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Space-borne gravitational-wave (GW) detectors observing at millihertz and decihertz frequencies are
expected to detect large numbers of quasimonochromatic signals. The first and second time derivative of
the GW frequency (f o and f) can be measured for the most favorable sources and used to look for negative
post-Newtonian corrections, which can be induced by the source’s environment or modifications of general
relativity. We present an analytical, Fisher-matrix-based approach to estimate how precisely such
corrections can be constrained. We use this method to estimate the bounds attainable on the time
evolution of the gravitational constant G(¢) with different classes of quasimonochromatic sources
observable with LISA and DECIGO, two representative space-borne detectors for millihertz and decihertz
GW frequencies. We find that the most constraining source among a simulated population of LISA galactic
binaries could yield G/Gy <1076 yr~!, while the best currently known verification binary will reach
G/Gy < 107* yr'. We also perform Monte Carlo simulations using quasimonochromatic waveforms to
check the validity of our Fisher-matrix approach, as well as inspiralling waveforms to analyse binaries that
do not satisfy the quasimonochromatic assumption. We find that our analytical Fisher matrix produces
good order-of-magnitude constraints even for sources well beyond its regime of validity. Monte Carlo
investigations also show that chirping stellar-mass compact binaries detected by DECIGO-like detectors at

1

cosmological distances of tens of Mpc can yield constraints as tight as G/Gy < 107! yr
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I. INTRODUCTION

One of the cornerstones of general relativity is the
principle of local position invariance, according to which
the outcome of a local nongravitational experiment is
independent of the experiment’s position in time and space
[1]. Alternatives to general relativity, on the other hand, can
violate local position invariance; scalar-tensor theories, for
instance, introduce a new field that mediates gravitational
interactions [2,3] and can lead to a time dependence in the
effective gravitational constant G(¢) [4,5] replacing
Newton’s constant G,. Probing whether the gravitational
constant is indeed constant constitutes a direct test of one of
the fundamental principles of general relativity, which
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could potentially provide new insights on the underlying
properties of the gravitational interaction at different
temporal and spatial scales.

Scalar-tensor theories have been largely employed to
provide a simple explanation to the observed evolution of
the Universe, in particular to describe dark energy and
introduce a different dynamics with respect to the standard
cosmological constant [6—8]. One of the main assumptions
in these scalar-tensor cosmological models, is that the
scalar field is distributed isotropically and homogeneously
at cosmic distances. In some of these theories, such an
assumption effectively produces a gravitational constant
that is spatially constant, at least at subhorizon scales, while
it is allowed to vary over cosmic time. Looking for
observational signatures of a running gravitational constant
over different cosmic ages is thus not only a simple way to
probe some of the principles of general relativity, but also a
way to test alternative cosmological models and possibly to
acquire new insights on the nature of dark energy.

Several strategies have been used over the years to
measure the first time derivative of the gravitational
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coupling, G, assuming a linear dependence of G(7) on time
(see, e.g., Ref. [9]). Stringent bounds on G come from big
bang nucleosynthesis (BBN) data [10-12], from which
it has been estimated that G/G, < 1072 yr~!, from the
cosmic microwave background (CMB) [13], and from
type-IA Supernovae [14]. In the local environment, con-
straints come from the study of globular clusters [15] and
(at distances below ~1 AU) from lunar ranging experi-
ments, which currently provide the most stringent bounds;
G/Gy S 10714 yro! [16].

Gravitational-wave (GW) observations have also been
used to constrain the running of the gravitational constant.
A key difference from previous constraints is that GW
observations can probe intermediate epochs in cosmic
history and are more local in time and space, while
cosmological bounds need to assume that the gravitational
constant evolved at a constant rate across the entire history
of the Universe. In other words, GWs test the first
derivative of G(t) at the spatial and temporal location of
the source, without requiring any assumptions on the
general form of G(f) at other times. On the other hand,
cosmological measurements of G (such as CMB or BBN
analyses) assume that G(¢) is varying linearly in time from
the early Universe until today. Thus, GW tests of G
represent a unique way to probe the local variation of
G(1) at cosmological distances.

Binary pulsars were the earliest GW sources used to

place constraints on G [4,17,18]. Recently, measurements
of component masses of binary neutron stars (NS) have

also been used to constrain G/Gy < 1078 yr=' [19]. It has
also been estimated that chirping massive black hole
binaries (MBHBs) and extreme mass-ratio inspirals
(EMRIs), which are expected to be detected with the
planned LISA mission, could be used to constrain G/Gy <
O(107%) yr'! and G/Gy < O(1078) yr!  respectively,
assuming a 10°M central BH and optimistic SNRs of
100 for an EMRI with symmetric mass ratio of 10~ and
1000 for an equal-mass MBHB [20].I From stellar-mass
binaries, another target of space-borne GW detectors like
LISA, Ref. [21] forecasts constraints in the range G/ Gy S
1078 yr~! to 1071% yr~!, when these sources are observed
both by LISA and some configurations of terrestrial
detectors [see their Fig. (13)]. In Fig. 1 we summarize
current constraints on the variation of the gravitational
constant (in black), together with predictions for future GW
observations (dashed) and predictions from this paper (in
red), plotting them against the reference distance at which

'Note that scalar-tensor theories cannot account for the
evolution of Newton’s constant as measured in vacuum by binary
BH observations, as the only physically evolving coupling in
scalar-tensor theories is the one between gravity and matter. For
an alternative theory with a running gravitational constant in the
purely gravitational sector, see Appendix A of Ref. [20].

those constraints have been derived. From the figure it is
clear that GWs offer the best way to test local variations of
G(t) at cosmological distances in the late-time Universe.

