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The optimal allocation of land for energy generation is of emergent concern due to an increasing demand for renew-
able power capacity, land scarcity, and the diminishing supply ofwater. Therefore, economically, socially and environ-
mentally optimal design of new energy infrastructure systems require the holistic consideration ofwater, food and land
resources. Despite huge efforts on the modeling and optimization of renewable energy systems, studies navigating the
multi-faceted and interconnected food-energy-water-land nexus space, identifying opportunities for beneficial
improvement, and systematically exploring interactions and trade-offs are still limited. In this work we present the
foundations of a systems engineering decision-making framework for the trade-off analysis and optimization of
water and land stressed renewable energy systems. The developed framework combines mathematical modeling,
optimization, and data analytics to capture the interdependencies of the nexus elements and therefore facilitate in-
formed decision making. The proposed framework has been adopted for a water-stressed region in south-central
Texas. The optimal solutions of this case study highlight the significance of geographic factors and resource availability
on the transition towards renewable energy generation.
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1. Introduction

Global population is projected to continuously increase (Gu and
Andreev K, 2021), and with that comes an increased demand for energy,
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food, water and land (Garcia and You, 2016; Vakilifard et al., 2018).
Land is becoming a scarce resource in many countries, which gives rise to
the need formore efficient land use allocation both for food and energy pro-
duction (Lambin andMeyfroidt, 2011). Furthermore, water usage has been
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growing globally at more than twice the rate of population (Boretti and
Rosa, 2019; United Nations, 2019). Moreover, an increasing number of
regions have reached the limit at which water services can be sustain-
ably delivered, especially in arid regions such as Texas (Di Martino
et al., 2021). Consequently, achieving food, energy, and water security
in the future, while using resources in a sustainable manner is a major
challenge we need to address (Avraamidou et al., 2020; Baratsas et al.,
2021).

The conventional fossil-based energy provision systems are water
intensive and responsible for the majority of global greenhouse gas
(GHG) emissions (Bogdanov et al., 2021). A transition towards renewable
energy generation could result in providing universal access to clean and
affordable energy, reduce GHG emissions, and also decrease water scarcity
by eliminating freshwater usage in thermal power plants (Lohrmann et al.,
2019). Although, this transition comes with many challenges. Renewable
energy sources, such as wind and solar, are inconsistent throughout the
day as well as seasonally and spatially. This presents the need for large
capacity storage systems to store the intermittent renewable energy for
use during low sunlight or wind hours (Allen et al., 2021, 2022; Joskow,
2019). Furthermore, renewable energy generation tends to bemuch less en-
ergy dense than fossil-based methods, requiring much more land area to
produce the same amount of energy (Nie et al., 2019a). Another challenge
is that growing crops to use for bio-energy requires a large amount of water
and land resources (Drews et al., 2020). Therefore, even though renewable
energy systems do not have the same environmental impact as fossil fuel
based methods, they can still place huge stresses on food, land and water
resources, especially in semi-arid areas.

To tackle these challenges, a holistic food-energy-water-land nexus
approach needs to be followed to systematically evaluate the interdepen-
dence and trade-offs of different renewable energy system solutions
(Finley and Seiber, 2014). That is, for the energy system optimization prob-
lem, solutions considering the scope of the nexus rather than the individual
food, energy, water, and land elements would provide more environmen-
tally and socially sustainable decisions due to the very nature of the
interconnected nexus in renewable energy systems. Many challenges
emerge when considering nexus wide decision-making approaches, includ-
ing: (i) the identification and modeling of interactions among nexus
elements; (ii) the solution of the highly complex and interconnect nexus
system models; (iii) the multiple, often conflicting stakeholder interests
and objectives; and (iv) the choice of system boundaries. Therefore,
typically only two of the interconnected nexus elements receive direct
study due to the complexities that can arise in the multi-faceted, multi-
spatial and multi-temporal nexus systems (Garcia and You, 2016), with
the energy-water nexus being well studied for renewable energy systems
(Allen et al., 2019; Chen et al., 2021; Martín and Grossmann, 2015; Di
Martino et al., 2020; Garcia and You, 2015).

