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ABSTRACT

Unconventional computing devices are increasingly of interest as
they can operate in environments hostile to silicon-based elec-
tronics, or compute in ways that traditional electronics cannot.
Mechanical computers, wherein information processing is a mate-
rial property emerging from the interaction of components with
the environment, are one such class of devices. This information
processing can be manifested in various physical substrates, one of
which is granular matter. In a granular assembly, vibration can be
treated as the information-bearing mode. This can be exploited to
realize “polycomputing”: materials can be evolved such that a single
grain within them can report the result of multiple logical opera-
tions simultaneously at different frequencies, without recourse to
quantum effects. Here, we demonstrate the evolution of a material
in which one grain acts simultaneously as two different NAND
gates at two different frequencies. NAND gates are of interest as
any logical operations can be built from them. Moreover, they are
nonlinear thus demonstrating a step toward general-purpose, com-
putationally dense mechanical computers. Polycomputation was
found to be distributed across each evolved material, suggesting the
material’s robustness. With recent advances in material sciences,
hardware realization of these materials may eventually provide
devices that challenge the computational density of traditional
computers.
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1 INTRODUCTION

Traditionally, combinational logic operations are embedded in sil-
icon based electronic devices. However, in light of the recent ad-
vances in chemical, physical and material sciences, unconventional
practices of information processing in engineered materials are
now being explored [24]. Quantum computing [6], DNA comput-
ing [1], neuromorphic computing [12], optical computing [21], and
physical reservoir computing [14] are all examples of the new forms
of embedding computation. Moreover, attempts have been made
to overcome the limitations of the conventional Integrated Cir-
cuits via combining them with soft conductive materials to develop
kinematically reconfigurable electrical circuits [5]. Exploring these
new computational paradigms provides novel opportunities for the
development of advanced forms of intelligent matter in which sens-
ing, decision making and actuation are combined [9]. One recent
example is logic-enabled textiles that can be embedded into robotic
wearables [17].
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Figure 1: The size, shape, and position of the grains in a granu-
lar metamaterial can be evolved such that it “polycomputes”:
different logical functions are computed at the same place,
at the same time, in the material. This can be accomplished
if bits, encoded as vibrations, are combined by summing vi-
brations at different frequencies. The power of response at
a different output grain (red), at those frequencies, can be
interpreted as the output of the computation performed on
those different bit pairs.
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Logical functions embedded in metamaterials have also been
explored to some extent. Non-intuitive exotic properties of these
engineered materials make them great candidates as physical sub-
strates to perform computation [20]. In [8] authors have proposed
3D printed cells with embedded bistable springs that implement
simple logic functions using mechanical signals. In [22] origami
units have been designed that can be used to develop a framework
for embedding computation into the robotic structures. [19] has ex-
ploited a nonlinear mass-spring-damper model to design a universal
logic gate.

Recently, the granular metamaterials [10] are gaining special
interest as the physical substrates for computation. Here, the me-
chanical vibrations can be used as the information-bearing mode
to realize various logical functions in a granular matter (Fig. 1).
Because these materials are made of individual particles with di-
verse material properties, they can also be responsive to external
stimuli (like temperature or electromagnetic fields) and thus pos-
sess a higher potential for an increased computational density. In
[11] OR and AND logical gates are designed in a granular chain of
chrome steel grains. In [2] the bistability of an array of spiral-spring
resonators is exploited to build transistor-like switches. In all of the
aforementioned works (except [16]), the computational modules
are hand-designed by human experts. As we move to higher-order
parameter spaces and explore more complicated structures, the
need for an automated optimization pipeline to design computa-
tional metamaterials seems unavoidable. Moreover, in none of the
previous works the scalability of the designed units to realize the
universal computational gates is explored.

In this paper, we first use Evolutionary Algorithms to design
granular assemblies that can compute a NAND function. Next, by
leveraging the superposition principle in the frequency response of
the coupled granular system under external vibrations, we explore
“polycomputation” in the material and provide the optimization
results showing NAND functionality computed at two different
frequencies at the same time and in the same place. We provide an
exploratory analysis of the distribution of the computation through-
out the material and then discuss a possible hardware platform for
the physical realization of our designed structures.