The goal of this paper is to further assess what con-
straints stellar-mass compact binaries detected by space-
borne GW interferometers can yield on the running of
Newton’s constant of gravitation. The LISA mission is
expected to detect tens of thousands of stellar-mass binaries
from our Galaxy at millihertz frequencies, mostly double
white dwarfs (DWDs) [24-27]. Some galactic binaries,
known as verification binaries, are already known to emit in
the LISA band, and are guaranteed detections [28-30].
At large separation, the signals from DWDs are almost
monochromatic. For most of these, the first time derivatives
of the signal’s frequencies can be measured and used to
constrain the binary’s chirp mass. In favorable conditions,
the second derivative of the frequency can also be mea-
sured, allowing us to measure relativistic effects such as
tides [31-33] and putative modifications to the environ-
ment of the DWDs or of the underlying theory of gravity.
Millihertz signals are particularly interesting sources to
place constraints on G, as the negative post-Newtonian
(PN) corrections that G would induce influence the
binaries’ motion at the large separations at which these
signals will be observed. Note that scalar-tensor theories (or
other underlying theories that would cause a variation of G)
also predict other deviations in the orbital decay of binaries,
e.g., due to the emission of scalar dipole radiation [34].
These effects appear at a different post-Newtonian order
compared to a time-dependent gravitational constant, and
therefore should not affect the constraints on G/G, dis-
cussed in this work.

Likewise, space-borne detectors operating at decihertz
frequencies are expected to detect thousands of binaries
containing NS and/or stellar to intermediate-mass black
holes (BHs) [35], which could provide stringent constraints
to alternative theories of gravity [36]. One example of
decihertz detector is DECIGO [37,38], though its actual
deployment remains uncertain. In this paper we consider
DECIGO as a representative space-borne decihertz
detector. For low enough chirp masses and frequencies,
DECIGO binaries are quasimonochromatic, which allows
us to treat them similarly to LISA’s DWDs. For a larger part
of the parameter space, low-mass binaries in DECIGO
cannot be treated as quasimonochromatic anymore, as the
chirp becomes a dominant feature of the inspiral and the
frequency evolution cannot be ignored. Constraints on G
from decihertz detectors’ inspiralling sources have not
been estimated in the literature and will be provided here
for the first time.

The paper is organized as follows. Using a Fisher matrix
for quasimonochromatic signals, we derive in Sec. II an
analytic estimate of the error attainable in measurements
of G that includes correlations with other signal parameters.
We then use this expression to forecast constraints using
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FIG. 1. Constraints on G /Gy from current data [12,13,16,17,19,22] (in black, full lines) together with predictions for future GW
detections from [21,23] (black, dashed) and from this paper (red bands). The CMB, BBN, and NS mass constraints assume a linear
evolution of G(t) across all cosmological time and their localization in redshift/distance is only approximate (for these reasons we mark
them with an asterisk). The estimates from GWs use as reference typical parameters of their respective sources as reported in [21,23].
These parameters include the value of the distance used in the figure, but the reader should keep in mind that GW constraints can in fact
come at different distances and should more properly be represented as a distance/redshift band, similar to the predictions from this
paper (in red). The horizontal axes show the distance/redshift (assuming a ACDM cosmology with Hy = 70 km/s/Mpc and Q,, = 0.3)
of the sources used in the constraints, while the vertical axis shows the constraint on the magnitude of G, expressed as a fraction of the
value of G at the present time (in units of yr™'). The LISA WD constraint band is obtained via the Fisher matrix as described in Sec. III
for an equal mass DWD with total mass M = 2M,, initial frequency f, = 0.01 Hz, and distances ranging from 100 pc to 15 kpc. The
DECIGO NS constraint band is similarly obtained by considering a typical equal mass BNS with a total mass of M = 2.8M, initial
frequency f, = 0.1 Hz, and distances between 10 Mpc and 1 Gpc, and accounting for the NS sensitivity, see Sec. II C.

LISA and DECIGO’s quasimonochromatic binaries in  upper end of its sensitivity band. Likewise, DECIGO could
Sec. III. We first estimate the lowest possible G /Gy use chirping st.ellar-mass binaries at cosmological distances
constraints attainable from currently known verification ~ to constrain G/Gy < 107" yr=!. We discuss our results
DWDs for LISA [28-30], and then survey the parameter ~ and other prospects in Sec. V.

space of low-chirp mass galactic binaries in LISA, We .
further estimate the constraints from a population study IL. PRECISION MEASUREMENTS OF G:

with realistic DWD catalogs. We finally survey the para- AN ANALYTICAL APPROACH
meter space of almost monochromatic binaries in
DECIGO. We find that the loudest known LISA verifica- . . .

- . - an analytical expression for the constraints on G for almost
tion binary (ZTF J153? +5027) can be used t.o const.ralnt monochromatic GW sources. This expression will then be
G/Go < 107* yr~!, while the loudest sources in the simu- ;564 in Sec. I11 to assess the potential of LISA and DECIGO
lated DWD population improve this constraint to G/Gy < to bound G.

1076 yr~! (thanks to their higher SNR). In Sec. IV, we
perform full Bayesian analyses and employ chirping wave- A. The analytic Fisher matrix
forms to explore the parameter space where the quasimo- The data stream d observed by a GW detector is assumed
nochromatic approximation fails. We find that LISA could {0 be a superposition of weakly stationary zero-mean
bring constraints down to G/Gy < 107" yr~!, if we were  Gaussian noise n(f), intrinsic to the detector, and a GW
to observe stellar-mass BBHs in our Galaxy emitting at the  signal h(z;6) with parameters @ = {6,,6,, ...},

In this section we present an original approach to derive
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d = h(t;0) + n(r). (1)

Stationary Gaussian noise implies the likelihood is [39]
1
log p(d|f) = =5 (d = h(;0)|d - h(1:0)).  (2)

with the inner product in the Fourier domain defined as [40]

i =2 [HEO DN

Sa(f

where S,(f) is the detector’s one-sided power spectral
density (PSD) [41,42], and hatted quantities stand for the
continuous Fourier transform. From this, one obtains the
(optimal matched-filtering) signal-to-noise ratio (SNR)
and the Fisher matrix as, respectively, p = +/(h|h) and
I[';; = (0;h|0;h) (with 9; = 0/06"). This latter quantity is of
particular interest since it provides an indication of how
well parameters can be measured.

