THEME ARTICLE: SECURITY AND PRIVACY-PRESERVING EXECUTION

ENVIRONMENTS

Understanding and Characterizing Side
Channels Exploiting Phase-Change

Memories

Md Hafizul Islam Chowdhuryy ® and Rickard Ewetz ®, Department of Electrical and Computer Engineering,

University of Central Florida, Orlando, FL, 32816, USA

Amro Awad ®, North Carolina State University at Raleigh, Morrisville, NC, 27560, USA

Fan Yao ®, Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32816,

USA

Recent advances in nonvolatile memory (NVM), together with their performance-
optimized architectural schemes, position NVMs as promising building blocks for
future main memory. However, the security of such techniques has not been explored.
This article performs the first study on information leakage threats in phase-change
memories (PCM). We propose an attack framework, read-saw (R-SAW), that
systematically investigates side channel vulnerabilities in representative read
techniques under interline and intraline interleaving for multilevel cells. Our evaluation
shows that the new side channels can accurately leak program secrets (e.g., crypto
keys) and are extremely robust to noise. Our work highlights the need to understand
microarchitecture security for emerging memory devices.

ecent developments in microarchitecture
R attacks have raised significant concerns for
information security. Particularly, a burgeoning
of side channels has been demonstrated in a plethora of
processor hardware components."? These exploitations
highlight the fact that hardware performance optimiza-
tions without proper consideration of security often
open new venues for information leakage. As new hard-
ware components and microarchitecture optimizations
are more rapidly integrated into modern computing sys-
tems, understanding their security impacts is critical to
ensure secure-by-design solutions.

Emerging memory technologies have become major
contenders for main memory with their advantage in non-
volatility, outstanding capacity, and superior energy effi-
ciency.® Phase-change memory (PCM) is a promising
class of nonvolatile memories (NVMs) due to its maturity
and dynamic random-access memory (DRAM)-

0272-1732 © 2023 IEEE

Digital Object Identifier 10.1109/MM.2023.3238894
Date of publication 23 January 2023; date of current
version 28 August 2023.

comparable performance.* To enable the efficient inte-
gration of PCM in computing systems, many architectural
schemes for optimizing PCM main memory have been
proposed in recent years.*>® While tremendous efforts
have been put into studying the microarchitecture secu-
rity of on-chip resources, information leakage vulnerabil-
ity in architectural schemes for PCM has not been well
understood.

MAINSTREAM ARCHITECTURAL
SCHEMES FOR PCM READ
COMMONLY LEVERAGE THE READ
ASYMMETRY IN MLC CELLS FOR
PERFORMANCE OPTIMIZATION.

This article demonstrates the first work on investigat-
ing side channels in future systems equipped with PCM.
We systematically surveyed the state-of-the-art read
techniques for PCM operating under the multilevel cell
(MLC) mode, a widely utilized configuration that
increases memory capacity. We identify that mainstream

8Authorized licensd& BSeMhidited to: University of Central FRotdis Brsivhloabed| B B éptembeid 0 2025 17:57:59 UTC frome IEEMRpIACRESAINS apply.

https://orcid.org/0000-0002-6132-3343
https://orcid.org/0000-0002-6132-3343
https://orcid.org/0000-0002-6132-3343
https://orcid.org/0000-0002-6132-3343
https://orcid.org/0000-0002-6132-3343
https://orcid.org/0000-0002-4183-6926
https://orcid.org/0000-0002-4183-6926
https://orcid.org/0000-0002-4183-6926
https://orcid.org/0000-0002-4183-6926
https://orcid.org/0000-0002-4183-6926
https://orcid.org/0000-0003-3987-463X
https://orcid.org/0000-0003-3987-463X
https://orcid.org/0000-0003-3987-463X
https://orcid.org/0000-0003-3987-463X
https://orcid.org/0000-0003-3987-463X
https://orcid.org/0000-0002-0360-5641
https://orcid.org/0000-0002-0360-5641
https://orcid.org/0000-0002-0360-5641
https://orcid.org/0000-0002-0360-5641
https://orcid.org/0000-0002-0360-5641

reference resistance

‘01’

Cell distribution

sensed resist. sensed resist.

