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Abstract—This paper develops an optimal data aggregation
policy for learning-based traffic control systems based on imagery
collected from Road Side Units (RSUs) under imperfect com-
munications. Our focus is optimizing semantic information flow
from RSUs to a nearby edge server or cloud-based processing
units by maximizing data diversity based on the target machine
learning application while taking into account heterogeneous
channel conditions and constrained total transmission rate. To
this end, we enforce fairness among class labels to increase
data diversity for classification problems. Furthermore, we pro-
pose a greedy interval-by-interval scheduling policy powered by
coalition game theory to reduce the computation complexity.
Once, RSUs are selected, we employ a maximum uncertainty
method to handpick data samples that contribute the most to
the learning performance. Our method yields higher learning
accuracy compared to random selection, uniform selection, and
network-based optimization methods (e.g., FedCS) 1 .

I. INTRODUCTION

Road-Side Units (RSUs) are an integral part of smart
transportation systems due to their role in collecting visual
information and broadcasting traffic-advisory commands [1].
With the rise of Edge Computing (EC), the bulk of heavy
computations can be performed in edge servers located in
RSUs or the entry point of the wireless network in the vicinity
of RSUs [1]. RSUs can collect data for developing universal
models in centralized servers [2]–[4]. It is known that the
limitations of wireless networks can influence the quality of
the learning-based analysis and decision-making platforms [5],
[6]. A large body of work is devoted to characterizing the
impacts of networking factors on the quality of Distributed
Deep Learning (DDL) tasks as well as enhancing networking
performance to improve the ultimate quality of DDL [7]–[9].

Another closely-related line of research is adapting data-
sharing and model-sharing strategies based on the limitations
of the underlying network. We consider this issue from a
substantially different perspective by regulating packet trans-
mission under imperfect networking so that the diversity of
accumulated samples in the processing unit is maximized,
noting that high diversity typically translates to higher perfor-
mance. More specifically, we aim to optimize data collection
from a set of RSUs with heterogeneous networking conditions
when the total data aggregation limit is constrained. Our
goal is to optimize semantic information exchange, which
may not necessarily be equivalent to optimizing the raw data
throughput. This approach is driven by the fact that some

1This material is based upon the work supported by the National Science
Foundation under Grant Numbers 2008784 and 2204721.

data samples may not significantly contribute to the ultimate
learning quality [10].

To this end, we optimize the semantic diversity of the
collected data by enforcing fairness among data classes to
increase data diversity. Our approach is different than pure
communication-based optimization methods, where the goal
is optimizing communication performance metrics such as
delay and throughput without considering the semantic content
of data packets. Simultaneously, our perspective is different
than typical fairness-imposing scheduling methods that try to
balance resource utilization by different network nodes without
considering their contribution to the performance of the target
ML application [11]. Our contribution can be summarized
as i) optimized scheduling for imperfect communications
while maintaining high diversity by imposing fairness among
accumulated class labels, ii) using coalition game theory to
characterize the added data diversity by any selection of RSUs
in an interval-by-interval fashion, and iii) using constrained
satisfaction problem to translate optimal attempt probabilities
to a binary scheduling matrix.

II. SYSTEM MODEL

Fig. 1: Roadside Units collect data samples from vehicles and send them to
a central cloud-based computation server for learning-based processing.

We assume that there are N RSUs represented by
n1, n2, . . . , nN in a specific traffic zone. Each RSU, equipped
with an Edge Computing (EC) server, pre-processes the col-
lected imagery , then exploits training samples and sends
them to a central processing unit through wireless links.
There exist M < N channels with an equal bandwidth
b1 = b2 = ...bM = bw, so the number of simultaneous packets
by all N RSUs can not exceed M . To be more specific,
suppose that a transmission cycle (we also call it interval)
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includes T timeslots. We present the transmission matrix as a
QN×T = [Qit], where Qit = 1 means that RSU ni sends a
packet at timeslot t and is silent otherwise.

The goal of the scheduling is to fill in the binary scheduling
matrix (interval by interval) so that the number of simultaneous
transmissions in each timeslot does not exceed M , meaning

that
∑N

i=1 Qit ≤ M, ∀t ∈ T. We can solve this problem in two

sequential steps. First, we define αi =
1
T

∑T
t=1 Qit for RSU

ni, which represents the transmission attempt probability in a
stationary case (during one transmission cycle: T timeslots).
Then, the optimization would reduce to finding the attempt
probability vector α = (α1, α2, · · ·, αN ) so that

N∑
i=1

αi =

N∑
i=1

( 1
T

T∑
t=1

Qit

)
(1)

=
1

T

T∑
t=1

( N∑
i=1

Qit

) ≤ 1

T

T∑
t=1

M = M, ∀i ∈ N.

