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Cavity effect in the quasinormal mode spectrum of topological stars
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We study scalar perturbations of topological solitons, smooth horizonless solutions in five-dimensional
Einstein-Maxwell theory, that correspond to coherent states of gravity via the dynamics of extra compact
dimensions. First, we compute scalar quasinormal modes for topological stars that have a single unstable
photon sphere, and we show that the spectrum is very similar to that of a black hole with the same photon
sphere. Next, we study topological stars that have both a stable inner photon sphere and an unstable one.
The first few quasinormal modes are localized around the inner photon sphere. The spectrum also contains
“black-hole-like modes™ localized at the unstable outer photon sphere. The frequencies of these modes are
similar to those of a black hole, but their imaginary part is smaller due to a cavity effect associated with the
inner photon sphere. The longer damping produced by this trapping effect may have implications for black

hole spectroscopy.
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I. INTRODUCTION

Direct measurements of gravitational waves have opened
a new observational window for testing general relativity.
They offer compelling prospects for probing the strong
gravity environment near black holes and the equally
exciting possibility of observing exotic compact objects
beyond general relativity [1]. These observational develop-
ments could allow for a deeper exploration of the quantum
aspects of gravity.

In quantum gravity, black holes correspond to thermo-
dynamic ensembles of quantum states. The general para-
digm necessary to fully characterize such states is still
lacking. However, a subset of them can be coherent enough
to admit classical descriptions. Many examples of such
states can be constructed from string theory and charac-
terized in various theories of gravity (see Ref. [2] for a
nonexhaustive list).

These coherent states lead to smooth horizonless geom-
etries, generated by gravitational solitons in spacetime and
supported by electromagnetic flux. For many years, they
could only be obtained from supersymmetric theories of
gravity, and thereby beyond what could be considered
astrophysically relevant (see Refs. [3—5] for some analysis
of their gravitational signatures).

Two of the authors provided new mechanisms for
constructing smooth and horizonless solutions in generic,
nonsupersymmetric theories of gravity with compact extra
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dimensions. These solutions are gravitational solitons
induced by nontrivial topological microstructures in the
internal space and supported by electromagnetic flux [6-8].
Moreover, the solutions can be embedded in string theory
and appropriately interpreted as coherent states of quantum
gravity [8]. They are referred to as “topological solitons”
and can be seen as a new topological phase of matter that is
inherently geometric.

In Ref. [9], some of the authors investigated the
gravitational signatures of topological solitons by charac-
terizing the general phenomenology of photon geodesics,
including the properties of lensing around these objects. In
this paper, we initiate a study of their quasinormal modes
(QNMs). This will bring us one step closer to under-
standing their possible relevance in describing observatio-
nal alternatives to black holes from quantum gravity. More
specifically, we will study scalar QNMs of the simplest
topological solitons: the “topological stars,” which corre-
spond to spherically symmetric static spacetimes consisting
of a single charged Kaluza-Klein bubble [6].

The QNMs are observables encoded in gravitational-
wave signals of mergers of compact objects. The signals
themselves consist of three characteristic phases (inspiral,
merger, and ringdown), and new physics can show up in
any of them if there are deviations from general relativity.
The ringdown phase, in particular, is dominated by the
QNMs, which are deformations of the geometry charac-
terized by superpositions of exponentials with complex
frequencies, i.e., damped oscillators. They can be computed
by studying linear perturbations of the final state. In this
paper, we will obtain the QNMs corresponding to scalar
perturbations of topological stars and compare them with
the QNM spectrum of black holes.
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Single-bubble topological stars are not particularly
relevant for describing astrophysical states of gravity
because they carry a magnetic charge, and they behave
as “spacetime mirrors” for photon scattering [9]. However,
they have several desirable features that make them
excellent prototypes for exploring phenomenological
aspects of topological solitons in general.

First, their linear perturbation equations are separable.
This allows us to compute QNMs and their eigenfunctions
using standard techniques. As we will see below, these
QNMs exhibit interesting phenomena that we expect to be
present in generic topological solitons.

Second, the solitons do not admit horizons, and yet they
are compact enough that they can have one or two photon
spheres, which can be stable or unstable. This allows us to
directly investigate the relation of QNMs with properties of
these surfaces and, in particular, sharply determine which
aspects of QNMs are fixed by horizons or by photon
spheres.! We are also able to compare the properties of
QNM spectra coming from systems with a varying number
of photon spheres. This is interesting since one can expect
novel interference patterns related to the so-called
gravitational-wave echoes.

Static black holes (BHs) have an unstable photon sphere,
commonly referred to as the “shadow,” surrounding the
event horizon. Their QNMs can be broadly classified into
two categories: the slowly damped modes and the highly
damped modes [18-20]. Modes in the first category
correspond to perturbations localized at the photon sphere
and are governed by the instability properties of the
corresponding orbits [21]. The real part of their frequencies
(which would correspond to normal frequencies in a self-
adjoint problem) is proportional to the angular velocity of
photons. The imaginary parts (associated with the damping
time of the perturbations) are usually much smaller, and
they are related to the instability timescale of the photon
orbit, which is given by the Lyapunov exponent. In the
eikonal (large angular momentum) limit, the QNM
frequencies are given by

"This interesting point has been discussed in the context of
exotic horizonless compact objects (see, e.g., [10—-12]). The main
conclusions are that (i) the postmerger ringdown waveform of
exotic, horizonless ultracompact objects is initially identical to
that of a black hole, and (ii) putative corrections at the horizon
scale will appear as secondary pulses (“echoes”) after the main
burst of radiation. However, in four spacetime dimensions,
the presence of a stable photon sphere is generically associated
with a nonlinear instability [12]—different from the ‘“usual”
superradiant ergoregion instability that affects rotating ultra-
compact objects without horizons [13,14]—that can destabilize
these objects on a dynamical timescale [15—-17]. The instability
occurs quite generically but it relies on a crucial assumption on
topology—i.e., that the spacetime is continuously deformable
into Minkowski.

1 1
ng~Q<f+§>+iz<N+§>, (1)

where Q and A are the angular velocity and Lyapunov
exponent at the photon sphere, while # and N are the
spherical harmonic index and the so-called overtone
number, respectively. For large N, the mode decay time-
scale can become comparable to their period or faster.
Modes with Im(wy) = Re(wy) are highly damped, and
they are not expected to contribute significantly to the
signal.

In this paper, we want to understand whether the broad
features of the QNM spectrum are modified for topological
solitons. Just like black holes, topological solitons are
characterized by an outer unstable photon orbit [9].
However, their inner structure does not possess an event
horizon, and therefore Eq. (1) may not apply as it stands.

Topological stars are particularly interesting solutions to
understand modifications of the QNM spectrum, because
they can be of two types. The first type has a single photon
sphere, which is unstable; the second type has both a stable
and an unstable photon sphere.

First, we show that topological stars with a single
unstable photon sphere have the same structure of
QNMs as in Eq. (1), while having no horizon. This
confirms that the QNMs of black holes capture properties
of the unstable photon sphere, rather than properties of the
horizon (see, e.g., [10,12,21-25]).

Second, the topological stars with a pair of photon
spheres have a much richer mode structure. There are
different timescales associated with the two shells.
Moreover, the structure of the QNMs can be qualitatively
different due to the stability properties of the photon rings.
In particular, we noticed that the QNM spectra have two
important properties:

Echoes at late times.—The first few fundamental modes
are localized at the inner stable photon orbit, and their
dynamics are governed by the scattering properties
there. Their normal frequencies are small, and the
presence of multiple timescales leads to phenomena
similar to echoes at late times [26]. Moreover, their
imaginary frequencies are exponentially suppressed as
a function of # so that their damping time is very large,
which is a characteristic of waves trapped on a stable
surface.

Black hole modes at early times with a cavity effect.—As
we increase the overtone number N, the modes start to
get localized at the outer unstable photon orbit.
Here, their features are determined by the instability
properties of geodesics, and they are very similar to
those of a black hole with the same photon sphere.
More precisely, they have the same normal frequen-
cies as the black hole modes. However, their imagi-
nary frequencies differ, and they have a longer
damping time compared to the QNMs of black holes.

024021-2
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This suggests that the short-term gravitational-wave
signal from a topological soliton would have the same
frequency as black holes, but with a longer damping
time. This phenomenon is due to a cavity effect,
produced by a nontrivial interaction between stable
and unstable orbits, that does not exist in the presence
of an event horizon.

These two properties are expected to generically character-
ize any compact object with a stable photon sphere and an
unstable photon sphere. In particular, we expect them to be
present in generic horizonless and smooth topological
solitons. Echoes induced by inner stable orbits have been
largely studied in various horizonless ultracompact objects,
including neutron stars [15], gravastars [11], boson stars [11],
traversable wormholes [10,27], or supersymmetric topologi-
cal solitons [3,5,26]. However, the presence of damping
differences or cavity effects (to our knowledge) has not been
pointed out before, and it could lead to novel, interesting
phenomenological implications for future experiments.

Before proceeding, we provide a road map for the paper
and a summary of our main results. In Secs. II and III, we
review the properties of topological stars and derive the
equations governing scalar perturbations. In Sec. IV, we
develop generic Wentzel-Kramers-Brillouin (WKB) meth-
ods to compute the spectrum of slowly damped QNMs for
smooth horizonless geometries. In Sec. V, we apply those
methods to topological stars and describe their physics. In
Sec. VI, we apply Leaver’s method to compute highly
damped modes. In Sec. VII, we summarize our conclusions
and possible directions for future work. In Appendixes A
and B, we present the derivation of our WKB results, and in
Appendix C we give details of the calculation based on
Leaver’s method.

A. Main results

Topological stars are spherically symmetric, charged
solutions of five-dimensional Einstein-Maxwell theories,
asymptotic to four-dimensional Minkowski plus a compact
circle of small size. They are produced by the collapse of the
compact circle at a specific locus of the four-dimensional
spacetime, forcing the geometry to smoothly end on the
surface of a topological bubble. In four dimensions, they
appear as singular ultracompact objects that are indistin-
guishable from charged black holes from afar.