-G %,

ref.1 ref.N
< MSBread >

Resistance

(a)

LSBread —>

(b)

FIGURE 1. MLC PCM cell resistance range (left) and the MLC read technique (right).

architectural schemes for PCM read commonly leverage
the read asymmetry in MLC cells for performance optimi-
zation, which allows highly variable program executions
due to access to fast/slow data regions. Accordingly, we
propose a novel side channel framework—R-SAW—that
aims to exfiltrate program secrets by correlating victims'
execution times with the PCM access patterns. We pres-
ent two variants of side channel attacks: 1) R-SAW-I| that
targets memory read technique with PCM interline data
striping, and 2) R-SAW-IA exploiting PCM accesses under
intraline data striping. Our evaluation demonstrates that
the newly discovered side channels are particularly dan-
gerous: first, such attack can observe timing variance for
victim’'s execution even under the same execution path
[e.g. inferring advanced encryption standard (AES) keys];
second, R-SAW is able to carry out information leakage
based on the sub cache line access granularity, making
existing mitigations against cache line level exploits inef-
fective. Our work provides novel insights for future
research in securing emerging NVM-based systems
against side channels. In contrast to our previous work,”
the major contributions of this article are as follows.

> We systematically model the architectural read
technique under PCM intraline interleaving scheme
and identify a new R-SAW side channel (R-SAW-IA)
exploiting timing variations due to sub memory
block access in PCM.

> We present possible code patterns that are
resistant to side channels observing at the mem-
ory block granularity while still exploitable via R-
SAW-IA. We evaluate the attack with the proto-
typed victim [based on Rivest-Shamir—Adleman
(RSA)] and show that R-SAW-IA can accurately
unveil secretive data from the victim.

> We perform additional characterizations for both
R-SAW-I and R-SAW-IA and show that not only the
proposed side channels are independent of other
on-chip structures that contributes to timing
observation (i.e., caches), but they are also more
robust to noises. We further extend the discussion
on the security of PCM with side channels.

Phase-Change Memories

PCM devices are built with phase-change materials that
can switch between high-resistance amorphous state
and low-resistance crystalline state. Due to the fact that
the programmable resistance range is considerably
large, it is possible to store multiple bits by encoding
more than two resistance levels in a single PCM cell (i.e.,
MLC), which significantly increases the device capacity
(see Figure 1). Accessing PCM in MLC mode, however,
brings additional complexity to the cell sensing opera-
tion. Particularly, the state-of-the-art MLC sensing tech-
nique (for reads) leverages an iterative process where
the resistance in one cell is compared with multiple ref-
erence values (one at a time) to decode each individual
bit from the order of most significant bit (MSB) to least
significant bit (LSB) (see Figure 1).

R-SAW AIMS TO EXFILTRATE
PROGRAM SECRETS BY CORRELATING
VICTIMS' EXECUTION TIMES WITH THE
PCM ACCESS PATTERNS

With iterative sensing, it generally takes longer to
derive the lower bits in an MLC cell than the higher
ones—read asymmetry. For instance, in 2-bit MLCs,
reading from LSBs is about 2x slower than that from
MSB. As memory load is in the critical path, it is desir-
able to enable the decoupling of the MSB accesses
with shorter latencies from the LSB accesses with lon-
ger latencies. Toward this end, the architecture com-
munity has proposed several data striping schemes
and necessary architecture support to utilize the PCM
read asymmetry for performance optimizations.>®
Figure 2 shows the representative data interleaving
designs, including 1) bit interleaving where consecutive
cache line bits are mapped to MLC cell bits

Authorigesblieensast (Getishitad2o28niversity of Central Florida. Downloaded on September 19,2023 at 17:57:59 UTC from IHEEXpeeo Restrictions apply. 9

DODOED |).

b1 bs bs bz bo b1
(a)

[Ee e]

bsog bs11

'
=
- - I

|
| LSB
\-=/ b1 bs bs bz bg b1 bsos bs11], cl!
MLC
PCM (b)
Cell
0o o [-<o| oo o | Fect!
b2se bas7 bs11 base b2s7 bs11]‘ pCL!
L J L J
cache line 0 cache line 1

()

FIGURE 2. Memory block bits layout with PCM. (a) Default bit
organization in a cache line (CL). (b) Interline striping with MSB-
only CL (CL") and LSB-only CL (CL"). (c) Intraline striping with par-
tial cache line (i.e. first half) in MSBs (pCL") and the other half in
LSBs (pCL").

