
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{R}\mathrm{I}\mathrm{X} \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}

\mathrm{V}\mathrm{o}\mathrm{l}. 44, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 1006--1031

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER

PRODUCTS DECOUPLE*

CHARLES COLLEY\dagger , HUDA NASSAR\ddagger , AND DAVID F. GLEICH\dagger

Abstract. Tensor Kronecker products, the natural generalization of the matrix Kronecker prod-
uct, are independently emerging in multiple research communities. Like their matrix counterpart,
the tensor generalization gives structure for implicit multiplication and factorization theorems. We
present a theorem that decouples the dominant eigenvectors of tensor Kronecker products, which
is a rare generalization from matrix theory to tensor eigenvectors. This theorem implies low-rank
structure ought to be present in the iterates of tensor power methods on Kronecker products. We
investigate low-rank structure in the network alignment algorithm TAME, a power method heuristic.
Using the low-rank structure directly or via a new heuristic embedding approach, we produce new
algorithms which are faster while improving or maintaining accuracy, and which scale to problems
that cannot be realistically handled with existing techniques.

Key words. tensor Kronecker product, tensor eigenvectors, graph matching, network
alignments

MSC codes. 68Q25, 15A42, 68R10

DOI. 10.1137/22M1502008

1. Introduction. Given the ubiquity of the matrix Kronecker product, it is no
surprise tensor analogues have been considered where

a b

c d

B

⊗

Matrix Kronecker Product

a b

c d

A

=









aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd









becomes

e f

g ha b

c d

B

⊗

Tensor Kronecker Product.

e f

g ha b

c d

A

=

ee ef fe ff

eg eh fg fh

ge gf he hf

gg gh hg hh

ea eb fa fb

ec ed fc fd

ga gb ha hb

gc gd hc hd

ae af be bf

ag ah bg bh

ce cf ce cf

cg ch cg ch

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

Existing research around this straightforward generalization of Kronecker products
includes random graph models (Akoglu, McGlohon, and Faloutsos, 2008; Eikmeier,
Ramani, and Gleich, 2018), image and tensor completion (Phan et al., 2012; Sun,
Chen, and So, 2018), generalized CP decompositions (Batselier and Wong, 2017;
Phan et al., 2013), and graph alignment (Park, Park, and Hebert, 2013; Mohammadi
et al., 2017; Shen et al., 2018). Generalizations of Kronecker product multiplication
(Sun et al., 2016; Shao, 2013), folding (Ragnarsson-Torbergsen, 2012, section 4.3.6),
and structure inheritance properties (Batselier and Wong, 2017) have been discussed
as well. We introduce a new theorem (section 3.2) which shows that the dominant

*Received by the editors June 10, 2022; accepted for publication (in revised form) by J. Nie
December 22, 2022; published electronically July 14, 2023.

https://doi.org/10.1137/22M1502008
Funding: The work of the authors was partially supported by National Science Foundation

grants IIS-1546488 and CCF-1909528, the NSF Center for Science of Information STC, CCF-0939370,
DOE award DE-SC0014543, and the Sloan Foundation. The second author's research was completed
at Purdue and Stanford.

\dagger
Computer Science, Purdue University, West Lafayette, IN 47907 USA (ccolley@purdue.edu,

dgleich@purdue.edu).
\ddagger
RelationalAI, Boston, MA 02116 USA (huda.nassar@relational.ai).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1006

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1007

z-eigenvector of the tensor \bfitB \otimes \bfitA decouples into the dominant eigenvectors of \bfitB and
\bfitA . This result is a simple generalization of the matrix case, which is surprising given
the many differences between tensor Z-eigenvectors and matrix eigenvectors.

Differences with the matrix case persist, though. For matrices, we have the
stronger result that all eigenvectors of \bfitB \otimes \bfitA (up to invariant subspaces) are
Kronecker products of eigenvectors of \bfitA and \bfitB . This is not true for even a diag-
onal tensor. Consider the example of the eigenvectors of a 4\times 4\times 4 diagonal tensor
with ones on the diagonal \bfitD 4. This tensor can be decomposed into two diagonal
tensors, \bfitD 4 =\bfitD 2\otimes \bfitD 2. Using the software associated with Cui, Dai, and Nie (2014)
(or see Cartwright and Sturmfels (2013, Example 2.2)), the eigenvalues of \bfitD 2 are
\pm 1 and \pm 1/

\surd
2, where the eigenvectors corresponding to 1 are columns of the 2\times 2

identity matrix \bfitI , and the eigenvector corresponding to 1/
\surd
2 is 1/

\surd
2
\bigl[
1 1

\bigr]
. How-

ever, the eigenvalues of \bfitD 4 are \pm 1, \pm 1/2, \pm 1/
\surd
3, and \pm 1/

\surd
2. The eigenvector for

\pm 1/
\surd
3 is any permutation of (1/

\surd
3)

\bigl[
1 1 1 0

\bigr] T
. None of these can be decom-

posed into the Kronecker product of any eigenvectors of \bfitD 2. Our theorem simply
says the dominant eigenvector has such a decomposition. The existence of these other
eigenvectors is expected as the set of projectively equivalent eigenvectors of symmetric
tensors is exponential in the dimension of the tensor (Cartwright and Sturmfels, 2013,
Theorem 1.2).

As an application of our new theorem, we discuss how we can apply both ex-
isting theory on mixed-products and our new theorem to facilitate the use of large
motifs---small repeating subgraphs---in the network alignment algorithm TAME (Mo-
hammadi et al., 2017). Network alignment problems date to the 1950s due to the
relationship with the quadratic assignment problem and facility location (Bazaraa
and Kirca, 1983; Koopmans and Beckmann, 1957; Lawler, 1963). Methods to address
the problem range from relax and round on integer problems (Burkard, Dell'Amico,
and Martello, 2012; Lawler, 1963), to Lagrangian relaxation techniques (Klau, 2009),
to well-motivated heuristics (Singh, Xu, and Berger, 2008), and many other types
of techniques (Patro and Kingsford, 2012; Malod-Dognin and Pr\v zulj, 2015). Recent
eigenvector-inspired spectral approaches (Singh, Xu, and Berger, 2008; Kollias, Mo-
hammadi, and Grama, 2011; Feizi et al., 2019; Nassar et al., 2018) have been among
the most scalable and versatile. TAME is a graph matching algorithm that uses a
tensor Kronecker product and builds upon frameworks which align edges (Blondel et
al., 2004; Zass and Shashua, 2008) to align motifs such as triangles. In TAME, the
key computation is a tensor power method on \bfitB \otimes \bfitA , which is only ever manipulated
implicitly due to its size. Implicit manipulation addresses the memory complexity
but means the computational complexity is quadratic in the number of motifs of the
network. Here, our theorem suggests that iterates of the power method should have
low rank. We find this to be the case and design the LowRankTAME (see section 5.2)
to run TAME using low-rank components. We discuss the limitations of LowRank-
TAME and how to overcome them with a new algorithm \Lambda -TAME (see section 4.3)
which enforces rank 1 structure for additional scalability.

The new algorithm, LowRankTAME, gives around a 10-fold runtime improve-
ment while producing the same iterates as TAME. The new algorithm \Lambda -TAME uses
the decoupling in Theorem 3.3 to independently processes graphs \bfitA and \bfitB akin to
the NSD algorithm (Kollias, Mohammadi, and Grama, 2011). When \Lambda -TAME is
combined with careful refinement involving nearest neighbor queries, local search, or
Klau's algorithm (Klau, 2009), it has faster end-to-end runtimes and better perfor-
mance (the number of edges and motifs matched increases). Moreover, it scales up
to aligning 9-cliques, which is well beyond the capabilities of existing algorithms. In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1008 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

fact, the discrete operations involving matching and refinement now dominate runtime
compared with the linear algebra.

The remainder of our paper formally establishes these results. It begins with a
brief overview of our preliminaries for tensors (section 2). From there we move on to
our three primary contributions:

(1) a novel extremal Z-eigenbound for tensor Kronecker products (section 3.2),
(2) an exploration of how newly found low-rank structure can accelerate the graph

matching algorithm TAME (section 4.2),
(3) a new algorithm \Lambda -TAME which outperforms TAME in speed and accuracy

and allows us to align larger motifs efficiently (section 4.3).
We evaluate our work by exploring larger motifs than previously considered feasible
in section 5. We align protein-protein interaction (PPI) networks from the Biogrid
repository (Stark et al., 2006) collected in the Local vs. Global Network Alignment
collection (LVGNA) (Meng, Striegel, and Milenkovi\'c, 2016) along with random geo-
metric networks perturbed with partial duplication (Bhan, Galas, and Dewey, 2002;
Chung et al., 2003; Hermann and Pfaffelhuber, 2014) and Erd\H os--R\'enyi noise models
(Feizi et al., 2019, section 3.4). Our code is available (see section 5) and we have at-
tempted to make our results as reproducible as possible by including the experiment
driver codes as well.

2. Definitions and preliminaries.

2.1. General matrix and graph notation. We use uppercase bold letters for
matrices, \bfitA , \bfitX , and lowercase bold letters for vectors, x,y. We use colons over an
index to denote a row or column of a matrix, akin to MATLAB. The vector of all
ones of length n is 1n. A graph consists of a vertex set V an edge set E. It can be
weighted with a positive edge weight for each edge and an implicit zero weight for
each nonedge, or it can be unweighted, in which case edges have an implicit weight
of 1 and nonedges have weight 0. All of the graphs we consider are undirected. The
adjacency matrix then corresponds with a symmetric matrix of edge weights for a
fixed order of the vertices.

2.2. Tensor notation and tensor eigenvectors. Tensors are denoted by bold
underlined uppercase letters, \bfitA , \bfitT , \bfitS . We use a bold tuple of indices i= (i1, . . . , ik)
to denote each element of the tensor A(i) =A(i1, . . . , ik) (Golub and van Loan, 2013,
section 12.4.2). The axes of a tensor are called modes. A matrix is a 2-mode tensor,
and we consider k-modes in general. We call a tensor symmetric if entries are the
same in all permutations of the tensor modes. When the dimension for each mode
of a tensor is the same, we call this tensor cubical. We use the shorthand [n]k to
enumerate multi-indices i across all choices of 1 . . . n in each of the k modes.

Let \bfitA be a k-mode, cubical tensor of dimension n. We make frequent use of the
polynomial

\sum

i\in [n]k

A(i)x(i1)x(i2) \cdot \cdot \cdot x(ik), written as \bfitA xk,

which generalizes the quadratic xT\bfitA x=
\sum

ij Aijxixj (and we could write it as \bfitA x2).
We adopt a functional notation in general. When contracting p \leq k modes (with
potentially p different vectors), we express

\sum

\ell \in [n]p

A(\ell , j)x1(\ell 1) \cdot \cdot \cdot xp(\ell p) as \bfitA (x1, . . . ,xp),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1009

where j\in [n]k - p indexes the trailing uncontracted modes. When contracting the same
vector in each mode, we can simply write \bfitA xp.