We study massless scalar perturbations of topological
stars. The background is such that the scalar field can be
decomposed into a radial wave function that carries the
physics of the modes, with the angular dependence
decomposed in spherical harmonics with angular momen-
tum ¢ and azimuthal index m. For QNMs, the radial wave
function must satisfy Neumann boundary conditions at the
smooth end of spacetime and outgoing boundary condi-
tions at spatial infinity. This constrains the mode frequen-
cies to be in a discrete tower labeled by a positive integer N,
the overtone index.

As shown in Ref. [9], there are two types of topological
stars. The first has a single unstable photon sphere; the
second has two photon spheres, an outer (unstable) one and
an inner (stable) one.

Here we summarize our results for each of the two types
of topological stars.

1. Topological stars of the first kind

Topological stars of the first kind have a single, unstable
photon orbit, just like black holes. However, the spacetime
ends smoothly there and there is no horizon. We character-
ize the spectrum of QNMs by developing a WKB method
similar in spirit to the one used for black holes [18,19], and
we also compute it numerically by applying Leaver’s
method [20]. The spectrum consists of two classes of
QNMs, as summarized in Fig. 1: black-hole-like modes and
highly damped modes.

Black-hole-like modes.—At a given ¢, the slowly
damped QNMs have an imaginary part much smaller than
the real part. As a consequence, the imaginary part of the
potential is subleading compared to its real part (see bottom
panel in Fig. 1), and the WKB approximation can be
applied. We find that the radial wave profile is localized at
the unstable photon orbit, and the spectrum in the eikonal
limit, at large and fixed Z, is given by a formula [Eq. (1)]
analogous to the formula for black holes (the gaps in the
spectrum are also illustrated in Fig. 1). This spectrum does
not depend on the presence or absence of an event horizon
and is purely governed by the unstable photon sphere.

Highly damped modes.—As we go to higher values of N,
the modes are not localized anymore (see the top right panel
in Fig. 1). They are highly damped, such that the imaginary
part of the frequency cannot be neglected, and we compute
them using Leaver’s method. This part of the spectrum
differs from the black hole spectrum: the real part of the
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FIG. 1. QNM spectroscopy of a topological star of the first

kind. The left panel describes the mode spectrum and the gaps in
the normal frequencies. The two categories of QNMs are
described in the right panels, where we illustrate the form of
their potential and radial wave profiles.
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frequency grows with N, while the real part of the
frequency of highly damped black hole QNMs approaches
a constant [28-30]. However, these modes damp very
rapidly and are not expected to contribute significantly
to the time-domain signal.

2. Topological stars of second kind

Topological stars of the second kind have two photon
spheres: the outer photon sphere is unstable, while the inner
one is stable. We develop WKB methods inspired by
Refs. [3,26], and we also apply Leaver’s method to
compute the QNM spectrum numerically. The QNMs
belong to three categories, as summarized in Fig. 2.

Microstructure modes—The fundamental modes are
localized at the inner stable photon orbit and characterized
by its scattering properties (see the bottom right panel in
Fig. 2). Since the orbit is stable, they are not only slowly
damped, but almost trapped, and their imaginary frequency
is exponentially suppressed as a function of £. In this limit,
the real part of the potential is large compared to the
imaginary part. The potential has a small well close to the
inner photon orbit, and a large barrier prevents the modes
from leaking out. Remarkably, the QNM frequencies
satisfy a relation similar to Eq. (1) in the eikonal limit,

1 1 A
~Ql 4= ) —i = et 2
Wy 1( —l—2> 1/11<N+2>—|-4”e . (2)
where Q; is the angular velocity of photons at the stable
orbits. The parameter A; is now purely imaginary
(=i4; > 0) and measures the oscillation frequency of
geodesics about the stable photon ring. It has the same

Radial wave pmﬁle\
localized far froy the star

7

o)
)
i

s
s

HE No real-valued Potential
Overtone T i

Number N

Im(wy) ~ Re(wy)

Highly Damped Modes

Radial wave profile ™)
calized at the unstable
e h

Scalar Pot.

Large well

p—
—
g—
— Small barrier
—
g—

0,4 U"{ : =j | Im(wy) = 0(1) < Re(wy) |
= - r Black Hole Modes
— Radial wave profile ™\
¢ Large barrier %\, %\ localized atthe stable
— g % photon sphere
S o

Small well
QNM Spectrum |‘\

| Im(y) = 0(e~) « Re(wy) | l Microstructure Modes

FIG. 2. QNM spectroscopy of a topological star of the second
kind. The overtone number and the different gaps in the normal
frequencies are shown on the left panel. The right panels detail
the three categories of QNMs.

functional dependence on the geodesic potential V as
the Lyapunov exponent of unstable photon orbits, i.e.,

o= /L v

! 212 dr?
zation of the black hole formula to spacetimes with stable
photon orbits.

Black hole modes.—As we increase N, the potential well
becomes deeper and deeper while the barrier becomes
smaller, and the modes are localized further away from the
inner photon sphere. When the barrier is almost vanishing,
we will show below that the modes are localized at the outer
unstable photon sphere and determined by the scattering
properties there (see the middle right panel in Fig. 2). In the
eikonal limit, the frequencies are given by

1 1
Cl)me_N ~ QZ <f —|— E) + l/ll <N + 5)

A [ind (2N + 1)]

+ E exXp |: /12

. This formula can be regarded as a generali-

(3)

where €, and A, are the angular velocity of photons and
their Lyapunov exponent at the outer unstable photon
sphere, respectively, and N, is the critical overtone
number at which the potential barrier disappears.
Therefore, the normal frequencies are mainly given by
Q,7, as they would be for black hole modes with the same
unstable photon sphere. Black-hole-like modes are there-
fore contained in the spectrum. However, the imaginary
frequencies depend on a nontrivial interplay between both
photon spheres, and they are generically smaller than those
of black holes. Therefore, having a smooth interior with a
stable photon sphere instead of a horizon affects the
damping time of the modes, making it generically larger
compared to those of black holes.

Highly damped modes.—The upper part of the spectrum
corresponds to highly damped modes (see the top right
panel in Fig. 2). They have properties similar to the highly
damped modes of topological stars of the first kind.

In the conclusions, we will summarize our results and list
possible directions for future research. Moreover, we will
discuss the nonlinear instabilities commonly associated
with modes localized on stable photon orbits that have
recently challenged the relevance of several exotic ultra-
compact objects [12,17]. We will discuss how the fate of
these instabilities may differ in the context of topological
solitons, which are coherent quantum gravity states in
string theory.

II. TOPOLOGICAL STARS

Topological stars are solutions of five-dimensional
Einstein-Maxwell theory [6,7]. This theory arises naturally
from the reduction of various supergravity bosonic actions,
so that smooth solutions admit a clear description as
coherent states in string theory [8]. The solutions are
asymptotic to R!:3 x S!, so that a coordinate, parametrized
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by y, corresponds to an extra compact circle on top of four-
dimensional spacetime. Its asymptotic radius is denoted by
R, such that the periodicity of y is given by y = y + 2zR,.

Electromagnetic flux is required to support the topology.
We restrict to flux produced by magnetic charges. These
can be understood as hidden dark charges that only interact
gravitationally.

A. The solution

Topological stars are static, smooth horizonless geom-
etries that are spherically symmetric and given in terms of
two parameters rg > rg > 0,

dr?

.
ds§=—<1—75>dt2+( —’—f> (1_%3>

+ 2 (d6? + sin?0dp?) + (1 - %B) dy?,

F = \/3rgrssin0do A de. (4)

The spacetime is smooth and terminates at » = rg as a
coordinate degeneracy of the y circle. The local topology is
best described in terms of a local radial coordinate to the
end-to-spacetime locus,

473 TR — T's
pPr=—=2—(r-r). w=Y——y. (5
g —rs 2’,.%3

and we consider the limit at p = 0,
ds3|g—o ~ dp* + p*dy’® + ry(d6® + sin> dp?).  (6)

At the end-to-spacetime locus, the topology is a S* bubble
of radius rg, defining the geometric size of the topological
star. Figure 3 is a schematic depiction of the spacetime of a
topological star.

Topological stars are inherently four-dimensional
gravitational objects that are generated by nontrivial
dynamics of an extra compact dimension. Upon reduction
along y, they are described by singular geometries with

FIG. 3. Schematic description of a topological star.

Amowitt-Deser-Misner mass M and magnetic charge Q
given by (assuming G, = 1)

_2r5—|—rB

M ’
4

Q2 = 3rgrs. (7)

The solutions correspond to classically and thermodynami-
cally metastable states of gravity if [31,32]

rg < rg < 2rg. (8)

Moreover, a topological star approaches its extremal limit
when rg S rg, where it starts to be more and more
indistinguishable from the extremal black string, given
by Eq. (4) with rq = rg [6].

B. Photon spheres

The properties of null geodesics scattered by topological
stars have been derived in Ref. [9]. There are at most two
photon spheres, depending on whether 3rg/2 is greater or
smaller than rg. They are characterized by a radius R;,
an angular velocity Q,, and a Lyapunov exponent 4; =

2—%2d2‘:§5|r:Ri, where Vg is the radial potential for null
geodesics,
rg—Ts (rg —rs)(2rg =3rs)
Rler’ 91:7&’ 21:\/ 3 s
s "8
2 2/3rg—2r
Rzzirs’ Qp=—r—, /12:7;13- )
3\/§rs 9rzs

Note that the Lyapunov exponent of the first photon sphere
is either real (2rg > 3rg), if the photon shell is unstable, or
imaginary, if it is stable (2rg > 3ry).