In this work, we mostly consider time-domain signals
that are quasimonochromatic (namely, whose frequencies
evolve slowly in time). We model these with a sinusoid

h(t;0) = A cos(2ntf + ). 4)

For compactness, we have gathered the Taylor expansion of
the phase into ' = fo + fot/2 + for2/6 + O(fg) This is a
good approximation as long as fOTobs < fo, with T, the
observation time of the signal. We take the signal to depend
on parameters @ = {InA, f,. fo. fo.#}. Following Seto
and Takahashi [43,44], we define the (time-domain) inner
product for quasimonochromatic sources as

wmm—séwl%awmm (5)

with f, the starting frequency bin. The PSD can be moved
out of the integral as the PSD in Eq. (5) is essentially
constant across the frequencies spanned by the evolution of
quasimonochromatic sources. With these definitions, the
expressions for the SNR and Fisher matrix become

2 Tobs
P A h(:0)2dr, (©)
2 Tobs
My =5 A oh(10)0h(1:0)dr. (7)

Using Eqgs. (4) and (6), an expression for the SNR can be
obtained

s 2A2
B Sn(fO)

Tops - AT,
/h cosz(2nft+¢)dtzs—°bs, (8)
0 n

p

where we assumed sufficiently long observation times
foTops > 1 [44]. Equation (8) provides a relation between
the amplitude A and SNR p of the signal. Using this relation
and performing the integrations, use of Eq. (7) yields the

Fisher matrix for the signal up to O(f) [45]

1 0 0 0 0
47°T? 273 27°T4
0 obs obs obs ”T
3 05 obs
o*T3 T P aT?
bs obs obs obs
I~ p? 0 7 5 18 R P )
2 275 276 3
0 27 T:bs ﬂ7 Tobs ~ Tnbs ”T;bs
15 18 63 12
7T? T3
b b
0 aTgps = Do

The measurement precision on the parameter 6; is then
given by the square root of the diagonal elements of the
covariance matrix, namely the inverse of the Fisher
matrix; AG; = /(T71),;.

In general relativity and in vacuum, measuring the chirp
f o of quasimonochromatic binaries allows one to break the
degeneracy between distance and chirp mass M, of the
source, and it thus gives access to physical parameters of
interest [46]. The measurement of f,, while comparatively
harder to obtain for quasimonochromatic sources, would
give access to potential tidal interactions in the binary [29].
If gravity is described by an alternative theory, or if we take
into account the binary’s environment, these effects can
also be accessed through the measurement of £, assuming
they dominate over potential tidal interactions.

Let us start with a general derivation on how well an
additional parameter can be constrained from measure-
ments of f o and f,. Consider the case in which the chirp fo
and second derivative f, depend on two parameters 6,
(such as the chirp mass) and 6, (any modification to general
relativity or the binary’s environment). Using the chain
rule, we can swap the fo and f entries in the Fisher matrix

T with 6, and 6,. The new Fisher matrix I" has parameters
0 = {logA, fy,0,,0,,¢} and is given by

r=JIrJ,, (10)

where (-)7 denotes the transpose operation and J, is the
Jacobian

1 0 0 0 O

0 1 0 0 0
afy  ofy 9y dfy 9o

Jo=| oama a7, 90, 0, op |- (11)

dofg  ofy dfy dfy
olnA of, 00, 90, 0P

0 0 0 0 1

The estimates of measurement precision, A@; and A6f,, can
then be obtained by inverting T" and reading off the diagonal
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elements. For sufficiently simple first and second chirp
derivatives, the expressions are analytical and therefore
cheap to evaluate, but still automatically incorporate
correlations between parameters.

B. Time-varying gravitational constant: A
nonperturbative model for the GW frequency

‘We now demonstrate how to use the analytical approach
for quasimonochromatic sources reported above to place
constraints on the time variation of the gravitational
constant G(1).

We first expand G(1) = Gy + G(1 — to) + O[(1 — 15)?]
about Newton’s gravitational constant G, at the initial time
of observation 7y, with G = G(1,). Previously, waveforms
accounting for the running of Newton’s constant had been
presented in Ref. [20]. That analysis focused on chirping
binaries, for which an expansion of G(¢) around the time of
coalescence of the binary (rather than the initial time) is
more appropriate. Waveforms in Ref. [20] were also only
valid up to leading order in G. This approximation breaks
down in some of the parameter space we explore; higher
orders in G can only be safely neglected at sufficiently high

frequencies, for which G/G, < fg/ e 3/\/13/ 3¢5 [as seen
comparing the first and second terms 1n Eq. (13) below]. In
this work, we derive quasimonochromatic waveforms valid
to all powers in a constant G in the phase.

We start by solving the balance equation E = —Lgy,
with E and Lgw the binary’s binding energy and GW
emission power, respectively, at leading PN order [47]

2

E=- [% M3G(1)? f(r)2] ”

32 & [aM, 10/3
fov="5 g |- er0] a2

These determine the evolution of the frequency as a
function of time. Defining f,= f(y), the expressions

for fo = f(to) and fo = f(to) from the balance law are
. 967%/3 5/3 5/3 11/% G

Jo= 506 Me Go To

o 3379273 195 103, 1003

fo =g 101Gy M

288783 113 53 (G 5/3 G\’
- 3P VM 2 .
5¢7 fo 0 <Go> - <G0> Jo

(13)

From the expression for f,, it is apparent that G formally
enters at —4PN order, i.e., its correction scales as fz”/ 3 with
n = —4 relative to the leading-order general relativistic
term. This is also true for f, and all other higher derivatives

of the frequency, assuming an expansion in G to linear
order. Note that with respect to the analysis in Ref. [20] we
are keeping all terms in Eq. (13), in particular the first and
last term on the right hand side respectively of the first and
second line of Eq. (13), since we are not assuming the
condition G/Gy < f32GYP M3,

In the LISA band, for instance, for galactic binaries of
M, = 0.5M, at frequencies f, = 1072 Hz the first term in
fo dominates for values G/Go > 107 yr~!, and must
therefore be included. Note that for low-enough frequen-
cies, the terms of G in both fO and f, may imply that
f oTops > fo, thus breaking the quasimonochromatic
assumption. We take into account this limitation in our
analysis.