2 GENERALIZATION

Boolean logic gates are at the root of any computational model.
Logical NAND gates are of particular interest because any Boolean
function can be implemented using circuits constructed from only
NAND gates. Therefore, to take a step toward general-purpose
computation embedded in granular metamaterials, in this paper
we focus on evolving NAND gates. In this section, we start with
introducing the digital abstraction in our physical platform. We
then describe the details of the granular material simulator used
by the Evolutionary Algorithm. After discussing the EA itself, we
present the results of evolving a NAND gate in a material and then
show common patterns that consistently arise across independent
solutions, suggesting deeper insight into how various materials can
realize new forms of computation.
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2.1 Computation in Granular Matter

To encode information as sequences of bits, we must first establish
a useful representation based on our physical substrate. In digital
electronic systems, inputs and outputs are electrical voltages. In our
analogous mechanical system, inputs and outputs are vibrations.
The material is a two-dimensional assembly of circular particles
placed on a triangular lattice (Fig. 2). The macroscopic behavior
of such a granular system is determined by the properties of in-
dividual particles such as their arrangement, mass, modulus, and
shape. In the present work, the EA was only allowed to vary a
particle’s stiffness ratio: it could be set to any value in [1, 10]. These
microscopic properties influence how vibrations propagate through
the material; our goal here is to evolve particle stiffnesses such that
the material’s vibrational response resembles the operation of a
desired logic gate.
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Figure 2: System setup. A logic gate with two inputs (green
and blue particles), one output (red particle) and one power
source (magenta particle) embedded in a 2D granular assem-
bly with particles of various stiffness properties (indicated
as different shades of gray). A; and A, are the amplitudes of
oscillations applied in x direction to the input ports which
will result in displacements from the initial positions (x?
and xg). A is the amplitude of the source signal. o is the
operational frequency. The truth table is shown on the right:
D represents the diameter of particles. O;;(i, j € 0,1) is the
magnitude of the vibrations in the output.

In order to apply the input signal, two particles are arbitrarily
chosen as input ports (particles with green and blue markers in
Fig. 2). The red particle represents the output port used to observe
the system’s response. A fourth particle (magenta) is connected to
an external power source, which is realized as constant vibration of
that particle, regardless of the vibrations supplied to the inputs in
the material. All input and power vibrations are sinusoidal waves
with amplitude A; and frequency w applied in the x direction.

Other particles may vibrate more or less in x and y directions.
Applying this vibration to the particle causes a displacement from
its initial position (x?). The amplitude of this displacement signal
over time (x;(t)) is interpreted as a bit: (considering the amplitude
of the power source as a baseline) small or no displacement is
interpreted as a ‘0°; high magnitude of displacement is interpreted as
a ‘1°. The truth table in Fig. 2 shows this representation. Oscillation
amplitude arriving at the output port (O;j) at a pre-determined
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frequency is recorded in each of the four input cases (‘00°, ‘01°, ‘10°,
and ‘11°). This quantity is then used to calculate the system’s gain
(Gij) defined as:

f(0ij)

f(in;) + f(inj)

In this equation, f is the fast Fourier transform at the driving
frequency (w), which is the frequency applied to the input and
power ports. For the material to resemble a NAND gate, we expect
to see high amplitude oscillation at the output in the ‘00°, ‘01° and
‘10 cases (which translates to high Goo, Go1 and Gyo), but a low
amplitude in the ‘11° case (low Gi1). Using this formulation, we
can evaluate each candidate granular assembly of particles and
determine its similarity to the desired logical function. To select
for materials that are increasingly NAND-like, the fitness function
(which was minimized during the optimization) was defined as
follows:

Gij(w) = i,jeo1 (1)

F = max (|1 = Goo(@)l, |1 = Go1(@)1, |1 = G10(@)1, 10 = G11(@)])
@

2.2 Simulation

We simulated our granular system using the Discrete Element
Method (DEM) [23]. The particles are assumed to be frictionless
circular disks with a fixed diameter (D), placed on a 5 by 6 two-
dimensional hexagonal lattice (a total number of 30 particles) with
periodic boundary in the x direction. Gravity is ignored and the
particle-particle interaction is modeled as a purely repulsive force
with a Lennard-Jones potential. The Fast Inertial Relaxation En-
gine (FIRE) [3] is used to adjust the initial positions of the particles
and ensure a statistically stable particle packing at the start of
the simulation. Table 1 reports the main parameters used in our
experiments.

