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Jammed packings of granular materials display complex mechanical response. For example, the ensemble-
averaged shear modulus (G) increases as a power law in pressure p for static packings of soft spherical particles
that can rearrange during compression. We seek to design granular materials with shear moduli that can either
increase or decrease with pressure without particle rearrangements even in the large-system limit. To do this,
we construct fessellated granular metamaterials by joining multiple particle-filled cells together. We focus on
cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties
of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length
walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in
cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus
of a single cell depends linearly on p. We find that the slope of the shear modulus with pressure A, < 0 for all
packings in single cells with PBC where the number of particles per cell N > 6. In contrast, single cells with
FXW and FLW can possess A. > 0, as well as 1. < 0, for N < 16. We show that we can force the mechanical
properties of multicell granular metamaterials to possess those of single cells by constraining the end points
of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular

metamaterials provide a platform for the design of soft materials with specified mechanical properties.

DOI: 10.1103/PhysRevE.108.034901

I. INTRODUCTION

Granular materials represent an interesting class of phys-
ical systems that are composed of individual macroscopic
particles that interact via dissipative, contact forces [1]. As
a result of the dissipative particle interactions, granular ma-
terials come to rest in the absence of external driving, such
as applied shear or vibration. Because of this, they frequently
occur in amorphous states lacking long-range positional order.
Further, granular systems can undergo a jamming transition,
where they develop nonzero bulk and shear moduli when they
are compressed to large packing fractions [2—4].

There have been numerous computational [2,5-20] and
experimental [21-31] studies of the structural and mechanical
properties of jammed granular materials. In particular, it has
been shown that the shear modulus depends sensitively on
structural disorder, nonaffine particle motion, the number of
contacts, and anisotropy of the interparticle contact network
[4,15,16,32—44]. For example, in jammed packings of fric-
tionless spherical particles with purely repulsive linear spring
interactions, we have shown that the shear modulus G de-
creases linearly with pressure p along “geometrical families,”
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where the network of interparticle contacts does not change
during isotropic compression [20]. If a particle rearrangement
occurs during the compression at p = p*, e.g., through the
addition of an interparticle contact, G jumps discontinuously
at p* and the linear relation between G and p no longer
holds. Also, when a particle rearrangement occurs, it is dif-
ficult to predict the new interparticle contact network and the
mechanical properties of the jammed packing are no longer
reversible. The range of pressure Ap over which the contact
network does not change decreases with increasing system
size Ap~N —1 where N is the number of particles in the
system. Thus, in the large-N limit, granular packings undergo
frequent irreversible particle rearrangements to new jammed
packings after each Ap increment. During compression, each
new contact network typically possesses an increased number
of contacts, and thus the shear modulus increases with pres-
sure. In fact, studies have shown that the ensemble-averaged
shear modulus scales as (G) ~ p*3 in the large-pN? limit for
jammed packings of spherical particles with purely repulsive
linear spring interactions [15].

In this article, we design granular metamaterials for which
the shear modulus can either decrease or increase with in-
creasing pressure with no particle rearrangements. In linear
elastic solids, the shear modulus does not depend on the
pressure. In conventional atomic and molecular solids, both
the bulk and shear moduli increase with pressure at large
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FIG. 1. Illustration of a tessellated granular metamaterial, made
up of 36 individual cells. Each cell contains the same jammed
bidisperse packing of N = 4 disks that are confined by four freely
jointed, flexible walls. The interior cells share all four walls and the
edge cells share three walls. To generate the collection of disk-filled
cells, we first create a disk packing within a single cell, connect
multiple copies of this disk-filled cell, fix the outer blue vertices, and
then allow the disks and interior red vertices to relax during energy
minimization. The variation in the disk shading between different
cells indicates the types of cells based on their adjacent cells. For
example, cells on the right edge of the tessellation only have three
adjacent cells. The cell type is determined by its distance from the
four outer walls and four corner vertices.

pressures [45—47]. Similarly, in conventional granular mate-
rials, the shear modulus increases with pressure due to the
formation of new contacts during compression, but it is history
dependent. Our design of granular metamaterials will leverage
the recent findings that particle rearrangements in granular
packings with small N are rare and the shear modulus de-
pends linearly on pressure in the absence of rearrangements
[20]. Preventing particle rearrangements ensures reversibil-
ity of the packing’s mechanical properties and improves our
ability to predict them. We will first consider systems in two
dimensions (2D), but these concepts can easily be extended
to three dimensions (3D). For example, we have shown that
the pressure-dependent shear modulus for jammed packings
of spherical particles is qualitatively the same in 2D and 3D
[20].

We envision tessellated granular metamaterials that are
made up of many individual cells that each contain a small
number of grains, i.e., N < 16, and are bounded by four freely
jointed elastic walls. The disks within each cell are jammed
with typically an isostatic number of contacts (see Fig. 1). The
mechanical response of each cell is highly anisotropic, i.e., its
shear modulus depends on the angle 6 of the applied shear
relative to the orientation of the confining walls. We find that
the shear modulus of each cell obeys G, = G + A.p, where
G. = G, at p = 0, and we determine the sign and magnitude
of A as a function 6, N, and the ratio of the particle and
wall stiffnesses. We vary the size of the tessellated granular
metamaterials by adding multiple copies of individual cells
together, e.g., by generating an n x n array of cells that share

the confining walls. We identify the regimes where the shear
modulus of the full system is similar to that for the individual
cells. In particular, we find that large tessellated granular
metamaterials can possess shear moduli that decrease with
increasing pressure, i.e., the opposite behavior compared to
conventional granular materials, and that these materials re-
tain the anisotropy of the individual cells.

The remainder of the article is organized as follows. In
Sec. II, we describe the computational methods, including
the particle-particle, particle-wall, and wall-wall potential en-
ergies, the protocols for generating disk-filled single cells
(henceforth referred to as “cells”) and collections of multi-
ple cells, and the methods for calculating the pressure, shear
stress, and shear modulus of these structures. In Sec. III, we
present the results on how the boundary conditions, individual
disk packing configuration, and the ratio of the particle to
wall stiffness affect the relation between the shear modulus
and pressure in single cells, as well as coupled systems com-
posed of N, = n? cells. In Sec. IV, we provide conclusions
and discuss promising directions of future research, such as
the mechanical response of tessellated granular metamaterials
in three dimensions. We also include three Appendixes. In
Appendix A, we show that Maxwell-type counting arguments
can be used to determine the minimum number of particle-
particle and particle-wall contacts in jammed disk packings
within single cells with fixed length and flexible walls, and
explain the occurrence of “quartic modes” in cells with flexi-
ble walls. In Appendix B, we determine analytical expressions
for the dependence of the components of the stiffness matrix
on the angle of the applied simple shear strain for jammed
disk packings in single cells. In Appendix C, we verify that
the pressure dependence of the single-cell shear modulus is
related to the second derivative of the packing fraction at jam-
ming onset ¢; with respect to shear strain y for an example
cell with fixed-length walls.