The expressions (13) provide (M., G) and fo(M,, G)
in terms of two new parameters of interest, the chirp mass

= M, and the parameter 6, = G: ultimately, we want to
extract information about the latter, keeping track of
correlations with the former (along with those with A,
fo, and ¢). Using Egs. (11) and (13), we can recast
the Fisher matrix (10) in terms of the M, and G para-
meters using the results derived in Sec. I A. The meas-
urement error on G can then be obtained through

AG.full =

cumbersome, but it can be shown to be well-approximated
by a simpler expression. Defining the quantities

G G/GO Tobs
=—Tyus =001 —5—— , 14
€1 GO obs (10_2 yl”_1> (1 yr ( )

5/3T

obs

fO 8/3 Mc 3/3 Tobs
~0.01 ) 15
(10‘2 Hz> 10°M,,, 1yr (15)

the measurement error reads

(T71)¢ - The expression we obtain is rather

8/3
€ = ”_fS/%GS/%

88 , 9 1
AGiy = AGy,, {1 3e1+ 2z 351 T34 € +g€?
704 42944 2112 352
5 2775 G2t 3 €ies - 105 1€
+4697088 L 447744 2+5632
€5 — €€ € €
875 2 175 2T 1 t172
N 17842176 , 3964928 . 95158272 ,
€5 — €€ e,
875 2 875 172 4375 2
(16)

where
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o 630000 ¢°G}
BT A5G + 416783 1P Gy M)
(17)

Since ¢; and €, remain generally small for the sources we
are interested in—see values in Egs. (14) and (15)—we find

that AG,.

the error on G. However, we use AGfuu in the analytical
estimates below for completeness.

is a good and simple approximation to estimate

C. A note on the impact of a varying gravitational
constant on the mass of compact bodies

Our constraint on the variation of the gravitational
constant, namely Eqgs. (16) and (17) is computed assuming
that the only impact of G on the binary is through the
energy balance of Eq. (12). However, the mass of compact
stars will also vary in time at a rate proportional to any time
variation of the gravitational constant G [48,49]. A change
in the orbital binding energy (or equivalently, in the orbital
period) can therefore be due not exclusively to the explicit
action of G(#) in Eq. (12), but also to the implicit action of
G(1) in the chirp mass M. To estimate the impact of this

effect on our constraint on G we can use Eq. (18) of

Ref. [48],
E 4 2g +3 3g+2 \G
| I s §1— a7+ s )=, (18)
E|s 3 2g+2 2q+27°)G

where ¢ is the mass ratio, and s; and s, are the sensitivities
of the primary and secondary components of the binary,
defined by [49]

_Olnm,
T omG

(19)

In this paper, we consider exclusively equal-mass systems,
so that Eq. (18) simplifies to

G——g<1—§s>g. (20)

The factor in parenthesis represents the impact of G on the
variation of the binding energy through its impact on the
component masses.

If the binary components have zero sensitivity, we
recover our Eq. (16) for the constrain on G. In the
remainder of this work, following Ref. [20], we assume
BHs have zero sensitivity. For WDs, scalar-tensor theories
predict sensitivities of the order 10, and their effect can be
safely neglected [50]. The same cannot be said for NSs,
where a typical value is syg = 0.15 and as high as
sns = 0.39, depending on the equation of state [48].
In the following, whenever quoting quantitative results

E

E

for NSs, we will account for this effect using the
typical value of 0.15, which translates to a factor of

1/(1=5/2%0.15) = 1.6 in our constraint on G. In gen-
eral, the interpretation of our constraints will depend
(generally by less than an order of magnitude) on the
underlying theory of gravity and its predictions for the
component sensitivities.

D. Some remarks on the physical units used
to measure a varying gravitational constant

Another important issue concerning the measurement

of G with the methodology exposed above, is that the
gravitational constant G is a dimensionful quantity which
can only be measured by comparison with a suitable
operational definition of physical units. In many theories
beyond general relativity, and especially in theories
where the gravitational constant is promoted to a scalar
field, such as the well-known Brans-Dicke theory [3,51],
one can always reduce a varying gravitational constant to
an actual constant, in vacuum, via a conformal trans-
formation. Since our main theoretical motivations for a
time-varying G are based on similar theories, this feature
may constitute a problem for our proposed measurement
strategy with space-borne GW detectors, which in prac-
tice provide a measurement between free-falling test
masses in vacuum. If G can simply be reduced to a
constant in vacuum, such measurement is meaningless
since the physical units with which we compare our
observations, say the distance between the free-falling
masses or the light-travel time between them, may
change as G changes, leaving measured distances or
time periods invariant.

In order to set up a well-defined measurement of G, or in
our case of G/G, we must compare observable quantities
with standard units defined operationally in a gravity-free
environment, i.e., where the effects of G and its possible
variation are negligible. In other words, we must first spell
out how we compare the time variation of G with a time-
independent definition of time units, for example the SI unit
system definition of second based on a Cs atom hyperfine
transition frequency. This can be done with the clocks on-
board the LISA or DECIGO spacecrafts, or with an atomic
clock on Earth after the data have been transferred from the
spacecrafts to Earth. In the second case, we must take into
account the gravitational redshift between LISA/DECIGO
and the Earth’s surface, where time flows slower due to the
Earth’s gravitational field. The effect is however negligible
for all our purposes. In the case of LISA, this redhsift is of
the order of 10~'°, which is orders of magnitude below the
best frequency measurements that LISA can obtain, which
can reach a relative accuracy around 107 [52,53]. By

comparing G/ G with the standard SI definition of second
on the Earth we have a well-defined operational way to

compare the gravity-dominated measurement of G/G with
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the gravity-free definition of second based on a suitable
atomic energy transition.

E. Some remarks on the direct effect of a varying
gravitational constant on LISA

Here we quickly explore what is the direct effect of a
time-varying G on LISA measurements. In other words, we
would like to assess whether a nonvanishing G affects the
orbit and readout of the LISA spacecrafts, even in the
absence of a gravitational-wave signal. We will focus on
LISA in this subsection, but similar arguments apply to
DECIGO.