Table 1: Experimental Setup.

Simulator Optimizer
Particle Diameter 0.1 Algorithm AFPO
Particle Mass 1 Population Size 50
Stiffness Ratio € [1,10] Generations 500
Packing Fraction 0.91 Runs 5
Simulation Time le4 Mutation Gaussian

Source code for the experiments in this paper can be found at:
https://github.com/AtoosaParsa/gecco-2023.

2.3 Optimization

There are many parameters in a granular system that affect its
macroscopic response to the applied vibrations: particle shapes,
sizes, placements and material properties. These affect the nor-
mal modes of the system, and consequently the propagation or
suppression of the input and power vibrations. Deciding on the
optimal parameters to achieve a desired behavior in the material is
a challenging task for a human expert and thus optimization algo-
rithms can be used to automate this design process. Evolutionary
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algorithms have long been used effectively for many real-world
applications; more recently they have been applied for designing
granular matter [13] and computational granular matter [15]. In
this section, we used the Age-Fitness Pareto Optimization (AFPO)
algorithm [18] to find granular configurations that act as a single
NAND gate at a pre-determined frequency.

Each individual in the population is a granular assembly made
of particles with different stiffness values. There are many design
parameters in this system that can be included in the optimiza-
tion. In initial experiments, it was found that the positions of the
ports can also affect the gate’s operation. In these experiments,
we examined 5 setups with different parameter sets including the
stiffness vector, frequency of the input vibrations, phase offset be-
tween the input vibrations, and placement of the input ports (Fig.3).
We cannot conclude that one algorithm variant had statistically
significantly better performance than another, but the results does
suggest that input port position can be helpful in the optimization.
For this reason, we expanded the evolutionary algorithm to also
evolve the position of the input ports. To reduce the dimensionality
of the search space, we fixed the position of the source and output
ports. We used a direct encoding, with a genome that is made of
two parts. The first part is a real vector of length 30 (the lattice
is 5 X 6) that represents the stiffness of each particle (the values
range between 1 (soft) and 10 (stiff)). The second part of the genome
contains two integers that dictate the input port positions. Two
mutation operators were employed: the first acts on the real vector
and is a Gaussian mutation operator (with standard deviation of
0.1). The second randomizes the position of one of the two input
ports, chosen randomly. We performed 5 independent trials, each
with a different random initial population.

Evolutionary Search

1.0
Stiffness (high resolution grid)
08 — Stiffness
B —— Stiffness + Input Phase Offset
—— Stiffness + Driving Frequency
& 0.6+ —— Stiffness + Input Ports Position
[}
S
iT 0.41
0.2
0.0
0 100 200 300 400 500

Generations

Figure 3: Examination of the parameter space. The evolution-
ary progress of 5 experiments, each with a different set of
optimized parameters (details in the text) is plotted. The plots
show the average fitness of the population per generation,
averaged over 5 independent runs. The orange plot indicates
the experiment with a 10 X 10 grid of particles. Because of the
limited computational resources, only 2 evolutionary runs
were performed in this case.

2.4 Results

Fig. 4 shows the evolutionary progress. Panel (a) shows the fitness
(Eqn. 1) decreasing over generations and reaching a value of 0.1
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at the end of the optimization. The best solutions from each of the
independent evolutionary runs are shown in Fig. 5.

Evolutionary Search

—— Best
Average

1.0
0.8

£0.6

Q

=

204

0.2
0.0

0 100 200 300

Generations

400 500

0] 100 200 300 400 500

Generations

(b)

Figure 4: (a) Evolutionary progress across the five trials dedi-
cated to evolving a single NAND gate into the material. (b)
reports evolutionary change within one trial. Each line re-
ports the best individual within that AFPO clade at each
generation. Terminated lines denote clade extinction events.
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Figure 5: The five best materials drawn from the five single-
NAND evolutionary trials. Fitness (Eqn. 2) is reported below
each material.

We verify the performance of one of the evolved solutions by
testing the configuration’s response when different vibrations are
applied to the input ports. Fig. 6b-e shows the response in frequency
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and time space when supplying the four different input signals. We
see a low amplitude of oscillation when both of the input ports are
activated. This confirms the material functions as a logical NAND
gate at w = 10Hz.
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Figure 6: One of the five best materials acting as a single
NAND gate at v = 10Hz. (a): particle configuration (left);
frequency spectrum (right). (b-e): the response of the input
(blue and green) and output (red) particles in the frequency
(left) and time (right) domains.

