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Abstract

When classes of structures are not first-order definable, we might still try to find
a nice description. There are two common ways for doing this. One is to expand the
language, leading to notions of pseudo-elementary classes, and the other is to allow
infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely,
we address the question: Which classes of structures are both pseudo-elementary and
L, -elementary? We find that these are exactly the classes that can be defined by
an infinitary formula that has no infinitary disjunctions.

1 Introduction

It is well-known that many properties of structures are not expressible in elementary first-
order logic, even by a theory rather than a single sentence. Common examples are the
property (of graphs) of being connected, the property (of abelian groups) of being torsion,
and the property (of linear orders) of being well-founded. To capture such properties, one
can pass to extensions of elementary first-order logic. This paper is about a characterization
of the common expressive power of two such extensions.

The first extension of elementary first-order logic that we consider allows countably infi-
nite conjunctions and disjunctions; this is, morally, similar to allowing quantifiers over the
(standard) natural numbers. One can then express properties such as being torsion by saying
“for each group element x, there is an n such that nx =0,” or formally,

(Vz) Y nz = 0.
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This work grew out of initial discussions with Vakili about the generality of expressing properties not
definable in first-order logic in a pseudo-elementary way, and whether such phenomena might be of use for
model checking (as the pseudo-elementary definability of graph reachability was used for model checking by
Vakili in his thesis [Vak16] and with the third author in [VD14]). We thank one of the referees for pointing
us towards some very helpful references.

*Partially supported by Canadian NSERC Discovery Grant 312501.
tSupported by an NSERC Banting Fellowship.



This infinitary logic is known as L, . One loses compactness, but gains other powerful
tools. For example, every countable structure is characterized, up to isomorphism among
countable structures, by a sentence of L, ., [Sco65].

The second extension of elementary first-order logic allows existential second-order quan-
tifiers. For example, the property of a linear order being non-well-founded can be expressed
by the sentence “there is a set with no least element.” We work with existential second-
order quantifiers using the framework of pseudo-elementary classes (and so replace existential
second-order quantifiers with expansions of the language). More formally, we say that a class
K of 7-structures is pseudo-elementary (PCy) if there is an expanded language 7% 2 7 and a
7*-theory T such that K consists exactly of the 7-structures admitting an 7*-expansion to
a model of T. We will describe both of these extensions of first-order logic in more detail
later.

These two extensions of elementary first-order logic have different expressive powers. For
example, the class of non-well-founded linear orders is pseudo-elementary but not L, .-
definable. Also, the compliment of a pseudo-elementary class is not necessarily pseudo-
elementary, but the compliment of an L, ,-definable class is again £, ,-definable (by the
negation of the original defining sentence). Nevertheless, there are classes that are not ele-
mentary first-order axiomatizable, but that are both pseudo-elementary and L, ,-definable.
The class of disconnected graphs is such an example; we provide a more detailed discussion
of various examples in Section 2.3. The main result of this paper is a complete classification
of such properties.

Theorem 1.1. Let K be a class of structures closed under isomorphism. The following are
equivalent:

1. K is both a pseudo-elementary (PCa) class and defined by an L., ,-sentence.
2. K is defined by a N\-sentence.

There is some notation in this theorem that we must explain. The J\-sentences in the
theorem are the L, ., sentences which (in normal form) involve infinitary conjunctions, but
no infinitary disjunctions (see Definition 2.4). For example, the property of being infinite is

definable by the JA\-sentence
N 3z, (N # xg).

neN i)

The negation, the property of being finite, is L, ,-definable by the sentence

\VAZZT N QVEFES )

neN i*j
but this sentence is not a M\-sentence because it involves an infinitary disjunct. Although
/A-formulas cannot have infinite disjunctions, they can have finite disjunctions.

The proof of (1)=>(2) uses an argument inspired by the proof of Craig Interpolation for
L., - This was originally proved by Lopez-Escobar [LE65] who also gave the following
corollary: a class which is both pseudo-elementary and co-pseudo-elementary with respect
to L, o (i.e., both 31 and II}) is actually L, ,-definable.

In the direction (2)=(1), there are several possible proofs. We give the simplest and
shortest argument in Section 4. A second proof is to note that any J-sentence is equivalent



to a closed game formula, and classes defined by such formulas are known to be PC, [Bar75,
Kol85]. We describe this in Section 5. A third proof, for which we do not give the details,
proceeds by coding computable formulas in models of weak arithmetic. This is an approach
that was taken by Craig and Vaught [CV58] to prove:

Theorem 1.2 (Craig and Vaught [CV58]). Every computably axiomatizable class in a finite
language is a basic pseudo-elementary class (PC').