Current methodologies used in nexus studies mainly include data-
intensive modeling and life cycle analysis for specific technologies or prod-
ucts (Albrecht et al., 2018). These approaches can provide some essential
knowledge and are useful for expanding our understanding of food-
energy-water-land nexus interactions and addressing social and economic
Fig. 1. Representation of the alternative pathways tha
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concerns of energy systems under nexus considerations. Although, to
achieve a quantitative understanding of the multi-faceted interconnected
nexus systems and make technically, environmentally and socially optimal
decisions for renewable energy infrastructure, it is required to holistically
solve modeling and data challenges using appropriate predictive modeling
approaches (Nie et al., 2019b), effective integration of data and models at
different scales (Demirhan et al., 2021; Biegler and Lang, 2012),mathemat-
ical optimization of trade-offs (Di Martino et al., 2022; Pappas et al., 2021;
Avraamidou et al., 2018a), and generic metrics for assessing nexus inter-
connections in the system (Mohtar and Daher, 2019; Avraamidou et al.,
2018b; Baratsas et al., 2022).

The tools and approaches developed by the Process Systems
Engineering research community can aid in the solution of the aforemen-
tioned challenges, with a number of recent developments tackling the
food-energy-water nexus through multi-scale modeling, optimization and
trade-off analysis (Garcia and You, 2016; Namany et al., 2021; Nie et al.,
2019a; Gao et al., 2021; Garcia and You, 2017; Ahmetovic et al., 2010;
Beykal et al., 2020).

In this work, a multi-scale mathematical modeling and optimization
framework is developed, capable of holistically addressing energy-water-
land nexus interactions in renewable energy systems, and therefore facili-
tating informed land use allocation decisions for new renewable infrastruc-
ture developments. The proposed framework can determine the optimal
mix of renewable energy generation and storage systems under different
scenarios and objectives, including cost, energy production, water use
and land use. The types of solutions generated by the proposed framework
include the optimal type and size of energy storage and generation units in
order to meet a specified energy demand profile over the course of a given
time period. The proposed framework utilizes multi-scale energy systems
engineering approaches, along with data analytics and hybrid modeling
to capture nexus interactions and uncertainties to facilitate decisionmaking
for land-use allocation.

The remainder of this paper is structured as follows: the next section de-
fines the problem under consideration; Section 3 describes the developed
framework and the methodology used for its derivation; Section 4 intro-
duces the Amarillo-Texas case study and presents results for different sup-
ply and demand scenarios; and finally Section 5 concludes this work.

2. Problem definition

This work presents a generic framework to optimize the trade-offs in
terms of the energy-water-land nexus for the selection, design and alloca-
tion of renewable energy systems. To define the systemunder consideration
the set of energy sources, energy conversion technologies, and energy stor-
age technologies locally available, along with energy demand profiles to be
satisfied, need to be specified. This is represented in Fig. 1 where an exam-
ple of different technological options is illustrated. Furthermore, the avail-
able land and water resources also need to be specified along with weather
data. Using this information the developed framework is able to identify the
best mix of energy generation and storage technologies, their capacity, and
water and land use.
t can be considered by the developed framework.
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In this framework, based on stakeholder interest and feedback, the
optimization objectives include: (i) the total cost; (ii) the total water use;
and (iii) the total land use of the renewable energy system under
consideration.

As shown in Fig. 1, we can consider different types of solar panels, wind
turbines and biomass for the energy generation along with different types
of energy storage devices, to fulfill different energy demand profiles (e.g.
for a residential area, or a neighborhood).

The input data in the developed renewable energy system model in-
clude input water, solar irradiance and wind resources, as well as economic
data from social surveys and governmental reports. The alternative techno-
logical pathways can be identified based on local resource availability.

This work uses Amarillo, TX, USA as a case study to illustrate and elab-
orate on the developed framework. In Amarillo, renewable energy sources
in the form of wind and solar are plentiful. Furthermore, land for potential
wind and solar farms or biomass cultivation is generally available for pur-
chase. However, many areas in Texas frequently experience drought condi-
tions, so water usage is an important factor to be considered (Scanlon et al.,
2013).