II. METHODS

We study individual cells containing jammed packings of
N bidisperse soft, frictionless disks: N/2 small and N/2 large
disks with diameter ratio o;/0; = 1.4. A diameter ratio of
o1/os = 1.4 gives rise to disordered jammed disk packings
[3,48]. We consider three types of boundary conditions for the
cells as illustrated in Fig. 2: (a) periodic boundary conditions
(PBC) in square cells with side length Ly, (b) cells with four
straight walls of fixed length Ly (FXW), and (c) cells with four
flexible walls (FLW) such that adjacent vertices are connected
by linear springs with preferred length L,. For boundary con-
dition (c), the connected walls are freely jointed such that the
angle between them can change without energy cost.

We model the tessellated granular metamaterials using lin-
ear spring interaction potentials (either purely repulsive or
double sided), which are commonly used in discrete element
method simulations of granular materials [3]. Frictionless
disks that interact via pairwise, purely repulsive linear spring
forces are placed within each cell. The corresponding inter-
particle potential energy is given by

Y AN
urr(rty = 22(1- =) e(1-=), 1
U =35 o (1)
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FIG. 2. Illustration of cells that contain N = 6 bidisperse disks
with three different boundary conditions: (a) periodic boundary con-
ditions (PBC) in a square cell with side length L, (b) a cell with
four straight walls of fixed length Ly (FXW), and (c) a cell with four
flexible walls (FLW) such that adjacent vertices are connected by
linear springs with preferred length Ly. To generate jammed disk
packings within each cell, we successively compress the system,
fixing the blue vertices after the compression, and then allowing the
disks and red vertices to relax. (d) [llustration of the application of
simple shear strain y = 0.2 to an originally square cell (solid line)
at angle 6 relative to the x axis, which generates the parallelogram-
shaped cell indicated by the dashed-dotted line.

where €, gives the strength of the repulsive interactions, r’.’f
is the distance between the centers of disks j and k, o is the
sum of the radii of disks j and k, and ®(-) is the Heaviside

step function. The repulsive force on disk j from k is :Pkp =

—(dUPP/dri)it7, where 77" is a unit vector pointing from
the center of dlSk k to the center of disk j. Previous studies
have shown that the soft particle model in Eq. (1) generates
the same disk packings at jamming onset at those for rigid
disks [49].

For PBC boundary condition (a), there are only interpar-
ticle interactions. For boundary conditions (b) (FXW) and
(c) (FLW), we also consider repulsive interactions between
the disks and walls using the purely repulsive linear spring
potential energy

N b
Upb( Pb) EPb 1— J’ ® _ L (2)
i) =5 R; R; )

where €, is the strength of the repulsive interactions between

the disks and walls, r b is the shortest distance between the
center of disk j and the ith wall, and R; is the radius of disk

Jj- The repulsive force on disk j from the ith wall is f:ﬁb =

—dUrt/dr", b)A]plb, where f’pib is the unit vector pointing to the
center of dlsk Jj and perpendicular to the ith wall.
For FLW boundary conditions, we consider interactions

between the wall end points using the double-sided linear

spring potential energy

bb €bb zb?+1 g
U (tl+1) 7 - —= LO s (3)

where €, is the characteristic energy scale of the linear spring
potential, rl 711 1s the distance between end points i and i + 1,
and Ly is equ111brium length for the ith wall. The force on
end point i from end point i + 1 in the ith wall is f_}’b =

—(dutt /drl ) All’? /1> Where rlbll’ -1 is the unit vector pointing
from end pointi + 1 to .

We calculate the stress tensor X,g (with a, B = x, y) of
the tessellated granular metamaterials using the virial ex-
pression [50]. For cells with PBC, the total potential energy
isU = ZIJL,{ UPP(riy’) and stresses are generated only from

interparticle forces. The total stress tensor is thus X, g = E«%*
where
| X
pp _ PP PP
Soh =5 D il )
Jj>k

A is the area of the cell it is the o component of the force

on disk j from k, and r 5 is the B component of the separation
vector from the center of disk k to the center of disk ;.

For cells with physical walls as shown in Figs. 2(b) and
2(c), the forces between the walls and particles also contribute
to the stress tensor. For cells with FXW boundary con-
ditions, the total potential energy is U = 3. J UPP ) +

> =1 > lUpb(r” »). In this case, the total stress tensor is

Top = EW + X7 where

ap?

pb_
Eaﬂ =

ZZ Fharfib ®)

ll]l

fﬂa is the o component of the force on disk j from the ith

wall of the cell, and rj’l% is the B component of the separation
vector from the contact point between wall i and disk j to the
center of disk j.

For cells with FLW boundary conditions, in addi-
tion to the interparticle and particle-wall interactions,
the walls store potential energy. Thus, the total poten-

tial energy is U = Y7, UPr(rit) + YYYH U”b(rﬁ-b) +
Y UM, ). The total stress tensor is T,p = Tl +
=% + %L for cells with flexible walls, where

bb bb
aﬁ = Z io tﬂ’ (6)

f2 is the & component of the spring force from wall i, and r%?
is the B component of the vector with the same length as wall i
pointing in the same direction as fibb . The pressure of the cell
is p= (X + X,y)/2 and the shear stress is ¥ = —X,,. We
use €,,/0? for the units of stress and shear modulus and €,
for units of energy.