There are therefore two kinds of topological stars with

one or two photon spheres, as depicted in Fig. 4:

Topological star of the first kind—When 3rg/2 <
rg < 2rg, the topological star has a single photon
shell localized at the origin of spacetime, r = rg. The
Lyapunov exponent is positive and real, so the photon
shell is unstable.

Topological —star of the second kind—When
rg < rg < 3rg/2, the topological star has two photon
shells at r = rg and r = 3rg/2. The inner one is
stable, while the outer one is unstable.

II1. SCALAR PERTURBATIONS

We consider a massless minimally coupled scalar that
obeys the Klein-Gordon equation in five dimensions,

1

\/Tetgay(\/—detgg’“‘abd)) :0, (10)
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FIG. 4. Photon spheres of topological stars depending on the
range of rg and rg and charge-to-mass ratio.

where @ is the wave function that can depend on all
coordinates (t, 7,0, ¢, y). Topological stars are spherically
symmetric with a time and y isometry, so we expand in
Fourier modes

K r i(ew Y
(Df.m,a),p(t’ r, 9’ ¢’ y) = r_(r)s Y;’(e* ¢)e ( t+pR"v)’ (11)

where o is the frequency of the perturbation, p is the
quantized momentum along the extra dimension, Y?' is the
spherical harmonic function of degree ¢ and order m, and
we have rescaled the radial waveform by (r— rg)~! for
convenience. Without restriction, we assume that

Re(w) >0,  £320. (12)

A. Master equation

The radial wave equation governing K(r), obtained by
inserting Eq. (11) into Eq. (10), is given by

r—rg r—rg
Vir)= % [rg = rs + 2(¢ + 1) (r = rs) — ?r?]
r3 2
YR ()

where we recall that r ranges between the smooth origin of
spacetime and infinity, rg < r < c0. The equation can be
written in a Schrodinger form, 02K — VK = 0, with the
following change of coordinate:

r*=r—rg+ (rg —rg)log(r —rg). (14)

The new variable ranges between the origin of spacetime at
r* = —oo0 and r = +o0.

Moreover, we aim to describe light modes that propagate
from the topological star to spatial infinity. This requires
V(+o0) = p?/R; — w* < 0. From a four-dimensional per-
spective, the momentum along the extra dimension acts like
an effective mass. Moreover, a topological star is phenom-
enologically relevant if the length scale R is small, say a
few orders of magnitude larger than the Planck length.
Thus, waves with momentum along the extra dimension
have very high energy, of order p?/R2, and are very
unlikely to be excited in any physical process. From
now on, we restrict to scalar waves with no momentum
along y, p = 0, and the final form of the potential is

V(r)E%[rB—rs+f(f+1)(r—rs)—w2r3]. (15)

B. Boundary conditions for quasinormal modes

The QNMs of smooth horizonless geometries corre-
spond to regular waves at the end-to-spacetime locus and
purely outgoing waves at spatial infinity.

At r = rg, the y circle degenerates smoothly as a polar
angle degeneracy (6). Regular waves must then satisfy
Neumann boundary conditions in terms of the local radius
p defined in Eq. (5), d,® = 0, which yields the following
condition on the radial wave function K:

K

rg —rg

N [(LK — } = e_2<’Br‘-"s)<),*K =0. (16)

.. 2
Thus, K must be finite as r — rg or r* — —o0.

At a large distance, the potential converges toward —w?,
and the radial wave function admits two branches propor-
tional to e™®”. Outgoing modes require the “minus”
branch, such that the scalar field is asymptotically

Y™ (0 )
D ~ f( ’¢) elw(z‘—r)_ (17)

r—00 r

The inner and outer boundary conditions are only
satisfied if w takes values in a tower of QNM frequencies,
oy and N €N, for each value of . The real parts
correspond to oscillation frequencies. The imaginary parts
are related to the damping time if Im(®) > 0 and the mode
is stable. If Tm(w) < 0, the mode corresponds to a scalar
instability. Since topological stars are classically stable
states in the range considered [see Eq. (8)], we do not
expect such a mode to exist.

*The second condition requires a priori that K goes to a

¥

constant faster than e*"s~s) in terms of r*, but this is guaranteed
by the fact that K(r) is finite and differentiable in the limit
r — rg.
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IV. WKB APPROXIMATION FOR SLOWLY
DAMPED MODES

First, we develop WKB methods to calculate QNMs of
smooth horizonless geometries for which the wave equa-
tion is separable. WKB is an accurate approximation for a
Schrodinger problem if the potential is mostly real valued,
which requires Re(w) > Im(w), and if it does not fluctuate
wildly. This is usually achieved in the eikonal limit at large
¢ and when the modes are slowly damped.

Under these assumptions, the potential can be treated as
areal potential for which the physics is dictated by classical
turning points, which are its zeros. In between the turning
points, the wave function is given as a superposition of the
following waveforms:

K. () = [V(r)|[Fexp {i / \/mdr*} (18)

The different waveforms are connected to each other at
the turning points by solving the equation locally and by
asymptotic matching.

The topological star potential has turning points given by
the roots of the cubic in Eq. (15) and an asymptotic turning
point at the origin, r* = —oco (r = rg). Because the cubic
has no 7% term, it has a maximum of two real roots in the
range rg < r depending on the value of @ and #. We have
therefore developed two WKB methods depending on
whether the potential has one or two turning points. The
main results are given in the next sections. Details of the
derivation can be found in Appendix A.

In Sec. VA, we will see that a topological star of the first
kind (one single photon sphere) has a potential with a single
root at best, while a topological star of the second kind (two
photon spheres) has either two or zero roots.

A. Potential with two roots

We consider a potential with two roots, rj; and 77}, in
between the origin of spacetime and spatial infinity, and we
divide it into three zones as depicted in Fig. 5. The
derivation of the WKB spectrum of QNMs is given in
Appendix A1 and is similar in spirit to the technique
developed in Refs. [3,26].

We introduce the well integral ® and barrier integral 7
such that

o= [“Wepar, 1= [TWerkar. (9)
—00 rz‘)
The boundary conditions at the origin and at infinity are

compatible when

o2T
cos®+iTsin®: 0. (20)

V(r) o 1

zone I zone II zone III

FIG. 5. Typical form of the potential V(r*) with two real roots
and one asymptotic root at r* — —oo. It has three zones,
corresponding to the classical region, the barrier, and the
asymptotic region.

In the limit of slowly damped modes for which WKB
applies, the complex part is a small correction, e~ < 1.
Thus, the tower of WKB QNM s is indexed by an integer N
such that

wy = Dy + bwy, (21)

where @y are the normal frequencies, and dw), are the first-
order imaginary corrections determined by

e‘ZT} . (22)

B. Potential with a single root

We now consider a potential with a single root in
between the origin of spacetime and spatial infinity. The
potential is negative asymptotically and it consists mainly
of a potential barrier, as depicted in Fig. 6.

At first sight, the WKB approximation cannot capture
QNMs. Indeed, the barrier induces a scaling factor of e=”
between the transmitted and reflected amplitudes, whereas
having purely outgoing modes asymptotically requires both
amplitudes to be of the same order. However, this also
occurs for black hole QNMs. In Refs. [18,19], QNMs have
been derived when the barrier is small such that e~ is not
too large.

In Appendix A 2, we develop a WKB calculation in a
similar spirit to Refs. [18,19], but we adapt it to smooth
geometries without horizon. We find a tower of modes,
labeled by an integer N, that is governed by the following
algebraic constraint:

2£E:N+%, (23)

i
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o

zone I zone II

FIG. 6. Typical form of the potential V(r*) with a single real
root and one asymptotic root at r* — —oo. It has two zones,
corresponding to the barrier and the asymptotic region.

where a, b, ¢ are constants determined by the generic
expansion of the potential at the origin

V(r*) ~ ae’ (1—ce’). (24)
r’—=-—o0
The spectrum of Eq. (23) is valid when the above expansion
accurately describes the potential in the whole barrier, i.e.,
V(=b~'logc) =~ 0. Since the maximum of the potential is
well approximated by its asymptotic form, one can relate a,
b, c to the properties of the potential there. We find

2V (ry 1
l’M =N-+—-. (25)
V" (7| 2

Remarkably, the spectrum is similar to the WKB formula
for black holes [18,19], while the boundary condition
applied at the origin of spacetime is very different.

V. SLOWLY DAMPED MODES
OF TOPOLOGICAL STARS

We apply the generic WKB spectra derived in the
previous section to the scalar potential (15) of topological
stars. Since we have two different methods depending on
the number of zeros, we first discuss when the conditions
necessary to apply the WKB methods are satisfied.

A. Conditions on slowly damped modes

The potential (15) has two roots larger than rg if

1
2rg <1 +m> < 3rg, (26)

22 + 1))
VAT D)+ D) —rg) 2 (“2)’ (27)

o <

where €, is the angular velocity of photons at the second
photon sphere (9). The first condition implies

27']3 < 3"5.

Therefore, the potential can have two roots larger than rg
only for topological stars of the second kind, as defined in
Sec. 11 B.

This can be interpreted as follows. A potential with a
classical interior region, where modes can be localized,
separated from the asymptotic region by a large potential
barrier, will have modes for which the imaginary part of the
frequency is suppressed by a factor ¢=>". These modes are
not only slowly damped, but almost trapped, since their
damping time will be very long. In the eikonal limit, these
modes are associated with stable photon spheres, where
photons can be trapped in a similar way. Since a topological
star of the first kind does not have stable orbits, we do not
expect such modes to exist. Therefore, topological stars of
the second kind are expected to have fundamental modes
localized near the stable photon sphere that depend on the
scattering characteristics of null geodesics there.

The second condition in Eq. (27) gives an upper bound to
the frequencies of slowly damped modes in topological
stars of the second kind. Therefore, the number of slowly
damped modes is necessarily finite. Note that some of these
modes will have a frequency |wy | ~ Q,7. Thus, some of
the slowly damped modes are connected to the unstable
outer photon orbit and to the scattering properties of
photons there. This can be understood from the perspective
of the potential. For the first modes, the potential has a
small well and a large barrier. As we increase the overtone
number, the well becomes deeper and the barrier smaller.
The upper limit in (27) corresponds to the point at which
the barrier disappears.