sequentially (nonoptimized scheme); 2) interline inter-
leaving with consecutive odd and even lines stored in
MSB bits and LSB bits (speeding up odd line accesses),
respectively‘r’,' and 3) intraline interleaving in which one
half of the line maps to MSBs and the other half to
LSBs (speeding up access of half of a memory block).®

Microarchitecture Side Channels
Microarchitecture side channel is a form of information
leakage attack where illicit communication is built by an
adversary through modulating microarchitecture states
that influence the timings of instruction executions (i.e.,
latency) either observed through an attacker or the vic-
tim process. A variety of on-chip hardware components
have been shown to be vulnerable to side channel
exploitation.?®® Timing channels can be categorized
into two classes: 1) active timing channel where an
adversary intrusively perturbs states of hardware com-
ponents (e.g., evicting victim's cache line); and 2) passive
timing channel where the attacker only needs to pas-
sively observe the execution times of the victim process.
While existing protection mechanisms (i.e., randomized
cache' and resource partitioning) can defeat many of
these attacks, new avenues of exploitation open up.”

We assume that a victim is running processes on
machines equipped with PCM as the main memory.
Architectural optimizations are integrated to enhance
PCM memory performance by supporting various data-

interleaving schemes. The adversary can either corun a
userspace process or interact with the victim's process
through software interfaces (e.g, serving client's
requests). Our investigation focuses on passive timing
channels where the attacker monitors externally observ-
able execution time of the victim and attempts to infer
the secretive information. To analyze the vulnerabilities,
we model a system with PCM main memories with key
architecture parameters in the gem5 simulator, as given
in Table 1.

Architecture Support for PCM With
Interline Interleaving

We thoroughly model PCM-based systems that integrate
the state-of-the-art interline striping bit arrangements in
MLC PCM.? In this scheme, the memory controller maps
consecutive memory blocks in MSBs (CL" and LSBs
(cLh alternatively. Hence, in one pair of memory blocks,
the first block is mapped entirely in the MSB and the sec-
ond block is mapped to LSB of the same group of PCM
cells. Using this bit organization, the CL" reads are ser-
viced quickly by the memory controller. In addition, when
servicing reads to CL' blocks, the controller searches for
the paired CL" block in cache, and if hit, the CL' read is
performed in one iteration of sensing as well.

Case Study: Attacking AES

We first demonstrate R-SAW-|, an attack that can recover
keys from AES cryptographic system by exploiting inter-
line read latency variations. Specifically, OpenSSL's imple-
mentation of AES-128 performs 10 rounds of
transformation using five T-tables (7;_,). The specific

TABLE 1. Architecture configurations.

Hardware Configurations
Processor Quad-core x86 CPU, Out-of-order
execution
L11/D-cache Private, 32 KB, 2-way, 1-cycle hit
L2 cache Private, 4 MB, 16-way, 10-cycle hit
DRAM cache Shared, 32 MB, 16-way, 50-cycle hit
Mem. Ctrl. 64 RD & WT queue, FR-FCFS, open-row
PCM memory 8 GB, single channel, 2 ranks/channel
(Local)
16 GB, dual channel, 2 ranks/channel
(Target)
PCM timing 2-bit MLC, MSB read: 28 ns, LSB read:
48 ns

TQuuthorized licensd& GeMrigited to: University of Central Florida. Downloaded on September 19,2023 at 17:57:59 UTC frove IEERRSigfectREstricHING apply.

entry accessed in tables depends on the corresponding
round key byte and the intermediate input byte.

As the total number of T-table accesses in AES is
fixed during each encryption run, a direct correlation
between CL' access ratio and encryption latency may
exist. Since T-table access addresses are reliant on
the round key, we conjecture that when performing
encryptions, each particular value of key bytes will
result in deterministic PCM access patterns. Based on
this conjecture, an attacker can extract the exact
value of key bytes by performing correlation analysis
with encryption latencies for all possible 256 values of
the key byte. R-SAW-I comprises the following steps.