By a basic pseudo-elementary class, we mean the class of reducts of a basic elementary class
(one defined by a single sentence) in an expanded language. (See Definition 2.9 for the precise
definition of PC’.) The latter two proofs of our main Theorem 1.1 give a strengthening of
this result of Craig and Vaught:

Theorem 1.3. Let K be a class of structures in a finite language that is axiomatized by a
computable N\-sentence. Then K is a basic pseudo-elementary class (PC').

Unfortunately, we do not know how to reverse Theorem 1.3. We conjecture:

Conjecture 1.4. A PC’ class which is also L, ,-axiomatizable is axiomatizable by a com-
putable N\-sentence.

The argument in Section 4 for (2)=(1) of Theorem 1.1 goes through for A-sentences of
L, . for any k. However, we do not know if (1)=(2) holds for L, for x> w.

Question 1.5. For k > wy, is every PCx class defined by an £, sentence actually defined
by a JA-sentence?

We note that interpolation fails in £, ., [Mal71, Theorem 4.2]. Intriguingly, Malitz goes on
to give a proof system for L, that goes through L<)+ . that gives rise to an interpolation
theorem [Mal71, Section 5]. Shelah [Shel2] uses this to define a logic £} that is intermediate
between L, and L, , that has interpolation and other nice properties (when x = 3,). This
suggests the right answer to Question 1.5 goes through L} instead of L, ,. However, this
logic lacks any syntax in the normal sense (formulas are defined by the existence of winning
strategies in a delayed Ehrenfeucht-Fraisse game), which causes additional problems, e.g., it
is not clear what a J\-sentence should mean, or what Skolem functions should look like.

2 Notation and Definitions

2.1 Infinitary Logic

For the most part, we follow Marker’s new book [Mar16]. Elementary first-order logic has a
number of properties which, while useful, make it hard to completely characterize structures.
For example, the Ryll-Nardzewski theorem says that any countably categorical structure is
relatively simple: for each n, there are only finitely many automorphism orbits of n-types.
The infinitary logic £, . adds more expressive power and hence allows us to characterize
every countable structure up to isomorphism among countable structures [Sco65].

The infinitary logic L., ., is defined recursively in the same way as finitary first-order logic,
except that for £, ., we can take countable conjunctions and disjunctions. Throughout the
paper, let 7 be a countable language.



Definition 2.1. The £, ,(7)-formulas are defined inductively as follows:
1. every atomic 7-formula is an L, ,(7)-formula,
2. if ¢ is an L, ,,(7)-formula, then so are -, (3x)p and (Vz)ep,

3. if (¢i)iew are L, o, (7)-formulas with finitely many free variables, then so are Ne, @i
and Wz’ew Pi-

In general, we will drop the reference to 7 when it is clear what we mean.

Definition 2.2. An £, ., formula is in £, ., normal form if the = only occurs applied to
atomic formulas.

Every L, ., can be placed into a normal form. The negation -¢ of a sentence ¢ in normal
form is not immediately in normal form itself; this gives rise to the formal negation ~,
which is logically equivalent to —¢ but is in normal form.

Definition 2.3. For any £, .-formula ¢, the formula ~ is defined inductively as follows:
1. if ¢ is atomic, ~p is =,
2. ~=pis p, ~(3x)p is (Vx)~p and ~(Vx)ep is (Tz)~p,
3.~ Nicw @i 18 Wiew ~pi and ~Wiew ©i 15 Nicw ~@i-

Definition 2.4. An L, ,-sentence ¢ is a A-formula if it can be written in normal form with-
out any infinite disjunctions. More concretely, the A-formulas are formed by the following
inductive process:

1. every finitary quantifier-free sentence is a A\-formula,

2. if p is a A-formula, then so are (3z)p and (Vx)e,

3. if ¢ and 1) are A\-formulas, then so is ¢ v 1,

4. if (¢;)icw are N-formulas with finitely many free variables, then so is A\, ©i-

Remark 2.5. The third condition allowing one to take the disjunction of finitely many for-
mulas is in some sense unnecessary; any NA-formula is equivalent to one in which all of the
disjunctions occur on the inside. For example,

(e (An)

A%’V%*

1,J €W

is equivalent to

An L, ., (or A-) formula is computable if, essentially, there is a computable syntactic
representation of the formula (see [AKO00]).