To summarize, we expect two different categories of
slowly damped modes for topological stars of the second
kind. The first class of fundamental modes has a large
potential barrier inducing a very large damping time. These
modes are almost trapped and reflect the internal structure
of the background at the inner (stable) photon sphere. The
second class of modes has a small potential barrier and
should escape in a much shorter time. Since the form of the
potential for these modes resembles the potential of black
hole modes [18,19], we expect them to be black-hole-like
modes, for which the dynamic is determined by the outer
(unstable) photon sphere.

Second, the scalar potential (15) has a single root that is
close to rg if

o] <Y BT (s 1)~ (£ 41), (28)

2rB>3r5, 3
r

w

o I

where Q, is the angular velocity of the photon at the inner
stable photon sphere (9). Therefore, one can apply the
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WKB formula (23) to topological stars of the first kind and
derive their slowly damped modes. These will still have
Re(w) > Im(w), but their imaginary part will not be
exponentially suppressed by a large potential barrier. As
black holes, topological stars of the first kind only have an
unstable photon sphere where modes can be localized, but
the damping time will not be as extreme as if the orbit were
stable. Therefore, we expect these modes to be very similar
to the ones derived for black holes. The upper bound shows
that their frequencies will be related to scattering properties
at the unstable photon orbit.

B. Modes of topological stars of the first kind

We consider the regime of parameters given in Eq. (28).
This corresponds to topological stars of the first kind, and
the scalar potential has a small potential barrier, as shown in
Fig. 6. We apply the generic derivation of Sec. IV B.

First, we compute the local potential barrier given by
three positive constants (a, b, ¢), as defined in Eq. (24). For
the topological star potential (15), we find

a_(rB—rs)(f(f‘i‘l)‘Fl)—r%wz po !
a (’”B—’”s)4 ’ _rB_rS’
C:(rB_’”S)(3f(f+1)+4)—r]23(r3+3r5)a)2 (29)

(rg = rs)((rg = rs)(£(£ + 1) +1) = rgo?) -
The WKB spectrum of QNMs is given by Eq. (23),
which we can solve analytically. We find solutions for
0 < N £ Ny With

34+20(+1)-3R(1+72(¢+1 1
N SNV3HUEFD-BRA+AZHD) 10,
1+ 3R 2

where R = rg/rg and ranges from to 2. The tower of

frequencies is given by

2

oy = a)zlf, + ia)zlv,

w,’f,leq/N+2{\/%+4+3f(f+l)

+ (N+%>(1+3R) +%}5,
wk :qu/N+2{\/(lf(:‘f&—Jr))l)2+4+3f(f+ 1)
- <N+;>(1 +3R) —5(5(;25 1] (31)

In the eikonal limit, we retrieve the same relation as for
black hole QNMs,

1 1
wa:oogl (l/” + E) + 4 (N + E) s (32)

where Q; and A; are the angular velocity and Lyapunov
exponent of the photon orbit at r = rg (9). A topological
star of the first type has a single photon sphere and is
unstable, so the term proportional to the Lyapunov expo-
nent gives an imaginary contribution, as for black holes.
Therefore, the spectrum of modes is identical to that of a
black hole with the same photon sphere while having
different internal boundary conditions. This is quite a
remarkable result, considering that a topological star is
smooth and horizonless, without any absorption: it shows
that the fundamental modes that govern the response of
black holes under perturbations are independent of having a
horizon and are mainly given by the scattering properties of
its photon ring.

C. Modes of topological stars of the second kind

We now consider the regime of parameters given by
Egs. (26) and (27). The generic derivation of Sec. [V A can
be applied to topological stars of the second kind. We first
derive the normal frequencies and then compute the
imaginary corrections of Eq. (22).

1. Normal frequencies

The well integral (19) gives

®:/ro 1 \/a)r -+ )(r—rs)—l-rs—rBdr’
g r—rg r—rg

where r is the first of the two positive real roots of the
cubic polynomial. Unfortunately, cubic roots have a rather
complicated expression, and the integral can be expressed
only in terms of elliptic functions. However, we can
perform an approximation. In the range (26), the cubic
is mainly a linear function in between rg and r,, such that

®~n<\/r3(3r5_2rB 1—\/1,” £ 41 >
rg — rs

The normal frequencies are therefore given by Eq. (22),

(I)N:Ql\/M[(N-l—%) (3R—5> +2+1)

2 2N+1

+ \/(3R—2) (f(f+ 1)-3 <N+%>2(1 —R)) ~3(1 —R)F, (33)
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where Q, is the angular velocity of trapped photons at the
inner photon sphere (9), and we used again R = rg/rg with
now 2/3 < R < 1. The upper bound fixed by Eq. (26) gives
the total number of modes at a given 7,

2Npx+1 2 [R-3
f(+1) 3R\1-R

(2—\/3(3R+2)(1—R))>. (34)

The number of slowly damped modes is therefore increas-
ing as the topological star approaches its extremal limit,
R — 1. This is a consequence of having ultracompact, near-
extremal smooth geometries that are almost indistinguish-
able from an extremal black string. The topological stars
develop a very long black hole throat that caps off
smoothly, where many modes can pile up.

Moreover, far from extremality, the normal frequencies
scale like ultracompact objects of mass M, as given by

Eq. (7),

Py = o(“MN )), (35)

while a change of scales occurs near extremality,

By o W, (36)

where ¢ is the nonextremality parameter Q = ‘% (1+e),

with € <« 1. These very small frequencies mean that the
scattered waves will echo off the star at very long time-
scales of order M /,/e after having explored the long throat
of the geometry [3,26].

The WKB approximation is particularly accurate in the
eikonal limit, Z > 1. We first consider the eikonal limit for
the first few fundamental modes, where N is fixed and
small. We find, up to order #°,

1 1
ay ~ @ <f + 5) — il (N + 5) , (37)

where Q; and 4, are the angular velocity and “Lyapunov”
exponent of the stable photon orbit at r = rg: see Eq. (9).
We remind the reader that 4, is an imaginary number for a
topological star of the second kind so that —il; > 0.

Now, we consider the eikonal limit for the last modes in
the tower. We find, up to order #°,

1 il 1
ozl )

1-R
R=2,/~——+3R-2, 38
§+R+ (38)

where €, is the angular velocity of photons at the outer
(unstable) photon sphere: see Eq. (9). The function R varies
between 1 and 1.2 for 2/3 < R < 1. This is probably an
artifact of our linear approximation of the cubic in the
potential, and at this level of approximation, it could make
sense to just assume that R ~ 1.

These formulas confirm the qualitative arguments in the
previous section. One has a first class of modes (the first
fundamental ones) that are localized at the inner stable
photon sphere and characterized by the scattering proper-
ties there. Moreover, there is a second class of modes (the
last slowly damped modes) that explore the geometry up to
the outer unstable photon sphere and are governed by the
dynamics of photons there.

2. Imaginary corrections

We now estimate the imaginary corrections to the real
(normal) frequencies given by Eq. (22). One needs to derive
the barrier integral 7" of Eq. (19). Unfortunately, the integral
can only be expressed in terms of elliptic functions. Its
generic expression is not particularly interesting and is
given in Appendix B. Moreover, we find

00 B Iy [ 3(rg —rg)
0|y T8~ Ts [\/E(€+1) = 3ra3
3rg — 2rg

+ . 39
VE(E+1)=3rg@ + N +1 9)

First, we consider the eikonal limit for the first class of
fundamental modes, # > 1 and N < 7. We find that

T~pt, A ~ 77y :__i”’
0w|,—g, +/(rg—rs)(3rs—2rg) 4

for some constant , which depends nontrivially on rg and
rg. This constant cannot be related to any geodesic
quantities. Indeed, it indicates how slowly the modes leak
out and depends on the geometry outside the inner photon
sphere. Finally, we have

(40)

Swy ~ —e . (41)

These exponentially suppressed imaginary frequencies are
not specific to topological stars, and have been also observed
for anti-de Sitter black holes [33], ultracompact neutron
stars [12], various electron-coupled oscillators [15], and
supersymmetric microstate geometries in string theory [3,34].
They are characteristic of modes localized at a stable photon
orbit with extreme damping time. By estimating the energy
decay of such modes following the references above, we
similarly find that they decay like (log)~2, while modes
localized at unstable photon orbits (characteristic of black
holes) decay much faster, as =2 [3,34].
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For the eikonal limit of the second class of modes, one
can approximate the potential in the barrier by a quadratic
polynomial, Vi~ V(r;knax) + % Vll(rrnax)(r}~< - rzlax)z’ and
estimate the barrier integral 7 using this approximation,
which gives

V21V (rinax)|
By considering the large £ limit, we find

/11 (2N + 1)7[1/11
~ Ilexp |- TR (43
NN 1S a7 R [ R n P

where R = 1 has been defined in Eq. (38). As expected, these
modes are not exponentially suppressed as a function of #
and therefore are less trapped than the first few fundamental
modes. However, one still has |6y, _y| < @y, .50 that
the modes are slowly damped (i.e., their damping time is
large compared to their period).

Their energy decay will be of order =2 like black hole
modes. However, unlike black holes, the imaginary part
results from a nontrivial interplay between the stable and
unstable photon spheres. Itis rather intuitive that the damping
time depends on the stability of both orbits, which therefore
produces a cavity effect. As the inner sphere becomes more
stable (|1;| increases), the imaginary part decreases and the
modes have a longer lifetime, while as the outer sphere
becomes more unstable (4, increases), the imaginary part
increases and the modes decay more rapidly.

(42)

3. Eikonal limit

The QNM frequencies of black holes are related to
geodesics at their photon orbit, i.e., their shadow [21]. In
the eikonal limit, these frequencies are

1 1
ng~Q<f+§>+iz<N+§>, (44)

where Q and A are the angular velocity and Lyapunov
exponent of photons at the unstable photon sphere.