PCM access pattern profiling on AES: During this
stage, the attacker compiles memory-pattern vectors
(MPVs) that are later used to determine specific key
bytes in victim. The attacker first instruments the AES
program to detect CL" and CL' line accesses during
encryption. Then, it performs a sufficient number of
encryptions on a local machine, using random keys and
plaintexts, to generate PCM access traces. For each
encryption run, a sample point S = (C,K' p) is col-
lected, recording the corresponding ciphertext C, last
round key K'°, and the percentage of CL' access p.
These samples are then categorized based on every
unique combination of k!° and C; for each i. Particularly,
we arrange all sample points with K1 = wand C; = w (u
and w € [0, 255]) as a group S(i,u,w) for each value of
ith key byte. This S(i, u, w) encodes the statistical PCM
access pattern for specific values of ith key byte and
ciphertext byte. Finally, we calculate the ?(f_u) by taking
average of CL' access percentage in S(i, u, w). The MPV
for the ith byte is subsequently defined as follows:

) =0 i 5255
M(i,u) = {P; s Pliwys - P b 1))

Victim’s execution time monitoring: The attacker
triggers AES encryption on victim system using random
plaintexts and records S = (C,), where C'is the cipher-
text, and [is the execution latency. Similar to the profile
step, the collected samples are organized such that for
each ith ciphertext byte, the S records for the same C;
are grouped as S(i, x, w), where x = K} is the unknown

10 10
ko® e kig

0 50 100

key (fixed). Subsequently, the attacker builds an encryp-
tion-timing vector (ETV) for each byte of last round key
by calculating L ; ,, based on average latency for each
S(i,x,w). The ETV captures the statistical encryption
latency pattern for the unknown value of the ith key
byte, and is denoted as follows:

) —0 =1 255
T(i,x) = {L; s Linys - Liin b (2)

AES key recovery through correlation analysis: After
the ETV collection [7(¢,x)] is completed, the attacker
performs correlation analysis of ETV with MPVs to infer
the secret key value. We expect that an outstandingly
higher correlation between M (%, u) and 7 (4, x) will exist
for x = u. We represent this procedure as follows:

K" = arg max R(M(i,u), T (i,x)). 3)

Based on this, each last round key byte can be
inferred by finding the u that results in the highest corre-
lation with x for that specific byte. Once all bytes of last
round key are inferred, the original key can be recovered.®

Evaluation

We first generate MPVs using 30 million encryptions in
local system. In addition, we perform 128,000 encryp-
tions in the victim to generate the ETV. From our profil-
ing result, we observe that MPV for each key byte
[M(i,u)] corresponding to different values is differentia-
ble. Figure 3 shows the correlation analysis of ETVs for
each of the 16 key bytes. We observe that for each key
byte, there exists an obvious outlier representing strong
and highest correlation, which is the correct key byte
value. We run this for 4,000 different victim key settings
and observe that R-SAW-I achieves 98.5% accuracy.

Architecture Support for PCM With
Intraline Interleaving

We model PCM intraline optimization as proposed by
Arjomand et al.® Specifically, bits in each memory block

1+Ky4 = 184
I

L ‘Kl = 2‘19<\|sz‘ '] 247.‘ 0.0
[[

150 200 250

Possible Value of Key Bytes

FIGURE 3. Complete recovery of the final round key. Each row denotes the correlation value distribution for one key byte.

Authorizgesblieenseast (Getishitedto2Bniversity of Central Florida. Downloaded on September 19,2023 at 17:57:59 UTC from IEEEXpiiteo Restrictions apply. T1

are organized in such a way that the first half of the
block [pCLh in Figure 2(c)] is stored in only the MSB of
PCM cells, and the second half (pCLZ) in the LSB of the
same PCM cells. When the processor loads a memory
block from main memory, the pCL" read finishes faster
and can be ready before the pCL' (see the “Background
and Related Works” section). To optimize performance,
the memory controller utilizes early forwarding of pCL"
to the requesting core while only marking the outstand-
ing cache miss as completed when pCL' arrives. This
optimization improves program execution time by
opportunistically hiding the LSB read latency.

Potential Side Channel Vulnerabilities
Since intraline optimization can forward pCL" earlier than
pCL!, executions requiring pCL" can progress while wait-
ing for pCL'. At runtime, software can issue memory
access that either only maps to pCL" or pCL' of a memory
block, leading to variable timings. To understand the
potential impact of intraline access pattern, we design a
microbenchmark that reads from arbitrary halves of
memory blocks. By controlling pCL" access ratio, we
observe program execution time increases linearly with
pCL'. We also observe that this timing correlation only
exists with the presence of the intraline striping optimiza-
tion. We illustrate two representative program patterns
that are potentially exploitable, as shown in Figure 4.