We call multiplying by a matrix \bfitX \in \BbbR
n\times r in a given mode a modal product.

The modal product of the first mode produces a nonsymmetric tensor, traditionally
written as \bfitA \times 1 \bfitX , whose first mode becomes dimension r and other modes remain
dimension n. Modal products may be extended to \bfitA \times 1 \bfitX \times 2 \cdot \cdot \cdot \times p \bfitX for p \leq k
products. For p matrices of dimension n by r matrices and the indices i \in [r]p and
j\in [n]p, we write a general modal product as

(2.1) [\bfitA \times 1 \bfitX 1 \times 2 \cdot \cdot \cdot \times p \bfitX p](i, j) = [\bfitA
\bigl(
\bfitX 1(:, i1),\bfitX 2(:, i2), . . . ,\bfitX p(:, ip)

\bigr)
](j).

There are a variety of notions of tensor eigenvectors (Qi and Luo, 2017). We use
the Z-eigenvector of Qi (2005) or the \ell 2 eigenvectors of Lim (2005). A Z-eigenpair of
a tensor \bfitA is a pair (\lambda ,x) with \lambda scalar and x an n-vector, where

(2.2) \bfitA xk - 1=\lambda x \| x\| 2=1.

Equivalently, a tensor Z-eigenpair is a KKT point of the optimization problem

(2.3) maximize \bfitA xk subject to \| x\| k2 = 1.

There is an exponentially increasing number of tensor eigenvectors as the number of
modes k grows (Cartwright and Sturmfels, 2013). For symmetric tensors, the eigen-
vectors can be computed via the Laserre hierarchy and convex programming (Cui, Dai,
and Nie, 2014) or Newton methods (Jaffe, Weiss, and Nadler, 2018), although these
techniques do not scale to large tensors. The higher-order power method (De Lath-
auwer et al., 1995), the symmetric shifted higher-order power method (SS-HOPM)
(Kolda and Mayo, 2011), its generalizations (Kolda and Mayo, 2014), and dynamical
systems (Benson and Gleich, 2019) are among the scalable ways to compute tensor
eigenvectors. Although these scalable methods may not have the most satisfactory
theoretical guarantees, they are practical and useful.

2.3. Kronecker products of tensors and vectorization. The Kronecker
product \otimes between matrices arises from treating the pair of matrices \bfitB and \bfitA in
\bfitY = \bfitA \bfitX \bfitB T as a linear operator from \bfitX to \bfitY . (The order arises from how the
matrix \bfitX is linearized; see more below.) The way we present the definition of \bfitB \otimes \bfitA

for matrices involves a more complicated-seeming interleaving of indices from \bfitA and
\bfitB , but this will enable a seamless generalization to tensors. Let i i represent a lin-
earization, or vectorization, of the pair i, i\prime to a single index. For instance, if both i, i\prime

range from 1 to m, then i i represents the linearized index i+m(i\prime - 1) where we have
vectorized by the first index. This joint index notation is exactly the vectorization

vec(X)[i i′] = X(i, i′),

where we use the ``matrix-to-vector"" operator vec, which converts matrix-data into
a vector by columns. We extend this definition to an interleaving of index pairs as

in (i, j) (i′, j′) (i i′, j j′). This gives us the matrix Kronecker product

(B A)[i i′, j j′] = A(i, j)B(i′, j′).

Using this notation we have for \bfitY =\bfitA \bfitX \bfitB T , let y=vec(\bfitY),x=vec(\bfitX), and

y[i
⊥
i
′] =

j j
′

(B ⊗A)[i
⊥
i
′
, j
⊥
j
′]x[j

⊥
j
′] =

j j
′

A(i, j)B(i′, j′)x[j
⊥
j
′].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1010 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

The nice thing about this notation is it gives us a seamless way to generalize to
tensors. Given two k-tuples of indices i and i\prime we have . Then if
\bfitA and \bfitB are two k-mode cubical tensors, we have the elementwise definition

Equivalently, we can define this in terms of single element tensors. Let \bfitE i be a tensor
with a 1 in the i entry and zero elsewhere. Then\bfitA =

\sum

i
A(i)\bfitE i and\bfitB =

\sum

i
\prime B(i\prime)\bfitE i

\prime ,
and

\bfitB \otimes \bfitA =

\Biggl(
\sum

i
\prime

B(i\prime)\bfitE i
\prime

\Biggr)

\otimes
\Biggl(
\sum

i

A(i)\bfitE i

\Biggr)

=
\sum

i,i\prime

A(i)B(i\prime)\bfitE i
\prime \otimes \bfitE i.

Using the elementwise definition above \bfitE i
\prime \otimes \bfitE i only has a single nonzero in the

entry.

3. The dominant eigenvector of the multilinear Kronecker product.

Our primary contribution within this section is the eigenvalue theorem (Theorem 3.3),
which establishes a relationship between the dominant eigenpairs of the operands in
\bfitB \otimes \bfitA and the dominant eigenpair of that tensor. Both the proof of our main theorem
and the faster graph matching computations use a number of results about computing
the contraction

(3.1) (\bfitB \otimes \bfitA)vec(\bfitX)k - 1 when \bfitX is low-rank.

The contraction lemmas we use are known (Ragnarsson-Torbergsen, 2012; Shao, 2013;
Sun et al., 2016; Batselier and Wong, 2017). We include our own proofs in the
supplement SM1 for completeness and, if needed, to build intuition about our specific
notation.

3.1. Existing contraction lemmas in our notation. We begin with a gen-
eralization of two core matrix Kronecker contraction theorems that we make use of
in our proof and application: (\bfitB \otimes \bfitA)(y\otimes x) = (\bfitB y)\otimes (\bfitA x) and (\bfitB \otimes \bfitA)vec(\bfitX) =
vec(\bfitA \bfitX \bfitB T). Each lemma will allow us to compute the contractions in terms of the
rank 1 components of \bfitX . The lemmas are critical to power method algorithms be-
cause forming \bfitB \otimes \bfitA is prohibitively expensive even in the matrix case. When the
rank of \bfitX and the orders of the tensors are small this is a more effective strategy
than implicit contraction with the dense form of \bfitX .

Lemma 3.1. Given two k-mode, cubical tensors \bfitA and \bfitB of dimension m and

n, respectively, and the m\times n rank 1 matrix \bfitX = uvT , then for 1\leq p\leq k,

(\bfitB \otimes \bfitA)vec(\bfitX)p = (\bfitB \otimes \bfitA)(v\otimes u)p =\bfitB vp \otimes \bfitA up.(3.2)

The proof of the lemma can be found using unfolding theorems (Ragnarsson-
Torbergsen, 2012, TKP Property 4), or a matrix specific version can be found in
Batselier and Wong (2017, equation 3.3). Lemma 3.1 allows us to completely decouple
the contractions between the two operands. The mixed product property actually
generalizes in its entirety and can be found in Shao (2013, Theorem 3.1) and Sun
et al. (2016, Proposition 2.3). The second lemma allows us to work with a general
matrix \bfitX = \bfitY \bfitZ T where \bfitY and \bfitZ have r columns. For the matrix case, we have
vec(\bfitA \bfitX \bfitB T) = vec(\bfitA \bfitY \bfitZ T\bfitB T) = (\bfitB \bfitZ \otimes \bfitA \bfitY)vec(\bfitI), where \bfitI is the r\times r identity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1011

Lemma 3.2. Given two k-mode, cubical tensors \bfitA and \bfitB of dimension m and

n, respectively, and the matrix \bfitX \in \BbbR m\times n of rank r with the r column decomposition

\bfitX =\bfitY \bfitZ T , then

(\bfitB \otimes \bfitA)vec(\bfitX)p =
\sum

i=[r]p

\bfitB (\bfitZ (:, i1), . . . ,\bfitZ (:, ip))\otimes \bfitA (\bfitY (:, i1), . . . ,\bfitY (:, ip))

= ((\bfitB \times 1 \bfitZ \times 2 \cdot \cdot \cdot \times p \bfitZ)\otimes (\bfitA \times 1 \bfitY \times 2 \cdot \cdot \cdot \times p \bfitY))vec(\bfitI)p,

where \bfitI is the r\times r identity matrix.

The proof can be found in Ragnarsson-Torbergsen (TKP Property 3). Lemma
3.2 is what we use to compute contractions when the rank of \bfitX or the order of the
motifs is sufficiently small. We include self-contained proofs of each lemma using our
notation in sections SM1.1 and SM1.2.

3.2. Dominant Z-eigenpairs. A useful property of Kronecker products is that
the eigenvalues and eigenvectors of \bfitB \otimes \bfitA decouple into Kronecker products of the
eigenvectors of \bfitA and \bfitB , individually. This makes spectral analysis of matrix Kron-
ecker products efficient. We call an eigenpair dominant if it is the global maximum
of | \bfitA xk| where \| x\| = 1. Here, we show that this decoupling property remains true
for the dominant tensor eigenvector of a Kronecker product of tensors.

Theorem 3.3. Let \bfitA be a symmetric, k-mode, m-dimensional tensor and \bfitB

be a symmetric, k-mode, n-dimensional tensor. Suppose that (\lambda \ast
A,u

\ast) and (\lambda \ast
B ,v

\ast)
are any dominant tensor Z-eigenvalues and vectors of \bfitA and \bfitB , respectively. Then

(\lambda \ast
A\lambda

\ast
B ,v

\ast \otimes u\ast) is a dominant eigenpair of \bfitB \otimes \bfitA . Moreover, any Kronecker product

of Z-eigenvectors of \bfitA and \bfitB is a Z-eigenvector of \bfitB \otimes \bfitA .

Proof. Let x=vec(\bfitX) be any vector with \| x\| 2 = \| \bfitX \| F = 1 where \bfitX is an m\times n
matrix. Let z(i) = \| \bfitX (:, i)\| 2. We have \| z\| 2 = 1 as well. Then we create

\bfitZ =diag(z(1), . . . , z(n)) and \bfitY so that \bfitX =\bfitY \bfitZ .

The ith column of \bfitY is either normalized or entirely 0 (if z(i) = 0). Recall that the
dominant eigenpair maximizes | (\bfitB \otimes \bfitA)xk| = | (\bfitB \otimes \bfitA)vec(\bfitX)k| . From Lemma 3.2
we have

| (\bfitB \otimes \bfitA)vec(\bfitX)k| =
\bigm|
\bigm|
\bigm|
\bigm|
\bigm|

\sum

i

\bfitA (\bfitY (:, i1), . . . ,\bfitY (:, ik))\bfitB (\bfitZ (:, i1), . . . ,\bfitZ (:, ik))

\bigm|
\bigm|
\bigm|
\bigm|
\bigm|

=

\bigm|
\bigm|
\bigm|
\bigm|
\bigm|
\bigm|

\sum

i

\bfitA (\bfitY (:, i1), . . . ,\bfitY (:, ik))
k\prod

j=1

z(ij)\bfitB (\bfitI (:, i1), . . . ,\bfitI (:, ik))

\bigm|
\bigm|
\bigm|
\bigm|
\bigm|
\bigm|

,

where \bfitI (:, j) is the jth column of the identity matrix. Now, because \bfitA is symmetric,
we have that

| \lambda \ast
A| =maximize | \bfitA (u1, . . . ,uk)| subject to \| ui\| = \{ 0,1\} .