First of all, we notice that LISA’s orbit around the Sun is
affected by the evolution of G. To estimate this effect, we
can simply apply the first of Eq. (13), ignoring the first term
on the right-hand side, which is due to GW emission and
negligible for the LISA-Sun system. LISA’s orbit will then
change over the same time scale over which G changes,
implying that the distance between the spacecrafts, which
can always be seen as a fraction of the full orbit, will
change by the same relative amount. For example, if
G/G ~ 107 1/yr, then the armlength of LISA will change
by 107 of its nominal value. Such a value is huge if
compared with the pm resolution with which LISA
measures the distance between the test masses on board
the spacecrafts. One may then wonder if such an effect
could spoil the measurement strategy that we presented
above, or on the other hand could be used to measure a
time-varying G directly in the Solar System.

However, because the effect of G amounts to a liner-
in-time motion between the LISA spacecrafts, it does not
affect the interferometric measurements of LISA. In fact,
this is an effect that enters at zero frequency in the
Fourier domain, and consequently cannot be measured
by LISA, which is optimized to measure around the
millihertz frequency band and is completely insensitive
to any variation at frequencies lower than 10~ Hz.
Consequently, our measurement strategy outlined above
is not influenced by the direct effect of G on the LISA
spacecrafts.

It remains to addressed whether auxiliary measurements
on board the LISA spacecrafts can be used to obtain
complementary information useful to test G. This may
notably be the case with Doppler interspacecraft distance
measurements, which in the case of LISA can reach an
accuracy of cm over millions of km, or in other words a
relative accuracy of 107! [54]. One could then hope to use
these measurements to constrain G at a similar level, which
would be competitive with current results obtained in the
Solar System. However, at low frequencies one must take
into account all slowly varying Newtonian perturbations in
the Solar System, as well as other possible disturbances that
cause variations on similar time scales (orbital manoeuvres,
thermal variations, Solar radiation, interplanetary magnetic

fields, ...). It is not straightforward to assess the impact
of such disturbances and whether they can be modelled
and subtracted from the data. For this reason we leave
the question on whether LISA can measure a nonzero G
directly from the effect on its spacecraft to future
investigations.

III. CONSTRAINTS ON G FROM THE
ANALYTIC FISHER MATRIX

By using the analytical expression Eq. (16), in this
section we explore the constraints on G across the whole
parameter space of low-mass, quasimonochromatic bina-
ries detected by LISA and decihertz detectors, using
DECIGO as an example.

Following Cornish [55], we define the angle-averaged
gravitational-wave amplitude of a quasimonochromatic
source,

A=

8 (GoMe/c?) (”_fO> ” 21)

\/5 DL C

for D; the luminosity distance to the source. For the
amplitude in Eq. (21), we approximate G ~ G, as GW
detectors are in any case less sensitive to modulations
of the amplitude compared to modulations of the phase. We
compute LISA SNRs with the noise PSD from Ref. [55],
and DECIGO SNRs using the noise PSD from Ref. [56].

In the present section, we consider G to be measurable if
its 1o relative error reaches a 50% precision or lower [45],
AGfuu / G < 0.5. For quasimonochromatic sources, this
condition can be analytically evaluated using Eq. (16),
allowing us to cheaply survey the parameter space. We will
quote measureable values of G corresponding to the
minimum G we can detect for a given set of parameters.
Values lower than those quoted would imply a degradation
in the precision of the measurement; higher values would
imply an even better detection of G.

We limit our survey to regions of parameter space where
the quasimonochromatic approximation applies by requir-

ing that the third time derivative of the frequency fois such
that it’s contribution to the Taylor-expanded frequency
evolution is negligible, namely f,T . < fo. The third
time derivative can easily be found from f and f in
Eq. (13). Constraining the parameter space in this way
singles out two source classes of interest; binaries with
NSs, BHs or DWDs in our galaxy (observable with LISA),
and NS or BH binaries at cosmological distances of tens of
Mpc (observable with DECIGO).

A. LISA

The first sources we consider are ultra-compact binaries
in our Galaxy. These are short-period (P < 1 hour) binaries
generally composed of white dwarves, NSs and compact

064073-7



RICCARDO BARBIERI et al.

PHYS. REV. D 107, 064073 (2023)

TABLE L. Forecast constraints on G from LISA verification (detached) binaries. The values refer to 4.5 years of

continuous observation.

Source References fo [mHz] my [Mg) my [Mg) D; [kpc] G/ Gy [yr 1
ZTF J1539 + 5027 [52,57] 4.8 0.61 0.21 2.34 2.05x 1074
ZTF J0538 + 1953 [57] 2.3 0.45 0.32 0.68 2.76 x 1074
PTF J0533 + 0209 [57] 1.6 0.65 0.17 1.74 9.56 x 1074
ZTF J2029 + 1534 [57] 1.6 0.32 0.30 2.02 1.05 x 1073
ZTF J0722 — 1839 [57] 1.5 0.38 0.33 0.93 7.20 x 1074
ZTF J1749 + 0924 [57] 1.3 0.40 0.28 1.55 1.27 x 1073
ZTF J2243 + 5242 [58] 3.8 0.35 0.38 2.12 244 x 1074
SDSS J0651 + 2844 [59] 2.6 0.26 0.51 1.00 2.86 x 1074
SDSS J0935 + 4411 [60] 1.7 0.32 0.14 0.66 7.54 x 1074
SDSS 12322 + 0509 [61] 1.7 0.27 0.24 0.76 6.85 x 1074
SDSS J1630 + 4233 [62] 0.8 0.30 0.30 0.70 2.41 %1073
SDSS J1235 + 1543 [63] 0.6 0.35 0.17 0.39 3.61 x 1073
SDSS J0923 + 3028 [64] 0.5 0.28 0.76 0.28 2.62x 1073

helium-stars, which we expect to detect in the tens of
thousands with LISA [24-27]. Some of these binaries are
so loud that they will be detectable within the first few
weeks of mission operation. Others have already been
detected by EM telescopes and will act as verification
binaries for the detector’s performance.