Topological stars of the second kind are smooth hori-
zonless geometries with a stable inner photon sphere and an
unstable outer photon sphere. We have found that their
QNMs have a richer structure. There are two classes of
fundamental modes, given in the eikonal limit by (we
consider R ~ 1)

1 1\ 2
oy ~Q <f + 5) — il <N + 5) + ﬁe‘ﬁf, (45)

1 1
a)Nmnx_N ~ Qz (lxﬂ + §> + l/l] <N + §>

A A (2N + 1
_|__1exp {_ml(ﬂ——i—)],
2

4r (46)

where Q; and A; are the angular velocity and Lyapunov
exponent of the stable photon orbit at » = ry, and €, and 4,
are the angular velocity and Lyapunov exponent of the
unstable photon orbit at r = 3rg/2: see Eq. (9).

The first class of fundamental modes is remarkably
similar to the black hole QNMs (44), but the identification
is at the level of the stable photon sphere, so the “—id” term
is now a real and positive contribution. The real part of the
QNM frequencies at the inner photon sphere is much
smaller than the real part of the QNMs at the outer
(unstable) photon sphere, Q7 < Q,7. These modes carry
information about the microstructure of the solutions at the
core of the geometry [3,26]. Their imaginary part is
exponentially suppressed as a function of , so that they
have a very long lifetime.

The second class of slowly damped modes is localized at
the unstable photon orbit. The real parts of their QNM
frequencies are proportional to €,7. These modes can be
thought of as black-hole-like modes. Indeed, the modes of a
black hole with the same unstable photon sphere will have
the same normal frequencies. However, their imaginary
part, i.e., their damping time, will be slightly different. This
is because the damping time is influenced by what is inside
the outer photon sphere, and whether it is an absorbing
horizon or a stable photon sphere affects the dynamics.

Thus, we found that black hole modes in smooth
topological geometries with inner stable photon orbits last
longer than one would expect for black holes. This longer
damping time in the wave signal produced by a cavity effect
in between photon spheres could provide new avenues of
exploration for future experiments, different from the
echoes highlighted in previous work [10-12].

In Fig. 7, we schematically summarize the dynamics of
the slowly damped modes of topological stars of the second
kind. The first class of fundamental, almost-trapped modes
is localized and determined by the inner (stable) orbit; the
second class of black-hole-like modes are instead localized
around the outer (unstable) orbit.

From a broader perspective, the WKB spectrum
[Egs. (45) and (46)] should be understood as the gener-
alization of the black hole result [Eq. (44)] for any smooth
horizonless geometries with stable internal photon orbits
surrounded by unstable outer photon orbits.

D. Concluding remarks

Despite the fact that topological stars are smooth and
horizonless, such that everything gets reflected at linear
order, the slowly damped QNM frequencies are similar to
those of black holes, and they are determined by the
scattering properties of null geodesics in the vicinity of
photon rings.

For topological stars of the first kind, which have a single
unstable photon orbit and no stable photon orbit, the modes
are identical to those of a black hole with the same photon
sphere, and given by Eq. (32). This has the surprising
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arel?
8 !
» o 15t class of slowly damped modes:
- % Localized at the innerphoton sphere
2 e Microstructure modes
&. =]

Extreme damping time

2nd class of slowly damped modes:
Localized at the outer photon sphere
Black hole modes
Damping time depends on both photon spheres

Topological starofthe second kind

FIG. 7. Wave profiles of the first and second class of slowly
damped modes with =5 for a topological star of the
second kind.

implication that the fundamental modes of a black hole do
not depend on the presence of a horizon, which is rather
counterintuitive, considering that the horizon is crucial to
determine the boundary conditions for the perturbations.

Topological stars of the second kind have a stable photon
sphere surrounded by an unstable one. The first class of
modes is determined by the stable orbit: see Eq. (45). The
real part of the QNM frequency is small and proportional to
Q7 [3,26]. They carry information about the inner, smooth
structure of the topological star. Moreover, they are almost
trapped at the stable orbit, with a very long damping time.
The second class of slowly damped modes is black-hole-
like: the real part of their QNM frequency is determined by
the scattering of photons at the unstable photon sphere and
proportional to ,7. However, their damping time depends
on a nontrivial interplay between the inner and outer photon
sphere, while it depends only on the Lyapunov exponent of
the shadow for a black hole. These modes have a longer
damping time than the modes of a black hole. If topological
stars have astrophysical relevance, their QNM frequencies
may provide new smoking guns to investigate quantum
gravity with future experiments.

VI. LEAVER’S METHOD

The WKB method is a good approximation for QNM:s that
have arelatively large # and Im(w) < Re(®). Thus, it fails to
capture highly damped modes with Im(®) = Re(w), and the
approximation may introduce errors in the spectrum for small
¢’s. In this section, we use Leaver’s method to numerically
compute the QNMs, including the highly damped ones,
and we assess the accuracy of the WKB method when it is
applied beyond its regime of validity. We refer the reader to
Appendix C 1 for more details on the method.

A. Leaver’s method

Leaver’s method involves a series solution to the radial
perturbation equation which may then be used to compute
QNM spectra [20]. Starting with the radial perturbation
equation (13) with no momentum (p = 0), we expand the
radial function K(r) in a series,

K(r) = emior ian <: = ‘:) 47)

n=0

The solution satisfies the boundary conditions (16) and (17)
when the coefficients «, are such that the series is
convergent. The radial equation translates into a four-term
recurrence relation for the a, coefficients,

Ayt +ﬂnan + Ynln-1 + 5nan—2 = 0’ (48)

where we set a_, = a_; = 0. Here «,, f,, v,, and 5, are
functions of rg, rg, n, £, and w, given in Appendix C 1. We
can perform a Gaussian elimination step to find a three-
term recurrence relation with new coefficients,

a/nan-H +ﬂ;tan + ygqan—l =0. (49)

The series of a, can be shown to converge by calculating
the ratio a,,,/a, at large n,

A1 2iw(rg —rs)  (5rg —2rg)i — 3(0_

a, n—o l’l1/2 4n

The series converges uniformly when we select the branch
corresponding to the minus sign in the equation above. This
corresponds to “minimal solutions,” and then @ corre-
sponds to a QNM frequency [35-37]. From Eq. (49), the
QNM frequencies must satisfy the following infinite
continued fraction equation:

a!yl a/yl
1 2

where we have used common notation for continued
fractions [20,35]. The equation can be inverted an arbitrary
number of times to obtain equivalent conditions.
Empirically, the Nth QNM frequency is a stable root of
the Nth inversion of the continued fraction [20], defined as

(ﬂ/ _ Oy_iY Aol aBrﬁ)
.
By-i— Pvo— B

— (a;\’y;\H-l ajN-Fly?V-‘rZ ) -0 (51)
n / o) =0l
:BN+1_ ﬂN+2_

These algebraic relations can be solved numerically to
obtain the QNM spectrum of topological stars.
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Refw]

FIG. 8. The first few QNM:s of the topological star of the second
kind, with values listed in Table I, with units normalized to
M = 1/2. The modes associated with the inner stable photon
sphere are shown in blue. The red points correspond to the black
hole modes, and the modes in green correspond to modes
inaccessible with our WKB formula, found with Leaver’s method.

B. Results and comparison with WKB

We apply Leaver’s method to compute QNM frequencies
for the dominant multipoles (£ =0, ...,4). We consider
two illustrative topological stars with mass M = 1/2, as
defined in Eq. (7):

(i) A topological star of the second kind with rg = 0.68

and rg = 0.66, that is Q = 1.16 from Eq. (7). We

TABLE I.

have deliberately chosen rg ~ rg so that the topo-
logical star is near extremal, with a long capped
throat that can support a large number of slowly
damped modes, as predicted by the WKB analysis.

(ii) A topological star of the first kind with rg = 13/14 ~
0.93 and rg = 15/28 ~ 0.54, so that Q ~ 1.22.

1. Topological star of the second kind

We first consider the topological star of the second kind
given above. The QNM frequencies found by Leaver’s
method are plotted in Fig. 8 for £ =0, ..., 4. In Table I, we
list the first ten QNMs, along with their WKB counterparts
when they exist. In Fig. 9 we also plot the relative
difference between the Leaver calculation and the WKB
approximation. In the figures and table, we use three
different point styles or fonts to highlight the mode
classification discussed in our WKB calculation:

Microstructure modes (bold and blue).—The first few
fundamental modes are localized at the inner stable
photon orbit. Their frequencies are determined by the
scattering properties there: see Eq. (45).

Black hole modes (star and red)—These are the black-
hole-like modes. They are localized at the unstable
outer photon orbit and determined by the scattering
properties there: see Eq. (45).

The ten first QNM frequencies wy of the topological star of the second kind (rg = 0.68 and rg = 0.66) for £ from 0 to 4.

The top and bottom lines in each cell are the Leaver and WKB values, respectively. We have denoted the separate types of modes in the
following way: microstructure modes are bolded, black hole modes are starred, and the highly damped modes are in plain text.