This follows from a result on the best rank 1 approximation of a symmetric tensor
(Zhang, Ling, and Qi, 2012, Theorem 2.1), where the result is with \| ui\| = 1. We can
handle cases where \| ui\| = 0 (which we could have for zero columns of \bfitX) by simply
noting that such an \bfitX would make (\bfitB \otimes \bfitA)vec(\bfitX)k = 0, so the maximum will never
occur for those. Thus, this gives us an upper-bound on | \bfitA (\bfitY (:, i1), . . . ,\bfitY (:, ik))|

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1012 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

Fig. 3.1. We computationally verify Theorem 3.3 in a handful of random problems. Our syn-
thetic problems are of size m,n \in \{ 2,3,4\} and k \in \{ 3,4,5\} . There are 30 trials overall and we
show a density plot, median, min, and max over the results. We report the differences of the domi-
nant z-eigenpairs of tensor Kronecker product and its operands. For each tensor we use the largest
magnitude \lambda found from each of the methods (Cui, Dai, and Nie, 2014; Jaffe, Weiss, and Nadler,
2018) and its associated eigenvector. To measure eigenvector similarity, we use 1 - | \langle \cdot , \cdot \rangle | , where the
absolute value addresses sign discrepancies. We initialize the NCM methods with 5000 uniformly
drawn points from the unit sphere, and use the default parameters of the methods of Cui, Dai, and
Nie. The NCM methods use a tolerance of 10 - 10 to measure differences in eigenvalues, whereas
the methods of Cui, Dai, and Nie use 10 - 4. We stored the tensors and results for future study by
others in our codes.

| (\bfitB \otimes \bfitA)vec(\bfitX)k| \leq | \lambda \ast
A| \cdot

\bigm|
\bigm|
\bigm|
\bigm|
\bigm|
\bigm|

\sum

i

k\prod

j=1

z(ij)\bfitB (\bfitI (:, i1), . . . ,\bfitI (:, ik))

\bigm|
\bigm|
\bigm|
\bigm|
\bigm|
\bigm|

.

Here, \bfitB (\bfitI (:, i1), . . . ,\bfitI (:, ik)) is just B(i) and | \sum
i

\prod k
j=1 z(ij)B(i)| = | \bfitB zk| \leq | \lambda \ast

B | .
Putting the pieces together, we have that the dominant Z-eigenvalue of \bfitB \otimes \bfitA \leq
| \lambda A\lambda B | .

Now we show that Kronecker products of eigenvectors are also eigenvectors. Let
u and v be any Z-eigenvectors of \bfitA and \bfitB , with eigenvalues \lambda A and \lambda B , respectively;
then

(\bfitB \otimes \bfitA)(v\otimes u)k - 1 = (\bfitB uk - 1)\otimes (\bfitA vk - 1) = \lambda Bu\otimes \lambda Av= (\lambda A\lambda B)(v\otimes u).

Using u\ast and v\ast gives us an eigenvector that achieves the upper-bound | \lambda \ast
A\lambda

\ast
B | .

Observations. For nonnegative tensors \bfitA and \bfitB in Theorem 3.3, \lambda A, \lambda B are
nonnegative because the components of the best rank 1 approximation are nonnegative
(Qi, 2018, Proposition 6). Consequently, the dominant eigenvalue and eigenvectors of
the Kronecker product are nonnegative.

We provide additional MATLAB routines (and precomputed results) making use
of Cui, Dai, and Nie (2014) and Jaffe, Weiss, and Nadler (2018) as computational ver-
ification for Theorem 3.3 with randomized symmetric tensors which are small enough
to enumerate the entire spectrum of \bfitA and \bfitB . As expected, we found no coun-
terexamples with random dense symmetric tensors generated with the tensor toolbox
(Bader and Kolda, 2008), where we sample the spectra with the constrained poly-
nomial optimization of Cui, Dai, and Nie (2014) and the Newton correction method
(and its orthogonal variant) of Jaffe, Weiss, and Nadler (2018). We report the relative
difference between the largest magnitude z-eigenvalue found for \bfitA , \bfitB , and \bfitB \otimes \bfitA ,
and the inner product of the associated eigenvectors in Figure 3.1. This identified no
exceptions to our theorem up to computational tolerances.

4. Faster higher-order graph alignment methods via Kronecker struc-

ture. We show how the tensor Kronecker product results from the previous section al-
low us to improve the higher-order network alignment algorithm TAME (Mohammadi
et al., 2017) in two ways. First, Lemma 3.2 is the key to understanding how to use

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1013

the Kronecker structure to make the iteration (\bfitT B \otimes \bfitT A)x
k - 1 from TAME faster

when x = vec(\bfitX) and \bfitX is low-rank and the number of modes---equivalent to the
size of the motif---is not too large. Second, when expanding to larger motifs, such as
9-cliques, we will need to rely on our new simpler algorithm \Lambda -TAME (section 4.3),
which is built upon our novel decoupling result, Theorem 3.3.

4.1. Background on higher-order graph alignment. Higher-order graph
alignment considers motifs, or small subgraphs, beyond edges (Conte et al., 2004;
Bayati et al., 2013; Singh, Xu, and Berger, 2008) that are matched between a pair of
networks. A motif is simply a graph---usually small, like a triangle---and an instance of
a motif in a graph is simply an instance of an isomorphic induced subgraph (Milo et al.,
2002). From any graph we can induce a k-regular hypergraph H by identifying hyper-
edges with the presence of motifs with k vertices (Estrada and Rodr\'{\i}guez-Vel\'azquez,
2006; Klymko, Gleich, and Kolda, 2014; Benson, Gleich, and Leskovec, 2015; Mo-
hammadi et al., 2017). Then the full edge set of the hypergraph involves enumerating
all the instances of the motif. This can be computationally demanding to enumer-
ate complicated motifs but is fast for simple motifs like triangles and small cliques,
and random sampling can make the process reasonable for larger cliques (Jain and
Seshadhri, 2020). Analogously to the adjacency matrix, we use an adjacency tensor
\bfitA to denote the presence of these motifs or, equivalently, hyperedges. Formally,

A(i1, . . . , ik) =

\Biggl\{

1 if nodes i1, . . . , ik form motif M,

0 else.

Each permutation of the indices corresponds to a different orientation of the motif M .
Consequently, the adjacency tensor of a hypergraph is a symmetric, cubical tensor for
the motifs we consider.

The higher-order graph alignment problem we consider is defined in terms of a
matching between the vertices of two graphs (Chertok and Keller, 2010; Park, Park,
and Hebert, 2013; Mohammadi et al., 2017). For a pair of graphs A and B we
characterize a matching between their vertex sets as a matrix.

Definition 4.1 (matching matrix). Let A and B be two graphs of size m and

n, respectively; then we define the matching matrix \bfitX \in \{ 0,1\} m\times n such that

\bfitX 1n \leq 1m, \bfitX T
1m \leq 1n, and \bfitX (i, i\prime) =

\Biggl\{

1 if i\in VA is matched to i\prime \in VB ,

0 else.

We suppose we are given a similarity tensor \bfitS where entries can be indexed using
a pair of tuples i to represent the vertices of a motif in graph A and i\prime to represent
the vertices of motif from graph B. The value S(i, i\prime) indicates the similarity of the
motif at indices i in graph A to the motif at indices i\prime in graph B. A simple form of
higher-order graph alignment problem is to optimize

maximize
\sum

i

\sum

i\prime
[S(i, i\prime)X(i1, i

\prime
1)X(i2, i

\prime
2) \cdot \cdot \cdot X(ik, i

\prime
k)]

subject to \bfitX is a matching.

The goal here is to find high-similarity entries S(i, i\prime) where the vertices involved in
the motifs are matched. This subsumes an edge based alignment framework (such as
Feizi et al. (2019)) because i could have just been the pair (i, j).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1014 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

We often find it convenient to write this objective as

maximize \bfitV vec(\bfitX)k =\bfitV xk

subject to \bfitX is a matching,

where we convert the similarity tensor \bfitS into a tensor \bfitV indexed with the same
order with the vec operator. This tensor to ``operator for vec(\bfitX)"" transformation is
something we repeatedly use and we write it as

(4.1)
S ⇔

vec

V means S(i1, · · · , ik, i1, · · · , ik) = S(i, i) = V [i i] = V [i1 i1, · · · , ik ik].

This vec-form makes the eigenvector -heuristic inspiration clear because eigenvectors
optimize the generalized Rayleigh quotient \bfitA xk.

Choices of \bfitS whose indices decompose into products of independent indices (i.e.,
(i, j, k) and (i\prime , j\prime , k\prime)) give rise to tensors \bfitV with Kronecker structure. This can arise
via motifs as in TAME (Mohammadi et al., 2017) and weighted angle alignments
(Park, Park, and Hebert, 2013) as well as alignments with nonmotifs (Feizi et al.,
2019), whose edge based construction could generalize to hypergraphs.

In TAME (Mohammadi et al., 2017), we set \bfitS to 1 if there is a triangle at
both i in A and i\prime in B. If we denoted the triangles of A and B in the triangle
adjacency tensors \bfitT A and \bfitT B , respectively, TAME's similarity tensor \bfitS would be
S(i, j, k, i\prime , j\prime , k\prime) = TA(i, j, k)TB(i

\prime , j\prime , k\prime). Though simple, this form is informative
when given a matching \bfitX , as

\sum

i,j,k

\sum

i\prime ,j\prime ,k\prime

TA(i, j, k)TB(i
\prime , j\prime , k\prime)

\underbrace{} \underbrace{}

S(i,i\prime)=S(i,j,k,i\prime ,j\prime ,k\prime)

X(i, i\prime)X(j, j\prime)X(k, k\prime) = 6

\Biggl(the number of
triangles aligned
between A and B

\Biggr)

.

This also gives us a tensor \bfitV = \bfitT B \otimes \bfitT A. The computer vision algorithm HOFASM
(Park, Park, and Hebert, 2013) approximates a similarity tensor \bfitS between pairs of
triplets of a image features with a tensor of the form \bfitV =

\sum

r,s\bfitB r,s \otimes \bfitH r,s. For
simplicity, we define the following objective function that will guide our subsequent
research.

Definition 4.2 (global graph alignment). Fix graphs A and B to have m and

n vertices, respectively, an m \times n prior weight matrix \bfitW , and a motif M with k
vertices. Let \bfitS be a 2k-mode similarity tensor where the S(i, i\prime) entry denotes the

similarity between the motifs induced by the vertices i in graph A and i\prime in graph B.

Then we wish to find a matching \bfitX between the vertices in A to the vertices in B
which optimizes

maximize
\sum

i

\sum

i\prime
[S(i, i\prime)X(i1, i

\prime
1)X(i2, i

\prime
2)\cdot \cdot \cdot X(ik, i

\prime
k)] +

\sum

i,i\prime W (i, i\prime)X(i, i\prime)

subject to \bfitX is a matching.

