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Jammed packings of granular materials display complex mechanical response. For example, the ensemble-

averaged shear modulus 〈G〉 increases as a power law in pressure p for static packings of soft spherical particles

that can rearrange during compression. We seek to design granular materials with shear moduli that can either

increase or decrease with pressure without particle rearrangements even in the large-system limit. To do this,

we construct tessellated granular metamaterials by joining multiple particle-filled cells together. We focus on

cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties

of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length

walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in

cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus

of a single cell depends linearly on p. We find that the slope of the shear modulus with pressure λc < 0 for all

packings in single cells with PBC where the number of particles per cell N � 6. In contrast, single cells with

FXW and FLW can possess λc > 0, as well as λc < 0, for N � 16. We show that we can force the mechanical

properties of multicell granular metamaterials to possess those of single cells by constraining the end points

of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular

metamaterials provide a platform for the design of soft materials with specified mechanical properties.

DOI: 10.1103/PhysRevE.108.034901

I. INTRODUCTION

Granular materials represent an interesting class of phys-

ical systems that are composed of individual macroscopic

particles that interact via dissipative, contact forces [1]. As

a result of the dissipative particle interactions, granular ma-

terials come to rest in the absence of external driving, such

as applied shear or vibration. Because of this, they frequently

occur in amorphous states lacking long-range positional order.

Further, granular systems can undergo a jamming transition,

where they develop nonzero bulk and shear moduli when they

are compressed to large packing fractions [2–4].

There have been numerous computational [2,5–20] and

experimental [21–31] studies of the structural and mechanical

properties of jammed granular materials. In particular, it has

been shown that the shear modulus depends sensitively on

structural disorder, nonaffine particle motion, the number of

contacts, and anisotropy of the interparticle contact network

[4,15,16,32–44]. For example, in jammed packings of fric-

tionless spherical particles with purely repulsive linear spring

interactions, we have shown that the shear modulus G de-

creases linearly with pressure p along “geometrical families,”

*These authors contributed equally to this work.
†corey.ohern@yale.edu

where the network of interparticle contacts does not change

during isotropic compression [20]. If a particle rearrangement

occurs during the compression at p = p∗, e.g., through the

addition of an interparticle contact, G jumps discontinuously

at p∗ and the linear relation between G and p no longer

holds. Also, when a particle rearrangement occurs, it is dif-

ficult to predict the new interparticle contact network and the

mechanical properties of the jammed packing are no longer

reversible. The range of pressure �p over which the contact

network does not change decreases with increasing system

size �p ∼ N−1, where N is the number of particles in the

system. Thus, in the large-N limit, granular packings undergo

frequent irreversible particle rearrangements to new jammed

packings after each �p increment. During compression, each

new contact network typically possesses an increased number

of contacts, and thus the shear modulus increases with pres-

sure. In fact, studies have shown that the ensemble-averaged

shear modulus scales as 〈G〉 ∼ p0.5 in the large-pN2 limit for

jammed packings of spherical particles with purely repulsive

linear spring interactions [15].

In this article, we design granular metamaterials for which

the shear modulus can either decrease or increase with in-

creasing pressure with no particle rearrangements. In linear

elastic solids, the shear modulus does not depend on the

pressure. In conventional atomic and molecular solids, both

the bulk and shear moduli increase with pressure at large
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FIG. 1. Illustration of a tessellated granular metamaterial, made

up of 36 individual cells. Each cell contains the same jammed

bidisperse packing of N = 4 disks that are confined by four freely

jointed, flexible walls. The interior cells share all four walls and the

edge cells share three walls. To generate the collection of disk-filled

cells, we first create a disk packing within a single cell, connect

multiple copies of this disk-filled cell, fix the outer blue vertices, and

then allow the disks and interior red vertices to relax during energy

minimization. The variation in the disk shading between different

cells indicates the types of cells based on their adjacent cells. For

example, cells on the right edge of the tessellation only have three

adjacent cells. The cell type is determined by its distance from the

four outer walls and four corner vertices.

pressures [45–47]. Similarly, in conventional granular mate-

rials, the shear modulus increases with pressure due to the

formation of new contacts during compression, but it is history

dependent. Our design of granular metamaterials will leverage

the recent findings that particle rearrangements in granular

packings with small N are rare and the shear modulus de-

pends linearly on pressure in the absence of rearrangements

[20]. Preventing particle rearrangements ensures reversibil-

ity of the packing’s mechanical properties and improves our

ability to predict them. We will first consider systems in two

dimensions (2D), but these concepts can easily be extended

to three dimensions (3D). For example, we have shown that

the pressure-dependent shear modulus for jammed packings

of spherical particles is qualitatively the same in 2D and 3D

[20].

We envision tessellated granular metamaterials that are

made up of many individual cells that each contain a small

number of grains, i.e., N < 16, and are bounded by four freely

jointed elastic walls. The disks within each cell are jammed

with typically an isostatic number of contacts (see Fig. 1). The

mechanical response of each cell is highly anisotropic, i.e., its

shear modulus depends on the angle θ of the applied shear

relative to the orientation of the confining walls. We find that

the shear modulus of each cell obeys Gc = Gc0 + λc p, where

Gc = Gc0 at p = 0, and we determine the sign and magnitude

of λ as a function θ , N , and the ratio of the particle and

wall stiffnesses. We vary the size of the tessellated granular

metamaterials by adding multiple copies of individual cells

together, e.g., by generating an n × n array of cells that share

the confining walls. We identify the regimes where the shear

modulus of the full system is similar to that for the individual

cells. In particular, we find that large tessellated granular

metamaterials can possess shear moduli that decrease with

increasing pressure, i.e., the opposite behavior compared to

conventional granular materials, and that these materials re-

tain the anisotropy of the individual cells.

The remainder of the article is organized as follows. In

Sec. II, we describe the computational methods, including

the particle-particle, particle-wall, and wall-wall potential en-

ergies, the protocols for generating disk-filled single cells

(henceforth referred to as “cells”) and collections of multi-

ple cells, and the methods for calculating the pressure, shear

stress, and shear modulus of these structures. In Sec. III, we

present the results on how the boundary conditions, individual

disk packing configuration, and the ratio of the particle to

wall stiffness affect the relation between the shear modulus

and pressure in single cells, as well as coupled systems com-

posed of Nc = n2 cells. In Sec. IV, we provide conclusions

and discuss promising directions of future research, such as

the mechanical response of tessellated granular metamaterials

in three dimensions. We also include three Appendixes. In

Appendix A, we show that Maxwell-type counting arguments

can be used to determine the minimum number of particle-

particle and particle-wall contacts in jammed disk packings

within single cells with fixed length and flexible walls, and

explain the occurrence of “quartic modes” in cells with flexi-

ble walls. In Appendix B, we determine analytical expressions

for the dependence of the components of the stiffness matrix

on the angle of the applied simple shear strain for jammed

disk packings in single cells. In Appendix C, we verify that

the pressure dependence of the single-cell shear modulus is

related to the second derivative of the packing fraction at jam-

ming onset φJ with respect to shear strain γ for an example

cell with fixed-length walls.