Once, we obtain attempt probabilities αi (the row weights
of Q), then the next step would be to permute αiT ones and

(1− α)T zeros in row i so that
∑N

i=1 Qit ≤ M is satisfied.
We use constrained satisfaction problem by considering rows
ri = (Qi1, Qi2, . . . , QiT ) as variables and all permutations
of �αiT � ones and �(1 − αi)T � zeros as values, where
we used �.� and �.� to round up/down to an integer value,
and select T to be the minimum product of �αiM� terms.
We will perform iterative assignment by random inconsistent
variable selection and min-conflict heuristic for value selection
until constraint

∑N
i=1 Qit ≤ M is satisfied. This will fully

determine transmission matrix Q with row weights αiT and
column vectors bounded by M .

III. PERFORMANCE METRICS

The problem is formulated as follows

argmax
α

f(α, t) =

3∑
i=1

wifi(α1, α2, . . . , αN , t) (2)

s.t. 0 ≤ αi ≤ 1, and

N∑
i=1

αi ≤ M,

where the objective function is the linear combination of the
set of desired performance metrics. In our case, f1(α, t),
f2(α, t), and f3(α, t), respectively, represent the average de-
lay, throughput, and diversity metrics at time (interval) t. Here,
the throughput and delay terms f1() and f2() are calculated
per interval but the diversity term f3() depends on the RSU’s
transmitted packets in the previous timeslot, which hinders
solving the problem in an interval-by-interval fashion. The
optimization is constrained by 0 ≤ αi ≤ 1 meaning that each
RSU can not utilize more than one channel at a time and∑N

i=1 αi ≤ M meaning that the central unit can not receive
more than M packets simultaneously. To have a non-trivial
solution, we set M < N .

A) Delay: We take a simplistic assumption and model D
(1)
i

the E2E delay for one packet for RSU ni as an exponentially
distributed continuous-valued Random Variable (RV) with
RSU-specific mean λi , and then incorporate the impact of

re-transmissions. Specifically, we define D
(1)
i ∼ fλi(di)

fλi(di) =

{
λie

−λidi , di ≥ 0,

0, di < 0.

We consider that an average delay E[D
(1)
i ] = 1/λi for

each RSU ni remains constant during one scheduling interval
(one optimization round). λi can be drawn from Gamma
distribution [12] in an interval-by-interval fashion. Here, we

consider D
(1)
i captures all delay terms. However, if it accounts

only for queuing delay, we can add the constant term Dtr =
L/Rch = L/αbw accounting for the actual transmission delay,
where L is the packet length (in bits), bw is the bandwidth (in
Hz) and Rch = αbw is the transmission rate (in bits/sec) for
a given transmission system.

This delay D
(1)
i is for one packet transmission; hence,

the effective E2E delay Di should be calculated for the
last attempt when re-transmissions are involved. During one
transmission interval, the number of re-transmissions Ri for
RSU ni follows a geometric distribution. Specifically, we have
P (Ri = r) = (1 − βi)

(r−1) · βi where βi is the packet drop
probability for RSU ni drawn interval-by-interval from a Beta
distribution with shape and scale parametersβi ∼ Beta(a, b).
Therefore, the expected value of E2E delay for one successful
transmission is calculated as follows

E [Di] = ER

[
ED[Di | R

]
(3)

= ER

[
E[D

(1)
i +D

(1)
i + . . . D

(1)
i︸ ︷︷ ︸

R times

]
]

= ER

[
R · E[D

(1)
i ]

]
= E[R] · E[D

(1)
i ] = (1/λi) · 1/ (1− βi) ,

where we used E[R] = 1.(1 − βi) and E[D
(1)
i ] = 1/λi.

The average delay of the entire system is apparently the
linear combination of RSU-specific delays weighted by their
attempt probabilities. We consider the negative/inverse of the
average delay as our first term in the objective function in (2).
Therefore, we have

f1(α, t) = 1/

N∑
i−1

αi(t)E[Di(t)] = 1/

N∑
i−1

αi(t)

(λi(t))(1− βi(t))

(4)

at transmission interval t. Note that we drop t from some
equations when it is clear from the context.