Equivalently, we let \bfitV be the k-mode ``vec-operator"" form of \bfitS , i.e., \bfitS \leftrightarrow
vec

\bfitV or

. Then the problem is

(4.2)
maximize \bfitV vec(\bfitX)k + trace(\bfitW T\bfitX)

subject to \bfitX is a matching,

which makes the tensor-eigenvector inspiration clear (see section 2.2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1015

The tensor \bfitS will change depending on what structure we will consider for the higher-
order matching problem and we may adjust the weightings between the prior matrix
and the affinity tensors (a similar edge based framework can be found in Berg, Berg,
and Malik (2005)). Note that \bfitS is not required to be symmetric in permutations of
the first k entries, which are permutations of i, but in the problems we consider in
this paper, it will be, and likewise for permutations of the last k entries for i\prime . Note
that this means that \bfitV is a symmetric tensor, although \bfitS is not even cubical.

4.2. TAME and LowRankTAME. TAME is a spectral method that uses a
tensor-eigenvector heuristic to guide an alignment. It arises from the network align-
ment literature in bioinformatics. The TAME method is a simple instance of the
higher-order graph alignment framework (Definition 4.2) where, given two graphs A
and B, we first enumerate triangles (or any motif of interest) in each, to build triangle
adjacency tensors \bfitT A and \bfitT B . Then we set S(i, i\prime) = TA(i)TB(i

\prime). For this choice,
we have

(4.3) \bfitS \leftrightarrow
vec

\bfitV = \bfitT B \otimes \bfitT A.

This results in the following idealized optimization problem for TAME:

(4.4)
maximize (1 - \alpha)trace(\bfitW T\bfitX) + \alpha

6 (\bfitT B \otimes \bfitT A)vec(\bfitX)3

subject to \bfitX is a matching.

Here the value \alpha /6 arises because each triangle alignment gives six entries in \bfitT B\otimes \bfitT A

due to symmetry. The weight matrix \bfitW gives flexibility to bias the alignment toward
certain nodes. When no prior matrix is available, we make use of a rank 1 matrix
\bfitW = 1

mn
1m1

T
n , which gives a uniform bias everywhere.

The heuristic procedure used in TAME is to deploy the SS-HOPM algorithm
(Kolda and Mayo, 2011) to seek a tensor eigenvector, or near tensor eigenvector, of
\bfitV = \bfitT B \otimes \bfitT A. We show the procedure in Algorithm 4.1. We present an affine-shift
variant of the TAME method that includes the mixing parameter \alpha to remix in the
original iterate, whereas TAME (Mohammadi et al., 2017) fixed \alpha = 1. This choice
sometimes helps boost performance a little bit.

Algorithm 4.1. TAME (Mohammadi et al., 2017) with affine shift.
Require: k-mode motif tensors \bfitT A,\bfitT B for graphs A and B, mixing parameter \alpha ,

shift \beta , tolerance \varepsilon , weights \bfitW
Ensure: Alignment heuristic \bfitX and max-weight matching of \bfitX
1: \bfitX 0 =\bfitW /\| \bfitW \| F \triangleleft Normalize first iterate

2: for \ell = 0,1, . . . until | \lambda \ell +1 - \lambda \ell | < \varepsilon do

3: \triangleleft SS-HOPM iteration

4: \bfitX \ell +1 =unvec((\bfitT B \otimes \bfitT A)vec(\bfitX \ell)
k - 1) \triangleleft Implicitly

5: \lambda \ell +1 = trace(\bfitX T
\ell \bfitX \ell +1) \triangleleft Estimate tensor-eval

6: \bfitX \ell +1\leftarrow \alpha \bfitX \ell +1 + \alpha \beta \bfitX \ell + (1 - \alpha)\bfitX 0

7: \bfitX \ell +1\leftarrow \bfitX \ell +1/\| \bfitX \ell +1\| F
8: Set t\ell +1 to be the number of motifs aligned by a matching from \bfitX \ell +1

9: return \bfitX \ell and the matching of \bfitX \ell with the highest t\ell

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1016 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

Rounding with matching and scoring. At each iteration, we explicitly round

the continuous valued \bfitX and compute a matching using a max-weight matching
algorithm. Then the procedure returns the best iterate with the highest downstream
objective (triangle alignment, mixture, or some other combination). Returning the
full iterate information is helpful for further refinement of the solution using a local
search strategy described in section 4.4. This max-weight matching step, which is
executed at each iteration, becomes expensive after we optimize the linear algebra
using the Kronecker theory.

Implicit multiplication. In TAME the authors make use of an implicit opera-
tion to compute the iterates of the tensor powers

(4.5) \bfitT B \otimes \bfitT Avec(\bfitX)k - 1

without forming \bfitT B \otimes \bfitT A. This computation still takes O(nnz(\bfitT B)nnz(\bfitT A)) work,
where nnz is the number of nonzero entries in the sparse tensor. In the case of the
uniform bias prior (\bfitW = 1

mn
1m1

T
n), the first iterate is rank 1, so we could apply

Lemma 3.1 to decouple the operation. Because of the shift \beta , however, subsequent
iterations will not remain rank 1, as the following observation clarifies.

Our observation. Suppose that \bfitW is rank 1 and we are dealing with a k-mode
tensor. We can use Lemma 3.2 to bound the rank of successive iterates. Suppose that
we have a rank r iterate \bfitX \ell . Then Lemma 3.2 shows that the next iterate \bfitX \ell +1 can
grow to rank at most rk - 1+rank([\beta \bfitX \ell , (1 - \alpha)\bfitW])\leq rk - 1+r+1. This follows from
the number of combinations of vectors in the lemma combined with the addition of
the rank factors reintroduced by the shifts \alpha and \beta . In the case of symmetric tensors,
rk - 1 can be reduced to

\bigl(
r+k - 2
k - 1

\bigr)
, but we use the loose upper-bound rk - 1 for simplicity.

This analysis gives the worst-case scenario for the rank growth of the iterates.
In practice, we find it extremely conservative. (See evidence in section 5.2.) This
means that there is a useful low-rank strategy to employ with our theory. Namely,
use Lemma 3.2 to compute the components (\bfitU ,\bfitV T) of the next iterate \bfitX \ell +1 =\bfitU \bfitV T

in factored form. Then compute a minimal rank representation of \bfitU \bfitV T , such as via
SVD or any rank-revealing factorization applied to \bfitU and \bfitV . As long as the rank
does not get too big, this will be faster.

An exact low-rank TAME iteration. Let \bfitW =\bfitF \bfitG T be the low-rank factors
of the weight matrix \bfitW and let t be the rank of the initial matrix. The key idea
of low-rank TAME is to compute a rank r factorization of the iterate \bfitX \ell and use
Lemma 3.2 to compute all the rk - 1 terms in the summation expansion to give us
\bfitX \ell +1 =\bfitU \ell +1\bfitV

T
\ell +1. (This is r

2 for triangle tensors.) The low-rank terms of the next
iteration are found by running a rank-revealing factorization (such as the SVD or
rank-revealing QR) on \bfitU \ell +1 and \bfitV \ell +1 concatenated with the low-rank terms of the
previous iterations and initial iterate (scaled by the appropriate \alpha and \beta). The full
procedure is detailed in Algorithm 4.2.

The dominant terms in the overall runtime of this approach for k-node motifs
is O(nnz(\bfitT A) + nnz(\bfitT B))r

k - 1 + RRF(m, (rk - 1 + r + t)) + RRF(n, (rk - 1 + r + t)),
where RRF is the cost of the rank-revealing factorization. There are many options for
the RRF, including randomized and tall-and-skinny approaches. In our codes and the
pseudocode we use a rank-revealing method inspired by the R-SVD (which does a QR
factorization before an SVD to reduce the work in the SVD) and the structure of our
problem. More on the asymptotic runtime of the R-SVD versus SVD can be found
in Golub and van Loan (2013, Figure 8.6.1). Representative values of the ranks r are
typically 100 and are much smaller than n or m (see more discussion in section 5.2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1017

Algorithm 4.2. LowRankTAME with affine shift.
Require: k-mode motif tensors \bfitT A,\bfitT B for graph A and B, mixing parameter \alpha ,

shift \beta , tolerance \varepsilon , weights \bfitW =\bfitU \bfitV T

Ensure: Alignment heuristic \bfitX and max-weight matching of \bfitX

1: C = trace((\bfitV T\bfitV)(\bfitU T\bfitU)) \triangleleft C = | | \bfitW | | 2
2: \bfitU 0 =\bfitU /

\surd
C;\bfitV =\bfitV 0/

\surd
C \triangleleft Normalize first iterate

3: for \ell = 0,1, . . . until | \lambda \ell +1 - \lambda \ell | < \varepsilon do

4: \triangleleft Exact LowRank SS-HOPM iteration

5: \triangleleft Compute next iterate from low-rank factors, r= num cols of \bfitU \ell ,\bfitV \ell

6: for each i1 in 1 . . . r, i2 in 1, . . . , r, \cdot \cdot \cdot , ik - 1 in 1, . . . , r do \triangleleft Using Lemma 3.2
7: append column \bfitT A(\bfitU \ell (:, i1), . . . ,\bfitU \ell (:, ik - 1)) to \bfitU \ell +1

8: append column \bfitT B(\bfitV \ell (:, i1), . . . ,\bfitV \ell (:, ik - 1)) to \bfitV \ell +1

9: \triangleleft Estimate tensor-eval

10: \lambda \ell +1 = trace((\bfitV T
\ell +1\bfitV \ell)(\bfitU

T
\ell \bfitU \ell +1))

11: \triangleleft Apply affine shift in low-rank factors

12: \bfitU \ell +1\leftarrow [
\surd
\alpha \bfitU \ell +1

\surd
\alpha \beta \bfitU \ell

\surd
1 - \alpha \bfitU 0]

13: \bfitV \ell +1\leftarrow [
\surd
\alpha \bfitV \ell +1

\surd
\alpha \beta \bfitV \ell

\surd
1 - \alpha \bfitV 0]

14: \triangleleft Rank-revealing factorization: Reduce to lowest rank terms

15: \bfitQ \bfitU ,\bfitR \bfitU = QR(\bfitU \ell +1);\bfitQ \bfitV ,\bfitR \bfitV = QR(\bfitV \ell +1);

16: \^\bfitU , \^\Sigma , \^\bfitV
T
= svd(\bfitR \bfitU \bfitR T

\bfitV) \triangleleft Discarding near zero singular values \& vectors.

17: \bfitU \ell +1\leftarrow \bfitQ \bfitU
\^\bfitU ; \bfitV \ell +1\leftarrow \bfitQ \bfitV (\^\bfitV \^\Sigma)

18: \triangleleft Normalize

19: C = trace((\bfitV T
\ell +1\bfitV \ell +1)(\bfitU

T
\ell +1\bfitU \ell +1))

20: \bfitU \ell +1\leftarrow \bfitU \ell +1/
\surd
C;\bfitV \ell +1\leftarrow \bfitV \ell +1/

\surd
C;

21: \bfitX \ell +1 =\bfitU \ell +1\bfitV
T
\ell +1

22: Set t\ell +1 to be the number of motifs matched by a matching from \bfitX \ell +1

23: return \bfitX \ell and the matching of \bfitX \ell with the highest t\ell

We find that using the R-SVD finds the singular values of the low-rank components
of TAME with more precision, as shown in Figure A.1.