II. METHODS

We study individual cells containing jammed packings of

N bidisperse soft, frictionless disks: N/2 small and N/2 large

disks with diameter ratio σl/σs = 1.4. A diameter ratio of

σl/σs = 1.4 gives rise to disordered jammed disk packings

[3,48]. We consider three types of boundary conditions for the

cells as illustrated in Fig. 2: (a) periodic boundary conditions

(PBC) in square cells with side length L0, (b) cells with four

straight walls of fixed length L0 (FXW), and (c) cells with four

flexible walls (FLW) such that adjacent vertices are connected

by linear springs with preferred length L0. For boundary con-

dition (c), the connected walls are freely jointed such that the

angle between them can change without energy cost.

We model the tessellated granular metamaterials using lin-

ear spring interaction potentials (either purely repulsive or

double sided), which are commonly used in discrete element

method simulations of granular materials [3]. Frictionless

disks that interact via pairwise, purely repulsive linear spring

forces are placed within each cell. The corresponding inter-

particle potential energy is given by

U pp
(

r
pp

jk

)

= ǫpp

2

(

1 −
r

pp

jk

σ jk

)2

	

(

1 −
r

pp

jk

σ jk

)

, (1)
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FIG. 2. Illustration of cells that contain N = 6 bidisperse disks

with three different boundary conditions: (a) periodic boundary con-

ditions (PBC) in a square cell with side length L0, (b) a cell with

four straight walls of fixed length L0 (FXW), and (c) a cell with four

flexible walls (FLW) such that adjacent vertices are connected by

linear springs with preferred length L0. To generate jammed disk

packings within each cell, we successively compress the system,

fixing the blue vertices after the compression, and then allowing the

disks and red vertices to relax. (d) Illustration of the application of

simple shear strain γ = 0.2 to an originally square cell (solid line)

at angle θ relative to the x axis, which generates the parallelogram-

shaped cell indicated by the dashed-dotted line.

where ǫpp gives the strength of the repulsive interactions, r
pp

jk

is the distance between the centers of disks j and k, σ jk is the

sum of the radii of disks j and k, and 	(·) is the Heaviside

step function. The repulsive force on disk j from k is �f pp

jk
=

−(dU pp/dr
pp

jk
)r̂

pp

jk
, where r̂

pp

jk
is a unit vector pointing from

the center of disk k to the center of disk j. Previous studies

have shown that the soft particle model in Eq. (1) generates

the same disk packings at jamming onset at those for rigid

disks [49].

For PBC boundary condition (a), there are only interpar-

ticle interactions. For boundary conditions (b) (FXW) and

(c) (FLW), we also consider repulsive interactions between

the disks and walls using the purely repulsive linear spring

potential energy

U pb
(

r
pb

ji

)

= ǫpb

2

(

1 −
r

pb

ji

R j

)2

	

(

1 −
r

pb

ji

R j

)

, (2)

where ǫpb is the strength of the repulsive interactions between

the disks and walls, r
pb

ji is the shortest distance between the

center of disk j and the ith wall, and R j is the radius of disk

j. The repulsive force on disk j from the ith wall is �f pb

ji =
−(dU pb/dr

pb

ji )r̂
pb

ji , where r̂
pb

ji is the unit vector pointing to the

center of disk j and perpendicular to the ith wall.

For FLW boundary conditions, we consider interactions

between the wall end points using the double-sided linear

spring potential energy

U bb
(

rbb
i,i+1

)

= ǫbb

2

(

1 − rbb
i,i+1

L0

)2

, (3)

where ǫbb is the characteristic energy scale of the linear spring

potential, rbb
i,i+1 is the distance between end points i and i + 1,

and L0 is equilibrium length for the ith wall. The force on

end point i from end point i + 1 in the ith wall is �f bb
i =

−(dU bb
i /drbb

i,i+1)r̂bb
i,i+1, where r̂bb

i,i+1 is the unit vector pointing

from end point i + 1 to i.

We calculate the stress tensor 
αβ (with α, β = x, y) of

the tessellated granular metamaterials using the virial ex-

pression [50]. For cells with PBC, the total potential energy

is U = ∑N
j<k U pp(r

pp

jk
) and stresses are generated only from

interparticle forces. The total stress tensor is thus 
αβ = 

pp

αβ ,

where



pp

αβ = 1

A

N
∑

j>k

f
pp

jkα
r

pp

jkβ
, (4)

A is the area of the cell, f
pp

jkα
is the α component of the force

on disk j from k, and r
pp

jkβ
is the β component of the separation

vector from the center of disk k to the center of disk j.

For cells with physical walls as shown in Figs. 2(b) and

2(c), the forces between the walls and particles also contribute

to the stress tensor. For cells with FXW boundary con-

ditions, the total potential energy is U = ∑N
j<k U pp(r

pp

jk
) +

∑N
j=1

∑4
i=1 U pb(r

pb

ji ). In this case, the total stress tensor is


αβ = 

pp

αβ + 

pb

αβ , where



pb

αβ = 1

A

4
∑

i=1

N
∑

j=1

f
pb

jiαr
pb

jiβ , (5)

f
pb

jiα is the α component of the force on disk j from the ith

wall of the cell, and r
pb

jiβ is the β component of the separation
vector from the contact point between wall i and disk j to the
center of disk j.

For cells with FLW boundary conditions, in addi-

tion to the interparticle and particle-wall interactions,

the walls store potential energy. Thus, the total poten-

tial energy is U = ∑N
j<k U pp(r

pp

jk
) + ∑N

j=1

∑4
i=1 U pb(r

pb

ji ) +
∑4

i=1 U bb(rbb
i,i+1). The total stress tensor is 
αβ = 


pp

αβ +



pb

αβ + 
bb
αβ for cells with flexible walls, where


bb
αβ = 1

A

4
∑

i=1

f bb
iα rbb

iβ , (6)

f bb
iα is the α component of the spring force from wall i, and rbb

iβ

is the β component of the vector with the same length as wall i

pointing in the same direction as �f bb
i . The pressure of the cell

is p = (
xx + 
yy)/2 and the shear stress is 
 = −
xy. We
use ǫpp/σ

2
s for the units of stress and shear modulus and ǫpp

for units of energy.
To generate jammed disk packings within a single cell, we

first place N disks randomly in the cell at a dilute packing
fraction φ < 10−3. We then apply an affine isotropic compres-
sive strain to the disk positions and decrease the length of the
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walls by �L to achieve a small packing fraction increment
�φ/φ = 2�L/L0 = 2 × 10−3, followed by potential energy
minimization using the fast inertia relaxation engine (FIRE)
algorithm [51]. During energy minimization, the disk posi-
tions change, while the end points of the fixed-length walls
for the boundary conditions depicted in Figs. 2(a) and 2(b)
are held fixed. However, the end points of the flexible walls
in Fig. 2(c) are allowed to move during energy minimization.
After energy minimization, we calculate the pressure p of

the cell. If p is less than the target pressure pt = p
j
t = 10−7,

we again compress the system by �φ/φ and perform en-

ergy minimization. If p > p
j
t , we return to the previous disk

and wall configuration, compress the system by �φ/2, and
perform energy minimization. We repeat this process until

the cell pressure satisfies |p − p
j
t |/p

j
t < 10−4. Our results do

not change if we choose smaller values of p
j
t . For all three

boundary conditions in Figs. 2(a)–2(c), we generate 104 disk
packings at jamming onset.