3 DISTRIBUTED COMPUTATION

The dynamics of a granular system is mathematically equivalent to
a system of coupled oscillators. In such a system, the steady-state
response to an arbitrary external oscillation is a superposition of the
vibrational normal modes. The normal modes (or eigenfrequencies)
of the granular assembly are determined by the material proper-
ties of the individual particles and the boundary conditions of the
confining structure. So fundamentally, our proposed optimization
platform is searching for a configuration that excites normal modes
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compatible with our desired logical function (which is the NAND
operation at frequency w = 10Hz).

It can be informative to inspect the system’s behavior at other
frequencies in the spectrum and to investigate if there is any amount
of “NAND-ness” present in the system at those frequencies, without
any explicit selection pressure in the evolutionary optimization.
Because the fitness function (Eqn. 2) is designed to only consider
the worst case of the four gain values, We define the following
metric to combine the system’s gains in all four cases and obtain
one single number to measure the amount of “NAND-ness” in the
material:

Goo(w0)Go1(w)Gro(w)
Gi1(w)

©)

MNAND-ness” (w) =

Fig. 7 presents the result of sweeping through the frequency
spectrum and calculating the “NAND-ness” at each frequency for
one of the most fit materials with the evolved stiffness vector and
port placements. As we expected, there is a high peak at f = 10Hz
which is the frequency used in the optimization. But we also notice
that the plot is not completely flat at frequencies other than 10Hz:
there are noticeable peaks at 7Hz, 18Hz, and 35Hz (marked with
red stars in Fig. 7.a). Investigating the gains (Fig. 7.b) at these fre-
quencies indicates some of the four cases comprising the NAND
operation are being performed better or worse at these other fre-
quencies. Taken together, this suggests that, with a multiobjective
optimization method, we may be able to evolve NAND gates that
operate simultaneously at different frequencies. This would in turn
increase the computational density of the material. This idea is
investigated in the next section.

To further how these materials evolved to compute the NAND
function, we looked at the amount of NAND-ness at every particle
in the five best materials (Fig. 8). Surprisingly, in all five cases, there
was another particle that was much better at NAND operation than
the pre-designated output particle (red star). This suggests that
evolving output port position will, in future experiments, greatly
facilitate the evolution of computation in these kinds of materials.

4 POLYCOMPUTATION

Silicon-based digital electronic computing devices have long stood
as the state of the art for efficient, fast, and scalable computing
[7]. However, logical components in Integrated Circuits are only
capable of serial operation. This means that in order to implement
more complex operations, many logic gates need to be connected
in parallel or series and thus the number of required transistors
will increase with the complexity of the computation. Moreover,
wiring between transistors further limits the integration density.
Polycomputing is defined as the ability of the same physical sub-
strate to perform multiple functions in the same place and at the
same time [4] and might eventually provide new paths to real-
ize computationally dense materials. Granular metamaterials have
been shown to possess this ability to simultaneously compute two
logical functions (AND and XOR) by carrying out the operations
at different frequencies of vibrations [16]. In this section, this idea
has been extended to NAND gates at multiple frequencies.
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Figure 7: For one of the most fit materials evolved to exhibit
NAND-ness at w = 10Hz, latent potential to act as a NAND
gate at other frequencies can be seen in (a). Red markers show
the potential frequencies (other than 10Hz) for acting as a
NAND gate. (b) shows how the four NAND cases contribute
or detract from that potential.

The simulator and experimental setup are the same as described
in the previous section. The only difference is the number of objec-
tives in the evolutionary algorithm. Here, a tri-objective optimiza-
tion method was employed: the AFPO age objective was minimized,
as was NAND-ness at w = 10Hz (f;) and NAND-ness at @ = 20 (f2).
We used the same fitness function defined in Eqn. 2. Because of the
increased number of objectives, we also increase the population size
to 100 to minimize the likelihood of premature convergence (how-
ever this may have occurred in some of the trials). Fig. 9 presents
the result of this optimization.