Using the frequencies, masses and distances quoted in
Refs. [28-30], we can estimate the lowest measurement of
G attainable with LISA verification binaries. We focus on
detached binaries, namely those that are not undergoing
mass transfer (which would modify the chirp more than any
expected effect from G), and on systems where the two
binary stars are clearly distinguishable in EM observations,
implying negligible tidal effects. The results are reported in
Table I, where we assumed 4.5 years of continuous
observations by LISA. The shortest-period verification
binary known to date, ZTF J1539 (with angle-averaged
SNR = 138), yields the most stringent constraint for G at
G/Gy < 107* yr=!. In general, currently known verifica-
tion binaries lead to constraints between G/Gy < 1073 yr!
and 107* yr~!,

While the constraints from verification binaries fall short
of prospective constraints from chirping massive BH
binaries with LISA [21,23], these constraints are guaran-
teed. Moreover, the strength of galactic DWDs lies in
numbers. We therefore explore how well a full, realistic
population of galactic DWDs will constrain G. Analyzing a
dataset produced by the population synthesis code SeBa
used in [65-67] (assuming four years of observations), we
find that the best constraint LISA could obtain from a single
DWD in the population is

G
- <3.0% 1076 yr!. (22)
GO best DWD

Assuming for simplicity that LISA’s DWD observations are

independent,” and assuming that G takes the same value
across the Galaxy, we can combine all constraints in the
population and improve slightly over the best event.

Requiring AG = (> pop AG)™Y? < 0.5G, we find

4 <2.8x 107 yrl, (23)

GO DWD pop
This marks a significant improvement from the constraints
one can set with verification binaries alone, but only a
minor improvement with respect to the most significant
binary in the population which yields the constraint (22).
The constraints attainable with a realistic population of
DWDs are in fact competitive with those achievable
with massive BH binaries and EMRIs observed by
LISA [21,23].

We also perform a parameter-space survey of all galactic
sources potentially detectable by LISA, with masses that
encompass both DWDs and other more massive popula-
tions of nearby compact-object binaries. In Fig. 2 we show
results for frequencies and chirp masses within f; =
[107#,3 x 1072] Hz and M, = [0.1, 100]M , respectively.
We further assume that all binaries are equal mass, as the
results do not depend on the mass ratio, see Eqs. (16)
and (17). The high end of the mass spectrum corresponds to
intermediate-mass BHs that might be present in the
Milky Way’s globular clusters, see e.g., Ref. [68] for
discussions about this scenario, or Ref. [69] for an example
of the potential compact object population of a Galactic

*In reality, DWDs will be observed simultaneously in LISA
and there could be small correlations between their inferred
parameters, which would degrade measurements of other
common parameters.
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FIG. 2. The color maps display the smallest G/G, observable with 50% precision as a function of the chirp mass of the source, M,
and frequency f. In the regions in the top-right corners above the solid red line, the quasimonochromatic approximation is not valid. In
the LISA plot, the quasimonochromatic approximation also breaks down in the bottom-left corner, where the value of G increases
significantly and its effect dominates over radiation backreaction. Dashed black lines mark SNR levels, while sources above the dashed
white lines merge within the observational time of 4.5 yrs. The colored dots display bounds sampled through an MCMC analysis using

chirping waveforms.

globular cluster. Throughout the parameter space we fix the
observation time to 7T, =4.5 yr and the distance to
D; = 8.5 kpc, which corresponds to the Milky Way’s
Galactic center where the majority of DWDs are expected
to reside. The SNR varies with the source’s chirp mass, as
indicated by the black dashed lines in Fig. 2.

The survey confirms that in the LISA band, for the small
masses of Galactic binaries and small values of G, most
signals are quasimonochromatic and can constrain values
down to G/Gy <1077 yr~'. This constraint will be
achieved with massive sources at low frequencies
(Galactic intermediate-mass BH binaries) or lighter sources
at higher frequencies. The quasimonochromatic, analytic
estimates in the upper right corner of Fig. 2 suggest that
LISA could achieve even better constraints if it detects
stellar-mass BH binaries in our Galaxy. We explore this
scenario further in Sec. IV using chirping waveforms.

‘We have also explored the constraints LISA could obtain
from extra-Galactic (D; = 100 Mpc) stellar- and intermedi-
ate-mass BHs. At these distances, however, LISA could
provide only modest constraints G/G, < 1072 yr~! for a
restricted region of parameter space. We conclude that for
more massive binaries at cosmological distances, chirping

sources work best to constrain G, as argued in Ref. [20].

B. DECIGO

Decihertz detectors are sensitive to NS and BH binaries
up to redshift z ~ 10 [35,44]. Those observed at large

separations may be approximated as quasimonochromatic
signals. We can therefore perform a similar parameter-
space survey for these sources. We investigate sources
detected by DECIGO at a fixed cosmological distance
D; =10 Mpc, and assume equal-mass sources and an
observation time of 4.5 yrs.

In the right panel of Fig. 2 we see that, in the DECIGO
frequency band, only binaries with chirp masses (and
roughly equal component masses) S15M are quasimo-
nochromatic. These include binaries containing low-mass
stellar-origin BHs or NSs, or one of each. For these, the best
constraints are around G/Gy < 1074 yr!.

Figure 2 shows that, for essentially all source masses,
observing the chirping phase will be crucial to obtain good
constraints on G. Note that the rates of NS binaries (the
observable quasimonochromatic sources in the right panel
of Fig. 2) so close to us are uncertain; however, even for
those that are further away than what is suggested here,
observing the chirping phase will improve bounds by
orders of magnitude [19].

IV. FULL BAYESIAN ANALYSIS

The predictions obtained with the Fisher matrix formal-
ism are particularly useful to quickly estimate the con-
straints on G over the parameter space. However, this
formalism is known to provide a reliable estimate of the
measurement precision only in the regime where the linear
signal approximation is valid, which requires the SNR to
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be high. Therefore, in this section we use Markov Chain
Monte Carlo (MCMC) methods to sample from the posterior
distribution and check the predictions of the Fisher matrix
formalism. For sampling, we use the EMCEE package [70].

We also want to compare the Fisher Matrix analysis and
the full Bayesian analysis in the region of parameter space
where the quasimonochromatic approximation fails, since
we also expect that fully chirping binaries provide the
tightest constraints. In the full Bayesian analysis, we use
either quasimonchromatic waveforms of the kind defined
by Eq. (4) or chirping waveforms, depending on the
parameters of the source. The ‘“chirping” waveform we
employ has an IMRPhenomD phase [71,72] modified to
include the effect of the running of G to leading order in G.
The latter is analogous to the leading phase contribution
due to mass accretion [73] (replacing the accretion param-

eter fqq/7 With Go/G) or peculiar acceleration [74].