2.2 Pseudo-elementary Classes

In this section, we follow the book by Hodges [Hod08]. Many classes of structures can be
described by the existence of some feature that can be added to them; for example, a linear
ordering is non-well-founded if it has a subset with no least element, and a group is orderable
if there exists an ordering. Such classes of structures may not be elementary, but by thinking
of them as pseudoelementary classes we can still apply the tools of model theory to them.
The main notion of pseudo-elementary class in infinitary model theory is the following:

Definition 2.6. We say that a class K of L-structures is a pseudoelementary class (PCa-
class) if there is a language 7% 2 7 and an elementary first-order 7* theory T' such that

K = {M | there is a 7*-structure M* expanding M with M* = T'}.

Pseudoelementary classes have some nice properties such as being closed under ultraproducts.
(On the other hand, £, ,-definable classes may not be closed under ultraproducts.)

Just as there is a distinction in model theory between elementary classes and basic
elementary classes, the former being axiomatized by a theory and the latter by a single
sentence, there is a distinction between pseudoelementary classes and basic pseudoelementary
classes.

Definition 2.7. We say that a class K of L-structures is a basic pseudoelementary class
(PC-class) if there is a language 7* 2 7 and an elementary first-order 7* sentence ¢ such that

K = {M | there is a 7*-structure M* expanding M with M* = ¢}.

In finite model theory, it is basic elementary classes that play the more important role,
and indeed in finite model theory the term A-elementary class is often used for what we
call elementary classes, while the term elementary class is reserved for what we call basic
elementary classes. Similarly, the main notion of pseudoelementary class in finite model
theory is that of basic pseudoelementary classes. Basic pseudo-elementary classes seem to
have a connection with computability, e.g., Theorems 1.2 and 1.3.

Some classes seem like they should be pseudo-elementary but do not immediately fit
under the above definitions. For example, consider the class of multiplicative groups of
fields, i.e., a group G is in this class if there is a field F' such that G = F*. The field F' is
not going to be a subset of the field G; rather, G will be a subset of F'. We can expand
our definitions as follows to allow these types of classes, which we call PC" and PC/. The
classes PC" and PC/y differ from PC and PCx respectively in that in addition to expanding
the language, one is allowed to add additional elements.

Definition 2.8. Let 7 € 7* be a pair of languages, with a unary predicate P € 7* \ 7. Given
a T*-structure A, we denote by Ap the substructure of A | 7 whose domain is P4 (if this is
a T-structure; otherwise Ap is not defined).

Definition 2.9. We say that a class K of 7-structures is a basic pseudoelementary class
(PC’'-class) if there is a language 7% 2 7, with a unary relation P € 7* \ 7, and a 7*-formula
¢, such that

K={Ap| Ak ¢ and Ap is defined}.

We say that K is a pseudoelementary class (PCly-class) if ¢ is a first-order theory.

5



We will always clarify whether a pseudoelementary class is PCa or PC/y, and whether a
basic pseudoelementary class is PC or PC'.
Note that in Definition 2.9, if the language is finite (or we are dealing with a PC/y-class),
it suffices to ask that
K={Ap | AE ¢}
as ¢ can say that Ap is defined.
We have defined four different types of pseudo-elementary classes. However, it turns out

that PCa and PC/y classes are actually the same; so for example the class of multiplicative
groups of fields, which is easily seen to be PC'y, is PCa.

Theorem 2.10 (Theorem 5.2.1 of [Hod08]). Let K be a class of structures.
1. K is a PCa-class if and only if it is a PC/\-class.

2. If all the structures in K are infinite, then K is a PC-class if and only if it is a PC'-
class.

In Example 2.15 we exhibit a class which is PC’ but not PC.

The proof of the first point in [Hod08] is not obvious and quite interesting. For the
second, essentially the only reason that PC and PC’ are different is that the model might be
finite; if a model is infinite, one could just have the elements of the model “wear two hats,”
on the one hand being the domain of the expansion of the original model, and on the other
hand playing the role of the elements of the new sort P.

2.3 Examples

In this section we will give a few examples of classes of various types, separating some of the
notions defined in the previous two sections, and including some applications of the theorems
of this paper.