N =0 ‘=1

=2

=3 ‘=4

0 Leaver:

0.2398 +0.0039i 0.4966 + (3.2 x 107%)i 0.7497 + (9.4 x 1071%)i 1.0023 + (2.2 x 107)i 1.2547 + (4.4 x 10717)i

WKB: 0.5359 + (1.2 x1075)i 0.7782+ (2.3 x 107%)i 1.0244 + (42 x 1071%)i 1.2727 + (7.9 x 10717)i
I Leaver: 0.4477 +0.0400i  0.7183 +0.0006i  0.9804 + (5.7 x 10°7)i 1.2361 + (2.8 x 10710)i 1.4901 + (7.0 x 10~1)i
WKB: e 0.7393 +0.0021i  0.9992 + (1.3 x 107°)i 1.2523 + (52 x 107%)i 1.5041 + (1.7 x 10~3)i
2 Leaver: 0.6576+0.1081i %0.9112+40.0150ix  1.1986 + (7.9 x 105)i  1.4621 + (8.1 x 10°%)i 1.7198 + (4.8 x 10~ 11)i
WKB: e %0.9334 +0.0935i%  1.2146 + (1.8 x 107*)i  1.4756 + (1.5 x 1077)i 1.7318 + (8.3 x 10~'1)i
3 Leaver: 0.8223+0.2057i  1.0990 + 0.0699i #1.3965 + 0.0036i%  1.6787 + (1.0 x 10~5)i  1.9430 + (1.1 x 10-8)i
WKB: e e #1.4215+ 00121 1.6933 + (1.9 x 1075)i  1.9550 + (1.8 x 1078)i
4 Leaver: 09667+ 0.1892i  1.3138 + 0.1372i 1.5728 + 0.0335i 1.8813 + 0.0006i 2.1586 + (1.3 x 107)i
WKB: e e - 1.9043 +0.0015; 21733 + (2.3 x 107%)i
5 Leaver: 1.1842+0.1959i  1.5282 + 0.1860i 1.7599 + 0.0931i x2.0611 +0.0120ix  2.3638 + (8.6 x 10~5)i
WKB: e e e x2.1075 + 0.0764ix 23862 + (1.9 x 1074)i
6 Leaver: 1.3950 +0.2166i  1.7241 + 0.2231i 1.9576 4 0.1587i 2.2334 + 0.0562i %2.5520 + 0.0030i*
WKB: %2.5931 + 0.0113ix
7 Leaver: 1.6034 +0.2352i  1.9170 + 0.2438i 2.1398 4 0.2274i 2.4205 4 0.1191i ¥2.7202 + 0.0275ix
WKB: ¥2.7935 + 0.1479ix
8 Leaver: 1.8144 +0.2505i  2.1197 + 0.2573i 2.2935 + 0.2574i 2.6169 +0.1941i 2.8951 +0.0811i
9 Leaver: 2.0290 +0.2644i  2.3289 + 0.2710i 2.4835 + 0.2600i 2.8752 + 0.2565i 3.0843 + 0.1457i
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FIG. 9. Percent error, |“s=uss | between the WKB and
Leaver frequencies of Table I, for the topological star of the

second kind.

Highly damped modes (plain and green)—As we
increase the overtone number N, we find an infinite
tower of highly damped modes for which the imagi-
nary part of the frequencies cannot be neglected
anymore. These modes (listed in plain text in Table I)
could not be found by the WKB method for this
reason. This part of the spectrum differs from the usual
highly damped black hole QNMs. For Schwarzschild
black holes, when the imaginary part of the QNM
frequency (and N) increases, the real part of the

frequency decreases [20]. A similar behavior is
observed in Sec. VIB 3 below, where we compute
the QNMs for a black string with the same mass and
similar charge as the topological star. For topological
stars, both the real and imaginary parts increase with
N. This difference in the spectrum should not signifi-
cantly affect the time-domain signal, since these
modes damp out very quickly.

Figure 9 shows the percentage error between the Leaver
and WKB frequencies. The agreement is better as £ increases
and has a parabola shape as a function of N. The latter is due
to the fact that, as N approaches N, or 0, the classical
turning points are close to each other so that the WKB
approximation loses accuracy. Overall, our WKB method is
very accurate in capturing mode frequencies even for small 7,
so that the error is of the order of 7% in the worst case, 7 = 1
and N = 0, and is already less than 1% for several N atZ = 4.

WKB approximations are known to be relatively inac-
curate in the context of black hole modes. However, this is
due not so much to the WKB approximation itself, but
rather to the asymptotic matching method applied in that
context, which requires matching the inner and outer
waveforms by an approximately quadratic potential. The
method used here for horizonless solutions, described in
Appendix A 1, is different in spirit, does not rely on this
approximation, and is, therefore, more accurate.

TABLEIL. The ten first QNM frequencies wy for the topological star of the first kind (rg = 13/14 and rg = 15/28), for £ from 0 to 4
and 10. The top and bottom lines in each cell are the values obtained from Leaver’s method and WKB, respectively. The agreement
between both values is shown in Fig. 11. The black hole modes are starred, and the highly damped modes which cannot be accessed by
our WKB methods are in plain text.

N =0 =1 ‘=2 =3 =4 =10
0 Leaver: 0.4994 + 0.2775i 1.1290 + 0.2267i *1.8088 + 0.2100i* %2.4982 + 0.2016i* *3.1913 + 0.1966i* %7.3753 + 0.1863i*
WKB: cee ce %2.0297 + 0.1221ix %2.6592 + 0.1498i* %3.3167 + 0.1619ix *7.4274 4+ 0.1779ix
1 Leaver: 0.8365 + 0.9839; 1.3227 +0.8228; 1.9656 + 0.7351i  2.6361 +0.6879;  3.3159 + 0.6583i x7.4562 + 0.5894x
WKB: e e e e e *7.7859 + 0.3554ix
2 Leaver: 0.8935 + 1.2605i 1.6057 + 1.5284i 2.1781 +1.3722i  2.8192 + 1.2704i  3.4828 + 1.2038;  7.5774 + 1.0402i
3 Leaver: 1.1539 + 1.4666i 1.6328 + 1.8153i 2.4483 +2.0676i  3.0390 + 1.9215/ 3.6778 + 1.8126i  7.7206 + 1.5315i
4 Leaver: 1.3824 4+ 1.6186i 1.9458 +2.0143i 2.5611 4 2.3806i  3.3298 +2.6388;  3.9017 4+ 2.4707i  7.8794 4 2.0576i
5 Leaver: 1.6012 + 1.8188; 2.1982 + 2.1838; 2.8820 +2.5640; 3.6142 +2.9372i 4.1703 + 3.0841;  8.0509 + 2.6145i
6 Leaver: 1.8610 +2.0158; 2.4649 +2.3893; 3.1606 +2.7566i  3.9260 + 3.1271i  4.4112 +3.2877i  8.2341 + 3.1993i
WKB: . e
7 Leaver: 2.1249 +2.2063i 2.7528 + 2.5864i 3.4626 +2.9606i 4.2388 +3.3311i  4.7421 + 3.4980i  8.4290 + 3.8093i
8 Leaver: 2.4010 + 2.4033; 3.0483 4 2.7844i 3.7753 +3.1607i  4.5659 + 3.5341i  5.0700 + 3.7007;  8.6360 + 4.4421i
9 Leaver: 2.6906 + 2.6000i 3.3558 +2.9838; 4.0981 +3.3620i 4.9025 +3.7369i  5.4096 + 3.9055i 8.8784 + 5.0665i
WKB: e e
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FIG. 10. The first few QNMs of the topological star of the first
kind, with values listed in Table II, and mass normalized to
M = 1/2. The black hole modes are shown in red and the highly
damped modes in green.
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FIG. 11. Percent error between the WKB and Leaver frequen-
cies of Table II and extended to higher ¢ values, for the
topological star of the first kind.

2. Topological star of the first kind
We now consider the illustrative example of a topologi-
cal star of the first kind with rg = 13/14 and rg = 15/28.
The first few modes for £ = 0, ..., 4 are plotted in Fig. 10.
In Table II we list the QNM frequencies for 7 =0, ..., 4 as

TABLE III.
modes of the topological stars given in Table I (starred).

well as those for # = 10 case, along with their WKB
counterparts (when they exist). The relative difference
between WKB and Leaver’s frequencies is plotted in
Fig. 11. We classify the modes using the same conventions
as in the previous section.

The modes with starred values in the table are the slowly
damped modes of Eq. (32), derived using our WKB method
in Sec. V B. Those are black-hole-like modes localized at
the unstable photon sphere and governed by the scattering
properties there. Figure 11 shows that errors from the WKB
approximation are below 5% for £ >4 and that the
accuracy improves as ¢ increases. Note that the error is
slightly larger for this WKB method than for the previous
one. This is probably due to the two layers of approxima-
tion used: the WKB approximation and the approximation
of the potential barrier by its asymptotic form. The latter
approximation also causes the accuracy to decrease with N
as the barrier becomes larger.

Leaver’s method allows us to compute several QNM
frequencies in the highly damped QNM tower. They have
similar properties as for the topological star of the second
kind: both real and imaginary parts increase with N, unlike
the highly damped modes of a black hole with the same
photon sphere.

3. Direct comparison with a black hole

So far, we have indirectly compared topological stars to
black holes by identifying modes that are associated with the
outer unstable photon sphere. We can push this comparison
further by deriving explicitly the spectrum of the charged
static black objects of the five-dimensional theory. They are
charged black strings that lead to magnetic black holes from a
four-dimensional perspective, given by the same metric and
field as Eq. (4) but with rg > rg [6]. However, these solutions
do not exist in the same mass and charge ranges as stable
topological stars. Therefore, a topological star cannot be
easily compared with a black hole of the same mass and

The first modes of the near-extremal black string with rg = 0.67 and rz = 0.66 (Q = 1.1518), compared to the black hole

N =0 =1 =2 =3 ‘=4
0 Leaver: 0.3590 + 0.2162i  %0.9087 + 0.1801i*x x1.4826 + 0.1749ix  %2.0624 + 0.1812ix  *2.7956 + 0.5989ix
BH modes of e %0.9112 + 0.0150i%  %1.3965 + 0.00367%  %2.0611 + 0.0120i%  %2.7202 + 0.0275i*
topological star:
1 Leaver: 0.3279 + 0.8789i  0.8616 + 0.6683i 1.4616 + 0.6149i 2.0760 + 0.5881i  %2.5849 + 0.8622ix
BH modes of e e e e %2.5520 + 0.0030ix
topological star:
2 Leaver: 0.2131 + 1.6122i  0.6528 + 1.2539i 1.3037 + 1.1163i 1.9434 4 1.0323i 2.3282 + 1.3698i
BHmodesof . e
topological star:
3 Leaver: 0.0550 + 2.2270i  0.3751 + 1.8876i 1.0241 + 1.6465i 1.6992 + 1.5220i 2.0340 + 1.8720i
BH modes of . e

topological star:
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charge. This makes the comparison of their QNMs more
problematic (the QNMs of the magnetic black string have
been studied independently in Ref. [38]).