The primary limitation to contracting with low-rank components is how much
memory explicitly computing the terms requires. When rk <min\{ m,n\} , then building
\bfitU and \bfitV is preferable because finding the low-rank components for the next iteration
can be done more efficiently and accurately than a dense \bfitX . (For accuracy, see section
A.1.) If rk > min\{ nnz(\bfitT A),nnz(\bfitT B)\} , then running the original TAME implicit
multiplication procedure will be faster (as can be seen in the seven clique results of
Figure SM1). However, when min\{ m,n\} \leq rk < min\{ nnz(\bfitT A),nnz(\bfitT B)\} , then the
matrices \bfitU and \bfitV become wide. In these cases, the low-rank structure itself is only
beneficial in reducing overall work. We can treat \bfitX as an accumulation parameter
and update it with the outer product of the columns of \bfitU and \bfitV as we compute them.
This can be made more efficient by computing batches of columns, but the best batch
size will be system dependent and is a level of tuning we leave to end users.

4.3. \Lambda -TAME. The inspiration for using SS-HOPM in TAME is that TAME's
objective function (4.4) is nearby the dominant eigenvector problem for \bfitT B \otimes \bfitT A.
Given the observation in Theorem 3.3 that the dominant eigenvector is built from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1018 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

Algorithm 4.3. \Lambda -TAME.
Require: k-mode motif tensors \bfitT A,\bfitT B for graph A and B; mixing parameter \alpha ,

shift \beta , max iterations L
Ensure: Alignment heuristic \bfitX and max-weight matching of \bfitX

1: \bfitU (:,1) = 1m\surd
m
;\bfitV (:,1) = 1n\surd

n
 \triangleleft Initialize first columns

2: for \ell = 1, . . . ,L do

3: \bfitU (:, \ell +1) = \bfitT A\bfitU (:, \ell)k - 1;\bfitV (:, \ell +1) = \bfitT B\bfitV (:, \ell)k - 1

4: \bfitU (:, \ell + 1)\leftarrow \alpha \bfitU (:, \ell + 1) + \alpha \beta \bfitU (:, \ell) + (1 - \alpha)\bfitU (:,1)
5: \bfitV (:, \ell + 1)\leftarrow \alpha \bfitV (:, \ell + 1) + \alpha \beta \bfitV (:, \ell) + (1 - \alpha)\bfitV (:,1)

6: \bfitU (:, \ell + 1) = \bfitU (:,\ell +1)
\| \bfitU (:,\ell +1)\| ; \bfitV (:, \ell + 1) = \bfitV (:,\ell +1)

\| \bfitV (:,\ell +1)\|
7: Return \bfitX =\bfitU \bfitV T and the matching from \bfitX

the dominant eigenvectors of \bfitT B and \bfitT A, this suggests a new heuristic which can be
run using only the tensor powers sequences of \bfitT B and \bfitT A independently, rather than
combining them as is done in TAME. We then store each of the iterates into a pair
of matrices \bfitU and \bfitV and use the information in \bfitU and \bfitV to derive the matching.
There exist many possible ways to derive a matching from the iterates stored in \bfitU

and \bfitV (see Nassar et al. (2018) for many low-rank ideas). We found that perform-
ing a max-weight matching on \bfitX = \bfitU \bfitV T was the most accurate for downstream
alignment tasks in our initial investigation. This is a heuristic choice. Our only ad
hoc justification is that if these had been matrices, this would have been a set of
inner-products among the Krylov basis. We discuss additional useful refinement of
\bfitU and \bfitV in the next section. We call this method \Lambda -TAME because it is inspired
by our dominant Z-eigenvalue theorem. Again, we adopted an affine-shift variant of
the TAME method that includes an \alpha factor to reintroduce the original vector into
the solution. This can be set to 1 so that the iterates are exactly those from the
SS-HOPM method, but there are cases where \alpha \not = 1 helps. In the algorithm, both
\bfitU and \bfitV can be computed in time proportional to the number of nonzeros of their
tensors times the total number of iterations. Like LowRankTAME, the computa-
tional bottleneck of this algorithm becomes the matching and refinement steps (see
Figure 5.6).

4.4. Matching refinement. Refining the final matching is a necessary addi-
tion when using TAME, LowRankTAME, or \Lambda -TAME. For each method, the result
is both a low-rank matrix \bfitX \ast , along with the rank factors \bfitU ,\bfitV , and a maximum
weight matching computing on this matrix. In the original TAME method, the ma-
trix \bfitX was improved by computing a maximum weight bipartite matching and then
by looking locally for potential match swaps which montonically increase triangles
aligned. Another approach using with a low-rank method is to use the information
and matching produced to initialize and guide a more expensive network alignment
method, such as Klau's algorithm (Klau, 2009), similar to what was done in Nassar
et al. (2018).

TAME's \bfitb -matching local search refinement TAME's refines its produced
matching by constructing local neighborhoods of nodes and looking for substitutes
in its current matchings that increase the number of triangles aligned (or increases
the number of edges while maintaining the triangles aligned). The authors construct
a b-matching from the matrix \bfitX \ast returned by TAME (using the 2-approximation
algorithm (Khan et al., 2016)) and search the found matchings along with neighbor

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1019

substitutions as local neighborhoods. Each edge (i, i\prime) in the matching, in order of
their edge weight, searches the set of alternative matches
\biggl\{

(i, j\prime)

\bigm|
\bigm|
\bigm|
\bigm|

(i, j\prime)\in b-matching(\bfitX \ast), or
j\prime is connected to i\prime in graph B

\biggr\}

\cup
\biggl\{

(j, i\prime)

\bigm|
\bigm|
\bigm|
\bigm|

(j, i\prime)\in b-matching(\bfitX \ast), or
j is connected to i in graph A

\biggr\}

for a possible replacement, and immediately makes changes which improve the align-
ment. The full procedure is outlined in Mohammadi et al. (2017, section 4.5, Algo-
rithm 4). The original method ascribes weights to the edges and triangles using the
weights in the iterate returned by TAME, but our method doesn't weight the trian-
gles or edges when measuring the change in alignment quality. The greedy swapping
procedure can be run multiple times, but improvements tend to stop after 5 to 10
successive sweeps over all matched edges.

A new nearest neighbor local search refinement. The low-rank structure
of \bfitX \ast suggests an alternative to b-matching, for which even the 2-approximation is
computationally costly on a large, dense matrix \bfitX \ast . Rather than b-matching, we
treat the low-rank structure \bfitX \ast =\bfitU \bfitV T as an embedding of each vertex where rows
of \bfitU give coordinates for each vertex in graph A and rows of \bfitV give coordinates for
each vertex in graph B. Then we consider nearby vertices as alternative matches. For
this task, a K nearest neighbors methodology applies. Each row of \bfitU embeds i\in VA,
so the rows of \bfitU which are close to \bfitU (i, :) in the 2-norm distance define a natural
neighborhood of i. This leads us to construct sets of the form
\biggl\{

(i, j\prime)

\bigm|
\bigm|
\bigm|
\bigm|

j\prime \in K-nearest(\bfitV (i\prime , :),\bfitV), or
j\prime is connected to i\prime in graph B

\biggr\}

\cup
\biggl\{

(j, i\prime)

\bigm|
\bigm|
\bigm|
\bigm|

j \in K-nearest(\bfitU (i, :),\bfitU), or
j is connected to i in graph A

\biggr\}

to search for changes to the matchings. Ball-trees are particularly suitable for finding
close neighbors of points in low dimensional spaces and are empirically faster than
b-matching with superior results.

Improving matchings with Klau's algorithm. Klau's algorithm (Klau, 2009)
is an edge based graph matching/ network alignment method that uses a sequence
of maximum weighted matchings to iterate toward a better solution. It can, in some
instances, identify optimal solutions of the NP-hard graph matching objective with a
corresponding proof of optimality. The algorithm is built from a Lagrangian decom-
position of a tight linear program relaxation of the graph matching IQP (a weighted
form of Definition 4.2). A full explanation of the algorithm can be found in Bayati
et al. (2013, section 4.3). The primary input for Klau's method are the graphs A, B
and a weighted bipartite graph between the vertex set of A and B that restricts and
biases the set of possible alignments. The adjacency matrix of this bipartite graph is
\bfitL and is called the link matrix or prior matrix. The method is most effective when
\bfitL has only a few choices for alignments between the graphs.

Thus, we use the results of LowRankTAME or \Lambda -TAME to build \bfitL . We include
the matched edges within \bfitL and then expand using the neighborhoods of the matched
nodes (much like TAME's local search). In Nassar et al. (2018), Klau's method was
more accurate when given expanded results of b-matching. Given the low-rank struc-
ture of our methods, we further expand \bfitL by including edges in the found matchings
with the k closest neighbors of (i, i\prime) in their respective embedding spaces \bfitU and \bfitV .

5. Empirical comparisons in our network alignment application. The
major demonstration of the new Kronecker product theory is in terms of its im-
pact on network alignment algorithms described in the previous sections. We have
implementations of TAME which compute contractions using the original implicit

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1020 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

form and new versions using our and existing tensor Kronecker theory. These are
all generalized to work with any order motif. We focus on cliques as the motif.
We use TuranShadow (Jain and Seshadhri, 2017) to sample the network for cliques
at random. Equivalently, we use cliques to induce a hypergraph where the nodes
are the same and the cliques are hyperedges. Our codes are implemented in Ju-
lia and are available from https://www.cs.purdue.edu/homes/ccolley/project pages/
TensorKroneckerProducts.html. In this section, we validate the algorithms and show
we can achieve similar results with greatly improved runtimes. Some highlights of our
results are the following:

1. Iterates of TAME are low rank on real and synthetic data and LowRank-
TAME computes them an order of magnitude faster for small enough motifs
(section 5.2).

2. The \Lambda -TAME vector information can be produced quickly for any size motif.
3. When the \Lambda -TAME vector information is refined using the nearest neighbor

information and Klau's algorithm, it aligns more triangles and edges than the
refined TAME information. Also, it has end to end runtimes 1 to 2 orders of
magnitude faster than the C++ TAME implementation (section 5.4).

We use all the same parameters as the original research where they were accessible
and will discuss our reasoning for our choices for unlisted parameters. Our experiment
environment uses Intel Xeon Platinum 8168 CPU (@ 2.70GHz) processors with 24
cores, although none of our methods use multicore parallelism. We compare our
methods against one another as well as LowRankEigenAlign (Nassar et al., 2018).
LowRankEigenAlign utilizes a low-rank structure discovered in the EigenAlign (Feizi
et al., 2019) algorithm and improves its scalability with minimal changes or even
sometimes improvements to accuracy. LowRankEigenAlign has been tested on similar
real-world and synthetic alignment problems, and its low-rank structure makes it a
comparable method in terms of memory to \Lambda -TAME. LowRankEigenAlign also gives
a low-rank embedding which allows us to refine its results in a manner similar to
\Lambda -TAME and LowRankTAME.