The motivating example for this paper was the class of connected graphs. It is easier
to think of the compliment, the class of non-connected graphs. This class is both PC and
definable by a computable A-sentence. Thus the class of connected graphs is both co-PC
and definable by a computable W-sentence (the definition of which should be clear). These
classes are not elementary classes.

Example 2.11. Let 7 = {R} the language of graphs. The class K of non-connected graphs
is a PC-class. Indeed, an undirected graph G = (G, R) is disconnected if and only if there is
a binary relation C of connectedness such that

1. (Vz)(Vy) [R(z,y) > C(z,y)],
2. (Vo) (Vy)(Vz) [C(z,y) A C(y, 2) > C(z,2)], and
3. =(Va)(Vy) C(z,y).
An undirected graph G is also disconnected if and only if

3z #y) N(Vuo, ... un) [z # ug vV ~R(ug,u1) V =R(us, ug) V-V =R (Up-1,Up) V up # y].

new

So K is also defined by a computable NA-sentence.
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The prototypical example of a PC-class which is not L., ,-definable is class of non-well-
founded linear orders.

Example 2.12. Let 7 = {<} the language of linear orders. The class K of non-well-founded
linear orders is a PC-class as a linear order (.59, <) is non-well-founded if and only if there is
a unary relation U such that

(Va)[zeU - (Fy)yeU r y<z]].
K is not definable by any L, ., formula.
A simple example where one can apply Theorem 1.3 is the class of infinite models.

Example 2.13. Let 7 be any language and ¢ a finitary 7-sentence. The class K of infinite
models of ¢ is easily seen to be defined by the conjuction of ¢ and the computable A-sentence

NGz, ... ) [/\mZ * :cj] .

new PE]

By Theorem 1.3, K is a P('-class, and by Theorem 2.10 it is a PC-class. Being slightly
clever, we can also see that K is a PC-class by noting that A & ¢ is infinite if and only if
there is a linear order < on A such that (Vz)(3y)[z <y].

We have already mentioned the class of orderable groups.

Example 2.14. Orderable groups are a PC-class. By compactness, they are also universally
axiomatizable (in elementary first-order logic) by saying that every finite subset can be
ordered in a way that is compatible with the group operation.

Example 2.14 is a particular instance of a more general phenomena: if we take a PC-class
that such that (a) the expanded vocabulary only adds relations and (b) the added relations
are only universally quantified over, then the resulting class is actually elementary (though
it may require infinitely many axioms). This is very particular case in which we can answer
Conjecture 1.4.

As an application of Theorem 1.2, let us give an example of a PC’-class which is not a
PC-class.

Example 2.15. Define an elementary first-order theory 7' as follows. The language of T’
will be the language of graphs. Fix an enumeration of the sentences ¢, in finite languages
L, expanding the language of graphs. Note that for every finite graph G, we can decide
effectively whether there is an expansion of G to a model of ¢,,. For each n, let C,, be cycle
of length n. Then, let T" be the theory that says that there is no cycle of length n for exactly
those n where C,, does not have an expansion to a model of ¢,.

Note that T is c.e. and universal. By diagonalization, the models of T" are not a PC-class,
though by Theorem 1.2 they are a PC'-class.

As suggested by Theorem 2.10, this example uses finite structures in an integral way.



3 An Application of Craig Interpolation

To prove the direction (1) implies (2) of Theorem 1.1, we will adapt a proof of the Craig
Interpolation Theorem for L, .. We state the standard Craig Interpolation Theorem here
for completeness:

Theorem 3.1 (Craig Interpolation Theorem [LEG5]). Suppose ¢y and ¢ are L, ,-sentences
with ¢1 £ ¢2. There is an L, ,-sentence 0 such that ¢1 £ 0, 0 E @2, and every relation,
function and constant symbol occurring in 6 occurs in both ¢ and ¢s.

The proof we adapt is not the original proof by Lopez-Escobar, but one that appears in
the book by Marker [Marl6]. The proof of Craig Interpolation makes use of consistency
properties. Consistency properties are the infinitary equivalent of Henkin-style constructions
in finitary logic. Consistency properties were first introduced by Makkai [Mak69]; the exact
definition we use seems to be due to Keisler [Kei71]. See also Definition 4.1 of [Mar16].