To generate jammed disk packings within a single cell, we
first place N disks randomly in the cell at a dilute packing
fraction ¢ < 1073, We then apply an affine isotropic compres-
sive strain to the disk positions and decrease the length of the
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walls by AL to achieve a small packing fraction increment
A¢/¢p =2AL/Ly =2 x 1073, followed by potential energy
minimization using the fast inertia relaxation engine (FIRE)
algorithm [51]. During energy minimization, the disk posi-
tions change, while the end points of the fixed-length walls
for the boundary conditions depicted in Figs. 2(a) and 2(b)
are held fixed. However, the end points of the flexible walls
in Fig. 2(c) are allowed to move during energy minimization.
After energy minimization, we calculate the pressure p of
the cell. If p is less than the target pressure p;, = p/ = 1077,
we again compress the system by A¢/¢ and perform en-
ergy minimization. If p > p/, we return to the previous disk
and wall configuration, compress the system by A¢/2, and
perform energy minimization. We repeat this process until
the cell pressure satisfies |p — p!|/p] < 107*. Our results do
not change if we choose smaller values of p!. For all three
boundary conditions in Figs. 2(a)-2(c), we generate 10* disk
packings at jamming onset.

To investigate the mechanical response of the cells as a
function of pressure, we apply isotropic compression to the
cells at jamming onset to achieve a range of pressure values
p¢ that are logarithmically spaced between 1077 to 1072
To ensure that the shape of the cells does not significantly
deviate from the cell shape at jamming onset, we fix the end
points of the walls for all three types of boundary conditions
when generating the cells with pressures above jamming onset
p!. Since we are using energy minimization to generate the
packings, nearly all packings that we obtain at various p¢ are
mechanically stable.

To calculate the shear modulus of a single cell G, at an
angle 0 relative to the x axis, we first rotate the cell clockwise
by 6, as shown in Fig. 2(d). Determining G.(0) allows us to
assess the anisotropy of the mechanical response of single
cells. We then apply successive small steps of simple shear
strain Ay =5 x 10 (where x is the shear direction and y
is the shear gradient direction) to the disks and walls with
each strain step followed by potential energy minimization.
Note that after the applied simple shear strain, the walls re-
main fixed during energy minimization for all three boundary
conditions. We obtain the shear modulus for a single cell by
calculating G, = dX./dy, where %, is the shear stress of a
single cell. Over the range of shear strain used to measure
G, Xy, (y) is linear. In practice, linear fits of X,,(y) yield
R-squared values that satisfy 1 — R?> < 107!,

We build large-scale tessellated granular metamaterials by
joining multiple copies of a given cell with flexible walls
at jamming onset, e.g., the collection of 36 coupled cells in
Fig. 1. After joining the cells, we perform potential energy
minimization with the outermost (blue) wall end points held
fixed, while the internal (red) end points, as well as the disk
positions, are allowed to relax. Disks within a given cell only
interact with other disks and the walls of that cell. Interior
wall end points have four connections to other walls, while
exterior wall end points have either two or three connections
to other walls. We generate tessellated granular metamaterials
at jamming onset with p = p/ = 1077, compress the systems
to achieve pressures that are logarithmically spaced between
p! and 1072, and measure the shear modulus at each pressure.
The shear modulus G of the collection of cells is calculated
in the same way as that for a single cell. In particular, we

first rotate the aggregate by 6 clockwise, and then we apply
small successive steps of simple shear strain, Ay =5 x 1079,
with each step followed by energy minimization, where the
outer vertices are held fixed and the inner vertices, as well
as the disks, are allowed to relax. The total shear stress X
of the tessellated granular metamaterial is the sum of X7
and X7 for all cells and the unique contributions to X
for all of the cell walls. The shear modulus of the tessel-
lated granular metamaterial is given by G = dX /dy. When
compressing the tessellated metamaterials to increase p, or
applying simple shear to measure G, we impose a specified
displacement field on the particle and wall positions prior to
energy minimization. After imposing the displacement field,
we allow the particles and only the internal wall vertices to
relax their positions under potential energy minimization.

After we apply each simple shear strain step followed by
energy minimization to tessellated granular metamaterials,
which can in principle give rise to nonaffine displacements,
we calculate the displacement field F,, of all cell wall end
points to characterize the nonaffine displacements of each
cell. We find the strain field that minimizes the total nonaffine
displacement of all end points for a given cell and simple shear
strain step [52]:

-1
]:pq = Z Xps(Y )sqa (7)
S=X,y
where
4
)
Xps = ) Feiphiss )
i=1
and
4
0 .0
YS‘I = Z rci,srci,q‘ (9)
i=1
Here, rg»,s and r.; ; are the sth component of the separation

vector from the center of mass of a given cell to its ith end
point before and after the applied simple shear strain, respec-
tively. We subtract the applied simple shear strain y from F,,
to determine the nonaffine displacement field.

III. RESULTS

In this section, we describe the results for the mechanical
response of single cells, as well as large collections of cells. In
Sec. III A, we enumerate all of the distinct N = 4 bidisperse
disk packings in single cells at jamming onset for all three
boundary conditions. We determine whether the shear mod-
ulus for single cells G, increases or decreases with pressure
over the full range of 6 in Sec. III B. We find that G, for
cells with PBC nearly always decreases with pressure (for all
shear angles), while G. can either decrease or increase with
pressure for single cells with (both FXW and FLW) physical
walls. We further show that the slope of the shear modulus
versus pressure A, = dG,./dp for single cells can be tuned
by varying the particle-wall interaction energy €,;, and wall
stiffness €;,,. Finally, in Sec. III C, we emphasize that the sign
and magnitude of A, for a single cell can be maintained even in
a large collection of cells since the assembly prevents particle
rearrangements. We then show that the mechanical response
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FIG. 3. Distinct N = 4 bidisperse cells at jamming onset for (a) periodic boundary conditions (PBC, dashed lines), (b) fixed-length physical
walls (FXW), and (c) flexible physical walls (FLW). The solid red lines indicate interparticle contacts. The nongray background colors indicate
shared interparticle contact networks in (b) and (c). The disks shaded in dark gray are “rattler” particles with no interparticle contacts.

of large collections of cells can deviate from the single-cell
behavior when we allow the outer cell walls to relax and
change their positions during energy minimization.

A. Single cells with N = 4
1. Jammed configurations

We first illustrate the different types of jammed bidisperse
disk packings that occur in single cells with PBC and physical
walls. In Fig. 3, we show all possible jammed cells with N =
4. We find three distinct jammed packings for single cells with
PBC [53], six distinct packings for cells with FXW [54], and
seven distinct packings for cells with FLW. For N = 2, there
is only one distinct jammed cell with the disks arranged along
the diagonal of the cell.

For jammed cells with FLW, the shape of the boundary
is not typically a square, as shown in Fig. 3(c), since the
energy function for the walls does not include a bending
energy term. Despite this, we show that several of the jammed
configurations in the cells with FXW and FLW share the
same interparticle contact networks, e.g., configuration 1 in
Figs. 3(b) and 3(c).