5.1. Data for network alignment experiments. There are two types of data
that we use in evaluating the new network alignment algorithms. The first is a subset
of the LVGNA (Vijayan and Milenkovi\'c, 2017) PPI graph collection. Each pair of
networks in this collection gives an alignment problem. Network statistics are in the
supplemental materials (Table A.1). Each vertex represents a protein and the edges
represent interactions. The networks range in size from 2871 to 16060 vertices and all
but the largest networks have fewer triangles than edges.

The second type of data involves synthetic random geometric graphs. To generate
a random geometric graph, we randomly sample n points in the unit square. Then
each point adds undirected edges to the k nearest neighbors, where k is drawn from a
log-normal distribution centered at log 5 with \sigma = 1. We then create a pair of networks
to align from this starting reference graph by independently perturbing them from
a noise model. The two noise models we consider are (i) a microbiological inspired
partial duplication procedure (Bhan, Galas, and Dewey, 2002; Chung et al., 2003;
Hermann and Pfaffelhuber, 2014) and (ii) the Erd\H os--R\'enyi noise model from Feizi
et al. (2019, section 3.4). When using the duplication noise mode, we incrementally
duplicate 25\% new nodes in the network, copying their existing edges with probability
pedge = .5. For the Erd\H os--R\'enyi noise we randomly delete edges with probability
p= .05 and randomly add in edges with probability q= p\rho

1 - \rho
, where \rho is the density of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1021

the network. A few experiments have different choices for these parameters, which will
be explicitly noted. We further randomize the permutation of the perturbed network
to avoid any influences due to node order in what might happen in the presence of tied
values. (Prior work and experience have shown a startlingly strong effect due to biases
when this permutation step is not present.) Within each experiment, algorithms are
always tested on exactly the same set of networks instead of separate draws from the
same distribution.

5.2. Low-rank structure in TAME. For our first set of experiments, we
want to show that the iterations from TAME (Algorithm 4.1) remain low rank when
we start with a uniform or unbiased iterate as the weight matrix: \bfitX 0 = 1

mn
1m1

T
n ,

which is rank 1. We further investigate this behavior on larger motifs. To do
this, we report matrix rank using the LowRankTAME algorithm instead of the raw
TAME algorithm, which are identical in exact arithmetic (see Aside 1).

Aside 1. This choice of exact
LowRankTAME vs. TAME to eval-
uate rank is made both because
it is faster to compute but also
because preliminary experiments
showed that TAME caused the fi-
nite precision rank to grow even
when the result is mathematically
rank 1 (α = 1.0, β = 0.0, by
lemma 3.1). This is well-known to
happen to finite precision compu-
tations, for instance in the power
method. Details of this test are in
the App. A.1.

Given either a pair of networks from LVGNA
or a synthetic alignment problem, we plot the max-
imum rank from any iteration on any trial (\alpha \in
\{ .5,1.0\} running 15 iterations) as determined by
the rank function in Julia, as we vary the \beta param-
eter in the alignment problem. (See Figure 5.1.)
These results, along with trendlines for the max-
imum rank over multiple repetitions of the syn-
thetic experiments, show that the rank is often
below 250 even though the largest networks have
10k vertices.

Our rank experiments show the synthetic
problems have higher ranks than the LVGNA
collection. For the LVGNA collection, large problems tend to have smaller rank,
whereas we do see the rank grow with the size of the synthetic problems. For the
synthetic problems, we also see that increasing \beta produces higher ranks because these
problems incorporate more of the previous iterate via an affine shift. The behavior
with \beta = 100 for the LVGNA collection is rather different, with many small dips. On
further investigation, we found this occurs because \beta = 100 is nearly an eigenvalue of
these problems. We verified in subsequent experiments that shifting by the estimated
eigenvalue gives very small rank, although we do not report these experiments in the
interest of space.

In Figure 5.2, we investigate rank behavior for larger clique motifs. We see that
though the rank of iterates does not change dramatically (second column of density
plots), the runtime of TAME and LowRankTAME consistently grows (blue and red
density plots in the third column), even when the number of motifs within the net-
works declines (first column of density plots). As the motif size grows, the time spent
using the low-rank contraction routines approaches the runtime of TAME's implicit
contraction. This becomes salient when memory constraints require a user to use
the accumulation form of LowRankTAME, as then even the low-rank components are
found from a dense matrix \bfitX \ell , rather than being able to benefit from two R-SVD
calls. In summary, Figure 5.2 indicates that for small motifs (less than size 6), we
can improve the runtime and accuracy using the contraction theory shown in this
paper, but those benefits are reduced or even eliminated for problems with larger
motifs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1022 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

Fig. 5.1. Both real-world and synthetic results (reference graphs are generated with 100, 500,
1000, 2000, 5000, and 10000 vertices) are low rank with respect to the size of the networks. We
compute the maximum rank over any iterate from runs with any the affine shift values \alpha = 0.5,1.0,
and we plot the maximum rank directly for the synthetic networks and loess smoothing trendlines
(using 30\% approximate neighbors) for the LVGNA experiments. The maximum rank of any iterate
over synthetic network alignment problems were consistently higher than PPI problems, but both are
low when put in the context of their maximum possible ranks (right-hand plots). The similarity of
results between the two noise models is expected as they start with the same reference graph. We
generally see that rank increases as \beta increases except for \beta = 100, which is discussed in the text.

5.3. Alignment accuracy in synthetic networks. The next set of experi-
ments transitions from runtime to accuracy where we test how well the best low-
rank results produced by the TAME method, \Lambda -TAME, and LowRankEigenAlign
can be refined by local search and Klau's algorithm using the K-nearest neigh-
bor strategy. We focus on the synthetic problems where there is a single refer-
ence graph that is subject to two independent perturbations. The goal is to find
the alignment between the vertices of the original reference graph, which we re-
gard as the correct answer. Each combination of methods is compared using the
accuracy

accuracy =
number of aligned pairs of vertices from the reference graph

total number of vertices in the reference graph

and their triangle alignment score (how many triangles they match compared to the
maximum possible). We use max iterations L= 15, stopping tolerance \varepsilon = 10 - 6, and
K = 2 \ast rank(\bfitX \ast) throughout the experiments---except in figures where K is varied.
We focus on our experiments which vary the size of alignment problems. Additional
parameters of our noise models are studied in supplement SM3.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1023

Fig. 5.2. Experiments on rank from synthetic experiments where the reference graph has 100
vertices and is perturbed with 20\% duplicated nodes (instead of the default 25\%). We compute sta-
tistics over 25 trials and 15 iterations of each method (LR-TAME for LowRankTAME and ``med.""
for median). The figures show density plots of the worst results over all the trials. A more detailed
analysis of our data can be found in Figure SM1. Exploiting the low-rank structure is most effective
for small motifs. We see that time spent computing contractions for TAME and LowRankTAME
grows as the motif size increases, even though the rank of TAME's iterates and number of motifs
found within the reference network decline. As a point of comparison, \Lambda -TAME's runtime is rea-
sonably constant across each experiment and the longest \Lambda -TAME contraction time of any trial was
0.0132s.

The first set of experiments focuses on triangles. These experiments show that all
three methods require refinement to get practical results, especially as the problems
get larger (Figure 5.3). These experiments show that LowRankTAME with the local
search strategy K-NN had the best performance for the largest problems, although
\Lambda -TAME with Klau's refinement was slightly better at intermediate sized problems
for the duplication noise model.

We can also see that triangles matched is a good proxy for the accuracy of the
matchings, although depending on the noise models, there may be deviations.

Moreover, with the K-NN refinement and \Lambda -TAME 's scalability, we can get fast
accurate matchings for not only large networks, but also increasingly larger clique
sizes (Figure 5.4). Accuracy remains high when the vertex coverage, the fraction
of the total vertex set involved in motifs, remains high. In contrast to the results
with LowRankTAME (Figure 5.2), using \Lambda -TAME has a practical runtime for large
cliques. Klau's algorithm can offer an additional benefit if a longer runtime can be
tolerated.

We also find that our default choice of K gets good performance. Increasing
K can improve accuracy slightly, but Klau's algorithm runtime is more sensitive to
the sparsity of the input link matrix. Local search remains very fast with a modest
increase in runtime as the local search neighborhoods are expanded. It's unsurprising
to see that Klau's algorithm matches the fewest motifs given the objective function
is focused on aligning edges between networks.

5.4. Biological networks. We now turn our attention to considering the per-
formance within real-world networks from biology. We report the end to end runtime,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1024 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

Fig. 5.3. We consider aligning two independent perturbations of a single reference graph us-
ing either the Erd\H os--R\'enyi model (left column) or the duplication noise model (right column)
based on matching triangles. We compare three methods, LowRankTAME (LRT), \Lambda -TAME (\Lambda T),
and LowRankEigenAlign (LREA), with three refinement schemes: None, Klau, and local search
(LS). Across all methods, the ground truth accuracy (top row), which is generally not known,
is closely aligned with the number of matched triangles (bottom row), which is easy to compute,
suggesting that the latter is a useful proxy. This shows that refinement is an important step
as the methods without refinement have dramatically lower accuracy (fine dots) than either local
search (solid lines) or Klau (dash-dots). We plot the median of 20 trials with 20th--80th percentile
ribbons.

triangles matched, and edges matched of each refined method relative to TAME, over
pairs of alignment problems from LVGNA in Figure 5.5 (see section SM3.3 for non-
comparative results). We use max iterations L = 15, stopping tolerance \varepsilon = 10 - 6,
and nearest neighbors K = 2 \ast rank(\bfitX \ast) for refinement. We see that \Lambda -TAME re-
fined with local search aligns more triangles and edges and runs much faster than the
original TAME. All methods tested align more edges than TAME, though improving
with local search was much more likely to increase triangles matched. Methods using
Klau's algorithm or LowRankEigenAlign increased the number of edges aligned, but
aligned fewer triangles. This was observed in the synthetic results in Figure 5.3 and
is unsurprising given each method's focus on edges.