Definition 3.2. Let C be a countable collection of new constants. A consistency property

¥ is a collection of countable sets o of L, ,-sentences with the following properties. For
o€

Cl) if p € o, then —¢ ¢ 0;
C2) if =g e o, then cu{~ @} e X;

C3) if Ngex @ € 0, then for all p e X, cu{¢} e ¥;

C5) if (Vv)o(v) € o, then for all ce C, o u{p(c)} € X;

(C1)

(C2)

(C3)

(C4) if Wyex ¢ € 0, then there is ¢ € X such that o u {¢} € &;
(C5)

(C6) if (Jv)p(v) € o, then there is ¢ € C' such that o U {¢(c)} € %;
(C7)

C7) let t be a term with no variables and let ¢,d € C,

(a) if c=deo, then cu{d=c}eX;
(b) if c=teo and ¢(t) € o, then o U {p(c)} € X;
(c) there is e € C such that cu{e =1t} e X.

Marker [Marl6] includes another condition, that a consistency property be closed under
subsets. However he shows in Exercise 4.1.4 that this is unnecessary. Keisler [Kei71] states
his definition in the same way as ours, and proves that the closure of a consistency property
under subsets is against a consistency property.

A consistency property is in some sense a recipe for building a model.

Theorem 3.3 (Model Existence Theorem). If ¥ is a consistency property and o € 33, there
s MEeo.



We are now ready to prove our variant of the Craig Interpolation Theorem. We strengthen
the hypotheses to assume that one of the sentences is a JA\-sentence, and in return, we get
that the interpolant is also a NA\-sentence. The proof follows the same structure as that of
the Craig Interpolation Theorem in [Marl6] (Theorem 4.3.1).

Theorem 3.4. Suppose ¢; is a N\-sentence and @2 is an L, ,-sentence with ¢1 & ¢o. There
1s a N\-sentence 0 such that ¢1 =0, 0 = ¢q, and every relation, function and constant symbol
occurring in 6 occurs in both ¢1 and ¢s.

Proof. Let C be a countable collection of new constants. Let 7; be the smallest language
containing ¢; and C, and let 7 =73 N 75.

Let 3 be the collection of finite sets of sentences o containing only finitely many new
constants that can be written as ¢ = 01 U gy, where o, is a finite set of A-7-sentences and
0o is a finite set of my-sentences, and such that for all 7-sentences v and 1), with ¢ a
A-sentence, if o1 E Y1 and o, E 15 then 91 A 1)y is satisfiable.

In the rest of the proof, we make the convention that if o € ¥ and we write ¢ = 01 U 09,
then o, and oy are the witnesses that o € X, i.e., o1 consists of A-7i-sentences, o, consists
of my-sentences, and they satisfy the satisfiability condition above.

We claim that X is a consistency property. The following claim will verify many of the
conditions.

Claim. Fiz 0 € ¥ and write 0 = 01 Uos. If ¢ is a T;-sentence (and a N-sentence if i = 1)
with o; = ¢, then o U {¢} € X.

Proof. We will show the case i = 1. We can write cu{¢} = (01U{@})uos. If o1U{0} E 1y and
09 E 19, with 91 a J-sentence, then since o1 E ¢, o1 = 1. Hence 91 A 1), is satisfiable. O

We now check the conditions of a consistency property.

(C1) Suppose for a contradiction that ¢,—¢ € 0 = 0y Uy, If ¢ € 0; while —¢ € 0, for i # 7,
then ¢ is a 7-sentence such that o, F ¢ and o} & =¢, so since ¢ A =¢ is not satisfiable,
this witnesses that o ¢ X. If both ¢,-¢ € g;, then o, E ¢ A ~¢. Now since ¢ A =¢
is unsatisfiable, letting ¢; be any unsatisfiable T-sentence, we also have that o; £ 1.
Letting 1, be any 7-sentence such that o; & 1,, we see that 1); A1), is unsatisfiable and
provides a witness to the fact that o ¢ X.

(C2) This follows from the claim.
(C3) This follows from the claim.

(C4) Write 0 = 01 Uy We have two cases which are different, depending on whether
Woex @ € 01 or Wyex ¢ € 3.
First suppose that Weex ¢ € 02. Let 024 = 02 U {¢}. We claim that for some ¢ € X,
024 Uor € X. If not, then for each ¢ € X there are T-sentences 15 4 and 1y 4, with
1,4 a A-sentence, such that o094 F 124 and o1 E 9 4, and such that s 4 A 1)1 4 is
unsatisfiable. So v, 4 E =1 4. Since

O'2|:V¢

peX



we have that

09 F V @/J27¢.

peX
On the other hand,
o1 FE /\\ w1,¢>'

PpeX

This formula is a A-sentence as each 1 4 is. Finally,

W tbopE = A Y16

peX PpeX

which contradicts that o € 3.