To investigate the mechanical response of the cells as a
function of pressure, we apply isotropic compression to the
cells at jamming onset to achieve a range of pressure values
pc

t that are logarithmically spaced between 10−7 to 10−2.
To ensure that the shape of the cells does not significantly
deviate from the cell shape at jamming onset, we fix the end
points of the walls for all three types of boundary conditions
when generating the cells with pressures above jamming onset

p
j
t . Since we are using energy minimization to generate the

packings, nearly all packings that we obtain at various pc
t are

mechanically stable.
To calculate the shear modulus of a single cell Gc at an

angle θ relative to the x axis, we first rotate the cell clockwise
by θ , as shown in Fig. 2(d). Determining Gc(θ ) allows us to
assess the anisotropy of the mechanical response of single
cells. We then apply successive small steps of simple shear
strain �γ = 5 × 10−9 (where x is the shear direction and y

is the shear gradient direction) to the disks and walls with
each strain step followed by potential energy minimization.
Note that after the applied simple shear strain, the walls re-
main fixed during energy minimization for all three boundary
conditions. We obtain the shear modulus for a single cell by
calculating Gc = d
c/dγ , where 
c is the shear stress of a
single cell. Over the range of shear strain used to measure
Gc, 
xy(γ ) is linear. In practice, linear fits of 
xy(γ ) yield
R-squared values that satisfy 1 − R2 < 10−11.

We build large-scale tessellated granular metamaterials by
joining multiple copies of a given cell with flexible walls
at jamming onset, e.g., the collection of 36 coupled cells in
Fig. 1. After joining the cells, we perform potential energy
minimization with the outermost (blue) wall end points held
fixed, while the internal (red) end points, as well as the disk
positions, are allowed to relax. Disks within a given cell only
interact with other disks and the walls of that cell. Interior
wall end points have four connections to other walls, while
exterior wall end points have either two or three connections
to other walls. We generate tessellated granular metamaterials

at jamming onset with p = p
j
t = 10−7, compress the systems

to achieve pressures that are logarithmically spaced between

p
j
t and 10−2, and measure the shear modulus at each pressure.

The shear modulus G of the collection of cells is calculated
in the same way as that for a single cell. In particular, we

first rotate the aggregate by θ clockwise, and then we apply
small successive steps of simple shear strain, �γ = 5 × 10−9,
with each step followed by energy minimization, where the
outer vertices are held fixed and the inner vertices, as well
as the disks, are allowed to relax. The total shear stress 


of the tessellated granular metamaterial is the sum of 
pp

and 
pb for all cells and the unique contributions to 
bb

for all of the cell walls. The shear modulus of the tessel-
lated granular metamaterial is given by G = d
/dγ . When
compressing the tessellated metamaterials to increase p, or
applying simple shear to measure G, we impose a specified
displacement field on the particle and wall positions prior to
energy minimization. After imposing the displacement field,
we allow the particles and only the internal wall vertices to
relax their positions under potential energy minimization.

After we apply each simple shear strain step followed by

energy minimization to tessellated granular metamaterials,

which can in principle give rise to nonaffine displacements,

we calculate the displacement field Fpq of all cell wall end

points to characterize the nonaffine displacements of each

cell. We find the strain field that minimizes the total nonaffine

displacement of all end points for a given cell and simple shear

strain step [52]:

Fpq =
∑

s=x,y

Xps(Y
−1)sq, (7)

where

Xps =
4

∑

i=1

rci,pr0
ci,s (8)

and

Ysq =
4

∑

i=1

r0
ci,sr

0
ci,q. (9)

Here, r0
ci,s and rci,s are the sth component of the separation

vector from the center of mass of a given cell to its ith end

point before and after the applied simple shear strain, respec-

tively. We subtract the applied simple shear strain γ from Fxy

to determine the nonaffine displacement field.

III. RESULTS

In this section, we describe the results for the mechanical

response of single cells, as well as large collections of cells. In

Sec. III A, we enumerate all of the distinct N = 4 bidisperse

disk packings in single cells at jamming onset for all three

boundary conditions. We determine whether the shear mod-

ulus for single cells Gc increases or decreases with pressure

over the full range of θ in Sec. III B. We find that Gc for

cells with PBC nearly always decreases with pressure (for all

shear angles), while Gc can either decrease or increase with

pressure for single cells with (both FXW and FLW) physical

walls. We further show that the slope of the shear modulus

versus pressure λc = dGc/d p for single cells can be tuned

by varying the particle-wall interaction energy ǫpb and wall

stiffness ǫbb. Finally, in Sec. III C, we emphasize that the sign

and magnitude of λc for a single cell can be maintained even in

a large collection of cells since the assembly prevents particle

rearrangements. We then show that the mechanical response
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FIG. 3. Distinct N = 4 bidisperse cells at jamming onset for (a) periodic boundary conditions (PBC, dashed lines), (b) fixed-length physical

walls (FXW), and (c) flexible physical walls (FLW). The solid red lines indicate interparticle contacts. The nongray background colors indicate

shared interparticle contact networks in (b) and (c). The disks shaded in dark gray are “rattler” particles with no interparticle contacts.

of large collections of cells can deviate from the single-cell

behavior when we allow the outer cell walls to relax and

change their positions during energy minimization.

A. Single cells with N = 4

1. Jammed configurations

We first illustrate the different types of jammed bidisperse

disk packings that occur in single cells with PBC and physical

walls. In Fig. 3, we show all possible jammed cells with N =
4. We find three distinct jammed packings for single cells with

PBC [53], six distinct packings for cells with FXW [54], and

seven distinct packings for cells with FLW. For N = 2, there

is only one distinct jammed cell with the disks arranged along

the diagonal of the cell.

For jammed cells with FLW, the shape of the boundary

is not typically a square, as shown in Fig. 3(c), since the

energy function for the walls does not include a bending

energy term. Despite this, we show that several of the jammed

configurations in the cells with FXW and FLW share the

same interparticle contact networks, e.g., configuration 1 in

Figs. 3(b) and 3(c).