For N = 4, we find that rattler particles occur in jammed
cells with FXW and FLW. See configurations 5 and 6 in
Fig. 3(b) and configuration 7 in Fig. 3(c). Rattler disks also oc-
cur for cells with PBC and physical walls for N > 4. Since our
focus is on jammed packings that do not undergo particle re-
arrangements during simple shear and isotropic compression,
we will not include calculations of the mechanical response
for cells with rattler disks.

2. Contact number

The boundary conditions of the cells affect the number of
interparticle contacts that are required at the onset of jam-
ming. The numbers of degrees of freedom for the cells are
the following: PBC, N; = 2N’ — 1, FXW, N; = 2N’ + 1, and
FLW, N; = 2N’ 4+ 2, where N' = N — N, and N, is the num-
ber of rattler disks. (see Appendix A.) For mechanically stable
disk packings [55,56], the number of contacts must satisfy

N. > Ny. Packings with N, = N, are isostatic; packings with
N. < N, are hypostatic; and packings with N, > N, are hyper-
static. For N = 4, in PBC, we find that the jammed bidisperse
disk packings are either isostatic (N, = Ny, N' =4, N. =17
for configuration 1) or hyperstatic (N, > Ny, N' =4, N. =8
for configuration 2, and N’ = 4, N, = 9 for configuration 3).
In cells with FXW, all of the packings are isostatic (N’ = 4,
N, =9 for configurations 1-4, N’ =3, N, =7 for config-
uration 5, and N’ =2, N, =5 for configuration 6). In the
cells with FLW, most of the jammed bidisperse disk packings
are hypostatic (N, < Ny, N' =4, N. =9 for configurations
1-5 and N’ = 3, N. = 7 for configuration 7). As discussed in
Sec. IIT A 3, quartic modes are required to stabilize hypostatic
jammed packings. In contrast, configuration 6 in Fig. 3(c) is
hyperstatic (N’ = 4, N, = 13).

3. Quartic modes

Hypostatic jammed packings have only been reported for
packings of nonspherical particles [12,19] and particles with
shape and size degrees of freedom [57-59]. Our results in-
dicate that jammed packings of spherical particles can also
be hypostatic in cells with FLW. We have shown in previ-
ous studies that jammed hypostatic packings are stabilized
by quartic modes [12,19,58], which do not occur in isostatic
and hyperstatic packings. Indeed, we find that hypostatic cells
at jamming onset possess N; — N, quartic modes (see Ap-
pendix A). For N > 4, we also find that jammed disk packings
are isostatic in cells with PBC, either isostatic or hyperstatic
for cells with FXW, and either isostatic, hyperstatic, or hy-
postatic for cells with FLW. At large N (N > 16), we find
jammed disk packings are typically isostatic in all types of
boundary conditions studied (see Appendix A).

B. Shear modulus versus pressure for a single cell
1. Slope of shear modulus with pressure and anisotropy

In Figs. 4(a)-4(c), we show the shear modulus G.(6) of
single cells as a function of pressure p over the full range
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FIG. 4. (a)—(c) Shear modulus G.(6) versus pressure p for a single cell in configuration 1 (PBC) in Fig. 3(a), configuration 4 (FXW)
in Fig. 3(b), and configuration 5 (FLW) in Fig. 3(c). The color of each curve indicates the angle 6 of the applied shear strain, which varies
from O (blue) to 7 /2 (red). The inset gives G.(0) = [G.(0) — Go(0)]/A.(6) for the data in the main panel of (a). (d)—(f) The slope of G.(0)
versus p, A.(0), plotted as a function of 6 /7 for the configurations in Fig. 3 (except those with rattler disks). The different colors and symbols
correspond to different configurations of the cells with (d) PBC, (e) FXW, and (f) FLW (blue circles: configuration 1; red crosses: 2; purple
upward triangles: 3; magenta squares: 4; yellow diamonds: 5; and green left triangles: 6). The horizontal dashed lines indicate A. = 0.

of shear angles 6 for cells with PBC, FXW, and FLW, re-
spectively. In contrast to the behavior for large-N systems,
we find that the disks do not rearrange and G.(0) varies
continuously with p over more than four orders of magnitude.
For cells with PBC, G.(0) typically decreases with p as shown
in Fig. 4(a). In contrast, for cells with FXW [Fig. 4(b)] and
FLW [Fig. 4(c)], G.(0) can either decrease or increase with p,
depending on the value of 6.

As we showed previously for jammed packings of spher-
ical particles with PBC, we find quite generally that G.(0)
varies linearly with p [20,38], G.(60) = G(0) + A.(0)p, for
cells with PBC and physical walls in the absence of parti-
cle rearrangements [see the inset to Fig. 4(a)]. G.o(0) gives
the single-cell shear modulus in the zero-pressure limit and
rc(0) =dG.(0)/dp gives the slope [20]. In Figs. 4(d)-4(f),
we plot A.(0) as a function of 6 for all N = 4 cells without rat-
tlers. We show that A.(0) = A, , sin[4(6 — 6p)] + A, 4. varies
sinusoidally with period 7 /2, where A., is the amplitude,
6 is the phase shift, and A, 4. is the mean value of A.(0)
[40]. (Previous studies have shown that the shear modulus
of jammed packings of spherical particles is sinusoidal with
period /2 [15,44].) A.(0) < O for nearly all 6 values and
cells for PBC, except for configuration 2 [Fig. 3(a)] in the
range 0.2 < 0/m < 0.3 [Fig. 4(d)]. For cells with FXW and
FLW, we observe similar sinusoidal behavior for A.(6), but
there are large 6 ranges where A.(6) > 0. Our results showing
that A., ~ A. 4. emphasize that cells at small N are highly
anisotropic. For cells with FLW, we do not find a correlation
between A.(6) > 0 and the occurrence of quartic modes as
discussed in Sec. III A 3. Isotropic, linearly elastic materials

in 2D possess only two elastic moduli, i.e., the bulk and shear
moduli. In this study, we focus on the response of the system
to simple shear strain. However, small, jammed disk packings
at low pressures are anisotropic [41,44], and thus they possess
more than two elastic constants that are inter-related and de-
pend on 6. In Appendix B, we derive the 6 dependence for
all six stiffness matrix elements C and show that the elements
of C are related to each other under rotations. In contrast, for
isotropic, linearly elastic materials, C33 = G is independent of
6. Therefore, in future studies we will consider all elements of
C to fully understand the pressure- and angle-dependent elas-
tic moduli for anisotropic materials. In addition, our previous
studies have shown that the sign of A.(0 = 0) is determined by
the second derivative of the packing fraction at jamming onset
with respect to y in jammed packings of spherical particles in
PBC [20,38]. In Appendix C, we show that this relation is still
true at any 6 in cells with fixed-length walls. In particular,
this relationship expresses Cs3 in terms of derivatives of the
packing fraction U and p with respect to shear strain for any
given 6 and determines which terms in this expression depend
most strongly on p. Similar analyses will be carried out for
the other elements of C in future studies to gain a complete
understanding of the pressure-dependent elastic moduli of
small jammed disk packings.