B) Throughput: Likewise, we can calculate the effective
throughput ζi of RSU ni as ζi = αiRch/E[Ri] = αiRch(1−
βi) where Rch is the rate of channel, E[Ri] = 1/(1 − βi) is
the average transmission per packet. The second term in the
objective function of (2) is the system throughput (at time t),
which is simply the sum of the individual throughputs. We use

f2(α, t) =

N∑
i=1

ζi(t) =

N∑
i=1

αi(t)Rch(1− βi(t)). (5)

C) Diversity through Fairness: Collected data from RSUs
can vary greatly due to factors like illumination, camera set-
tings, road conditions, and traffic composition. It is known that
the diversity of data samples significantly enhances learning
quality [13], [14], [14] and may conflict with the efficiency



of data accumulation. we enforce diversity through fairness
among collected data samples of different classes which we
can view it as soft fairness. In this work, we use Jain’s fairness

index, defined as J(x) =

(∑N
i=1 xi

)2

N
∑N

i=1 x2
i

. To enhance diversity,

we impose fairness among data categories (e.g., class labels
in multi-level classification). Suppose cji is the number of data
samples of class j in RSU ni. Then, the diversity of RSU ni is
represented by ci =

[
c1i , c

2
i , · · · , cCi

]
. Assuming that samples

are selected at random by RSUs, then the number of received
samples of class j until time t, cjR(t) is the sum of samples
of the same class attempted by all RSUs in all transmission
intervals up to time t proportional to their effective throughput

as cjR(t) =
∑t

τ=0

∑N
i=1 c

j
i ζi(τ) where ζi(τ) is the throughput

of RSU ni at time τ given by ζi. We impose fairness on the
received data samples of all classes as

f3(α, t) =J
(
c1R(t), c

2
R(t), · · · , cCR(t)

)
. (6)

IV. COALITION-BASED GREEDY SCHEDULING

The optimization problem in (2) is non-convex, hence does
not admit a closed-form solution or KKT approach. If we
divide the range of alpha [0 1] into [0, dα, 2dα, . . . , 1] with
Nα steps dα = 1/Nα, the computation would be in the
orders of (Nα)

N considering only O(1) complexity to evaluate
objective functions fi(α). Therefore, it is NP-hard in the
number of RSUs and can be prohibitively expensive for large-
scale systems. Moreover, it does not allow interval-by-interval
optimization, because the fairness index f3() should account
for all preceding transmission intervals.

To address this issue, we propose an approximate method to
select top-K RSUs using coalition game theory. Game theory
is an appropriate tool to evaluate fairness since it quantifies
the contribution of each player n when joining a coalition S,
as marginal value v(S∪{n})−v(S), where v(S) is the value
function representing the total payoff can be gained by the
members of coalition S. Here we define

v(S(t)) =
3∑

i=1

wifi(α1, α2, . . . , αN , t)

= w1/
∑

n∈S(t)

αn(t)

(λn(t))(1− βn(t))

+ w2

∑
n∈S(t)

αn(t)Rch(1− βn(t))

+ w3J
(
c1R(t), c

2
R(t), · · · , cCR(t)

)
(7)

αn =

{
M/|S(t)| n ∈ S(t)

0 else
(8)

representing a case where coalition members split M trans-
mission resources equally. In standard coalition games, we
can have coalitions of arbitrary size. Also, Shapley value of
each player is defined as the expected marginal contribution
of player i to the set of players who precede this player as

φi(v) =
1

N !

∑
S⊆N/i

|S|!(N − |S| − 1)!

N !
[v(S ∪ {ni})− v(S)]

(9)

This involves evaluating the value of all 2N coalitions. Here, to
reduce complexity, we allow only the formation of fixed-size
coalitions |S(t)| = K as the set of active RSUs in transmission
interval t. Apparently, we must have |S| ≥ M to maintain
constraint αi = M/|S| < 1.

V. UNCERTAINTY-BASED SAMPLE SELECTION

Once we determine active RSUs by solving (2) and (7),
we can select a balanced number of samples among different
classes. However, there is flexibility in selecting samples
within each class. Our approach to this problem is sensing
samples that can contribute the most to the ML application
at hand. For instance, for multi-level classification, we use
the min-margin criteria by selecting samples with the lowest
difference between the softmax highest and second highest
probability [15]. To this end, the Fusion Center updates the
model at the end of each transmission interval and sends
back the model parameters. The RSU selects the samples that
exhibit maximum uncertainty.