Now suppose that Wyex ¢ € o1; then X is finite. We begin in a similar way as before.
Let 01,4 = 01U {¢}. We claim that for some ¢ € X, 01, U0y € X. If not, then for each
¢ € X there are T-sentences 1 4 and 1 4, with 11 4 a A-sentence, such that oy 4 E 11 4
and o3 19 4, and such that 1, 4 A1y 4 is unsatisfiable. So ¥ 4 E —1)2 4. Since

Ulhvgb

peX

we have that

o1 FE V ¢1,q§'

peX
As X is finite this a A\-sentence. On the other hand,

o2 = N V20

peX

and

\VAEWLEY \Rr

peX PpeX
which contradicts that o € 3.

(C5) This follows from the claim as (Vx)¢(z) E ¢(c) for all ce C.

(C6) If (3z)¢(x) € o, then choose ¢ € C' which does not appear in o. Suppose that (3z)¢(z) €
o1; the case where (3z)¢(z) € o9 is similar. We claim that o u {¢(c)} € 3. Since
(3z)p(x) € 01, ¢(x) is a A-formula, and thus so is ¢(c).

Suppose that oy U{¢(c)} 11 and oy E 1o, where 7 is a A-sentence. Write ¢ = 01(c)
and ¢y = 03(c). We have o1 £ ¢(c) = #1(c), and so since ¢ does not appear in oy,
o1 E (VYo)[¢(z) - 01(x)]. Similarly, oo = (Vz)02(z). Also, oy E (Jz)é(z) and so
o1 = (3x)01(x). So (Fx)01(x) A (Va)hy(z) is satisfiable, say in a model M. Note that
the constant ¢ does not appear in the formula (3x)6;(x) A (Vx)02(z), so we may choose
the interpretation of ¢ in M such that M = 60;(c). Then M & 6,(c) AbB2(c). So 1y Athy
is satisfiable, and o U {¢(c)} € X.

(C7) let t be a term with no variables and let ¢,d € C,

10



(a) This follows from the claim.

(b) Suppose ¢ =t € o and ¢(t) € 0. Write o0 = 07 Uogy. Consider u = o u {¢(c)} =
orUoaU{p(c)}. Suppose ¢ =t e o; and ¢(t) € 0;. The case i = j follows from the
claim, so we consider the case i # j. Suppose that o; £ ¢; and o; U {¢(c)} E ;.
Then o, Ec=tAt; and 0j Ec=1t =1, so c=tA; A(c=1— 1) is satisfiable.
So 1; A1; is satisfiable.

(¢) Pick e € C' which does not appear in o = 07 Uos. Then if o7 U {e =t} E ¢ and
ooU{e =t} E 1y, write ¥1 = 61(e) and 15 = 5(e). Then since e does not appear in
o1 0r 09, 01 E 01(t) and o9 E 05(t). Thus 01(t) AO2(t) is satisfiable. Given a model
of 01(t) A 6>(t), setting the interpretation of ¢ to ¢, we get a model of ¥, Ay, So
W1 A1y is satisfiable.

Since ¢1 = o, {¢1, P2} ¢ ¥ as otherwise by the Model Existence Theorem there would
be a model of ¢; A ~¢5. By definition of 3, there are 7-sentences 1, and 1), with ¢, a
/A-sentence, such that ¢ & ¥y, = E 19, and 11 A 1)y is not satisfiable. So we have that
¢1 E Y1, Y1 —ihg, and g E ¢2. Hence ¢y =191 and 91 E ¢,

Thus 1), is the desired interpolant, except that it may contain constants from C. Write
1 = 0(¢), where 0 is an 7-formula with no constants from ¢. Neither ¢; nor ¢ contains
constants from C', and so ¢ = (Vz)0(Z) and (37)0(Z) = ¢o. Since (VZ)0(z) = (37)0(Z), we
can take (Vz)0(x) as the interpolant. O

We get the following corollary, which is (1) implies (2) of Theorem 1.1. Interestingly,
when we apply the interpolation theorem in the proof, one of the languages contains the
other (i.e., we have 71 2 75 so that 7 =7y N7y = 7). If it were not for our added assumptions
on the form of the formulas involved, finding an interpolant would be trivial as we could just
take the sentence in the smaller language.