2. Probability of L.(0) > 0

As N increases, the probability P, to obtain a cell with
Ac(0) > 0 decreases rapidly for PBC. As shown in Fig. 5,
we do not find A.(0) > O for cells with N > 6 for PBC. For
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FIG. 5. Probability P, that cells possess A.(0) > 0 for any
nonzero range of 6, as a function of system size N for PBC (blue
circles), FXW (red crosses), and FLW (pink triangles).

cells with physical walls, P, also decreases with increasing
N, but not as rapidly as that for cells with PBC. These results
emphasize that if one wants to tune the pressure dependence
of G.(9) [i.e., between A.(f) > 0 and A.(6) < 0], one should
employ cells with small N.

3. Effects of wall and particle stiffnesses on \.(0)

We next investigate the dependence of A.(0) on the
particle-wall stiffness €,,/€,, and wall stiffness €;/¢€p), rela-
tive to the strength of the repulsive interparticle interactions
in cells with FXW and FLW. In Fig. 6(a), we show that
for configuration 4 depicted in Fig. 3(b), A4, Acdc, and 6y
undergo only small variations when € /€, changes by nearly
two orders of magnitude. A, , and A 4. converge for €, /€, 2
10 for all N = 4 cells with FXW [Figs. 6(b) and 6(c)]. For
configuration 4, we find that A.(6) > 0 for a finite range of 6
in the large €,,/€p, limit. We can also fix €,,/€,, and show
that Ac 4, Ac ac, and 6y converge in the large €;;,/€,, limit [see
Figs. 6(d)-6(f)]. We find that A.(0) < O (for all 6) at large
€pp/€pp for all N = 4 configurations with FLW since 4. 4. < 0
and A, < |Acqcl- These results emphasize that cells with
FLW become similar to cells with PBC [with A.(6) < 0] in the
large €, limit. Thus, particle-wall interactions are essential for
Ae(0) > 0.

C. Shear modulus versus pressure for tessellated
granular metamaterials

1. Lock-in of single-cell behavior

We now study the pressure dependence of the shear mod-
ulus G(9) for tessellated granular metamaterials (Fig. 1)
constructed from multiple cells with flexible walls €,,/€,, =
1 and €p/€p,, = 0.1. In Fig. 7(a), we show G(8) versus p for
N, = 36 cells that each contain configuration 5 from Fig. 3(c).
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FIG. 6. (a) The slope of the shear modulus A.(6) versus pressure for a single cell with FXW [configuration 4 in Fig. 3(b)] versus the angle
0 of the applied shear strain for several values of the particle-wall interaction energy normalized by the strength of the interparticle repulsive
energy €,,/€,, indicated by the different colors and symbols. (b) Mean value A 4. and (c) amplitude A, of the slope of the shear modulus
as a function €, /¢,, for the four single cells without rattlers and FXW shown in Fig. 3(b). The symbols and colors in (b) and (c) indicate
the specific configurations in Fig. 3(b). (d)—(f) Similar data to that in (a)—(c) except for single cells with FLW. Data for configuration 5 in
Fig. 3(c) is shown in (d). The symbols and colors in (e) and (f) indicate the specific configurations in Fig. 3(c). The dashed horizontal lines in

(a) and (d) indicate 1. = 0.
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FIG. 7. (a) Shear modulus G(6) versus pressure p for a tessellated granular metamaterial composed of AV, = 36 cells containing the same
N = 4 disk configuration [i.e., configuration 5 in Fig. 3(c)] with €,,/€,, = 1 and €3, /€, = 0.1. Different colors correspond to the angle 6 of
the applied simple shear strain, which varies from 0 (blue) to v /2 (red). (b) A() for tessellated granular metamaterials with €,,/€,, = 1 and
€ /€pp = 0.1 and different values of N, (blue circles: 4, red crosses: 16, purple upward triangles: 36, and magenta squares: 64) and a single
cell with €5/, = 0.05 (yellow diamonds) and 0.1 (green left triangles). All cells contain the same disk configuration 5 in Fig. 3(c) with FLW.
(c) The off-diagonal term of the fitted displacement matrix F,, — y in Eq. (7) as a function of the applied simple shear strain y at p = 1077 for
each cell (indicated by different colors) for the tessellated granular metamaterial in (a).

Similar to the results for G.(@) for single cells, the mechanical
response of tessellated granular metamaterials shows strong
shear angle dependence. In particular, for some values of 6,
the slope of G(0) versus p, A(6) > 0, and for other values,
A(0) < 0. In Fig. 7(b), we show that A(6) possesses weak
system-size dependence as N, is increased. A(9) for the mul-
ticell system in the large-A, limit converges to A.(8) for a
single cell with FLW with €, /€, = 0.05, which is half of the
value for the multicell system. This result can be explained
because each wall in the tessellated granular metamaterial is
shared by its neighboring cell except for those on the exterior.
Since A(0) for the tessellated granular metamaterial mimics
that for single cells, these results indicate that we can lock
in the behavior of the shear modulus versus pressure for a
single cell in tessellated granular metamaterials in large-N.
limit. In particular, we find finite regions of 6 where A(6) > 0
in the large-A, limit without particle rearrangements. The
similarity of the mechanical response between the multicell
and single-cell systems is caused by the fact that all of the sin-
gle cells display similar displacements during applied simple
shear strains. In Fig. 7(c), we show that the nonaffine dis-
placements of each cell, caused by energy minimization after
each applied simple shear strain, is negligible. The nonaffine
motion is obtained by measuring the difference in the off-
diagonal element of the strain tensor of the interior vertices
and the expected value from simple shear, F,, — y, for each
cell [52]. Previous studies have shown that nonaffine particle
motion strongly affects the magnitude of the shear modulus
[34,37,60]. Thus, near zero nonaffine displacements of the
cells indicate that the strain of the tessellated metamatarials
has locked in the strain of each cell. In general, the results
for the tessellated granular metamaterials are qualitatively the
same for any jammed packings that are used to construct the
tessellated granular metmaterial.