For N = 4, we find that rattler particles occur in jammed

cells with FXW and FLW. See configurations 5 and 6 in

Fig. 3(b) and configuration 7 in Fig. 3(c). Rattler disks also oc-

cur for cells with PBC and physical walls for N > 4. Since our

focus is on jammed packings that do not undergo particle re-

arrangements during simple shear and isotropic compression,

we will not include calculations of the mechanical response

for cells with rattler disks.

2. Contact number

The boundary conditions of the cells affect the number of

interparticle contacts that are required at the onset of jam-

ming. The numbers of degrees of freedom for the cells are

the following: PBC, Nd = 2N ′ − 1, FXW, Nd = 2N ′ + 1, and

FLW, Nd = 2N ′ + 2, where N ′ = N − Nr and Nr is the num-

ber of rattler disks. (see Appendix A.) For mechanically stable

disk packings [55,56], the number of contacts must satisfy

Nc � Nd . Packings with Nc = Nd are isostatic; packings with

Nc < Nd are hypostatic; and packings with Nc > Nd are hyper-

static. For N = 4, in PBC, we find that the jammed bidisperse

disk packings are either isostatic (Nc = Nd , N ′ = 4, Nc = 7

for configuration 1) or hyperstatic (Nc > Nd , N ′ = 4, Nc = 8

for configuration 2, and N ′ = 4, Nc = 9 for configuration 3).

In cells with FXW, all of the packings are isostatic (N ′ = 4,

Nc = 9 for configurations 1–4, N ′ = 3, Nc = 7 for config-

uration 5, and N ′ = 2, Nc = 5 for configuration 6). In the

cells with FLW, most of the jammed bidisperse disk packings

are hypostatic (Nc < Nd , N ′ = 4, Nc = 9 for configurations

1–5 and N ′ = 3, Nc = 7 for configuration 7). As discussed in

Sec. III A 3, quartic modes are required to stabilize hypostatic

jammed packings. In contrast, configuration 6 in Fig. 3(c) is

hyperstatic (N ′ = 4, Nc = 13).

3. Quartic modes

Hypostatic jammed packings have only been reported for

packings of nonspherical particles [12,19] and particles with

shape and size degrees of freedom [57–59]. Our results in-

dicate that jammed packings of spherical particles can also

be hypostatic in cells with FLW. We have shown in previ-

ous studies that jammed hypostatic packings are stabilized

by quartic modes [12,19,58], which do not occur in isostatic

and hyperstatic packings. Indeed, we find that hypostatic cells

at jamming onset possess Nd − Nc quartic modes (see Ap-

pendix A). For N > 4, we also find that jammed disk packings

are isostatic in cells with PBC, either isostatic or hyperstatic

for cells with FXW, and either isostatic, hyperstatic, or hy-

postatic for cells with FLW. At large N (N > 16), we find

jammed disk packings are typically isostatic in all types of

boundary conditions studied (see Appendix A).

B. Shear modulus versus pressure for a single cell

1. Slope of shear modulus with pressure and anisotropy

In Figs. 4(a)–4(c), we show the shear modulus Gc(θ ) of

single cells as a function of pressure p over the full range
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FIG. 4. (a)–(c) Shear modulus Gc(θ ) versus pressure p for a single cell in configuration 1 (PBC) in Fig. 3(a), configuration 4 (FXW)

in Fig. 3(b), and configuration 5 (FLW) in Fig. 3(c). The color of each curve indicates the angle θ of the applied shear strain, which varies

from 0 (blue) to π/2 (red). The inset gives G′
c(θ ) = [Gc(θ ) − Gc0(θ )]/λc(θ ) for the data in the main panel of (a). (d)–(f) The slope of Gc(θ )

versus p, λc(θ ), plotted as a function of θ/π for the configurations in Fig. 3 (except those with rattler disks). The different colors and symbols

correspond to different configurations of the cells with (d) PBC, (e) FXW, and (f) FLW (blue circles: configuration 1; red crosses: 2; purple

upward triangles: 3; magenta squares: 4; yellow diamonds: 5; and green left triangles: 6). The horizontal dashed lines indicate λc = 0.

of shear angles θ for cells with PBC, FXW, and FLW, re-

spectively. In contrast to the behavior for large-N systems,

we find that the disks do not rearrange and Gc(θ ) varies

continuously with p over more than four orders of magnitude.

For cells with PBC, Gc(θ ) typically decreases with p as shown

in Fig. 4(a). In contrast, for cells with FXW [Fig. 4(b)] and

FLW [Fig. 4(c)], Gc(θ ) can either decrease or increase with p,

depending on the value of θ .

As we showed previously for jammed packings of spher-

ical particles with PBC, we find quite generally that Gc(θ )

varies linearly with p [20,38], Gc(θ ) = Gc0(θ ) + λc(θ )p, for

cells with PBC and physical walls in the absence of parti-

cle rearrangements [see the inset to Fig. 4(a)]. Gc0(θ ) gives

the single-cell shear modulus in the zero-pressure limit and

λc(θ ) = dGc(θ )/d p gives the slope [20]. In Figs. 4(d)–4(f),

we plot λc(θ ) as a function of θ for all N = 4 cells without rat-

tlers. We show that λc(θ ) = λc,a sin[4(θ − θ0)] + λc,dc varies

sinusoidally with period π/2, where λc,a is the amplitude,

θ0 is the phase shift, and λc,dc is the mean value of λc(θ )

[40]. (Previous studies have shown that the shear modulus

of jammed packings of spherical particles is sinusoidal with

period π/2 [15,44].) λc(θ ) < 0 for nearly all θ values and

cells for PBC, except for configuration 2 [Fig. 3(a)] in the

range 0.2 � θ/π � 0.3 [Fig. 4(d)]. For cells with FXW and

FLW, we observe similar sinusoidal behavior for λc(θ ), but

there are large θ ranges where λc(θ ) > 0. Our results showing

that λc,a ∼ λc,dc emphasize that cells at small N are highly

anisotropic. For cells with FLW, we do not find a correlation

between λc(θ ) > 0 and the occurrence of quartic modes as

discussed in Sec. III A 3. Isotropic, linearly elastic materials

in 2D possess only two elastic moduli, i.e., the bulk and shear

moduli. In this study, we focus on the response of the system

to simple shear strain. However, small, jammed disk packings

at low pressures are anisotropic [41,44], and thus they possess

more than two elastic constants that are inter-related and de-

pend on θ . In Appendix B, we derive the θ dependence for

all six stiffness matrix elements Ĉ and show that the elements

of Ĉ are related to each other under rotations. In contrast, for

isotropic, linearly elastic materials, Ĉ33 ≡ G is independent of

θ . Therefore, in future studies we will consider all elements of

Ĉ to fully understand the pressure- and angle-dependent elas-

tic moduli for anisotropic materials. In addition, our previous

studies have shown that the sign of λc(θ = 0) is determined by

the second derivative of the packing fraction at jamming onset

with respect to γ in jammed packings of spherical particles in

PBC [20,38]. In Appendix C, we show that this relation is still

true at any θ in cells with fixed-length walls. In particular,

this relationship expresses Ĉ33 in terms of derivatives of the

packing fraction U and p with respect to shear strain for any

given θ and determines which terms in this expression depend

most strongly on p. Similar analyses will be carried out for

the other elements of Ĉ in future studies to gain a complete

understanding of the pressure-dependent elastic moduli of

small jammed disk packings.