A. Quasimonochromatic LISA sources

In this section, we use the quasimonochromatic wave-
forms of Eq. (4) in the Bayesian analysis, as these are the ones
that can be directly compared to the Fisher estimates, which
was also obtained assuming the signal model given in Eq. (4).
Here, we check the measurement of G for one of the best
performing verification binaries, ZTF J1539 4 5027. As
predicted by the Fisher matrix (see Table I), any value above
G/ Gy > 2.05 x 10~* yr~! will be measured with a relative
precision larger than 50%. Therefore, we use G/Gy =
1 x 1073 yr~!, above the detection limit, and use the
frequency, mass and distance parameters of ZTF J1539 +
5027 [52,57] to inject the signal. The resulting para-
meter values are A = 1.77 x 10722, f, = 4.8 x 1073 Hz,
fo=-15x10" Hzs™", f,=9.7x1072* Hzs2, and
¢ = 0.2 rad.

We first transform the waveform (4) to the Fourier
domain with the first-order stationary-phase approximation
(valid for the system we selected). We sample over the
parameters @ = {A, fo. fo. fo. #} as commonly done in the
literature [52,53]. The posterior samples from the MCMC
are then converted into posterior samples in fo, G, M,
through Eq. (13).

We show the marginalized posterior for the ZTF-like
binary in Fig. 3. The derivative of Newton’s constant is
measured as G/ Gy = 0.0013‘135:? yr~!. Most importantly,
the width of the posterior distribution agrees with the Fisher
matrix prediction with a ratio of the two uncertainties
approximately equal to 1.02. This validates the results
presented in the previous section, and in particular in
Fig. 2, within the limits of validity of the monochromatic
approximation.

B. Chirping LISA sources

In order to assess the limitations of the quasimonochro-
matic approximation, we perform full Bayesian analysis

—— 68% Credible interval ’
1 ==~ Injected

=== Fisher matrix prediction
[ Posterior samples

ittt = 2

0.00095 0.00100 0.00105 0.00110

G/Go [y

0.00085 0.00090

FIG. 3. Marginalized posterior distribution (blue) of G for a
binary with the frequency and distance of ZTF J1539 + 5027,
observed by LISA. For a true value of G/Gy =1 x 1073 yr~!
(red), we predict a measurement of G/G, = 0.0013‘13::55 yr!
(68% credible interval, in black). The Fisher matrix prediction for
the posterior (dashed green) is in good agreement with the result
of MCMC sampling, with the width of the posterior agreeing with
the Fisher matrix estimate to within 2%.

with a chirping waveform model for sources in the upper
right corner of the parameter space in Fig. 2. Sources falling
in this region of parameter space would be BH or NS
binaries residing in our Galaxy and with rapid frequency
evolution, see Ref. [75].

We aim to find the constraint on G using the same
technique employed in the Fisher Matrix analysis: find the
smallest G measurable at 50% precision at 16. We perform
several MCMC runs with different injected values of G,
and identify as our constraint the value that produces a 1o
relative error between 40% and 50%. When using the
chirping waveform, convergence is easier when sampling
on M., 1, fo, ¢, Dy, and G.

We find that LISA could actually achieve constraints
comparable to the ones predicted by our quasimonochro-
matic approximation everywhere in the upper right corner
of Fig. 2. The best constraint that we identified was
G/Gy = 8.5 x 10712 yr~!, achieved with a binary emitting
at a frequency f(~0.0158 Hz and with a chirp mass
M, ~60M. These results clearly show that the mono-

chromatic analytical estimate of G can be considered as a
good rough approximation for all Galactic binaries detect-
able by LISA, even for high-mass, high-frequency binaries
where the most reliable results are obtained using a
chirping waveform as the frequency evolution cannot be
ignored. We will now see that this is not the case for the
parameter space of DECIGO.

C. Chirping DECIGO sources

For DECIGO, the right hand panel of Fig. 2 shows that
the quasimonochromatic approximation breaks down in the
same region where the Fisher matrix predicts interesting

064073-10



CONSTRAINING THE EVOLUTION OF NEWTON’S CONSTANT ...

PHYS. REV. D 107, 064073 (2023)

constraints on G. We show that competitive constraints can
indeed be achieved with these sources.

We perform a series of MCMC analyses with the same
techniques described in the previous subsection in the
area to the right of the red line in the right panel of
Fig. 2. We find that chirping waveform models applied
to DECIGO binaries can achieve constraints down to

G/Go <1071 yr! with the most favorable binaries in
the sampled parameter space.

Even though the monochromatic approximation breaks
down at higher frequencies and masses, we see that the
quasimonochromatic analytical Fisher matrix always pre-
dicts the true constraints within approximately an order of
magnitude. Our quasimonochromatic Fisher matrix ana-
lyis is more optimistic in the top-right corner of parameter
space, while it perfectly matches the MCMC chirping-
waveform results close to the red line, where the quasi-
monochromatic approximation starts to be valid. This is
expected, as in the delimiting region the chirping wave-
form model effectively resembles the Taylor-expanded
model. We also note that, while usually higher masses
and higher frequencies produce better constraints, that is
not always the case; for example, binaries with a chirp
mass of log;o(M,./Mgy) = 1.4 and a starting frequency of
log;o(fo/Hz) = —1.1 perform worse than binaries with a
chirp mass of log;o(M./Mgy) =1 and a starting fre-
quency of log;y(fo/Hz) = —1.4. This is due to the fact
that higher-mass, higher-frequency binaries spend less
time inside the DECIGO frequency band since they
quickly chirp out of band. This provides an effectively
lower SNR with respect to the quasimonochrmatic analy-
sis which assumes that the binary is observed for the full
duration of the DECIGO mission (4.5 years). Combining
this effect with the usual trend dictating that higher masses
and higher frequency provides better constraints, we find a
sweet line a little below the top-right corner of the right

panel of Fig. 2 where DECIGO constraints on G will be
the most stringent. Such a region corresponds to binaries
whose time to coalescence at the start of observations
matches the total time duration of observations, i.e. to
the higher frequency, higher mass binaries that can be
observed the longest. As expected the bounds obtained in
this region, as shown by the darker blue points along the
white dashed line in the right panel of Fig. 2, represent in
fact the best estimates we obtain in this paper.