3. Framework for the optimal allocation of renewable energy systems
under energy-water-land nexus considerations

Fig. 2 summarizes the developed framework that includes two main
parts: (i) the modeling of the key components of the energy system; and
(ii) their integration into a holistic energy system model.

The first step involves the collection of local resource data, including
historic weather data (solar irradiance, wind speeds, etc.), land prices,
and infrastructure costs. Detailed models for each energy generation
Fig. 2. Framework overview wi
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technology are then built based on the input data. The generated data is
used in the third step to develop surrogate models of the complex and de-
tailed key component models generated in the previous step. The surrogate
models along with other constraints and considerations are merged in a
combined mixed-integer linear programming (MILP) model in step 4 that
integrates all alternative energy generating processes into a holistic optimi-
zation problem. The last step of the framework is the analysis of different
resource and demand scenarios under multiple objectives (cost minimiza-
tion, water use minimization, land use minimization and energy demand
fulfillment).

The following subsections are describing in more detail the framework
steps and the derived mathematical models.

3.1. Modeling of key components of the energy system

In the following, the modeling steps for solar farms, wind farms, bio-
mass and energy storage are discussed in detail.

3.1.1. Solar farm modeling
Two panel setup options are considered for the solar farm modeling:

fixed angle, and single axis tracking panels. Fixed angle panels are station-
ary, while single axis tracking panels change their tilt angle with a motor-
ized system to improve efficiency by tracking the movement of the sun
throughout the day. To develop the solar farm model, firstly the optimal
panel/inverter combination was determined for both fixed and single axis
tracking panels, and then an optimization model was solved for different
power outputs to develop power vs. cost and land correlations. The PVLIB
Toolbox for Python, developed by Sandia National Laboratories
(Holmgren et al., 2018), was used for both these steps as a black box solver
th relevant modeling steps.



1 General Algebraic Modeling System (GAMS) is a high level modeling system for mathe-
matical programming and optimization. It consists of a language compiler and a range of asso-
ciated solvers.

2 BARON is a mathematical optimization solver that uses a branch-and-reduce algorithm.
BARON can search for global solutions of mixed-integer nonlinear problems.
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to convert solar irradiance data measured at hourly intervals into power
outputs. PVLIB is a collection of methods and modeling techniques devel-
oped by Sandia National Laboratories for the performance of photovoltaic
(PV) projects. This includes a library of available technologies and their as-
sociated specifications, conversion of solar irradiance to power output, and
tracking abilities of single axis tracking systems.

To determine the optimal solar panel and inverter combination, amodel
was created to maximize the power output of each combination by varying
the tilt (θ) and azimuth direction (ϕ) for the fixed angle panels. For the sin-
gle axis tracking panels, the azimuth (ϕ) was the only optimization variable
as the time-dependent tilt angle was already optimized by the black box
solver. The objective functions for the fixed angle and single axis tracking
are summarized in Eqs. (1) and (2), respectively.

max
x∈X

1

area xÞmax
θ,ϕ

power output xð , θ,ϕjsolar dataÞ
� �

8>><
>>:

(1)

max
x∈X

1

area xÞmax
ϕ

power output xð ,ϕjsolar dataÞ
� �

8>><
>>:

(2)

In these cases, x∈ X denotes the set of analyzed panel and inverter com-
binations. Consequently, the power output was normalized by the area of
each solar panel (area(x)) and the results were compared with the costs of
a large scale implementation of these pairs. The highest power output
pair of panel and inverter was also the lowest cost system, so this pair
was selected to advance to the next stage of the modeling. Were this not
the case, further analysis may have been necessary to determine the
optimal pair.