2. Probability of λc(θ) > 0

As N increases, the probability P+ to obtain a cell with

λc(θ ) > 0 decreases rapidly for PBC. As shown in Fig. 5,

we do not find λc(θ ) > 0 for cells with N � 6 for PBC. For
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FIG. 5. Probability P+ that cells possess λc(θ ) > 0 for any

nonzero range of θ , as a function of system size N for PBC (blue

circles), FXW (red crosses), and FLW (pink triangles).

cells with physical walls, P+ also decreases with increasing

N , but not as rapidly as that for cells with PBC. These results

emphasize that if one wants to tune the pressure dependence

of Gc(θ ) [i.e., between λc(θ ) > 0 and λc(θ ) < 0], one should

employ cells with small N .

3. Effects of wall and particle stiffnesses on λc(θ)

We next investigate the dependence of λc(θ ) on the

particle-wall stiffness ǫpb/ǫpp and wall stiffness ǫbb/ǫpp rela-

tive to the strength of the repulsive interparticle interactions

in cells with FXW and FLW. In Fig. 6(a), we show that

for configuration 4 depicted in Fig. 3(b), λc,a, λc,dc, and θ0

undergo only small variations when ǫpb/ǫpp changes by nearly

two orders of magnitude. λc,a and λc,dc converge for ǫpb/ǫpp �
10 for all N = 4 cells with FXW [Figs. 6(b) and 6(c)]. For

configuration 4, we find that λc(θ ) > 0 for a finite range of θ

in the large ǫpb/ǫbb limit. We can also fix ǫpb/ǫpp and show

that λc,a, λc,dc, and θ0 converge in the large ǫbb/ǫpp limit [see

Figs. 6(d)–6(f)]. We find that λc(θ ) < 0 (for all θ ) at large

ǫbb/ǫpp for all N = 4 configurations with FLW since λc,dc < 0

and λc,a < |λc,dc|. These results emphasize that cells with

FLW become similar to cells with PBC [with λc(θ ) < 0] in the

large ǫbb limit. Thus, particle-wall interactions are essential for

λc(θ ) > 0.

C. Shear modulus versus pressure for tessellated

granular metamaterials

1. Lock-in of single-cell behavior

We now study the pressure dependence of the shear mod-

ulus G(θ ) for tessellated granular metamaterials (Fig. 1)

constructed from multiple cells with flexible walls ǫpb/ǫpp =
1 and ǫbb/ǫpp = 0.1. In Fig. 7(a), we show G(θ ) versus p for

Nc = 36 cells that each contain configuration 5 from Fig. 3(c).
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FIG. 6. (a) The slope of the shear modulus λc(θ ) versus pressure for a single cell with FXW [configuration 4 in Fig. 3(b)] versus the angle

θ of the applied shear strain for several values of the particle-wall interaction energy normalized by the strength of the interparticle repulsive

energy ǫpb/ǫpp indicated by the different colors and symbols. (b) Mean value λc,dc and (c) amplitude λc,a of the slope of the shear modulus

as a function ǫpb/ǫpp for the four single cells without rattlers and FXW shown in Fig. 3(b). The symbols and colors in (b) and (c) indicate

the specific configurations in Fig. 3(b). (d)–(f) Similar data to that in (a)–(c) except for single cells with FLW. Data for configuration 5 in
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(
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(
)

FIG. 7. (a) Shear modulus G(θ ) versus pressure p for a tessellated granular metamaterial composed of Nc = 36 cells containing the same

N = 4 disk configuration [i.e., configuration 5 in Fig. 3(c)] with ǫpb/ǫpp = 1 and ǫbb/ǫpp = 0.1. Different colors correspond to the angle θ of

the applied simple shear strain, which varies from 0 (blue) to π/2 (red). (b) λ(θ ) for tessellated granular metamaterials with ǫpb/ǫpp = 1 and

ǫbb/ǫpp = 0.1 and different values of Nc (blue circles: 4, red crosses: 16, purple upward triangles: 36, and magenta squares: 64) and a single

cell with ǫbb/ǫpp
= 0.05 (yellow diamonds) and 0.1 (green left triangles). All cells contain the same disk configuration 5 in Fig. 3(c) with FLW.

(c) The off-diagonal term of the fitted displacement matrix Fxy − γ in Eq. (7) as a function of the applied simple shear strain γ at p = 10−7 for

each cell (indicated by different colors) for the tessellated granular metamaterial in (a).

Similar to the results for Gc(θ ) for single cells, the mechanical

response of tessellated granular metamaterials shows strong

shear angle dependence. In particular, for some values of θ ,

the slope of G(θ ) versus p, λ(θ ) > 0, and for other values,

λ(θ ) < 0. In Fig. 7(b), we show that λ(θ ) possesses weak

system-size dependence as Nc is increased. λ(θ ) for the mul-

ticell system in the large-Nc limit converges to λc(θ ) for a

single cell with FLW with ǫbb/ǫpp = 0.05, which is half of the

value for the multicell system. This result can be explained

because each wall in the tessellated granular metamaterial is

shared by its neighboring cell except for those on the exterior.

Since λ(θ ) for the tessellated granular metamaterial mimics

that for single cells, these results indicate that we can lock

in the behavior of the shear modulus versus pressure for a

single cell in tessellated granular metamaterials in large-Nc

limit. In particular, we find finite regions of θ where λ(θ ) > 0

in the large-Nc limit without particle rearrangements. The

similarity of the mechanical response between the multicell

and single-cell systems is caused by the fact that all of the sin-

gle cells display similar displacements during applied simple

shear strains. In Fig. 7(c), we show that the nonaffine dis-

placements of each cell, caused by energy minimization after

each applied simple shear strain, is negligible. The nonaffine

motion is obtained by measuring the difference in the off-

diagonal element of the strain tensor of the interior vertices

and the expected value from simple shear, Fxy − γ , for each

cell [52]. Previous studies have shown that nonaffine particle

motion strongly affects the magnitude of the shear modulus

[34,37,60]. Thus, near zero nonaffine displacements of the

cells indicate that the strain of the tessellated metamatarials

has locked in the strain of each cell. In general, the results

for the tessellated granular metamaterials are qualitatively the

same for any jammed packings that are used to construct the

tessellated granular metmaterial.