2. Constraints on outer wall vertices

We also investigate how many constraints on the outer wall
end points are necessary to enforce the mechanical response
of the single cells in tessellated granular metamaterials. To

address this question, we allow different wall end points on the
outer boundary to relax during energy minimization following
the applied isotropic compression and simple shear strain [see
Fig. 8(a)]. We find that G(6) versus p for tessellated granular
metamaterials with even a single mobile outer wall end point
deviates from that of the tessellated granular metamaterial
where all outer wall end points are fixed. We show G(0) versus
p as an example in Fig. 8(b). Allowing the outer wall end
points to move gives rise to buckling of tessellated granular
metamaterials caused by compression, as shown in Figs. 8(c)
and 8(d). This buckling induces changes in the shape of single
cells compared to those of single cells with fixed outer wall
end points during compression and shear, which causes the
deviations in G(0) versus p. Therefore, to ensure that tessel-
lated granular metamaterials lock in single-cell behavior, it is
necessary to constrain all of the outer wall end points.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In the large-system limit, the shear modulus G of static
packings of spherical particles increases with pressure due to
frequent particle rearrangements and nonaffine particle mo-
tion that enable the packings to increase their contact number
with increasing pressure. In this work, we investigate a class
of granular materials, tessellated granular metamaterials, that
allow us to control the slope of the shear modulus versus
pressure by preventing particle rearrangements even in the
large-system limit. We focus on tessellated granular metama-
terials in two dimensions, which are collections of NV, coupled
cells that each contain N bidisperse disks enclosed by four
physical walls. In particular, we can design tessellated gran-
ular metamaterials with negative slope of the shear modulus
with pressure even in the large- N, limit.

We first studied the mechanical properties of single cells
with three sets of boundary conditions: PBC, FXW, and
FLW. Packings with small N do not undergo frequent particle
rearrangements, and thus we enumerated all possible mechan-
ically stable cells with all three boundary conditions for N <
8. We find that the mechanically stable cells with PBC and
FXW are either isostatic or hyperstatic, while those with FLW
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FIG. 8. (a) Tessellated granular metamaterial with A = 36 described in Fig. 7, except now some of the wall end points marked by red
crosses are no longer fixed after the applied isotropic compression and simple shear strain. (b) Shear modulus G(0) measured at 6 =0 as a
function of pressure p when different wall end points on the outer boundary are switched from fixed to mobile (blue circles: all outer wall end
points are fixed, red crosses: end point 1 is mobile, magenta upper triangles: end point 2 is mobile, black squares: end point 3 is mobile, yellow
diamonds: end point 4 is mobile, green left triangles: end points 1 and 3 are mobile, cyan crosses: end points 2 and 4 are mobile, and purple
asterisks: end points 1-4 are mobile). (c), (d) Tessellated granular metamaterials at p = 0.01 when (c) end point 1 is mobile, and (e) end points

1-4 are mobile.

can be hypostatic, as well as isostatic and hyperstatic. The
hypostatic cells with FLW are stabilized by quartic modes, as
found for hypostatic packings of nonspherical and deformable
particles. Second, we showed that the angle-dependent shear
modulus of single cells depends linearly on pressure, G.(6) =
Ae(@)p + Go(0). Further, the slope of the shear modulus
versus pressure for single cells is strongly anisotropic, i.e.,
Ac(0) = Aede + Aeasin[4(@ — 6p)] and A. 4 ~ A g0 We find
that A.(6) < O for single cells in PBC with N > 4. In con-
trast, cells with FXW and FLW and small N can possess
either A.(0) > 0 or A.(8) < 0. However, the probability of

obtaining cells with 1.(6) > O vanishes in the large-N limit.
These results are summarized in Table 1. After studying the
mechanical response of single cells, we investigated the shear
modulus of tessellated granular metamaterials formed by con-
necting many single cells with flexible walls. We showed that
we can lock in the mechanical response of single cells in
tessellated granular metamaterials. The ability to lock in the
mechanical response of single cells in multicell systems is
reduced if the outer wall end points are free to move dur-
ing energy minimization after applied deformations. These
results demonstrate that we can build large-scale granular

TABLE I. Summary of the results for the number of contacts N, and derivative of the shear modulus with respect to pressure A, of single

cells for all three types of boundary conditions: PBC, FXW, and FLW.

PBC

FXW FLW

Number of contacts at jamming onset N,

Sign of A, Ae <OforN. >4

Isotropic or hyperstatic

Isotropic, hyperstatic, or hypostatic
Ae <Oori.>0

Isotropic or hyperstaitc
Ae <Oori.>0
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metamaterials whose mechanical properties do not change
after repeated cycles of compression and decompression, as
well as positive and negative simple shear strain, since particle
rearrangements are eliminated.

These findings raise many interesting directions for fu-
ture research. First, we found that the mechanical response
of both single- and multiple-cell granular systems is highly
anisotropic. To fully understand the pressure-dependent
mechanical properties of anisotropic materials in two di-
mensions, we must characterize all six stiffness matrix
components as a function of pressure, which requires ad-
ditional mechanical tests in addition to simple shear as a
function of 6. Doing so will also aid in the development
of a continuum elasticity theory for tessellated granular ma-
terials. Second, for the current studies, we fixed all of the
outer wall end points during energy minimization to enforce
nearly affine simple shear of tessellated granular metamateri-
als. However, when the outer wall end points are not fixed,
the individual cells can change their shape during energy
minimization that follows the applied compression and simple
shear strain. Thus, it will be interesting to study and predict
the pressure dependence of G.(6) of single cells when the
outer wall end points are free to move or bending energy is
included between adjacent end points to generate cells with
arbitrary shapes. Third, we have focused on tessellated granu-
lar metamaterials composed of identical single cells. In future
studies, we will consider tessellated granular metamaterials
composed of single cells with different disk configurations
and boundaries with varied €, and €, to understand how
the mechanical properties of single cells determine the me-
chanical properties of the multicell system. Fourth, we have
only considered square tessellated metamaterials. We can also
investigate tessellated metamaterials with different numbers
of rows and columns of cells, which can provide more tunabil-
ity of the pressure-dependent mechanical response. Finally,
we will extend our studies of tessellated granular metamate-
rials to three dimensions. In three dimensions, there are three
principal simple shear directions, instead of one in two dimen-
sions, which provides additional ways to design tessellated
granular metamaterials. For example, we can create strongly
anisotropic tessellated granular metamaterials by having some
cells possess A.(0) > 0 in one shear direction, others pos-
sess 1.(f) < 0 in another shear direction, and others possess
Ac(0) > 0 in the remaining shear direction.
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APPENDIX A: ISOSTATICITY AND QUARTIC
MODES IN A SINGLE CELL