VI. SIMULATION

In this section, we investigate the performance of the
proposed interval-by-interval scheduling policy in terms of
the ultimate learning quality under time-varying conditions.
We use the following two datasets for our experiments. The
first dataset is [16], in which we apply traffic light status
detection (red, yellow, green) with a convolutional neural
network (CNN). We investigate scenarios where data samples
are split unequally (in terms of class labels) among RSUs
to represent unbalanced datasets. We evaluated the following
methods for each test scenario: i) optimized scheduling with-
out fairness by setting w3 = 0 in Eqs (2) and (7) to exclude
fairness, ii) optimized scheduling with fairness, where we set
w1 = w2 = w3 to weight delay, throughput, and fairness
equally (after applying proper normalization for each metric
to be in the same scale with zero-mean and unit variance),
iii) uniform rate, where all RSUs utilize an equal number of
resources, and we set α1 = α2 = · · · = αN = M/N , iv)
random rate, where K = 5 out of N = 10 RSUs are selected
in random to transmit their packets with attempt probability
αi = M/K, v) FedCS as an exemplary communication-based
method [17].

Fig. 2: Learning accuracy of the system using different scheduling policies
versus packet error rate. The results are for unbalanced CIFAR-10 dataset
among RSUs. We set N = 10, M = K = 5, and T = 100.



Fig. 3: Online learning accuracy of the system using different scheduling
policies for different portions of transmitted samples. The results are for an
unbalanced CIFAR-10 dataset among RSUs. We set N = 10, M = K = 5,
and T = 100.

We evaluate our method by training a CNN on CIFAR10
dataset data samples sent by RSUs under different scheduling
policies. We consider unbalanced datasets, where ten classes
split inequality among RSUs. Indeed, to simulate an unbal-
anced dataset, we include only 2 out of 10 classes in each
RSU dataset. The results are shown in Figs. 2 and 3. It is
seen in Fig. 2 that the ultimate learning accuracy gradually in-
creases by sending more packets consistently for the optimized
scheduling by enforcing fairness on unbalanced datasets. Fig.
2 demonstrates a decline in the accuracy by increasing the
PDR. In this figure, the proposed optimization when enforcing
fairness outperforms all methods for an unbalanced dataset
(Figs. 2 and 3), since it increases the throughput and the
optimized scheduling with enforcing diversity yields superior
performance. This highlights the fact that optimizing the
scheduling policy merely based on the networking parameters
is not optimal for learning-based applications.

TABLE I: Evaluation with traffic dataset. Three RSUs are used with β1 =
0.1, λ1 = 1.3, β2 = 0.22, λ2 = 1.5, β3 = 0.44, λ3 = 1.1.

Methods Channel Uti-
lization

Throughput Learning
Quality

RSU1 = 0.58
Optimize without fairness RSU2 = 0.3 89 0.85

RSU3 = 0.12
RSU1 = 0.42

Optimize with fairness RSU2 = 0.32 70 0.93
RSU3 = 0.21
RSU1 = 0.33

Uniform rate RSU2 = 0.33 60 0.82
RSU3 = 0.33
RSU1 = 0.28

Random rate RSU2 = 0.44 46 0.81
RSU3 = 0.17
RSU1 = 0.45

FedCS RSU2 = 0.5 59 0.78
RSU3 = 0.07

Similar results are provided for the traffic light dataset in
Table I. It can be observed that FedCS favors RSU2 for its
lower expected delay 1/λ2 = 1/1.5. On the other hand, the
optimized method favors RSU1 for its lower packet drop rate
β1 = 0.1. Nevertheless, the attempt probabilities are slightly
different with and without enforcing diversity. The optimized
scheduling with no diversity maximizes the system throughput
whereas the optimized policy with enforcing diversity through
fairness among the class labels of the received samples results
in the highest learning accuracy of 87%.

VII. CONCLUSION

We investigated the importance of enforcing diversity
among collected data samples from RSUs for traffic monitor-
ing applications. We offered a new coalition-based greedy op-
timization that enforces the diversity of the received dataset by
imposing fairness on the collected class labels in an interval-
by-interval fashion. Then, we used the min-margin criterion
to select samples from each class that are less consistent with
the trained learning system (hence contributing the most to
improving it). This improves upon the current practice of
optimized scheduling merely based on networking parameters.
Particularly, our method outperforms random scheduling, uni-
form scheduling, and communication-based scheduling meth-
ods by a significant margin in terms of learning quality (more
than 5% improvement in classification rate).
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