Corollary 3.5. Let K be a class of T-structures closed under isomorphism. If K is both a
PCa-class and L, ,,-elementary, then it is defined by a N-sentence.

Proof. Let 7* 2 7 be an expanded language and let X be a set of first-order sentences such
that K is the class of reducts to 7 of models of ¥ = Ngex ¢. Note that ¢, is a A-sentence.
Let 15 be an L, ,,(7)-sentence defining K. We have that 1y & 15, so by the Interpolation
Theorem, there is a A-7-sentence # such that ¢, £ 0 and 6 E 1),.
Every M € K has an expansion which is a model of ¢; and hence is itself a model of 6;
and every model of # is a model of 15, and hence in the class K. So 6 defines K. n

4 The Skolem Argument

For the direction (2)=(1) of Theorem 1.1, we must prove the following theorem. The proof
works for sentences from L, ,, for any x, though the reader should feel free to take x = wy.
(The logic L, is defined in the same way as L, ., except that we allow conjunctions and
disjunctions of size < k.)

Theorem 4.1. Let K be a class of structures closed under isomorphism. If K is defined by
a N\-sentence of L, then it is a pseudo-elementary (PCa) class.

11



We have extended the notion of a A-formula from L, ., to L, ,, using the same definition
(see Definition 2.4).
Remark 4.2. One can extend this theorem to A-theories (sets of A-sentences) because every
/A-theory can be turned into a JA-sentence by taking the conjunction, but this might change
the logic. For instance, any uncountable first-order theory 7" is a A-theory in L, ., but
not a A-sentence in L,, ., (this can be proved by noting the lack of countable models). Of
course, 1" is a JA-sentence in E‘T|+7w.

Morally, the idea of the proof is to Skolemize the language to be left with a universal
/A-theory in an expanded language, and then the infinitary conjunctions can be dropped.
The main construction is the following lemma.

Lemma 4.3. Let p(z) be a N-formula in L, (7). There is an expanded language 7, 2> T
and a set () of first-order 7,-formulas with the same free variables that verifies ¢ in the
following sense:

1. Given any T,-structure A* and a € A*,

V0 e B(p), A* £ 0(a) = A* £ ().

2. Guwen any T-structure A, there is an expansion AY, such that for all a € A,

Arp(a) <= V0ed(p), A, = 0(a).

Proof. Construction: We work by induction on the formula ¢(z). Although there is no
prenex normal form for formulas of £, ,, formulas are defined inductively. In particular, we
follow the definition given for A\-formulas from Definition 2.4, using Remark 2.5 to assume
that any finite disjunctions occur only as part of finitary, quantifier-free formulas.

1. ¢(z) is a finitary, quantifier-free formula.

Set 7, =7 and ®(¢) = {¢(Z)} (in fact, this works for any finitary formula).

2. p(x) is (F)(7,y).
Set 7, =7y U {fo(Z) | 6 € P(¢))} where each fy is a new function symbol, and set

() = {0(z, fo(2)) [ 0(7,y) € D(¥)}-

3. () is (Vy)¥(z,y).

Set 7, = T, and

() = {(Vy)0 (z,y) | 0(z,y) € D(¥)}.
4. () is Nier ©i(Z).

Set 7, = UjerTy, where the union is disjoint over 7; that is, new functions in 7, and 7,
are distinct in 7,. Then set
o(p) = J2(¢).

iel
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This works: We verify the construction inductively using the same cases. Is is easy to
argue inductively that given any 7,-structure A* and a € A*,

VOed(p), A" Eb0(a) = A" = p(a).
1. Immediate.

2. Suppose that for all 0 € ®(p), A" & 6(a). Then, for each 0(z,y) € ®(¢p), A" E
0(a, fo(a)). By the induction hypothesis, A* £ ¥(a, fo(a)). So A* E (Jy)v(a,y), ie.,
A E p(a).

3. Suppose that for all 0 € ®(p), A* = 0(a). Then, for each 0(z,y) € ®(¢p), A* =
(Vy)0(a,y), and so for each b e A*, A* £ 0(a,b). By the induction hypothesis, A* &
¥(a,b) for each be A*. So A* = (Yy)y(ay), i.e., A E p(a).