Nevertheless, near-extremal topological stars of the
second kind, i.e., rg 2 rg, can be heuristically compared
to a near-extremal black string of the same mass and almost
the same charge with rg 2 rg. In Table III, we compute the
first QNMs of the near-extremal black string, with rg =
0.67 and rg = 0.66 (M = 1/2 and Q = 1.15) and compare
them with the QNMs of the near-extremal topological star
studied in Sec. VIB 1. Details of the derivation using
Leaver’s method can be found in Appendix C 2.

Table III confirms the findings of the WKB method. The
real parts of the black string QNMs are very similar to those
we have identified as the black hole modes of the
topological star. Remarkably, the agreement is quite good
even for small #, where the WKB approximation should
not be very accurate, and it improves as £ increases.
Moreover, the QNM imaginary parts are much larger for
the black string, as expected. The time-domain signal
should be a very similar signal in the short term, but have
a longer damping for the topological star, due to the cavity
effect produced by the pair of photon spheres.

The table also shows that the black string and the
topological star have different highly damped modes (values
in plain text): the real part of the QNM frequencies of the
black string decreases with N, unlike the topological star.

VII. CONCLUSIONS

In this paper, we have shown that the spectrum of smooth
topological solitons contains a subclass of black-hole-like
modes, because both solutions have an outer photon shell
with the same scattering properties. To prove this claim, we
have computed the QNM:s of certain classes of topological
stars that serve as interesting prototypes of topological
solitons. The linear perturbation equations for these topo-
logical stars are separable, and their QNM spectrum can be
computed analytically.

First, we have shown that topological stars that have a
single unstable photon sphere and no horizon have black-
hole-like QNMs. This result indicates that the oscillation
frequencies of black holes can be well approximated even in
the absence of a horizon. Second, we considered topological
stars with two photon spheres (an inner, stable orbit and an
outer, unstable orbit). We have highlighted two important
features in their spectrum. First, the fundamental modes are
localized at the inner orbit and they are determined by the
scattering properties there. Second, black-hole-like modes
are present in the spectrum, but the imaginary parts of their
frequencies differ from those of a black hole due to a “cavity
effect” produced by the photon spheres. This leads to QNMs
having longer damping than what one would expect for
black holes. To our knowledge, the damping difference and
the cavity effect have not been discussed in the literature,
and they could lead to interesting phenomenology.

We believe that these results also apply to any smooth
horizonless geometry and that they depend only on the
generic stability properties of photon spheres. It would be
interesting to develop this generalization in future work.
Ultimately, we would like to apply a similar argument to
more astrophysically relevant topological solitons, such as
Schwarzschild topological solitons or bubble bag ends [7].
Although these geometries are axially symmetric, which
complicates the analysis considerably, the structure of their
photon spheres is relatively similar to that of a topological
star of the second kind, with a shadowlike photon sphere
surrounding intertwined stable orbits. Therefore, these
geometries should have black-hole-like modes with damp-
ing differences determined by the outer photon sphere, as
well as a more complex spectrum of microstructure modes
that could induce chaotic echoes at late time. We would like
to address this problem (and to better understand the linear
stability of these solutions) in the near future.

In this paper, we have focused on scalar perturbations to
simplify the discussion. Ultimately, we would like to
extend our work to gravitational perturbations.

Finally, we would like to address the physics of non-
linear modes. Recently, nonlinear spectroscopy of black
holes or black hole mimickers has attracted substantial
attention. First, it has been shown that nonlinear effects
have a significant impact on the ringdown signal of a black
hole merger [39]. Second, in four-dimensional general
relativity, stable photon orbits are suspected to trigger
nonlinear instabilities, and this has been confirmed recently
using numerical evolutions of boson stars [12,17]. These
results call into question the relevance of four-dimensional
exotic ultracompact objects to describe black-hole-like
geometries. However, they only apply to general relativity
in four dimensions. Indeed, these nonlinear instabilities are
intimately related to the no-soliton theorem in four dimen-
sions [40], which implies that there can be two possible
final states for ultracompact exotic objects: migration to
nonultracompact configurations or total gravitational
collapse.

Theories of gravity with extra compact dimensions, that
emerge naturally from string theory, evade this no-soliton
theorem, so the fate of nonlinear instabilities may be
different. It is expected that wide classes of topological
solitons may exist and comprise a dense set of states in
quantum gravity. These may admit nontrivial quantum
tunneling not just to one another, but to the even larger set
of generic quantum states with the same quantum numbers.
From this perspective, the nonlinear instability is “more of a
feature than a bug” for spacetimes with extra compact
dimensions in quantum gravity. The final state might be
different from a black hole. These expectations, while
motivated by the vast constructions of topological solitons,
are subject to debate and deserve further study. A funda-
mental avenue of research in quantum gravity is to
precisely understand the mechanism for such a tunneling
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process. We can highlight various perspectives on why
these are interesting and nontrivial expectations.

First, we can consider the illustrative case of super-
symmetric solitons. The largest family of Einstein equations
to date has been derived in Ref. [41] and corresponds to
smooth horizonless geometries, not given in terms of free
parameters but of arbitrary functions of three spacetime
coordinates. These functions give an arbitrary shape to
smooth wiggles of spacetime added on a bubbling geometry.
Moreover, these wiggles correspond to momentum modes
that have backreacted on the geometry, not by collapsing the
solution into a black hole, but into a smooth wiggly
topological microstructure. It would be interesting to see
if such a mechanism can be reproduced with nonsupersym-
metric topological solitons, especially with topological
stars [6-8]. This would show that these topological states
of gravity can absorb energy by forming spacetime wiggles
without collapsing into a black hole. Such a mechanism
cannot exist in four-dimensional general relativity and
requires new geometric degrees of freedom of classical
theories of gravity that emerge naturally from string theory.

Second, the derivation in Ref. [32] has shown
that topological stars are metastable states of the five-
dimensional Einstein-Maxwell theory. They are therefore
viable thermodynamic phases of the theory that should be
put on an equal footing with the black hole phase.
Moreover, Hawking-Page phase transitions exist between
the topological star phase and the black hole phase. This
suggests that such topological states could be nucleated in a
physical process, and objects other than black holes may be
generated. Such a nucleation will require quantum effects
triggered, potentially, by the nonlinear instabilities.

As a final argument, we can use the nature of topological
solitons as states of quantum gravity. These states corre-
spond to coherent bound states of strings and branes that
have produced a geometric transition to smooth horizonless
geometries. From a quantum perspective, perturbations of
coherent states should lead to their decay into less coherent
states in the phase space. If the latter have the same
constituents of branes and strings, they would not neces-
sarily admit geometric descriptions as gravitational sol-
itons, but rather be described by inherently fuzzy and
quantum states of quantum gravity.

We plan to explore these topics in the future and
understand which of these scenarios are physically plau-
sible. While exciting, this research program will require a
conceptual new understanding of the dynamics of topo-
logical solitons and their more generic quantum cousins.
This is key to determining the final states of the nonlinear
instability.
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APPENDIX A: WKB METHODS

We have argued that the potential for scalar perturbations
in topological stars has up to two roots for r > rg when all
parameters are real valued. The WKB approximation is
used to estimate the spectrum of slowly damped QNMs that
have Im(w) < Re(w). We detail the derivation when the
potential has one or two roots.

1. The two-root scenario

We review the derivation of Ref. [3] and adapt it to our
type of potential.

We consider a potential for which the imaginary part can
be neglected at first and that has two zeros. We assume
that it depends on a generic variable r* € R, such that
V(r*) - —w? at large r* with Re(w) > 0. However, unlike
Ref. [3], here the potential goes to zero at the other
boundary r* — —o0 as

V(r*) ~ —ae,

r‘——oco

a,b>0. (A1)

A typical potential is shown in Fig. 5. The scalar wave is
approximated by the WKB waveform

1 [DI eiI(—oo,r*) +Dl_e—iI(—oo,r*)]

v ’
K() = § gD DI

1 [DIIIeiI(rT.r*) _{_DIIIe—iI(rT,r*)}
v - ’

where the first, second, and third lines correspond to the
three zones (r* < ry, ry <r* <rj, and r] < r*, respec-
tively), and we have defined

T(a,b) = / "V par. (A3)

The constants D%, D', and D! are related to each other by
the junction rules using Airy function matching at the
turning points,
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DLI- £i(0+) e—i(0+5) DI
DU - i(0-%) %6—1(0) D)’

e
T

a =

pu B —if 1T+ oyt ()
D)\ Tt LeT=# )\ D" )’
where ©® and T have been defined in (19).
At large r*, the WKB waveform gives
K(r*) o D'eior  ple=ior (AS)

Imposing the outgoing boundary condition at r* = oo as in
Eq. (17) therefore requires

DI = 0. (A6)
The boundary condition at the origin r* = —oo is more

subtle since it is where the potential vanishes. We cannot
directly use the WKB waveform to constrain the constants
DY.. We follow the usual WKB procedure at a zero, which
is to solve for the potential locally at r* ~ —oco using
Eq. (A1), impose the boundary condition on the local wave
obtained in this way, and then take the asymptotic expan-
sion of this wave at r* — oo and match it with the
asymptotic expansion of the WKB waveform at r* — —oo.