In this Appendix, we discuss the number of degrees of
freedom N, in cells for all three types of boundary conditions
and quartic modes in hypostatic disk packings with FLW.
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FIG. 9. Probability P(N) (over 10* single cells) of obtaining a
given number of contacts, hyperstatic (N, > N,) or hypostatic (N, <
N,), for single cells with PBC, FXW, or FLW as a function of system
size N.

In PBC, Ny =2N'—2+1=2N'—1, where N =N —
N, and N, is the number of rattler disks. In this expression,
the —2 comes from the two global translational degrees of
freedom in periodic boundary conditions; the +1 comes from
the size degree of freedom of the disks while maintaining
fixed diameter ratio. The +1 can also be interpreted as a
state of self-stress [56]. For the degrees of freedom in cells
with FXW and FLW, we must include the degrees of freedom
of the wall end points, as well as the disks: N; = 2N’ +
2N, — Np — 3 + 1. Here, N, = 4 is the number of wall end
points, Ny is the number of constraints associated with the
walls, the —3 comes from the two rigid-body translational and
one rotational degree of freedom, and the +1 again comes
from the size degree of freedom of the disks. For FLW, four
springs connect the wall end points, and hence Ny = 4. For
FXW, in addition to the length constraint for each wall, the
angle between any two neighboring walls is also fixed, and
thus Nz = 5. Hence, N; = 2N’ + 1 for cells with FXW and
N; = 2N’ + 2 for FLW. For isostatic packings, the total num-
ber of contacts satisfies N, = Ny. A packing is hyperstatic
when N, > N; and hypostatic when N, < N;. We show that
the probability of obtaining a hyperstatic or hypostatic cell
decreases with increasing N for all three boundary conditions
as shown in Fig. 9. We note that there are a finite number of
hypostatic packings in cells with FLW even at N < 16, which
highlights the effect of soft physical walls on the structural
and mechanical properties of jammed granular materials.

“Quartic” modes stabilize hypostatic jammed packings.
They can be illustrated through the expansion of the total
potential energy of a jammed disk packing U in terms of small
displacements around its local energy minimum U (Ry), where
Ry denotes the equilibrium positions of all particles and wall
vertices. If we perturb the packing to a new set of positions
R = Ry + 81, where § is the amplitude of the perturbation and
it is a unit vector characterizing the perturbation direction, U
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can be approximated by a Taylor expansion:
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where the derivatives are evaluated at ﬁo. The second term on
the right-hand side of this equation is zero since the jammed
packing is in force balance. The third term on the right-

hand side includes the dynamical matrix M = whose

TR
eigenvalues AM give the energy associated with perturbations
along the associated eigenvectors A*. In isostatic and hyper-
static packings with N, > Ny, all nontrivial eigenvalues AY
are nonzero and AU = U (R) — U(R)) increases quadratically
with amplitude 8 for perturbations along AM: AU = 12152,
In hypostatic packings, some of the eigenvalues of M are
much smaller than the nontrivial quadratic eigenvalues, yet
they are larger than the trivial eigenvalues corresponding to
rigid-body translations and rotations. [For example, see the
fourth eigenvalue of M in Fig. 10(a).] The number of these
modes matches the number of missing contacts, N; — N,.
When perturbing along eigenvectors AM associated with one
of these small nontrivial eigenvalues, AU first scales quadrat-
ically with § and then scales quartically with ¢ at larger values
of § as shown in Fig. 10(b). In previous studies [61], we have
shown that the characteristic 8. at which the scaling of AU
changes from quadratic to quartic decreases with pressure, and
thus at zero pressure, AU scales quartically with 6. (These
previous results emphasize that the fourth term in the Taylor
expansion containing third derivatives of U is small.) Since
these modes scale quartically with § at zero pressure, we label
them as “quartic modes.”

APPENDIX B: STIFFNESS MATRIX AFTER ROTATION

In this Appendix, we show the angular dependence of
all elements of the stiffness matrix C, which relates stress
and strain. At a predefined orientation with 6 = 0, we can
calculate the stiffness matrix C(0). After rotating the configu-
ration by an angle 6 clockwise, the stiffness matrix becomes
C(0) = R"(6)C(0)R(6), where

cos? 6 sin® @ —% sin 20
R®)=[sin?60 cos’60  Lsin20 [. (Bl
sin20  —sin20 cos 26

Using Eq. (B1), we find the following angle-dependent stiff-
ness matrix elements :

Ci11(0) =C11(0)cos* 0 + € (0)sin* 6
+ C33(0) sin*(20) + 1C12(0) sin*(20)
+2C13(0) sin(26) cos” 6
+2C»3(0) sin(20) sin? 6, (B2)
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FIG. 10. (a) Sorted eigenvalues (from smallest to largest) of
the dynamical matrix A for configuration 5 with FLW boundary
conditions in Fig. 3(c). The first three eigenvalues (corresponding
to two rigid-body translations and one rigid-body rotation) are less
than 107" and decrease in magnitude as we improve the force
balance condition. The fourth eigenvalue (i = 4) corresponds to a
“quartic mode” and those with i > 4 correspond to quadratic modes.
(b) Change in potential energy AU in response to perturbations along
eigenvectors AM plotted as a function of the perturbation amplitude §.
The dashed and dotted-dashed lines have slope 2 and 4, respectively.
The colors of the symbols in (b) correspond to perturbations along
the eigenvectors associated with eigenvalues with the same colored
symbols in (a).