2. Constraints on outer wall vertices

We also investigate how many constraints on the outer wall

end points are necessary to enforce the mechanical response

of the single cells in tessellated granular metamaterials. To

address this question, we allow different wall end points on the

outer boundary to relax during energy minimization following

the applied isotropic compression and simple shear strain [see

Fig. 8(a)]. We find that G(θ ) versus p for tessellated granular

metamaterials with even a single mobile outer wall end point

deviates from that of the tessellated granular metamaterial

where all outer wall end points are fixed. We show G(0) versus

p as an example in Fig. 8(b). Allowing the outer wall end

points to move gives rise to buckling of tessellated granular

metamaterials caused by compression, as shown in Figs. 8(c)

and 8(d). This buckling induces changes in the shape of single

cells compared to those of single cells with fixed outer wall

end points during compression and shear, which causes the

deviations in G(θ ) versus p. Therefore, to ensure that tessel-

lated granular metamaterials lock in single-cell behavior, it is

necessary to constrain all of the outer wall end points.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In the large-system limit, the shear modulus G of static

packings of spherical particles increases with pressure due to

frequent particle rearrangements and nonaffine particle mo-

tion that enable the packings to increase their contact number

with increasing pressure. In this work, we investigate a class

of granular materials, tessellated granular metamaterials, that

allow us to control the slope of the shear modulus versus

pressure by preventing particle rearrangements even in the

large-system limit. We focus on tessellated granular metama-

terials in two dimensions, which are collections of Nc coupled

cells that each contain N bidisperse disks enclosed by four

physical walls. In particular, we can design tessellated gran-

ular metamaterials with negative slope of the shear modulus

with pressure even in the large-Nc limit.

We first studied the mechanical properties of single cells

with three sets of boundary conditions: PBC, FXW, and

FLW. Packings with small N do not undergo frequent particle

rearrangements, and thus we enumerated all possible mechan-

ically stable cells with all three boundary conditions for N �

8. We find that the mechanically stable cells with PBC and

FXW are either isostatic or hyperstatic, while those with FLW
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FIG. 8. (a) Tessellated granular metamaterial with Nc = 36 described in Fig. 7, except now some of the wall end points marked by red

crosses are no longer fixed after the applied isotropic compression and simple shear strain. (b) Shear modulus G(0) measured at θ = 0 as a

function of pressure p when different wall end points on the outer boundary are switched from fixed to mobile (blue circles: all outer wall end

points are fixed, red crosses: end point 1 is mobile, magenta upper triangles: end point 2 is mobile, black squares: end point 3 is mobile, yellow

diamonds: end point 4 is mobile, green left triangles: end points 1 and 3 are mobile, cyan crosses: end points 2 and 4 are mobile, and purple

asterisks: end points 1–4 are mobile). (c), (d) Tessellated granular metamaterials at p = 0.01 when (c) end point 1 is mobile, and (e) end points

1–4 are mobile.

can be hypostatic, as well as isostatic and hyperstatic. The

hypostatic cells with FLW are stabilized by quartic modes, as

found for hypostatic packings of nonspherical and deformable

particles. Second, we showed that the angle-dependent shear

modulus of single cells depends linearly on pressure, Gc(θ ) =
λc(θ )p + Gc0(θ ). Further, the slope of the shear modulus

versus pressure for single cells is strongly anisotropic, i.e.,

λc(θ ) = λc,dc + λc,a sin[4(θ − θ0)] and λc,a ∼ λc,dc. We find

that λc(θ ) < 0 for single cells in PBC with N > 4. In con-

trast, cells with FXW and FLW and small N can possess

either λc(θ ) > 0 or λc(θ ) < 0. However, the probability of

obtaining cells with λc(θ ) > 0 vanishes in the large-N limit.

These results are summarized in Table I. After studying the

mechanical response of single cells, we investigated the shear

modulus of tessellated granular metamaterials formed by con-

necting many single cells with flexible walls. We showed that

we can lock in the mechanical response of single cells in

tessellated granular metamaterials. The ability to lock in the

mechanical response of single cells in multicell systems is

reduced if the outer wall end points are free to move dur-

ing energy minimization after applied deformations. These

results demonstrate that we can build large-scale granular

TABLE I. Summary of the results for the number of contacts Nc and derivative of the shear modulus with respect to pressure λc of single

cells for all three types of boundary conditions: PBC, FXW, and FLW.

PBC FXW FLW

Number of contacts at jamming onset Nc Isotropic or hyperstatic Isotropic or hyperstaitc Isotropic, hyperstatic, or hypostatic

Sign of λc λc < 0 for Nc > 4 λc < 0 or λc > 0 λc < 0 or λc > 0
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metamaterials whose mechanical properties do not change

after repeated cycles of compression and decompression, as

well as positive and negative simple shear strain, since particle

rearrangements are eliminated.

These findings raise many interesting directions for fu-

ture research. First, we found that the mechanical response

of both single- and multiple-cell granular systems is highly

anisotropic. To fully understand the pressure-dependent

mechanical properties of anisotropic materials in two di-

mensions, we must characterize all six stiffness matrix

components as a function of pressure, which requires ad-

ditional mechanical tests in addition to simple shear as a

function of θ . Doing so will also aid in the development

of a continuum elasticity theory for tessellated granular ma-

terials. Second, for the current studies, we fixed all of the

outer wall end points during energy minimization to enforce

nearly affine simple shear of tessellated granular metamateri-

als. However, when the outer wall end points are not fixed,

the individual cells can change their shape during energy

minimization that follows the applied compression and simple

shear strain. Thus, it will be interesting to study and predict

the pressure dependence of Gc(θ ) of single cells when the

outer wall end points are free to move or bending energy is

included between adjacent end points to generate cells with

arbitrary shapes. Third, we have focused on tessellated granu-

lar metamaterials composed of identical single cells. In future

studies, we will consider tessellated granular metamaterials

composed of single cells with different disk configurations

and boundaries with varied ǫpb and ǫbb to understand how

the mechanical properties of single cells determine the me-

chanical properties of the multicell system. Fourth, we have

only considered square tessellated metamaterials. We can also

investigate tessellated metamaterials with different numbers

of rows and columns of cells, which can provide more tunabil-

ity of the pressure-dependent mechanical response. Finally,

we will extend our studies of tessellated granular metamate-

rials to three dimensions. In three dimensions, there are three

principal simple shear directions, instead of one in two dimen-

sions, which provides additional ways to design tessellated

granular metamaterials. For example, we can create strongly

anisotropic tessellated granular metamaterials by having some

cells possess λc(θ ) > 0 in one shear direction, others pos-

sess λc(θ ) < 0 in another shear direction, and others possess

λc(θ ) > 0 in the remaining shear direction.
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APPENDIX A: ISOSTATICITY AND QUARTIC

MODES IN A SINGLE CELL

In this Appendix, we discuss the number of degrees of

freedom Nd in cells for all three types of boundary conditions

and quartic modes in hypostatic disk packings with FLW.
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FIG. 9. Probability P (N ) (over 104 single cells) of obtaining a

given number of contacts, hyperstatic (Nc > Nd ) or hypostatic (Nc <

Nd ), for single cells with PBC, FXW, or FLW as a function of system

size N .