The material at the knee of the Pareto optimal set after 500
generations was chosen for analysis (red marker in Fig. 9b). It was
evaluated at w = 10Hz and w = 20, and the material’s response is
plotted in the frequency and time domains in Fig. 10.

Fig. 11 reports that the output particle has moderate amounts of
NAND-ness at both low (w = 10Hz) and high (v = 20Hz) frequen-
cies. Moreover, it also shows that other particles throughout the
material have specialized to exhibit varying amounts of NAND-ness
at the two frequencies. As in previous experiments, one particular
particle exhibits as much, if not more NAND-ness, as the output
particle, for both frequencies.
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Figure 8: Distributed computation was found in the five best materials evolved to act as a single NAND gate. Lighter colors are
better in the NAND-ness and Gj1; darker is better in the Gyo, Go1, and G1o subplots
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Figure 9: Evolution of polycomputation. The progress of each
of the fitness functions during evolution is plotted in panel
(a), these plots are averaged over 5 evolutionary trials. Panel
(b) shows the Pareto front for one of the trials, at three dif-
ferent stages during the optimization. The selected solution
from the last generation is marked with a red star.

198

5 ROBUSTNESS

Noise is an inevitable component of all signals in real-world ap-
plications. So it is critical to understand its effect on a system’s
performance and analyze its robustness when subject to various
degrees and types of noise. In this section, we investigated the
robustness of our evolved mechanical NAND gates. We used one of
the evolved particle configurations from Section 2 (Fig.5) as a case
study. We added increasing amounts of Additive White Gaussian
Noise (AWGN) to the input signals and recorded the system’s re-
sponse at each signal-to-noise ratio (SNR) tested. Fig. 12b,c report
the effects on the NAND-ness (Eqn. 3) and individual gain values
for that material.

Although the added noise contains all of the frequency compo-
nents (see the frequency spectrum in Fig.12a), we observe that if the
SNR exceeds —20dB, the noise does not interfere with the NAND
operation in the material.

6 CONCLUSION AND FUTURE WORK

In this paper, we utilized evolutionary algorithms to design granular
materials capable of polycomputation. Our granular materials here
were simulated with an overly simplified model which assumed fric-
tionless circular disks. Additionally, the only parameters considered
in the optimization were the stiffness of the particles and the place-
ment of the input ports. There are various other parameters such
as the particle shapes, sizes, masses, and nonlinear inter-particle
contacts that can be considered in building a more realistic system
with possibly more computational power. We will pursue this pos-
sibility in our future research. We also plan to study the nonlinear
dynamics of the evolved solutions and develop a formal analysis to
investigate the reasoning behind the stiffness patterns that enable
the embedding of the logical functions at various input frequencies.
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Figure 10: Polycomputation. An optimized configuration of particles functions as a NAND gate at two different frequencies:

® = 10Hz in panel (b) and w = 20Hz in panel (c)
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Figure 11: Distribution of polycomputation. Heatmap shows
the amount of NAND-ness in each particle at 0 = 10Hz. Thick-
ness of each particle’s perimeter represents NAND-ness at
o = 20Hz.

In Section 3 of the paper, we computed the amount of NAND func-
tionality at the particles other than the pre-determined output port
and realized that other particles are found that also possess NAND
functionality. This might suggest the distributed nature of compu-
tation in the material and provide opportunities to design more
computationally dense materials. In this regard, the information-
theoretic measures can be used to provide more insight into the
flow of information processing in the material and shed light on
some of these observed phenomena.

Realizing physical polycomputational materials remains a future
challenge. In preparation for this, we are developing granular as-
semblies whose configurations may be evolved to transform them
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into computational materials. Acoustic granular switches have been
shown in one-dimensional granular systems, but such systems have
primarily used passive particles[11]. Recent advances in material
science have led to variable stiffness composites made out of phase-
changing materials, and we have used such materials to develop
variable stiffness particles.

Our particles encapsulate a low melting-point alloy (Field’s
metal) in a soft silicone elastomer with a heater embedded inside.
By locally heating individual particles, we can change the stiffness
of each particle. Fig. 13 shows a two-dimensional granular system
where each particle is made out of a soft silicone elastomer. By sinu-
soidally actuating the source particle, we can generate a sustained
normal mode in the system. Using this class of polymeric materials
can allow us to create variable stiffness granular materials that can
be used to perform complex computations.
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