» Subcache line control flow divergence: In this pat-
tern, a secret dependent branch (inside apCLY) can
transfer the control flow to either the pCL" or pCL
in the next memory block [see Figure 4(a)]. In such
cases, the taken path may skip pCL" and diverge
the control flow to pCL', whereas the not-taken
path will execute through pCL". Since the taken
path needs to execute instructions belonging to
pCL' on first access, this exposes intracache line
level latency variations in program execution time.
The PCM read latency variations observed in this
case are typically much higher than the execution
time differences due to the difference between
these two paths in terms of instructions.

highCtr < 0
lowCtr < 0

if s=0
lowC'tr 4+ +

else if s =1
highCtr + +

N AN R W N -

CODE SNIPPET 1: Element counter.

pCL! Secret =0
Secret=1 mCL' — Load
Secret=0 P Secret = 1

pcL!

FIGURE 4. Intraline access for secret-dependent control flow
(left) and data flow (right).

» Subcache line data flow transfer: In this vulnera-
ble code, secret-dependent memory access can
index to either a pCL" or pCL' of the same memory
block [see Figure 4(b)]. Based on the execution
latency, it is possible to determine which half line
is indexed into, thus revealing the secret value.

R-SAW-IA VULNERABILITY CAN
MANIFEST IN CASES WHERE
PROGRAMS DO NOT EXHIBIT
DIFFERENTIABLE ACTIVITIES AT
CACHE LINE GRANULARITY.

Since the timing variance corresponds to different
accesses within a memory block, such vulnerability can
manifest in cases where programs do not exhibit differ-
entiable activities at cache line granularity (e.g., classical
cache attacks exploiting hit/miss?. Code Snippets 1
and 2 (explained later) demonstrate two representative
code gadgets corresponding to the vulnerabilities in
Figure 4. Specifically, Code Snippet 1illustrates a secret-
dependent data access to different halves of memory
block. As shown in the gadget, if both variables highCtr
and lowCtr belong to the same cache line, this gadget
does not have any cache line level vulnerability. How-
ever, intracache line level vulnerability still exists in case
these two data access map to a pCL" and pCL", respec-
tively. Note that such gadgets are common in image

1z <« 1

2y < 1

3 for i+e—1to 0 {
4 z <« sqr(z)

5 x <+ mod(xz,m)
6 y < mul(z,b)
7 y + mod(y, m)
8 if g =1

9 T — Yy

10 }

CODE SNIPPET 2: Square-and-multiply-always.

T2uthorized licensd@ GeMrigited to: University of Central Florida. Downloaded on September 19,2023 at 17:57:59 UTC frove IEERRsigfectREstricHING apply.

processing applications (e.g., Libjpeg), where transfor-
mation of images (memory accesses) often depends on
the values of neighboring pixel values.

Case Study

We present R-SAW-IA, a side channel utilizing intrac-
ache line level access pattern. At a high level, R-SAW-
IA profiles the execution latency of the target applica-
tion for each possible secret value (i.e., offline profiling
stage). Once profiling is completed, the attacker trig-
gers victim execution and records the execution times.
Finally, a correlation analysis between the victim exe-
cution time with the attacker’s profile data leaks the
secretive information. To demonstrate R-SAW-IA, we
analyze the modular exponentiation algorithm using
square-and-multiply-always'® for GnuPG's RSA imple-
mentation, as shown in Code Snippet 2. Specifically, it
performs multiplication regardless of the value of the
current exponent bit, and the result of multiplication
operation is only kept if the exponent bit is “1.” The
implementation was proposed to defeat cache timing
channels that identify cache line access due to the
invocation of the multiplication operations in the original
RSA algorithm.? Importantly, although there is a branch
(line 8) that depends on the secret bit, the branch block
is typically very small and can be placed within the same
cache line as the nonsecret dependent instructions
before it (i.e., line 7 and above). However, the secret
dependent code can still spawn over half of cache line
(i.e., LSB half) similar to the case in Figure 4(a). In this
case, although such control flow path cannot be
observed from caches (as the same cache lines would
be accessed in either direction), the submemory block
level observation in intraline optimization remains. The
exploitation steps are as follows.