In PBC, Nd = 2N ′ − 2 + 1 = 2N ′ − 1, where N ′ = N −
Nr and Nr is the number of rattler disks. In this expression,

the −2 comes from the two global translational degrees of

freedom in periodic boundary conditions; the +1 comes from

the size degree of freedom of the disks while maintaining

fixed diameter ratio. The +1 can also be interpreted as a

state of self-stress [56]. For the degrees of freedom in cells

with FXW and FLW, we must include the degrees of freedom

of the wall end points, as well as the disks: Nd = 2N ′ +
2Nv − NB − 3 + 1. Here, Nv = 4 is the number of wall end

points, NB is the number of constraints associated with the

walls, the −3 comes from the two rigid-body translational and

one rotational degree of freedom, and the +1 again comes

from the size degree of freedom of the disks. For FLW, four

springs connect the wall end points, and hence NB = 4. For

FXW, in addition to the length constraint for each wall, the

angle between any two neighboring walls is also fixed, and

thus NB = 5. Hence, Nd = 2N ′ + 1 for cells with FXW and

Nd = 2N ′ + 2 for FLW. For isostatic packings, the total num-

ber of contacts satisfies Nc = Nd . A packing is hyperstatic

when Nc > Nd and hypostatic when Nc < Nd . We show that

the probability of obtaining a hyperstatic or hypostatic cell

decreases with increasing N for all three boundary conditions

as shown in Fig. 9. We note that there are a finite number of

hypostatic packings in cells with FLW even at N � 16, which

highlights the effect of soft physical walls on the structural

and mechanical properties of jammed granular materials.

“Quartic” modes stabilize hypostatic jammed packings.

They can be illustrated through the expansion of the total

potential energy of a jammed disk packing U in terms of small

displacements around its local energy minimum U ( �R0), where
�R0 denotes the equilibrium positions of all particles and wall

vertices. If we perturb the packing to a new set of positions
�R = �R0 + δû, where δ is the amplitude of the perturbation and

û is a unit vector characterizing the perturbation direction, U
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can be approximated by a Taylor expansion:

U ( �R) =U ( �R0) + δ
∑

i

∂U

∂Ri

ui + 1

2
δ2

∑

i, j

∂2U

∂Ri∂R j

uiu j

+ 1

6
δ3

∑

i, j,k

∂2U

∂Ri∂R j∂Rk

uiu juk

+ 1

24
δ4

∑

i, j,k,l

∂2U

∂Ri∂R j∂Rk∂Rl

uiu jukul + · · · , (A1)

where the derivatives are evaluated at �R0. The second term on

the right-hand side of this equation is zero since the jammed

packing is in force balance. The third term on the right-

hand side includes the dynamical matrix M = ∂2U
∂Ri∂R j

, whose

eigenvalues λM give the energy associated with perturbations

along the associated eigenvectors λ̂M . In isostatic and hyper-

static packings with Nc � Nd , all nontrivial eigenvalues λM

are nonzero and �U = U ( �R) − U ( �R0) increases quadratically

with amplitude δ for perturbations along λ̂M : �U = 1
2
λMδ2.

In hypostatic packings, some of the eigenvalues of M are

much smaller than the nontrivial quadratic eigenvalues, yet

they are larger than the trivial eigenvalues corresponding to

rigid-body translations and rotations. [For example, see the

fourth eigenvalue of M in Fig. 10(a).] The number of these

modes matches the number of missing contacts, Nd − Nc.

When perturbing along eigenvectors λ̂M associated with one

of these small nontrivial eigenvalues, �U first scales quadrat-

ically with δ and then scales quartically with δ at larger values

of δ as shown in Fig. 10(b). In previous studies [61], we have

shown that the characteristic δc at which the scaling of �U

changes from quadratic to quartic decreases with pressure, and

thus at zero pressure, �U scales quartically with δ. (These

previous results emphasize that the fourth term in the Taylor

expansion containing third derivatives of U is small.) Since

these modes scale quartically with δ at zero pressure, we label

them as “quartic modes.”

APPENDIX B: STIFFNESS MATRIX AFTER ROTATION

In this Appendix, we show the angular dependence of

all elements of the stiffness matrix Ĉ, which relates stress

and strain. At a predefined orientation with θ = 0, we can

calculate the stiffness matrix Ĉ(0). After rotating the configu-

ration by an angle θ clockwise, the stiffness matrix becomes

Ĉ(θ ) = R̂T (θ )Ĉ(0)R̂(θ ), where

R̂(θ ) =

⎛

⎜

⎜

⎝

cos2 θ sin2 θ − 1
2

sin 2θ

sin2 θ cos2 θ 1
2

sin 2θ

sin 2θ − sin 2θ cos 2θ

⎞

⎟

⎟

⎠

. (B1)

Using Eq. (B1), we find the following angle-dependent stiff-

ness matrix elements :

Ĉ11(θ ) = Ĉ11(0) cos4 θ + Ĉ22(0) sin4 θ

+ Ĉ33(0) sin2(2θ ) + 1
2
Ĉ12(0) sin2(2θ )

+ 2Ĉ13(0) sin(2θ ) cos2 θ

+ 2Ĉ23(0) sin(2θ ) sin2 θ, (B2)
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U
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FIG. 10. (a) Sorted eigenvalues (from smallest to largest) of

the dynamical matrix λM for configuration 5 with FLW boundary

conditions in Fig. 3(c). The first three eigenvalues (corresponding

to two rigid-body translations and one rigid-body rotation) are less

than 10−15 and decrease in magnitude as we improve the force

balance condition. The fourth eigenvalue (i = 4) corresponds to a

“quartic mode” and those with i > 4 correspond to quadratic modes.

(b) Change in potential energy �U in response to perturbations along

eigenvectors λ̂M plotted as a function of the perturbation amplitude δ.

The dashed and dotted-dashed lines have slope 2 and 4, respectively.

The colors of the symbols in (b) correspond to perturbations along

the eigenvectors associated with eigenvalues with the same colored

symbols in (a).