Returning to timing, we compare the fraction of time spent in the matching ver-
sus matrix/ tensor operations in Figure 5.6. We can see that the Kronecker theory
here makes the time to compute the contractions fast enough to change the pri-
mary bottleneck of the algorithm when using triangle adjacency tensors. Put simply,
\Lambda -TAME always spends more time on the bipartite matching and refinement and
LowRankTAME spends more time there on the biggest problems. A primary reason

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1025

Fig. 5.4. We consider the same scenario for Figure 5.3 but now look at aligning networks based
on cliques of size 2 (edges), size 3 (triangles), and up to size 9 on networks with 500 vertices in the
duplication model. Cliques are sampled using TuranShadow with 106 samples, which will find the
vast majority. We focus on the \Lambda -TAME (\Lambda T) method as LowRankTAME would take a prohibitively
long time (days). We also vary the number of nearest neighbors considered in the refinement step for
both Klau and local search (LS) in the horizontal piece of the microplots to understand that behavior,
as well as its impact on runtime (second row). The top row (accuracy) shows that accuracy declines
after the clique size is larger than 5 or 6 for either refinement strategy. To understand this behavior,
we look at the total number of motifs found (bottom row) and the vertex coverage of those motifs
(third row). These are shown as density plots with the max, min, and median values shown. This
shows that accuracy declines once the vertex coverage begins to decline.

for why \Lambda -TAME and LowRankTAME spend so much time computing the matchings
is that we cannot take advantage of the low-rank structure. We compute the maxi-
mum matching using the primal-dual algorithm (Dantzig, Ford, and Fulkerson, 1956),
which must touch each entry of \bfitX \ast =\bfitU \bfitV T at least once, making it more efficient to
form \bfitX \ast explicitly at the beginning of the algorithm. This suggests potential future
research for new algorithms which can properly make use of the low-rank structure,
while still computing a maximum weighted matching.

6. Discussion. The major focus of our paper is on demonstrating how the the-
ory on tensor Kronecker products in section 3 enables us to accelerate the graph
matching algorithm TAME (section 4): (i) by making the same algorithm faster with
LowRankTAME, (ii) by giving a new, faster algorithm (\Lambda -TAME), and (iii) by pro-
viding new augmentations of TAME's local search and Klau's algorithm which can
make use of the low rank structure within the iterates.

One interesting theory question we have not pursued is the opposite of the ex-
ample from the introduction that shows diagonal tensors have eigenvectors that are
not a Kronecker product. Put concretely, is there a class of tensors where no new
eigenvectors emerge after taking a Kronecker product? It would also be worth consid-
ering if and how Theorem 3.3 generalizes to H-eigenvalues or even generalized tensor
eigenvalues. Our current approach is not sufficient as the proof of Theorem 3.3 relies
on Zhang, Ling, and Qi (2012, Theorem 2.1). It is possible that there could be types
of tensor eigenvalues to which this theorem does not generalize.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1026 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

Fig. 5.5. For networks in the LVGNA collection, we compare the number of triangles (left col-
umn), edges (middle column), and runtime (right column) between the low-rank methods and the
original TAME method (including its end-to-end b-matching refinement time). These are shown
as density plots over all 45 pairwise alignment problems. Larger values and values larger than
1 are better for all experiments. The final row shows the Loess-smoothed plot of the raw data
against the problem size, which shows minimal size-dependent effects---beyond those expected due
to runtime. Note that \Lambda -TAME with local search consistently aligns more triangles and edges than
TAME while running about 20 times faster. Refining with LocalSearch tends to be faster than using
Klau's algorithm, though we expect the sparsity of the input matrices to be the same. These experi-
ments show that refinement can be very problem dependent and local search is particularly successful
here.

On the application side, the new method \Lambda -TAME's runtime is heavily dominated
by the rounding and refinement procedures, as seen in Figure 5.6. Our implementation
uses the primal-dual algorithm which is an effective solution when \bfitX = \bfitU \bfitV T is
explicitly realized as a dense matrix. New matching methods which compute the
maximum matching of \bfitX while only using \bfitU and \bfitV would be useful to improve
scalability (even if only an approximation). For large enough problems, there are
also low-rank matching heuristics from Nassar et al. (2018) to consider for additional
scalability, although the results from these methods were noticeably worse for our
case compared with using the exact max-weight matching.

The low-rank structure offers a few benefits even beyond the reduced runtime.
First, we are able to explicitly store a large number of TAME iterates as low-rank
factorizations. Sending O(mr) data is much faster between cores, which may offer a
foothold in known parallel matching challenges (Sathe, Schenk, and Burkhart, 2012;
Bertsekas and Casta\~non, 1991). Applying Theorem 3.3 recursively suggests an im-
mediate algorithm for multinetwork alignments. Each network's embeddings can be
computed independently in a fashion similar to that used in (Nassar et al., 2021).
Furthermore, we also see opportunities to incorporate multiple network motifs within
adjacency tensors. Smaller motifs could be encoded into the off diagonal components
(see Aside 2). Motif complexes could be encoded into the off diagonal components in
a way that wouldn't change contraction or eigenvector definitions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1027

Fig. 5.6. We compare the time spent working on tensor-vector multiplication/contraction com-
pared with the time spent rounding \bfitX \ell . These show that the new bottleneck of \Lambda -TAME and
LowRankTAME is the time spent on rounding the continuous iterates to discrete matchings, in
contrast to the original TAME method.

Aside 2. Tensors can have more
than one “diagonal” by grouping
non-zeros by the multiplicity of
their indices. In a triangle adja-
cency tensor the non-zeros are of
the form (i, j, k) for distinct ver-
tices and the traditional diagonal
is comprised of the indices (i, i, i).
A third order tensor also has en-
tries which only have two unique
vertices, and the presence of an
edge could be marked in an entry of
the form (i, i, j) or (i, j, j). These
off diagonals are referred to as q-
multiplicity tensors in (Yan et al.,
2015, Def. 2).

The fashion in which we construct the em-
beddings is also closely related to various graph
kernels (Vishwanathan et al., 2010; Kriege,
Johansson, and Morris, 2020), including the ran-
dom walk kernel on a direct product graph. Graph
kernels have long been used to align small
chemicographs (graphs that represent small chem-
ical molecules). In this case, we are able to gen-
erate a direct factorization of a graph kernel be-
tween vertices of two graphs into a product of
features on each graph. This is a common para-
digm (Vishwanathan et al., 2010) involving matrix
Kronecker products---although we are unaware of
any research on this for higher-order analogues
of the graph kernels involving tensor Kronecker
products that would be needed for our perspective. When viewed in this light, our
research has the potential to open new directions in this space in terms of efficient
graph kernels on hypergraphs.

In summary, our theory and experiments show how the computational demands
of methods with tensor Kronecker products may be reduced by orders of magnitude
with no change in quality, or accelerated even further with useful approximate results.
We are excited about future opportunities with tensor Kronecker products due to the
widespread use of matrix Kronecker products, and we suspect that these theorems,
or alternative generalizations that use a specific structure in novel problems, will be
a key element in this future research.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1028 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

Appendix A. Additional information.

A.1. TAME rank 1 singular value experiments. These experiments ex-
plain why we use the exact LowRankTAME iteration instead of the original TAME
iteration to study rank when using triangle adjacency tensors. They show TAME
produces iterates that would be detected as at least rank 2 even when the answer is
provably rank 1, whereas LowRankTAME does not. Figure A.1 plots the maximum
second largest normalized singular values of \bfitX \ell , \sigma 2 of all 15 iterations for TAME and
LowRankTAME of the rank 1 iteration case for the LVGNA and our synthetic align-
ments. Hollow points are values small enough to be considered zero (and hence would
be rank 1), and filled points are large enough to be measured as nonzero (and hence
would be rank 2). The LVGNA experiments align all pairs of distinct networks. The
synthetic experiments are measured over 50 trials using random geometric graphs.
Seeded networks are perturbed by both ER and duplication noise models using de-
fault parameters. The difference in singular values arises because TAME works with a
vectorized representation of a matrix, which slowly drifts off the exact rank 1 manifold
in finite precision arithmetic, whereas LR-TAME maintains a minimal rank represen-
tation because of the lack of shifts. This phenomenon is similar to how the power
method when started from a vector numerically orthogonal to the dominant eigen-
vector nonetheless may converge to the dominant eigenvector due to loss of exact
orthogonality over the iterations.

A.2. PPI graph statistics. We use networks from the LVGNA project (Meng,
Striegel, and Milenkovi\'c, 2016), the statistics of which (unique edges and triangles) are
given in Table A.1. These networks have been aligned with a variety of contemporary
methods in Vijayan and Milenkovi\'c (2017), Meng, Striegel, and Milenkovi\'c (2016),
and Nassar et al. (2018) to make our results comparable with prior research. We
remove any directional edges from the network before the enumerating triangles. As
our methods are focused on triangle motifs, we use only networks with more than
150 triangles. We also include the largest sampled z-eigenvalue found, which---like
the standard power method---is related to the behavior of the methods with shifts in
section 5.2.

Fig. A.1. LowRankTAME accurately captures the rank structure when it is provably rank 1 for
triangle adjacency tensors. TAME uses an implicit contraction that frequently produces iterates \bfitX \ell

with nondominant singular values large enough to be nonzero for matrices which are provably rank
1 (\alpha = 1.0, \beta = 0.0, by Lemma 3.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1029

Table A.1
LVGNA network statistics.

Graph name Vertices Edges Triangles Sampled \lambda

worm Y2H1 2871 5194 536 10.076

worm PHY1 3003 5501 692 12.664
fly Y2H1 7094 23356 2501 21.207

yeast Y2H1 3427 11348 9503 56.680
human Y2H1 9996 39984 15177 72.919
human PHY2 8283 19697 19190 50.872
yeast PHY2 3768 13654 26295 94.564
fly PHY1 7885 36271 58216 217.541
yeast PHY1 6168 82368 381812 454.921
human PHY1 16060 157649 525238 488.136

Acknowledgments. We thank O. Eldaghar for the fruitful conversations when
designing our figures and C. Cui for discussions on the code from (Cui, Dai, and Nie,
2014).

REFERENCES

L. Akoglu, M. McGlohon, and C. Faloutsos (2008), RTM: Laws and a recursive generator for
weighted time-evolving graphs, in Proceedings of ICDM, pp. 701--706.

B. W. Bader and T. G. Kolda (2008), Efficient MATLAB computations with sparse and factored
tensors, SIAM J. Sci. Comput., 30, pp. 205--231.

K. Batselier and N. Wong (2017), A constructive arbitrary-degree kronecker product decomposition
of tensors, Numer. Linear Algebra Appl., 24, e2097.

M. Bayati, D. F. Gleich, A. Saberi, and Y. Wang (2013), Message-passing algorithms for sparse
network alignment , ACM Trans. Knowl. Discov. Data., 7, pp. 3:1--3:31, https://doi.org/10.1145/
2435209.2435212.

M. Bazaraa and O. Kirca (1983), A branch-and-bound-based heuristic for solving the quadratic
assignment problem, Nav. Res. Logist. Quart., 30, pp. 287--304.

A. R. Benson and D. F. Gleich (2019), Computing tensor z-eigenvectors with dynamical systems,
SIAM J. Matrix Anal. Appl., 40, pp. 1311--1324.

A. R. Benson, D. F. Gleich, and J. Leskovec (2015), Tensor spectral clustering for partitioning
higher-order network structures, in Proceedings of SDM, pp. 118--126, https://doi.org/10.1137/
1.9781611974010.14.

A. C. Berg, T. L. Berg, and J. Malik (2005), Shape matching and object recognition using low
distortion correspondences, in Proceedings of CVPR, pp. 26--33.