Profiling of execution latency: In this step,
attacker runs RSA encryptions with different values
of e, and collects the execution latency for each. The
attacker then creates an execution latency profile
corresponding to each number of bit “1"s in the expo-
nent (i.e., n.). After this stage, the attacker has an
execution latency vector (ELV) that captures the exe-
cution time signature of the victim process corre-
sponding to each n, in e.

Collecting victim latency traces: In this step, the
attacker triggers victim execution that runs RSA encryp-
tion with an unknown e. Attacker measures the execu-
tion latency corresponding to this unknown exponent.

RSA exponent secret recovery using correlation
analysis: The attacker performs the correlation analy-
sis of the victim latency traces against the profiled
ELV. Since the n. is a representative of additional pCL'

40000 40000

37500 1 37500 4
3 35000 A 3 35000 A
c c
[[
% 32500 A 5 32500 A
- -
S 30000 A S 30000 A
g 2
$ 27500 $ 27500 A
g g
S 25000 4 S 25000 4

22500 4 22500 4

20000 ' ' 20000 ' '

0 1000 2000 0 1000 2000

of Set Bits # of Set Bits

(a) (b)

FIGURE 5. Total program execution latency as a function of #
of bits “1"s in the exponent for Code Snippet 2. (a) Intraline
interleaving. (b) No interleaving.

access during RSA encryption, the victim program
execution time is a function of the unknown n.. For
the guessed n. whose ELV results in the highest corre-
lation with victim traces is determined to be the num-
ber of bits “1”s in victim’'s exponent.

Evaluation

We evaluate R-SAW-IA by launching the attack based
on Code Snippet 2. Note that as the attacker observes
the entire program execution time of the victim, the
timing observation collectively includes all the itera-
tions in the loop. Figure 5(a) shows that indeed pro-
gram execution time increases linearly with the
increase of the n, value. In contrast, when intraline
striping optimization is not enabled, such correlation
does not exist [as illustrated in Figure 5(b)]. We collect
victim encryption latency traces for 1,000 different val-
ues of exponent e. R-SAW-IA can determine the n, in
each of them with 93% accuracy.

Characterization of R-SAW-I

Sensitivity to sample size: We evaluate the success rate
(SR) by changing the number of samples taken from
victim execution. Figure 6(a) shows that by increasing
the number of samples per key from 25,000 to 140,000
both R-SAW-I and cache-based attacks have improve-
ments over SR. However, we observe that given a fixed
sample size, R-SAW-I consistently attains higher SR
compared with the cache-based attack.

Resiliency to system noise: Along with the victim
encryption process, we run a multithreaded noise injec-
tion process that continuously accesses main memory.
By varying the frequency of memory accesses, we can
control the noise level. We run both attacks under each

Authorizgesplieensest (Getishitedto2Bniversity of Central Florida. Downloaded on September 19,2023 at 17:57:59 UTC from IEEEXpiiteo Restrictions apply.13

100% A 100%
80% 80%

60% 60%

20% I R-SAW-I attack
HEl Cache attack
0% -4
25 50 75 100 125 150

-~ m
of Samples Per Key (K) Relative Noise Level (%)

(@ (b)

40%

Success Rate
Success Rate

20% {1 R-SAW-I attack
Il Cache attack

0% = mE EE EE Em |

- S B =4
© m gmH

FIGURE 6. Comparative study of R-SAW-| and cache-based

attack. (a) SR versus sample size. (b) SR versus system noise.

noise level and compute SR for 100 AES keys (with
128,000 sample points each). Figure 6(b) shows that SR
for cache-based attack reduces drastically with the
increase in noise level. Particularly, there is a sharp
decrease of SR when the noise level is higher than 40%.
In contrast, R-SAW-I can maintain 81% accuracy under
the highest noise (i.e., nonstop memory reads). This is
because while cache-based attack relies on cache hit
activities (i.e., if both the ith and jth key bytes use the
same T} entry, the encryption latency is lower because
of cache hit), and cache can be heavily polluted
because of the additional memory reads due to noise.
In contrast, R-SAW-I relies on PCM access pattern (i.e.,
percentage of CL' reads) that remains unaffected by
the additional memory accesses.

