC-400.650, AA Optoelectronic, Orsay,
France) (22, 59). Images were collected using an EM-CCD
camera (Evolve 512, Photometrics, Tucson, AZ, USA) every 200
ms (5-Hz frame rate) with an exposure time of 10 ms for a total
of 2 min (600 frames) with a laser power of 0.96 mW (17). The
pixel size for this setup is 104 nm.

Tracking
Particle detection and tracking are performed using TrackRecord
v6, a custom tracking software written in MATLAB (version
2016a; The MathWorks Inc., Natick, MA, USA) that is publicly
available at Zenodo (https://doi.org/10.5281/zenodo.7558712) and
has been extensively described previously (17, 23, 24, 31, 59). The
image stacks were filtered using Top-hat, Wiener, and Gaussian
filters. A hand-drawn region of interest was used to demarcate the
boundary of the nucleus. The particle detection intensity threshold
was determined to be the lowest threshold at which less than 5% of
detected molecules had a signal-to-noise ratio of 1.5 or less. Sub-
pixel localization was achieved by fitting the detected particles to
a 2D Gaussian. Detected particles were then tracked using a
nearest-neighbor algorithm (76) with a maximum allowed jump
of 4 pixels (416 nm), a maximum allowed gap of one frame, and
a shortest track of six frames. A maximum jump of 4 pixels (416
nm) has been validated previously for bound molecules (31).

For all the tested proteins, we localize 10 to 40 molecules at the
beginning of the movie, with decreasing localizations at later time
points, due to photobleaching (fig. S1). Out of these detected mol-
ecules, the number of molecules that are tracked depends on the
bound fraction of the molecule. For molecules with a high bound
fraction (e.g., H2B in both cell lines), most of the detected molecules
can be tracked (fig. S1, A and B). On the other hand, for molecules
with small bound fractions (e.g., untreated SRs and PPARγ2
mutants), only a small fraction of detected molecules are tracked
(fig. S1, C, E, G, I, and Q to S).

To confirm that tracking errors were minimal under our exper-
imental conditions, we performed the following quality control
steps. First, we calculated the distance of every tracked particle to
the two nearest-neighbor particles in the next frame. Table S1
shows the percentage of tracked molecules for which the second
nearest neighbor falls within 416 nm (the allowed maximum
jump) of the tracked molecule. As can be seen from table S1, for
all the tested molecules, the average fraction of second nearest
neighbors that fall within 416 nm of a tracked molecule is 0.73%,
with the highest fraction being 1.54% for the AR activated by
DHT. These data show that the frequency of tracking errors due

to labeling density and the tracking parameters is <1% in most
cases and no higher than 1.54%.

Next, we compared the effect of allowing a gap of one frame (the
default parameter used for all the data presented here), with the
more stringent gapless tracking (gap = 0). We tracked histone
H2B and the GR with both gap = 1 and gap = 0 and compared
the survival distributions and ensemble MSD. We find that regard-
less of the gap parameter, the recovered survival distribution and
MSD are identical (fig. S2). Furthermore, the MSD for H2B
shows good agreement with previously published data (14, 31).

Since we are imaging at a relatively slow frame rate of 200ms, it is
theoretically possible that we are linking different molecules
between consecutive frames. To confirm that this is not the case,
we next checked for occurrences of the following type of error: If
we localize molecule A in frame n, what is the frequency of molecule
B appearing in the 200-ms interval between frame n and n + 1 and
molecule A leaving the focal volume in the same period? This will
result in a track segment linking molecule A in frame n to molecule
B. To measure the frequency of such errors, we imaged both H2B
and GR at fast frame rates (12 ms). This allows us to observe the
arrival of new molecules within 416 nm of the original localization
for multiple frames up to 200 ms. A potential source for misconnec-
tion errors would be the presence of multiple particles within 416
nm of the original localization in the intervening frames with only
one molecule at the remaining 200 ms.

For every 200 ms segment that had one molecule at t = 0 and
exactly one molecule at t = 200 ms within 416 nm of the original
localization, we counted the number of times more than one parti-
cle is detected within 416 nm of the original localization during
this period.