D. P. Bertsekas and D. A. Casta\~non (1991), Parallel synchronous and asynchronous implemen-
tations of the auction algorithm, Parallel Comput., 17, pp. 707--732, https://doi.org/10.1016/
S0167-8191(05)80062-6.

A. Bhan, D. J. Galas, and T. G. Dewey (2002), A duplication growth model of gene expression
networks, Bioinformatics, 18, pp. 1486--1493.

V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren (2004), A measure
of similarity between graph vertices: Applications to synonym extraction and web searching,
SIAM Rev., 46, pp. 647--666.

R. Burkard, M. Dell'Amico, and S. Martello (2012), Assignment Problems, revised ed., SIAM,
Philadelphia, https://doi.org/10.1137/1.9781611972238.

D. Cartwright and B. Sturmfels (2013), The number of eigenvalues of a tensor , Linear Algebra
Appl., 438, pp. 942--952.

M. Chertok and Y. Keller (2010), Efficient high order matching, IEEE Trans. Pattern Anal.
Mach. Intell., 32, pp. 2205--2215.

F. Chung, L. Lu, T. G. Dewey, and D. J. Galas (2003), Duplication models for biological networks,
J. Comput. Biol., 10, pp. 677--687.

D. Conte, P. P. Foggia, C. Sansone, and M. Vento (2004), Thirty years of graph matching in pat-
tern recognition, Intern. J. Pattern. Recognit. Artif. Intell, 18, pp. 265--298, https://doi.org/10.
1142/S0218001404003228.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1030 CHARLES COLLEY, HUDA NASSAR, AND DAVID F. GLEICH

C.-F. Cui, Y.-H. Dai, and J. Nie (2014), All real eigenvalues of symmetric tensors, SIAM J. Matrix
Anal. Appl., 35, pp. 1582--1601.

G. B. Dantzig, L. R. Ford, Jr., and D. R. Fulkerson (1956), A Primal-Dual Algorithm, Technical
report, RAND, Santa Monica, CA.

L. De Lathauwer, P. Comon, B. De Moor, and J. Vandewalle (1995), Higher-order power
method , in Proceedings of Nonlinear Theory and Its Applications, NOLTA '95, pp. 91--96.

N. Eikmeier, A. S. Ramani, and D. F. Gleich (2018), The hyperkron graph model for higher-
order features, in Proceedings of the International Conference on Data Mining, pp. 941--946,
https://doi.org/10.1109/ICDM.2018.00115.

E. Estrada and J. A. Rodr\'{\i}guez-Vel\'azquez (2006), Subgraph centrality and clustering in complex
hyper-networks, Phys. A, 364, pp. 581--594.

S. Feizi, G. Quon, M. Mendoza, M. Medard, M. Kellis, and A. Jadbabaie (2019), Spectral
alignment of graphs, IEEE Trans. Network Sci. Eng., 7, pp. 1182--1197.

G. H. Golub and C. van Loan (2013), Matrix Computations, Johns Hopkins University Press,
Baltimore.

F. Hermann and P. Pfaffelhuber (2014), Large-Scale Behavior of the Partial Duplication Random
Graph, preprint, https://arxiv.org/abs/1408.0904.

A. Jaffe, R. Weiss, and B. Nadler (2018), Newton correction methods for computing real eigen-
pairs of symmetric tensors, SIAM J. Matrix Anal. Appl., 39, pp. 1071--1094.

S. Jain and C. Seshadhri (2017), A fast and provable method for estimating clique counts using
Tur\'an's theorem, in Proceedings of the 26th International Conference on World Wide Web,
pp. 441--449.

S. Jain and C. Seshadhri (2020), The power of pivoting for exact clique counting, in Proceedings
of WSDM, pp. 268--276.

A. Khan, A. Pothen, M. Mostofa Ali Patwary, N. R. Satish, N. Sundaram, F. Manne, M. Ha-
lappanavar, and P. Dubey (2016), Efficient approximation algorithms for weighted b-matching,
SIAM J. Sci. Comput., 38, pp. S593--S619.

G. W. Klau (2009), A new graph-based method for pairwise global network alignment , BMC Bioin-
form., 10, S59.

C. Klymko, D. Gleich, and T. G. Kolda (2014), Using Triangles to Improve Community Detection
in Directed Networks, preprint, https://arxiv.org/abs/1404.5874.

T. G. Kolda and J. R. Mayo (2011), Shifted power method for computing tensor eigenpairs, SIAM
J. Matrix Anal. Anal., 32, pp. 1095--1124.

T. G. Kolda and J. R. Mayo (2014), An adaptive shifted power method for computing generalized
tensor eigenpairs, SIAM J. Matrix Anal. Appl., 35, pp. 1563--1581.

G. Kollias, S. Mohammadi, and A. Grama (2011), Network similarity decomposition (NSD):
A fast and scalable approach to network alignment , IEEE Trans. Knowl. Data Eng,, 24,
pp. 2232--2243.

T. C. Koopmans and M. Beckmann (1957), Assignment problems and the location of economic
activities, Econometrica, pp. 53--76.

N. M. Kriege, F. D. Johansson, and C. Morris (2020), A survey on graph kernels, Appl. Network
Sci., 5, https://doi.org/10.1007/s41109-019-0195-3.

E. L. Lawler (1963), The quadratic assignment problem, Management Sci., 9, pp. 586--599.
L.-H. Lim (2005), Singular values and eigenvalues of tensors: A variational approach, in Proceed-

ings of the 1st International Workshop on Computational Advances in Multi-sensor Adaptive
Processing, pp. 129--132.

N. Malod-Dognin and N. Pr\v zulj (2015), L-GRAAL: Lagrangian graphlet-based network aligner ,
Bioinformatics, 31, pp. 2182--2189.

L. Meng, A. Striegel, and T. Milenkovi\'c (2016), Local versus global biological network alignment ,
Bioinformatics, 32, pp. 3155--3164.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon (2002), Network
motifs: Simple building blocks of complex networks, Science, 298, pp. 824--827.

S. Mohammadi, D. F. Gleich, T. G. Kolda, and A. Grama (2017), Triangular alignment TAME:
A tensor-based approach for higher-order network alignment , IEEE/ACM Trans. Comput. Biol.
Bioinform., 14, pp. 1446--1458.

H. Nassar, G. Kollias, A. Grama, and D. F. Gleich (2021), Scalable algorithms for multi-
ple network alignment , SIAM J. Sci. Comput., 43, pp. S592--S611, https://doi.org/10.1137/
20m1345876.

H. Nassar, N. Veldt, S. Mohammadi, A. Grama, and D. F. Gleich (2018), Low rank spectral
network alignment , in Proceedings of the 2018 World Wide Web Conference, pp. 619--628.

S. Park, S.-K. Park, and M. Hebert (2013), Fast and scalable approximate spectral matching for
higher order graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 36, pp. 479--492.

R. Patro and C. Kingsford (2012), Global network alignment using multiscale spectral signatures,
Bioinformatics, 28, pp. 3105--3114.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

DOMINANT Z-EIGENPAIRS OF TENSOR KRONECKER PRODUCTS 1031

A. H. Phan, A. Cichocki, P. Tichavsky, D. P. Mandic, and K. Matsuoka (2012), On revealing
replicating structures in multiway data: A novel tensor decomposition approach, in Proceedings
of LVA/ICA, pp. 297--305.

A. H. Phan, A. Cichocki, P. Tichavsky, R. Zdunek, and S. Lehky (2013), From basis components
to complex structural patterns, in 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 3228--3232.

L. Qi (2005), Eigenvalues of a real supersymmetric tensor , J. Symbolic Comput., 40, pp. 1302--1324.
L. Qi and Z. Luo (2017), Tensor Analysis: Spectral Theory and Special Tensors, SIAM,

Philadelphia.
Y. Qi (2018), A very brief introduction to nonnegative tensors from the geometric viewpoint , Math-

ematics, 6, p. 230.
S. Ragnarsson-Torbergsen (2012), Structured Tensor Computations: Blocking, Symmetries and

Kronecker Factorizations, Ph.D. thesis, Cornell University.
M. Sathe, O. Schenk, and H. Burkhart (2012), An auction-based weighted matching implementa-

tion on massively parallel architectures, Parallel Comput., 38, pp. 595--614, https://doi.org/10.
1016/j.parco.2012.09.001.

J.-Y. Shao (2013), A general product of tensors with applications, Linear Algebra Appl., 439,
pp. 2350--2366.

T. Shen, Z. Zhang, Z. Chen, D. Gu, S. Liang, Y. Xu, R. Li, Y. Wei, Z. Liu, Y. Yi, et al. (2018),
A genome-scale metabolic network alignment method within a hypergraph-based framework using
a rotational tensor-vector product , Sci. Rep., 8, pp. 1--16.

R. Singh, J. Xu, and B. Berger (2008), Global alignment of multiple protein interaction networks
with application to functional orthology detection, Proc. Natl. Acad. Sci. USA, 105, pp. 12763--
12768.

C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers (2006),
Biogrid: A general repository for interaction datasets, Nucleic Acids Res, 34, (suppl 1), pp.
D535--D539.

L. Sun, B. Zheng, C. Bu, and Y. Wei (2016), Moore-penrose inverse of tensors via einstein product ,
Linear Multilinear Algebra, 64, pp. 686--698.

W. Sun, Y. Chen, and H. C. So (2018), Tensor completion using kronecker rank-1 tensor train
with application to visual data inpainting, IEEE Access, 6, pp. 47804--47814.

V. Vijayan and T. Milenkovi\'c (2017), Multiple network alignment via multimagna++, IEEE/ACM
Trans. Comput. Biol. Bioinform., 15, pp. 1669--1682.

S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt (2010), Graph
kernels, J. Mach. Learn. Res., 11, pp. 1201--1242.

J. Yan, C. Zhang, H. Zha, W. Liu, X. Yang, and S. M. Chu (2015), Discrete hyper-graph matching,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1520--
1528.

R. Zass and A. Shashua (2008), Probabilistic graph and hypergraph matching, in Proceedings of
CVPR, pp. 1--8.

X. Zhang, C. Ling, and L. Qi (2012), The best rank-1 approximation of a symmetric tensor and
related spherical optimization problems, SIAM J. Matrix Anal. Appl., 33, pp. 806--821.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
7
/1

9
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Definitions and preliminaries
	General matrix and graph notation
	Tensor notation and tensor eigenvectors
	Kronecker products of tensors and vectorization

	The dominant eigenvector of the multilinear Kronecker product
	Existing contraction lemmas in our notation
	Dominant Z-eigenpairs

	Faster higher-order graph alignment methods via Kronecker structure
	Background on higher-order graph alignment
	TAME and LowRankTAME
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	?></0:tex-math></0:inline-formula>-TAME
	Matching refinement

	Empirical comparisons in our network alignment application
	Data for network alignment experiments
	Low-rank structure in TAME
	Alignment accuracy in synthetic networks
	Biological networks

	Discussion
	Acknowledgments
	References
	Appendix A. Additional information.
	TAME rank 1 singular value experiments.

	PPI graph statistics.