Using the selected pair of panel and inverter, an optimizationmodelwas
developed to minimize the cost of a solar farm system capable of meeting a
discrete set of yearly power demands. The samemodel frameworkwas used
for both fixed angle and single axis tracking panels with different inputs for
power outputs that were calculated by PVLIB, required area, and costs. The
objective function and critical constraints for this modeling step are shown
below.

min Ctotal ¼ Cpanels þ Cland (3)

s:t:Cpanels ¼ CP ⋅ N (4)

Cland ¼ A ⋅ N ⋅ CL (5)

A ¼ Apanel ⋅ cosθ þ Lspacing ⋅ Lpanel (6)

N ¼ pd
PO

(7)

CP ¼ κplant ⋅ f NREL (8)

κplant ¼ N ⋅ P (9)

The total system cost (Eq. (3)) is minimized according to the panel
(Eq. (4)) and land cost (Eq. (5)). The area of one solar panel is derived
based on the panel area itself, as well as the necessary spacing between
neighboring panels (Eq. (6)). Here, pd denotes the power demand to be sat-
isfied by the solar farm, whereas PO specifies the power output of a single
panel as defined by PVLIB. Accordingly, Eq. (7) calculates the number of
panels. Further, P defines the capacity of a single panel based on PVLIB,
whereas fNREL summarizes all solar panel costs except land costs, based on
Fu et al. (2018). Therefore, the cost of a single panel can be derived with
Eq. (8), whereas the solar farm capacity can be determined with Eq. (9).
The output costs from this model were used with the set of power demands
(pd) to create Pareto curves for both fixed angle and single axis tracking
4

panel systems. These relationships between cost, land and power output
are then used as inputs for the integrated model.

3.1.2. Wind farm modeling
The optimization model of the wind farms involves the minimization of

the cost of meeting a range of yearly energy demands using only wind tur-
bines. The number of turbines and the spacing between them were opti-
mized. The developed wind farm model includes some nonlinear terms,
including the cost equations and the effect of turbulence on wind speed, re-
sulting in the model being a mixed integer nonlinear programming
(MINLP) model. The developed MINLP model is presented in Eqs. (10) to
(42).

The power output of the wind turbines was modeled using piecewise
linear approximations of the power generation profile of the selected tur-
bine(s). The power output was assumed zero below cut in speed and
above cut out speed. Additionally, the power output was approximated to
be linear from zero to its max value from the cut in speed to the rated
speed, and was approximated to be constant at its max value from the
rated speed to the cut out speed. All of the above factors were combined
into a MINLP model, which was solved in GAMS1 with the BARON2 solver
(Sahinidis, 1996) for a range of energy demands. The objective function
and critical constraints for the wind farm model are shown below
(Eqs. (10) to (42)).

The total wind farm cost is minimized (Eq. (10)) based on the turbine
cost (Eq. (11)) and the land cost (Eq. (12)), while the desired power de-
mand is fulfilled according to Eqs. (13) and (14). Here, yc, r, n, tt, op is a binary
variable specifying if a turbine is in operation in column position c, in row
position r, on representative day n at time t.

min Ctotal ¼ Cturbine þ Cland (10)

s:t:Cturbine ¼ Nturbine ⋅ Cemp (11)

Cland ¼ A ⋅ CL (12)

ptotal ≥ Pdemand (13)

ptotal ¼ ∑
c, r, n, t

poactc,r,n,t ⋅ y
t,op
c,r,n,t (14)

The cost of a turbine was determined through empirical equations de-
rived by Fingersh et al. (2006). Each component of the turbine has its
own cost that depends on the specifics of the turbine, such as size and tech-
nology utilized, as well as additional costs, such as engineering and permit-
ting. Finally, the cost was adjusted to current dollars from the 2002 values
in the NREL report (Fingersh et al., 2006). Eq. (15) represents these empir-
ical cost correlations together with an inflation index that are used as the
basis of determining the turbine cost. The set u ϵ U = {blade, hub, pitch,
nose, shaft, bearing, brake, elec, yaw, cool, nac, safety, tower, found, int,
gearbox, gen, main, platform, trans, road, install, permit} summarizes all
considered cost components of the wind turbine. As representative exam-
ples, the installation cost (Eq. (16)) and blade cost functions (Eq. (17))
are shown below.

Cemp ¼ 1:4235 ⋅ ∑
u
Cu (15)

u ¼ ‘install’ : Cinstall ¼ 1:965 ⋅ HD1:1736 (16)

u ¼ ‘blade’ : Cblade ¼ 2:16 ⋅ 0:4019R3 − 955:24
� �þ 2:7445R2:5025� �

(17)
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The radius (R) and the rotor area (Arot) are calculatedwith the following
two equations. These values need to bemainly determined for the empirical
cost correlations and the wind speed adjustment calculations.