We estimated an upper bound for this type of error as

E¼
# segments with. 1 particle within 416 nm of original localization
Total #200 ms segments with 1 localization at the beginning and end

We note that this is an upper bound because if we have more than
one particle within 416 nm of the original localization, either the
single particle at 200 ms could be the original particle or it could
have been replaced by another particle and we cannot distinguish
between these possibilities.

For H2B, we find EH2B = 2.044% and for GR, EGR−Dex = 2.219%.
This is an estimate for tracking errors over a 200-ms time scale. For
these errors to compound across our mobility analyses, these errors
must occur for six consecutive 200-ms segments, for which this
error probability would be multiplicative (assuming that blinking
or the arrival of molecule B and disappearance of molecule A is in-
dependent for each 200-ms interval, which is quite reasonable) and
hence infinitesimally small. These data show that our tracking pa-
rameter choices result in minimal tracking errors for data acquired
every 200 ms.

Defocalization probability
The probability of a molecule with diffusion coefficient D remain-
ing within the detection range Δz after time Δt can be explicitly
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calculated as (25)

PremainingðD;ΔtÞ ¼
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We estimated our depth of focus to be ~400 nm on the basis of
the procedure described in (77). Freely diffusing GR has a diffusion
coefficient of 1.8 μm2/s (59). Using the above equation, the proba-
bility of freely diffusing GR remaining within our 400 nm detection
range at 200 ms is less than 10−9.

Localization precision
For a particle that undergoes normal diffusion with a diffusion co-
efficient Dk, the diagonal covariance matrix element Σk is given by
(28, 78, 79)

Σk ¼ 2DkΔt þ 2σ2k � 4RDkΔt

where R � 1
6 �

Δtexposure
Δt is the motion blur coefficient.

pEMv2 outputs the covariance matrix Σk(i, i) and the optimal
diffusion coefficients Dk for each state k. We can rearrange the
above equation to calculate the localization error as

σk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

� ½Σk � 2DkΔtð1 � 2RÞ�

r

Including motion blur, pEM estimates the localization precision
to be ~20 nm for state 1 and ~40 nm for state 2. The higher-mobility
states have a localization precision of ~70 nm.

Identification of distinct diffusive states using pEMv2
pEMv2 (28) was used to classify the single-molecule trajectories
into multiple diffusive states. pEMv2 requires tracks to be divided
into sub-tracks of equal length. We split our trajectories into sub-
tracks of length of seven frames because longer tracks increase the
likelihood of transitions within a sub-track. We ran pEMv2 inde-
pendently on each protein and treatment to avoid forcing different
datasets to converge on the same mobility states. No prior assump-
tions on the number of diffusive states or the types of diffusive
motion were made (28). pEMv2 was allowed to explore between 1
and 15 states, with 20 reinitializations and 200 perturbations. The
maximum number of iterations was set to 10,000 with a conver-
gence criterion of 10−7 for the change in the log-likelihood function.
The convergence of pEMv2 was verified through multiple runs. The
covariance matrix was allowed to have three features.

After the classification by pEMv2, each sub-track is assigned a
posterior probability to belong to each of the states. For example,
if pEMv2 converges to three states, then each sub-track would
have three posterior probabilities, one for each determined state.
We assign each sub-track to the state for which it has the highest
posterior probability (fig. S4A).

A sub-track could have similar posterior probabilities to belong
to two or more states. For instance, in our mock example with three
states (fig. S4A), we could have a sub-track with a posterior proba-
bility distribution of (0.9, 0.05, 0.05), in which case, we would assign
the sub-track to state 1. However, we could also have a sub-track
with a posterior probability distribution of (0.5, 0.4, 0.1); in which
case, while wewould assign the sub-track to state 1, it has a very high
probability to belong to state 2 as well. To mitigate this, we

calculated ΔPP, which is the difference between the two highest pos-
terior probabilities for each sub-track, and excluded sub-tracks with
ΔPP ≤ 0.2 from the ensemble MSD and population fraction calcu-
lations (fig. S4B).