V. DISCUSSION AND CONCLUSIONS

In this work, we forecast how well space-borne GW
detectors could constrain the time evolution of the gravi-
tational constant, G, with low-mass binaries. The bounds
we forecast are in some sense guaranteed, since sources like
double WDs, binary NSs and binary stellar-mass BHs have
already been observed either by EM surveys (DWDs) or by
ground-based GW detectors (binary BHs and NSs). This is

not the case for other GW sources that can be used to

forecast similar constraints on G, such as massive BH
binaries or EMRIs [23].

According to our results, LISA will achieve the best
constraints if our Galaxy hosts just one stellar-mass BH
binary emitting at the upper end of LISA’s frequency
sensitivity range, for which we estimate to reach bounds
of the order of G/Gy < 107! yr!. Recent simulations
predict that LISA will detect tens to hundreds of binary BHs
and NSs in the Milky Way [75], some of which might fall in
the most constraining region of parameter space. Lower-
mass galactic binaries, in particular DWDs which LISA will
detected in the tens of thousands, provide weaker con-
straints. The most promising currently known DWD emit-
ting GWs in the LISA band (usually referred to as
verification binary) will give a bound G/ Gy <1074 yr!.
If, however, LISA detects at least one DWD at higher
frequency, as predicted by population synthesis studies,
then the bound is brought down to G/ Gy <1070 yrl.

The quasimonochromatic assumption is quite restrictive
for the parameter space covered by decihertz detectors. The
region in which the assumption is valid does not yield
competitive constraints for stellar-mass binaries detected
with DECIGO at cosmological distances, the main target
population of decihertz detectors. For this reason, we
have decided to include forecasts based on chirping
waveforms within the stationary-phase approximation,
analogously to what was done in Ref. [23]. We find that
indeed these give the best constraints overall in this paper,
namely G/G, < 107" yr~!, for binaries at D; ~ 10 Mpc
which merge towards the end of the mission duration (i.e.
for which 7 ~ T, with 7 the time to coalescence).

The constraints forecast in this paper complement other
analyses in the literature. The analytical approach devel-
oped here is comparable to the one used to find constraints
on G with pulsar timing, since they both target deviations
in the GW emission at low-frequency and at Galactic
distances. Although pulsar-timing constraints are already
surpassing the expectations from LISA [17], this space-
borne detector expected to fly in the 2030s will have
access to GW sources all over the Milky Way and will test
whether G, is indeed constant at different Galactic
locations, with a method complementary to EM observa-
tions. Note that at galactic distances only pulsar timing
and GWs are known to give competitive constraints on G
(cf. Fig. 1). The situation is different at cosmological
distances, where competitive constraints can be achieved
with other binary sources detectable by space-borne GW
detectors (e.g. SOBH, EMRIs, or SMBHs) or Earth-based
GW detectors (SOBHs or NSs). At those distances,
decihertz detectors such as DECIGO are expected to
provide constraints comparable to (if not better than)
the ones forecast with other GW sources. Multiband GW
sources, detectable by space-borne and then Earth-based
interferometers, are expected to provide even more
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stringent constraints, as recent analyses combining LISA
and third-generation Earth-based detectors suggest [21].
Such multiband analyses are outside the scope of our
present work, and are left for future considerations.

Our results fall short of existing constraints obtained
with very different methods and at very different distances.
Solar System tests, for instance, already constrain G /Gy <
10~ yr~! [16]. Although orders of magnitude better than
achievable with GW observations, this constraint is only
valid locally, and obtained in a very different environment
than the Galactic and cosmological ones probed by GWs.
Cosmological measurements from the early Universe are
also obtained in a completely different environment and
with very different techniques. Moreover, cosmological
constraints are sensitive to the global change in the value of
G(1) from the early Universe to today, rather than the local
time derivative of G(r) at the time of GW emission. This is
also true for tests of the running of G based on NS masses
[19], which probe similar cosmological distances compared
to binary coalescences, but can only measure the global
variation of the value of G from the time of merger to today.
GW inspiralling binaries, on the other hand, offer a method
to test localized time variation of G at any Galactic and
cosmological distance, up to Gpc scales.

We stress that to reach our results we have performed an
extensive study of the parameter space of quasimonochro-
matic binaries, for both millihertz and decihertz sources,
and we have confirmed the results with targeted MCMC
analyses. Such an approach allowed us to identify the most
constraining region in parameter space, and consequently
to identify the best GW source population to use to search
for variations in G.

While we have focused here on the upcoming LISA
mission and the proposed DECIGO detector, our study
could be easily extended to other low-frequency detector
designs, such as TianQin [76], pAres [77], ALIA [78] or
other decihertz designs [79]. The analytical framework
outlined in Sec. II could also be applied to explore a wide
range of effects that might influence binary inspirals at

large separations. Further corrections to the phase of the
GWs at —4PN are predicted to arise from binaries’ peculiar
accelerations [80—84], matter accretion [85—-88], dynamical
friction [88] and enhanced black hole evaporation due to
extra dimensions [89,90]. These effects are all degenerate
to a first approximation, so any of these effects can only be
detected individually if we can assume it dominates over
the others (depending, e.g., on the astrophysical configu-
ration of the binary), or if it can be discerned using a
population of binaries for which the same effect may be
different for different binaries, as expected for example for
peculiar accelerations. Note also that here we find that the
binaries yielding the best constraints are the one merging
around the time GW observations stops, namely for which
7 = Ty, This is in agreement with what found in previous
work targeting similar —4PN effects [80,81].

To conclude our results show that stellar-mass GW
binaries detectable with future space-borne detectors
can offer new, complementary and possibly competitive
constraints on the local time-evolution of Newton’s
constant at distances ranging from Galactic to cosmo-
logical scales. Testing the constancy of G, and more in
general the validity of general relativity, at different scales
and with different methods will definitely help us better
understand the behavior of the gravitational interation in
our Universe.
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