Ĉ12(θ ) =
[

1
4
(Ĉ11(0) + Ĉ22(0)) − Ĉ33(0)

]

sin2(2θ )

+ Ĉ12(0)(sin4 θ + cos4 θ )

+ 1
2
(Ĉ23(0) − Ĉ13(0)) sin(4θ ), (B3)

Ĉ13(θ ) = − 1
2
Ĉ11(0) sin(2θ ) cos2 θ + 1

2
Ĉ22(0) sin(2θ ) sin2 θ

+ 1
2
Ĉ33(0) sin(4θ ) + 1

4
Ĉ12(0) sin(4θ )

+ Ĉ13(0) cos2 θ (2 cos(2θ ) − 1)

+ Ĉ23(0) sin2 θ (2 cos(2θ ) + 1), (B4)

Ĉ22(θ ) = Ĉ11(0) sin4 θ + Ĉ22(0) cos4 θ + Ĉ33(0) sin2(2θ )

+ 1
2
Ĉ12(0) sin2(2θ ) − 2Ĉ13(0) sin(2θ ) sin2 θ

− 2Ĉ23(0) sin(2θ ) cos2 θ, (B5)
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Ĉ23(θ ) = − 1
2
Ĉ11(0) sin(2θ ) sin2 θ + 1

2
Ĉ22(0) sin(2θ ) cos2 θ

− 1
2
Ĉ33(0) sin(4θ ) − 1

4
Ĉ12(0) sin(4θ )

+ Ĉ13(0) sin2 θ (2 cos(2θ ) + 1)

+ Ĉ23(0) cos2 θ (2 cos(2θ ) − 1), (B6)

Ĉ33(θ ) = 1
4

(

Ĉ11(0) + Ĉ22(0) − 2Ĉ12(0)
)

sin2 (2θ )

+ 1
2

(

Ĉ23(0) − Ĉ13(0)
)

sin (4θ )

+ Ĉ33(0) cos2 (2θ ). (B7)

Equations (B2)–(B7) show that generally all six elements of

the reference stiffness matrix contribute to each Ĉ element

at a given angle θ . Therefore, in anisotropic materials, it is

important to track all Ĉ elements to fully characterize their

mechanical properties.

APPENDIX C: RELATION BETWEEN SHEAR MODULUS

AND MIXED SHEAR STRAIN DERIVATIVES

In this Appendix, we verify that the pressure dependence

of the single-cell shear modulus is related to the variation of

the packing fraction at jamming onset φJ with simple shear

strain γ as shown in previous studies [38]. We illustrate this

relationship using a single cell containing the N = 2 monodis-

perse disk packing with FXW in the inset to Fig. 11(a) since

φJ (γ ) can be calculated analytically for this case. The shear

modulus can be written in terms of three mixed derivatives of

the simple shear strain:

G =
(

d


dγ

)

φ

= 1

A

(

d
(

dU
dγ

)

p

dγ

)

φ

− p

φ

(

d
(

dφ

dγ

)

p

dγ

)

φ

− 1

φ

(

d p

dγ

)

φ

(

dφ

dγ

)

p

. (C1)

In Fig. 11(a), we demonstrate that Eq. (C1) still holds for

single cells with FXW.

The second term in Eq. (C1) is proportional to p, with

[d (
dφ

dγ
)p/dγ ]φ > 0 for single cells with N � 6 and PBC [20].

In contrast, the first and third terms in Eq. (C1) do not pos-

sess strong p dependence. Therefore, the second derivative

of φJ (γ ) typically determines whether G will increase or

decrease with p. In particular, if φJ (γ ) is concave upward,

G decreases with increasing p, and vice versa.

For single cells containing N = 2 monodisperse disks

at jamming onset with FXW boundary conditions, we can

analytically determine the packing fraction at jamming

onset φJ as a function of the simple shear strain γ and

shear angle θ . Consider a square box (with initial side

lengths L0 = 1) whose vertices are located at (0, 0), (1, 0),

(1, 1), and (0, 1). After rotation by θ clockwise about the

origin, these four points transform into (0, 0), (cos θ, sin θ ),

(cos θ + sin θ,− sin θ + cos θ ), and (sin θ, cos θ ). After

we apply a simple shear strain γ to the rotated box,

the four points become (0, 0), (cos θ − γ sin θ,− sin θ ),

( cos θ + sin θ + γ (− sin θ + cos θ ),− sin θ + cos θ ), and

(sin θ + γ cos θ, cos θ ). The resulting box is a parallelogram

(
)

FIG. 11. (a) Shear modulus Gc(θ ) for a single cell containing a

monodisperse N = 2 disk packing with FXW at shear angle θ = 0

(red squares and red solid line) and π/4 (blue circles and blue solid

line) as a function of pressure p. The squares and circles show Gc(θ )

calculated using Gc = d
c/dγ , while the solid lines show Gc(θ )

calculated using Eq. (C1). The inset shows the N = 2 cell at simple

shear strain γ = 0 and θ = 0. (b) Packing fraction φJ of the single

cell in (a) at jamming onset as a function of γ at several values of

θ as indicated by the different colors and symbols. The symbols and

solid lines correspond to the results from the numerical simulations

and analytical calculations using Eqs. (C2)–(C9), respectively. The

inset provides an illustration of a monodisperse N = 2 packing in

a cell with FXW boundary conditions at jamming onset. The disk

centers are specified by (x1, y1) and (x2, y2) and the lengths of the

parallelogram side walls are a and b with angle 2α between them.

with unit area and side lengths,

a =
√

1 − 2γ sin θ cos θ + γ 2 sin2 θ, (C2)

b =
√

1 + 2γ sin θ cos θ + γ 2 cos2 θ. (C3)

To obtain φJ (θ, γ ), we need to find the radius of the circle r

such that the two disks fit within the parallelogram and are

mechanically stable. [See Fig. 11(b) inset, where we have

rotated the parallelogram by θ counterclockwise to simplify

the calculation.] The centers of the two disks are located at
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(x1, y1) and (x2, y2), where x1 = r cot α, y1 = r, x2 = a +
b cos 2α − r cot α, and y2 = b sin 2α − r cot α, with

α = 1

2
cos−1

(

γ (cos2 θ − sin2 θ ) − γ 2 sin θ cos θ

ab

)

. (C4)

The distance between the two disks must equal 2r, and

thus (x1 − x2)2 + (y1 − y2)2 = (2r)2. This expression yields a

quadratic equation for r: Ar2 + Br + C = 0, where A, B, and

C are given by

A = 4 cot2 α, (C5)

B = −4{a cot α + b[cot α cos(2α) + sin(2α)]}, (C6)

and

C = a2 + 2ab cos(2α) + b2. (C7)

The two solutions for r are

r1,2 = −B ±
√

B2 − 4AC

2A
. (C8)

The first solution results in circles that are outside of the

parallelogram. Thus, r = r2 and

φJ (θ, γ ) = π
(−B −

√
B2 − 4AC)2

2A2
. (C9)

We verify in Fig. 11(b) that φJ (θ, γ ) determined by the nu-

merical simulations matches that predicted by Eq. (C9). At

γ = 0, which is where Gc(θ ) is measured throughout the main

text, we find that the φJ (γ ) is concave downward at θ = 0

and concave upward at θ = π/4 [Fig. 11(b)]. Thus, since

λc(θ ) switches sign, we expect a saddle point to occur in the

φJ (γ , θ ) plane between θ = 0 and π/4. In future studies, we

will apply a similar approach in Eq. (C1) to obtain the pressure

dependence of all elements of the stiffness matrix.
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