R ¼ 0:5 ⋅ D (18)

Arot ¼ πR2 (19)

Moreover, Eqs. (20) and (21) enforce that only one gearbox and gener-
ator technology can be selected.

∑
gb
ygb ¼ 1, gb ∈ GB ¼ 0, 1, 2, 3f g (20)

∑
gen
ygen ¼ 1, gen ∈ GEN ¼ 0, 1, 2, 3f g (21)

Eqs. (22) to (24) load the necessary wind speed data from an external
file, and adjust it according to the height difference between the measure-
ment height and the hub height (Xu et al., 2018), as well as consider the
changes in wind speeds due to turbine spacing (Attias and Ladany, 2011).

ν0n,t ¼ ν0n,t H=100ð Þ0:15 (22)

ν0r10 ,n,t ¼ ν0n,t (23)

νr,n,t ¼ ν0n,t⋅ 1− 1−
νr−1,n,t

3⋅ ν0n,t þ 0:0001
� �

0
@

1
A

0
@

1
A⋅

R
Rþ 0:078⋅x

� �2
0
@

1
A (24)

Then, the numbers of turbines in each column and row are counted
(Eqs. (25) and 26). Here, yc, rt, buy is a binary decision variable for turbine pur-
chasing. The overall required area can be calculated with Eq. (27), while a
selected ratio between columns and rows can be incorporated (Eq. (28)).
The overall number of wind turbines can be derived with Eq. (29).

Nc ¼ ∑
c
yt,buyc,0r10 (25)

Nr ¼ ∑
r
yt,buy0c10 ,r (26)

A ¼ x2 ⋅ Nc ⋅ Nr (27)

Nc ¼ 2 ⋅ Nr (28)

Nturbine ¼ ∑
c, r
yt,buyc,r (29)

Furthermore, Eq. (30) ensures that a turbine can only be operating
when it is also purchased, whereas Eqs. (31) and (32) enforce that neigh-
boring turbines upstream have to be in operation when the downstream
turbine is operating.

yt,opc,r,n,t ≤ yt,buyc,r , ∀c, r, n, t (30)

yt,opc,rþ1,n,t ≤ yt,opc,r,n,t ,∀c, r, n, t (31)

yt,opcþ1,r,n,t ≤ yt,opc,r,n,t ,∀c, r, n, t (32)

A constraint ensuring that the actual power output of a turbine is always
less or equal than the power output derived with the turbine specific wind
vs. power output profile is shown in Eq. (33). Further, a big-M constraint es-
tablishing the logical connection between the binary decision variable for
turbine operation and actual power output is added (Eq. (34)).

poactc,r,n,t ≤ poc,r,n,t ,∀c, r, n, t (33)
5

poactc,r,n,t ≤ M ⋅ yt,opc,r,n,t , ∀c, r, n, t (34)

The power output of a turbine is derived based on a piecewise linear
correlation incorporating the actual wind speed, as well as the turbine spe-
cific cut in speed, cut out speed, nominal speed and nominal power output,
as stated from Eqs. (38) to (42) taking into account the slope of the wind
speed vs. power output profile m (Eq. (35)), and the axis intercept b
(Eq. (36)), together with the auxiliary wind speed variable fi, c, n, r, t

(Eq. (37)). Further, in Eq. (39) the binary variable zi, c, r, n, t is introduced
to ensure that only one section of the piecewise linear correlation can be se-
lected for each turbine in column c, row r, at representative day n and time t.

m ¼ pn= νn − νciÞ�
(35)

b ¼ −pnνci= νnνciÞ�
(36)

νr,n,t ¼ ∑
i
f i,c,r,n,t (37)

poc,r,n,t ¼ m⋅f i2,c,r,n,t þ b⋅zi2,c,r,n,t þ pn⋅zi3,c,r,n,t (38)

∑
i
zi,c,r,n,t ¼ 1 (39)