Calculation of the unbound fraction
States that account for less than 5% of all sub-tracks are excluded
from the calculation of the population fraction (fig. S4C). For con-
sistent comparison of population fractions of steroid receptors
before and after hormone treatment or PPARγ2 wild type against
mutants, we needed an estimate of the unbound fraction. Following
the methodology outlined in (17, 31), we used the respective H2B
jump histograms to calculate two jump distance thresholds for each
cell line: Rmin is the jump distance of 99% of H2Bmolecules between
consecutive frames, and Rmax is the jump distance of 99% of H2B
molecules between six frames (equal to the shortest track). Jump
events larger than Rmin over consecutive frames or larger than
Rmax over six frames were classified as unbound. For each species,
the unbound fraction was then calculated as the ratio of the total
number of unbound events to the total number of tracked mole-
cules. For 3617 cells, Rmin = 250 nm and Rmax = 330 nm. For
3T3-L1 cells, Rmin = 270 nm and Rmax = 390 nm.

Photobleaching corrected survival distributions
The photobleaching rate was calculated using a previously pub-
lished methodology (17). Briefly, the raw H2B survival distribution
was fit to a triple exponential function, with the slowest exponential
parameter being the photobleaching rate.

The raw survival distributions for the two RL groups were calcu-
lated as follows. If S(t) is the raw survival distribution and kPB is the
photobleaching rate, then the photobleaching-corrected survival
distribution ŜðtÞ is given by

ŜðtÞ ¼
SðtÞ
e�kPBt

Transition probabilities
For the calculation of transition probabilities, because most of the
tracks belong to low-mobility states 1 and 2, all the other states de-
tected by pEMv2 were grouped together into a third “other” state.
This allows us to calculate the transition probability among three
states: low-mobility state 1, low-mobility state 2, and “other”
states. For each track, the number of transitions between each pair
of these states is calculated using a custom MATLAB script. Only
tracks with at least three sub-tracks were included in this analysis.
A total of 26 ± 5% of tracks have at least three sub-tracks, but these
account for 67 ± 6% of total sub-tracks (table S2). These transition
counts are then added up to obtain a transition matrix T where the
element T(i, j) is the number of transitions from state i to state j.
This matrix is then normalized to obtain the transition matrix Pt,
where

Ptði; jÞ ¼
Tði; jÞ

X3

j¼1
Tði; jÞ
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To test whether these transition probabilities are different from
those recovered from a randomized ensemble with the same popu-
lation fraction, the sub-track state assignments are randomly shuf-
fled, and the transition probabilities P̂tði; jÞ are calculated for this
randomized ensemble. This process is repeated 1000 times, and
the statistical significance for a transition probability Pt(i, j) is re-
ported as the proportion of randomized trials with P̂tði; jÞ . Ptði; jÞ.

Estimation of diffusion coefficients and localization errors
using Spot-On
Spot-On (25) was used to fit a two-state model to the cumulative
distribution function of displacements of pEMv2 classified sub-
tracks. The following parameters were used: binWidth = 0.01, Use-
Weights = 1, MaxJump = 5.05, FitIterations = 3, JumpsToConsider
= 6, and TimePoints = 4. On the basis of the pEMv2 results, the
range for the diffusion coefficient fit was set to [0.0001, 0.05].

Estimation of the MSD distribution using the RL algorithm
The single particle tracking data were used to calculate the self-part
of the vHc as Gs(r, τ) = As〈δ(ri − ∣ri(t + τ) − ri(t)∣〉, where ri is the
position of the i-th nucleosome and As = ∫ d2rGs(r, τ) is a normal-
ization constant. The vHc is assumed to be a superposition of
Gaussian functions, qðr;MÞ ¼ 1

πM

� �
exp � r2

M

� �
as Gs(r, τ) = ∫ P(M,

τ)q(r, M)dM, where P(M) is the distribution of MSDs of the pop-
ulation of nucleosomes. The RL algorithm is used to extract P(M)
from the empirical vHc as follows (16): from an initial distribution,
P0ðMÞ ¼ exp � M

M0

� �
, Pn+1(M, τ) at the (n + 1)-th iteration was it-

eratively obtained from

Pnþ1 ¼ Pn
ð
Gsðr; τÞ

Gn
sðr; τÞ

qðr;MÞd2r

with the constraint that Pn(M, τ) > 0 and normalized. The minima
of P(M, τ) were used to classify individual nucleosome tracks into
different mobility states.

Supplementary Materials
This PDF file includes:
Figs. S1 to S11
Tables S1 and S2
Legends for movies S1 to S4

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S4

View/request a protocol for this paper from Bio-protocol.
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