First, the solutions of the Schrodinger equation with the
potential (A1) are given by

K_o(r) = ¢1J <£ T ) + 6, Y, (M e ) (A7)

where J, and Y, are the Bessel functions of order O of the

first and second kind. By studying the behavior of both

functions asymptotically, one can check that only J,

satisfies the boundary condition (16), such that

Jo(r*) ~ 1+ O(e’"). Thus, we consider ¢, = 0.
Moreover, at large r* we have

W(55) 20 (o [ G-257)]

- adesa)

Now, expand the second line of Eq. (A2) at r* - —oo0,

br* br*
N 2i\/aeT

By matching to the Bessel function, we find that the
boundary condition at the origin requires the WKB
integration constant to satisfy

(A8)

DL =iD!. (A10)

Finally, we can use the junction rules (A4) to determine
when the two boundary conditions (A6) and (A10) are
compatible. We find the condition

-2T

cos®+ieTsin®:0. (A1)

2. The single-root scenario

Consider now a potential with a single root such that

V(rt) ~ —w?, V(') ~ ae’r

r*—oo r*——oo

(1—cet™),  (A12)

where a, b, c are positive real constants. A typical potential
is shown in Fig. 6.

Since the potential consists of a single potential barrier,
one can think that the WKB approximation cannot capture
QNMs. Indeed, the same derivation as the previous section
will not lead to any spectrum. The barrier induces a scale
factor of e~7 between the transmitted and reflected ampli-
tudes, while having purely outgoing modes asymptotically
requires both amplitudes to be of the same order.

However, this also occurs for black hole QNMs [18,19].
QNMs have been derived when the barrier is small such
that e~7 is of order 1. For black holes, this is done by
connecting the WKB waveform at the horizon with the
waveform at the asymptotics through a small barrier
approximated by a quadratic potential.

The situation is different for our smooth geometries, but
similar in spirit. We do not have a horizon region, and the
potential goes to zero at the interior boundary r* — —o0.
However, by assuming that the barrier is small, the turning
point rj; is sufficiently close to the boundary such that the
whole barrier is well approximated by the asymptotic form
of the potential (A12). This requires

1
elro ~ = << 1 & V(-blogc)~0. (A13)

We therefore locally solve the equation at the barrier,

2K —ae’ (1 —cet™)K =0, (A14)

take the branch that does not diverge as r* — —oo, and
match it to the outgoing wave outside the barrier.
Solutions of Eq. (A14) are given by

K = e (A F (v+ 1,1, =2uie’")
+ BU(z/ + 1,1, =2uieb™)),

iva _ Jac
y__5+2b\f H="p

(A15)

where (A, B) are integration constants, and ,F; and U are
the confluent hypergeometric functions. The asymptotics of
K are given by
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K r*+ O(1),

~ B—~
r‘——co F(l/—l— 1)

K eiﬂg’?,-* A ( 1)_DB
r*—oo (2iﬂebr*)b+1 F(—IJ)
N e—iﬂe”’* A
(2ipe® ) *T(v+1)°

(A16)

First, smoothness at r* — oo requires B = 0, while the

outgoing part of the wave is the one proportional to e~#¢""
at a large distance. The QNM condition therefore requires

1
IN-v)=00 < i va =N+,

i

2b\/c 2
where N is a positive integer. Since the maximum of the
potential is well approximated by its asymptotic form, one

(A17)

‘We obtain

@

can relate a, b, ¢ to the properties of the potential there.
We find

2V(ri 1
;V2V(rie) L (A18)
[V (Fivax)| 2

The formula has a strong similarity with the WKB formula
for black holes [18,19], while the boundary condition

applied at the origin of spacetime is very different.

APPENDIX B: DERIVATION OF THE
BARRIER INTEGRAL

The topological stars of the second kind have almost-
trapped scalar modes for which the imaginary part of the
frequencies are given by (22). One needs to derive the
barrier integral 7 (19) for that purpose. The integral can
only be expressed in terms of elliptic functions.

T = ) [—(ro +2r,)(rg = ) (rp — rs)E<(r0 —r)ro £t rB)>

V/(ro+2r1)(ro — rs)(rs — rs

—(ry=rg)(ro—rg)(2ro+2r  +rg + rs)K<

(ro +2r)(ro — 1)

(ro—ry)(ro +ry +rg)

(ro +2ry)(ro — 1) >

’
—(ry = rg)(rg — r5)(r8 +2”S)H< 0 )
ro— 1B

—ry (ro—r)(rg+r +rB)>
(ro +2ry)(ro — 1)

+2(ry = rg)(ro — rs)(ro +r + rs)“(

(ro—r\)(rs —rs) (ro—r\)(ro+ri + m))]’ (B1)

(rO_rB)(rl_rS)’

(ro +2r)(ro — rg)

where E, K, and IT are the complete elliptic integral, the complete elliptic integral of the first kind, and the complete elliptic
integral of the third kind, respectively. Moreover, r, and r; are the positive roots of the potential,

Tk

= arccos
3

03

_2\/E(¢ + 1) {1 (_ 3vV3w(rs(£(€ +1) +1) —
=—Y *  "’cos 2(f(f+1))3/2

rB)) +2?ﬂ(k—1)].

APPENDIX C: LEAVER’S METHOD

In this section, we give more details on the application of Leaver’s method to topological stars and black strings.

1. Topological stars

By inserting the series expansion (47) in the wave equation (13), we obtain the recurrence relation (48) for the coefficients

a,, where a,, f3,, v,, and 9, are explicitly given by

a, = (n+1)%,

Pp=—(1+C+>+2n+3n%) — (1 4+2n)(rg —rs)io +

Yo=1+C+*=2n+3n>+ 2n—1)(rg — rs)io +

3.2
rg@

8, =—(n—1)? .
p= 2 B

3 2
rgw

”B—"S,

ré(rs — 3rB)w2

’

g —rs

(C1)
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We reduce this four-term relation to a three-term recurrence
relation of the form (49) using the Gaussian elimination

/

o) o)
n 1%n !/ n—1%n
ﬂn ﬂn s Yn=Vn— 7 .
yn 1 n—1

a, =aq,, (C2)

The condition for having a convergent series for the a,
gives the QNM condition (50) and its inverted forms (51),
which we solve numerically to find the frequency w.

The inverted forms are useful for two reasons. First,
numerical searches for the Nth QNM are more stable when
we look for roots of the Nth inversion [20,43]. Second, the
two Egs. (50) and (51) have the same solutions in principle,
but in practice one may find spurious modes due to the
truncation of the infinite continued fractions when solved
numerically. To confirm that the roots indeed correspond to
QNM frequencies, we vary the number of inversions in
Eq. (51) and check that the roots remain stable under these
inversions.

We also calculate the “remainder” of the truncated
continued fraction in Eq. (50), as first introduced by
Nollert [28]. To solve numerically the continued fractions,
we truncate them at some large but finite value, say n.
Numerical convergence can be improved if we make a
specific choice for the rest of the continued fraction. The
remainder R,, which corresponds to the truncated part of
the fraction, is defined by

/
yn-H
Rn =

e (C3)
;1+1 - a;1+1Rn+1

Expanding R, in a series of the form

= 2, (C4)

k=0

we can find an approximation of the remainder as
n— oo. The first few coefficients are Cy=-—1,

= +\/2iw(rg — rs), C; =1(3 = (5rg + 2rg)iw), and

=[3/324+£(£+1)/2- a)(37rBa)+rB(76l 20rsw)+
4rs(—22i+ rs®))]/C;. Following [28], we pick the sign
for C; such that Re[C;] > 0.

2. Black strings

In Sec. VIB 3, we derived the first few modes of a near-
extremal black string and compare them with those of a
near-extremal topological star. The black string solution has
the same metric as in Eq. (4), but with rg > rg, so that the
r =rg locus corresponds to a horizon. This implies a
different mode expansion and boundary conditions than
those used for topological stars in Sec. III.

First, we use the expansion

K(r)

Y™ (o, a)H-pR)’
Ky 0,90

q)f.m.a).p(t’ r,0, d)’y) =

(C5)

where we have replaced the (r—rg)™! by (r—rg)~! to
avoid divergences. The potential for massless scalars with
no momentum along y is now given by

r—rg r—rg

r—rg 0r(r—rs 0rK> —V(r)K=0,

(rs—rB+f(f—|—l)(r—rB)—a)2r3ﬂ>,
r—rg

(Co)

where the radial coordinate ranges from the horizon to
spatial infinity, rg < r < o0. The equation can be recast into
a Schrodinger form 02K — VK =0 with a change of
variable to a new tortoiselike coordinate,
r*=r—rg+ (rg —rg)log(r —rg). (C7)
In contrast to the topological star, the black string boundary
conditions are the same as for a black hole: ingoing waves
at the horizon and outgoing waves at spatial infinity. Thus,

we impose the following series expansion of K(r) to apply
Leaver’s method:

. . r—rg r—rg
K(r)=e-ior(r—r iw(rs—rg) a
( ) ( B) (r rB> Z " <r 14}
Inserting the expansion into the radial

2

S
Nea
equation (C6) yields a four-term recurrence relation for the
a,’s, similar to Eq. (48). The coefficients in the relation are
explicitly given by

where ¢ =

a, = (n+ 1)o*(n + 2iocw + 1),
p. = 0*(4ri +3ric +o°)
= 2ic’w((1 +2n)ri + (14 3n)s?)
—o*(1 +L”+L”2+n(3n—|—2))
Yn = @?(3réc? —4r§ —6ric® = 3ric
+2i(3n = 1)o*(ri + 6w
+(1+£+7>+n(Bn-2))c*,
5, = ((r: + 6*)w —i(n—1)6%)%.

—26°%)

(C8)

We then proceed as in Appendix C 1, reducing the relation
to three terms and solving for the QNM frequencies
numerically using Egs. (50) and (51). To improve the
convergence of the series expansion, we also compute the
remainder coefficients, as in Eq. (C4). The first few
coefficients for the black string case are Cy= -1,
C, =+ 2iw(rs —rg), and C, =13+ (rg — rs)iw).
Again, we pick the sign for C; so that Re[C;] > 0.
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