4. Suppose that for all 8 € &(¢p), A* & 0(a). Then, for each 1; and each 0(z) € ®(v),
A* E0(a). By the induction hypothesis, A* & 1;(a) for each ¢, and so A* = ¢(a).

Now we will show inductively how to define A7, and verify that
Ak p(a) = V0ed(p), A = 0(a).
1. Immediate.

2. Fix A. By induction, we have an expansion Aj. Expand further to form A} by picking
each fy to be a Skolem function for 6; that is, ensure

AL EVE((Jy)0(2,y) < 0(z, fo(2))) .
Then fix a € A.
Aep(a) < 3Fbe A, Aey(a,b)
e A V0ed(y), A E0(a,b)
e A Voed(y), A, E0(a,b)
= V0ed(v), A E0(a, fo(a)).

—
<~

3. Fix A and set Aj; = A:;. Fix a € A.

A= p(a) < VbeA, Aey(a,b)
= Vbe A V0ed(y), A} F0(a,b)
—

Vo e ®(v), A, E (Yy)i(a,y).

4. Fix A and set A} to be the joint expansion of all of the A ’s; here we crucially use
that the new functions in the different languages are distinct. Fix a € A.

AE p(a) Viel, A=;(a)

Viel, V0 e (), A, =0(a)
Viel, V0 e®(y;), AL E0(a)
VO el JP(¥), ALk 0(a).

iel

(N
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This completes the proof. O]
From this lemma, the proof of the theorem is immediate.

Proof of Theorem 4.1. Let ¢ be a J\-sentence of L, .. Apply Lemma 4.3 to ¢. Since ¢ is a
sentence (has no free variables), ®(¢) is a collection of sentences. Then

Mod ¢ ={A]| there is A" expanding A with A" = ®(p)}. O

5 Game Formulas

In this section, we show how the direction (2)=(1) of Theorem 1.1 follows from known results
on game formulas.

Definition 5.1. A closed game formula' is an expression of the form
Vy1321Vya3zo N n(T, 91, 21, Y2, 22, - )

where each ¢, is an elementary first-order formula. Such a formula is computable if the
sequence ,, is computable.

Satisfaction for such formulas is defined by a game played between two players, with player
I playing the V quantifiers and player II playing the 3 quantifiers; player II wins, and the
formulas is satisfied, if he can make ¢, (Z,y1, 21, . ..) true for every n. Alternatively, satisfac-
tion can be defined by the existence of Skolem functions (which turn out to be the winning
strategies for player II).

Note that each ¢, has finitely many free variables. Also, the ‘closed’ adjective refers to
use of conjunctions in the formula.

Every (computable) A-formula is equivalent to a (computable) closed game formula by
moving all of the quantifiers to the front. In doing this, one must take care to rename bound
variables so that each variable is quantified over a single time. This may seem at first to be
false by a reader familiar with the fact that one cannot do this and obtain an £, ,, formula,
but one can do this and obtain a closed game formula. For example,

N 3000 (Z) <= 3T13T2+ N O (T0).
We can define the game formula inductively; for the inductive step, we have:

= Vyl 321 VY327V 3z Vi 328 VY3 323V ys 325 N i (To, w1, 20,0t 22, ).

7,

!An important note is that in general a closed game formula is not an element of Lo, o oreven Lo, .
It is not in the first logic because there are infinitely many quantifiers in front of infinite conjunction, and it
is not in the second logic because the quantifiers are not added in a well-founded way.
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Essentially we need to merge w-many sequences (or quantifiers) of order type w into a single
sequence of order type w, maintaining the order of each of the individual sequences inside
the amalgamated sequence.

So we can get we get the direction (2)=(1) of Theorem 1.1 as well as Theorem 1.3 as a
corollaries of the following theorem:

Theorem 5.2 (Theorem 2.1.4 of [Kol85], Corollary 6.7 of [Bar75]).

1. Any class of T-structures defined by a closed game formula is PCax.
2. Any class of T-structures defined by a computable closed game formula is PC'.

The proof given in the previous section is, however, much simpler. Indeed, the proof in
Section 4 gives a proof of the first item above because the Skolem functions for closed game
formulas are still finitary functions because each stage of the game has only finitely many
plays before it (and because each of the formulas ¢,, has finitely many free variables). This
proof could be further generalized to consider longer games, showing that any class defined
by a higher analogue of closed game formulas is PC in some infinitary logic £, x.
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