Ci2(0) =[1(C11(0) + €22(0)) — C33(0)] sin*(26)
+ C12(0)(sin* 6 + cos* 0)
+ 1(C33(0) — C13(0)) sin(40), (B3)

6‘13(9) = ——C11(O) sm(26)cos 0+ C22(0) sin(26) sin 6
+ §C33(0) sin(46) + ZCIZ(O) sin(46)
+ C13(0) cos® B(2 cos(20) — 1)
+ C53(0) sin? 0(2 cos(260) + 1), (B4)
C(0) =C11(0)sin* 6 + Cry(0) cos* 6 + C33(0) sin*(26)
+ 1€12(0) sin*(26) — 2C13(0) sin(20) sin” 0
— 2(53(0) sin(260) cos? 6, (B5)
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Cx3(0) = —1C11(0)sin(20) sin® 0 + 1C5,(0) sin(26) cos® 6
— 1C53(0)sin(40) — 1C12(0) sin(40)
+ C13(0) sin?> 0(2 cos(20) + 1)
+ C3(0) cos® B(2 cos(20) — 1), (B6)

C33(0) = 1(C11(0) + C2(0) — 2€12(0)) sin® (26)
+ 1(C23(0) — €13(0)) sin (46)
+ C33(0) cos? (26). (B7)

Equations (B2)—(B7) show that generally all six elements of
the reference stiffness matrix contribute to each C element
at a given angle 0. Therefore, in anisotropic materials, it is
important to track all C elements to fully characterize their
mechanical properties.

APPENDIX C: RELATION BETWEEN SHEAR MODULUS
AND MIXED SHEAR STRAIN DERIVATIVES

In this Appendix, we verify that the pressure dependence
of the single-cell shear modulus is related to the variation of
the packing fraction at jamming onset ¢, with simple shear
strain y as shown in previous studies [38]. We illustrate this
relationship using a single cell containing the N = 2 monodis-
perse disk packing with FXW in the inset to Fig. 11(a) since
¢;(y) can be calculated analytically for this case. The shear
modulus can be written in terms of three mixed derivatives of
the simple shear strain:

o () -1 (ﬂ)
dy /s A dy ’
AN L) (49) e
¢\ dy s ¢ dy J,\dv ],
In Fig. 11(a), we demonstrate that Eq. (C1) still holds for
single cells with FXW.

The second term in Eq. (C1) is proportional to p, with
[d(j—‘)’f)p/dy]¢ > 0 for single cells with N > 6 and PBC [20].
In contrast, the first and third terms in Eq. (C1) do not pos-
sess strong p dependence. Therefore, the second derivative
of ¢;(y) typically determines whether G will increase or
decrease with p. In particular, if ¢,(y) is concave upward,
G decreases with increasing p, and vice versa.

For single cells containing N =2 monodisperse disks
at jamming onset with FXW boundary conditions, we can
analytically determine the packing fraction at jamming
onset ¢; as a function of the simple shear strain y and
shear angle 6. Consider a square box (with initial side
lengths Ly = 1) whose vertices are located at (0, 0), (1, 0),
(1, 1), and (0, 1). After rotation by 6 clockwise about the
origin, these four points transform into (0, 0), (cos#, sin ),
(cosf +sinf, —sinf +cosf), and (sinf,cosh). After
we apply a simple shear strain y to the rotated box,
the four points become (0,0), (cosé — y sinf, —sinB),
(cosO +sinf + y(—sinf + cosh), —sinf 4+ cosf), and
(sin® + y cos @, cos0). The resulting box is a parallelogram

@ 004 :

0.02+ ]

G.(0)

-0.02
10 104 107
p
(b) :
0.8+ (a+bcos2a, bsin2a) g
0.7
< 0.6

0 =38
0.4 ‘ ‘ ‘
05 025 0 0.25 0.5

FIG. 11. (a) Shear modulus G.(0) for a single cell containing a
monodisperse N = 2 disk packing with FXW at shear angle 6§ =0
(red squares and red solid line) and 7 /4 (blue circles and blue solid
line) as a function of pressure p. The squares and circles show G.(6)
calculated using G, = d%./dy, while the solid lines show G.(9)
calculated using Eq. (C1). The inset shows the N = 2 cell at simple
shear strain y = 0 and 6 = 0. (b) Packing fraction ¢, of the single
cell in (a) at jamming onset as a function of y at several values of
0 as indicated by the different colors and symbols. The symbols and
solid lines correspond to the results from the numerical simulations
and analytical calculations using Eqs. (C2)—(C9), respectively. The
inset provides an illustration of a monodisperse N = 2 packing in
a cell with FXW boundary conditions at jamming onset. The disk
centers are specified by (x, y;) and (x;, y,) and the lengths of the
parallelogram side walls are a and b with angle 2« between them.

with unit area and side lengths,

a:\/l—Zy sin@ cos 6 + y2sin’ 6, (C2)

bz\/l—l—Zy sin6 cos 6 + y2cos? 6. (C3)

To obtain ¢, (0, y), we need to find the radius of the circle r
such that the two disks fit within the parallelogram and are
mechanically stable. [See Fig. 11(b) inset, where we have
rotated the parallelogram by 6 counterclockwise to simplify
the calculation.] The centers of the two disks are located at
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(x1,y1) and (xz,y2), where x; =r cote, yy =71, X2 =a+
b cos2a — r cotw, and y, = b sin 2« — r cot o, with

oy lcos_l <y(00520 —sin®0) — y?sin6 cos@)' )

2 ab
The distance between the two disks must equal 2r, and
thus (x; — x3)> + o1 — y2)2 = (2r)%. This expression yields a
quadratic equation for r: Ar? 4+ Br + C = 0, where A, B, and
C are given by
A=4cot’a, (C5)
B = —4{a cota + b[cot a cos(2a) + sin(2a)]}, (C6)

and

C = d® + 2ab cos(Qa) + b*. (C7)

The two solutions for r are

—B + +/B> —4AC
ra = A . (C8)

The first solution results in circles that are outside of the
parallelogram. Thus, r = r, and

(—B — v/B? — 4AC)?
¢J(97 J/) =7 2A2 .

We verify in Fig. 11(b) that ¢;(6, y) determined by the nu-
merical simulations matches that predicted by Eq. (C9). At
y = 0, which is where G, (0) is measured throughout the main
text, we find that the ¢;(y) is concave downward at 6 = 0
and concave upward at 6 = /4 [Fig. 11(b)]. Thus, since
A(0) switches sign, we expect a saddle point to occur in the
¢;(y, 0) plane between 6 = 0 and 7 /4. In future studies, we
will apply a similar approach in Eq. (C1) to obtain the pressure
dependence of all elements of the stiffness matrix.
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