Impact of on-chip caching: We model systems that
either: 1) do not cache memory accesses, thus only
keeping PCM access-based leakage, or 2) do not inte-
grate PCM line striping, thus only keeping cache-
based leakage. In Figure 6(a), the error bar on R-SAW-/
attack represents R-SAW-I SR due to PCM memory
access pattern only (which is only 1%-4% lower than
default), and the error bar on cache attack represents
the SR due to cache activity only (which is 2%-9%
lower than default). As expected, R-SAW-| attack is
possible due to secret-dependent PCM access pat-
tern, and it is not influenced by caches.

100%

75%

Correlation

[Accuracy
EEE Top-3 Acc.

09 | bmrmrmr T
“0 500 1000 1500 2000 snvgga
Possible value of ne Relative Noise Level (%)

(2) (b)

Success Rate
N 1%
w o
X X

FIGURE 7. R-SAW-IA attack analysis. (a) Correlation between
ELV and victim encryption latency trace. (b) Success rates

versus system noise.

Characterization of R-SAW-IA
We characterize R-SAW-IA by evaluating it with the
chosen plaintext attack on RSA, leaking the number of
bits “1"s in the secret exponent. We choose 100 plain-
texts and generate the profile ELVs from 30 million
encryptions, as discussed in the “Case Study” section.
Then, we collect 1,000 victim encryption latency traces
for each of the 100 plaintexts. Finally, we run correla-
tion analysis of the victim trace against the ELVs. For
example, Figure 7(a) shows that the correlation value
is the highest when n, is 1,950, which represents the
correct n. in victim. This highlights the strong correla-
tion between n. and overall encryption latency that is
directly caused by intraline optimization of PCM reads.
Impact of system noise: Similar to the R-SAW-I, we
define six levels of system noises along with the noise-
free configuration to quantify the noise resiliency of R-
SAW-IA. Figure 7(b) shows that even with the highest
degree of noise, R-SAW-IA observes a reasonable 78%
top three accuracy (i.e., the correct n. is in one of the top
three correlations). As the pCL" to pCL' access ratio
remains unaffected by the additional memory accesses,
R-SAW-IA is less susceptible to noise. We note that with
intraline interleaving, regardless of which half of the mem-
ory block is accessed, both pCL" and pCL' reads are per-
formed in memory to return the complete memory block
to the processor. Hence, the performance benefits of
intraline interleaving mainly come from early execution of
instructions utilizing pCL". In contrast, with interline inter-
leaving, memory reads can be terminated early if CL" is
read, which results in both early execution of instructions
and higher memory throughput for applications with CL"
reads. This results in R-SAW-| observing higher degree of
read latency variations compared with R-SAW-IA. Never-
theless, R-SAW-IA is still capable of exploiting the intra-
line latency variations with high noise resiliency.

Randomized PCM data mapping: One potential way to
mitigate the attack is to randomize memory block
mapping to MSBs and LSBs using architectural sup-
port in memory controller. For interline striping, MSBs
and LSBs can be remapped to new locations on the
same page using a permutation seed generated at
runtime. For intraline striping, instead of mapping first
half of a block to MSB and second half to LSB, they
can be remapped to different halves in the same block
randomly. This will make the memory-access pattern
randomized, breaking the correlation with execution
latency. However, this scheme might require frequent
changes of the randomization seed to prevent poten-
tial reverse engineering of the mapping.

T4 uthorized licensd@ GEeMrigited to: University of Central Florida. Downloaded on September 19,2023 at 17:57:59 UTC frove IEERRSigfectREstricHING apply.

Software hardening: Software optimization is also
be one potential mitigation. Prior research has investi-
gated rewriting the software to ensure information
safety (e.g., preventing secret dependent branching),
which can be adopted to prevent R-SAW. Specifically,
security-critical sections in applications can be allo-
cated to memory locations with similar latency groups
to prevent secret-dependent PCM access latency.
However, adapting such PCM latency region-aware
mapping techniques in software can introduce non-
trivial complexity in software design.

In this article, we investigated the information leakage
vulnerabilities in MLC PCM systems. We found that
PCM access techniques leveraging read asymmetry in
MLCs introduced new side channel attacks. We pre-
sented two variants of attack, targeting both interline
and intraline interleaving optimizations. Our work
highlights the importance of understanding security in
systems integrated with emerging memory technolo-
gies and motivates the need to architect secure-by-
design PCM main memories in the future.

This work was supported in part by the U.S. National
Science Foundation under Grants CNS-2008339 and
CNS-1908471.

1. F.LiuandR. B. Lee, “Random fill cache architecture,” in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchit., 2014,
pp. 203-215.

2. Y.Yarom and K. Falkner, “FLUSH RELOAD: A high
resolution, low noise, I3 cache side-channel attack,” in
Proc. USENIX Secur., 2014, pp. 719-732.

3. M. H.I.Chowdhuryy, M. R. H. Rashed, A. Awad, R.
Ewetz, and F. Yao, “LADDER: Architecting content and
location-aware writes for crossbar resistive
memories,” in Proc. 54th Annu. IEEE/ACM Int. Symp.
Microarchit., 2021, pp. 117-130.

4. B.C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
phase change memory as a scalable dram alternative,”
in Proc. 36th Annu. ACM/IEEE Int. Symp. Comput.
Archit., 2009, pp. 2-13.

5. M. Hoseinzadeh, M. Arjomand, and H. Sarbazi-Azad,
“Reducing access latency of MLC PCMs through line
striping,” in Proc. ACM/IEEE 41st Int. Symp. Comput.
Archit., 2014, pp. 277-288.

6. M. Arjomand, A. Jadidi, M. T. Kandemir, A.
Sivasubramaniam, and C. R. Das, “HL-PCM: MLC PCM
main memory with accelerated read,” IEEE Trans. Parallel
Distrib. Syst, vol. 28, no. 11, pp. 3188-3200, Nov. 2017.

7. M. H.I. Chowdhuryy, R. Ewetz, A. Awad, and F. Yao,
"Seeds of SEED:R-SAW: New side channels exploiting
read asymmetry in MLC phase change memories,” in
Proc. IEEE Int. Symp. Secure Private Execution Environ.
Des., 2021, pp. 22-28.

8. J.Bonneau and I. Mironov, “Cache-collision timing
attacks against AES,” in Proc. Cryptographic
Hardware Embedded Syst., 2006, pp. 201-215.

9. M.H.I.Chowdhuryy and F. Yao, “Leaking secrets through
modern branch predictor in the speculative world,” [EEE
Trans. Comput., vol. 71, no. 9, pp. 2059-2072, Sep. 2022.

10. GPG, "Mitigate a flush reload cache attack on RSA
secret exponents,” 2013. Accessed: Apr. 10, 2022.
[Online]. Available: https://github.com/gpg/libgcrypt/
commit/e2202ff2b

MD HAFIZUL ISLAM CHOWDHURYY is a Ph.D. student at
the University of Central Florida, Orlando, FL, 32816, USA.
His research focuses on computer architecture with a
focus on security. He is a Student Member of IEEE. He is
the corresponding author of this article. Contact him at
reyad@knights.ucf.edu.

RICKARD EWETZ is an associate professor in the Department of
Electrical and Computer Engineering, University of Central Flor-
ida, Orlando, FL, 32816, USA. His research interests include physi-
cal design and computer-aided design for in-memory computing
using emerging technologies. He is a Member of IEEE. Contact

him at Rickard.Ewetz@ucf.edu.

AMRO AWAD is an assistant professor in the Electrical and
Computer Engineering Department, North Carolina State
University at Raleigh, Morrisville, NC, 27560, USA. His
research interests include secure hardware architectures
and memory systems. He is a Member of IEEE. Contact him
at ajawad@ncsu.edu.

FAN YAO is an assistant professor in the Electrical and Com-
puter Engineering Department, University of Central Florida,
Orlando, FL, 32816, USA. His research interests include com-
puter architecture, hardware, and system security. He is a
Member of IEEE. Contact him at fan.yao@ucf.edu.

Authorizesblieensest (Getishitedto2Bniversity of Central Florida. Downloaded on September 19,2023 at 17:57:59 UTC from IEEEXpteo Restrictions apply.15

https://github.com/gpg/libgcrypt/commit/e2202ff2b
https://github.com/gpg/libgcrypt/commit/e2202ff2b