0≤f i1,c,r,n,t ≤ νci⋅zi1,c,r,n,t (40)

νci ⋅ zi2,c,r,n,t ≤ f i2,c,r,n,t ≤ νn ⋅ zi2,c,r,n,t (41)

νn ⋅ zi3,c,r,n,t ≤ f i3,c,r,n,t ≤ νco ⋅ zi3,c,r,n,t (42)

With this large nonlinear mixed integer program, it was necessary to re-
duce the number of days simulated to make the problem tractable. There-
fore, a year's worth of real wind speed data from the location under
consideration was reduced to four representative days through k means
clustering (Tso et al., 2020). K-means clustering is a machine learning algo-
rithm and aims to find groups in a set of data, with the number of groups
represented by the variable K. The algorithm works iteratively to assign
each data point to one of K groups based on the features that are provided.
Data points are clustered based on feature similarity. In this case K-means
clustering was used to generate 4 clusters of days that have similar wind
speeds. The four representative days selected are presented in Fig. 3.

The wind speed inputs to the model determined by k means clustering
were adjusted from the measured height to the hub height of the selected
turbine. The wind speed also had to be adjusted for any turbulence caused
by surrounding turbines (Attias and Ladany, 2011). Fig. 4 demonstrates the
amount of wind speed reduction for different cases of turbine spacing. The
turbulent effect is much greater as the spacing between the turbines de-
creases. This highlights an important trade off determined by the model,
which is that the additional spacing allows the turbines to bemore efficient
and less turbine purchases are required; however, the additional spacing
also requires more land and therefore incurs a higher land cost.

The relationship between power output and cost can be approximated
with a piecewise linear correlation. However, the model determined two
distinct optimal turbine placement strategies, dependent on the number
of turbines required to meet the demand. With fewer turbines, the model
choses to arrange the turbines in a L-shaped pattern. This strategy does
not fully utilize the purchased land; it instead spreads the turbines along
the outside edges in order to minimize the effects of turbulence (see
Fig. 5, green area). With a higher number of turbines, the cost of the non-
utilized land was no longer worth the trade off for higher efficiency, so
the model arranged the turbines in a grid pattern with more space between
the turbines to use a different strategy for reducing turbulent effects and op-
timizing efficiency (see Fig. 5, blue area).

The model presented in Eqs. (10) to (42) was used to optimize wind
farms with high energy loads. The objective function was changed to
maxPtotal to optimize wind farms with lower energy loads, where the
power output of a set number of turbines is maximized.



Fig. 4. Effect of turbine spacing on wind speed.

Fig. 3. Representative days for wind speeds resulting from K-means clustering.
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3.1.3. Biomass modeling
For biomass, the energy crop, maize, was assumed to be harvested

throughout a year and converted through anaerobic digestion and gas treat-
ment to pipeline quality biomethane that could be added to the natural gas
grid. The biomethanewas assumed to be available year round to combust in
place of traditional natural gas. Using the yield of the crop (Lunik and
Langemeier, 2015) and the net energy yield (Braun et al., 2010), the
amount of energy available per unit area of crops was calculated. To de-
velop an energy profile comparable to wind and solar, this amount of en-
ergy was distributed evenly across each hour of the year.

The relationship between the cost and energy output of a biomass pro-
cessing system was determined using pricing figures for investment and
Fig. 5. L-shaped and grid configurations of wind turbines.
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operating costs from Braun et al. (2010). The investment cost of the system
depended on the required size of the digesting facility, while the operating
cost depended on the amount of crop grown, harvested, and processed. The
cost was then annualized based on an expected 15 year lifespan of the
digesting facility.

The water used to irrigate the crops was also considered to account for
water-stressed regions. The water requirements for growing and processing
the energy crops are significantly higher than those for solar and wind sys-
tems, which were assumed to have negligible water requirements. The
amount of water necessary depends on the type of crop as well as the cli-
mate of the area, as crops requiremore water when grown inwarm, dry cli-
mates and less in cool, wet climates. For maize, the water requirements
were assumed to be between 5000 and 8000 cubic meters per hectare per
year.

3.1.4. Energy storage modeling
The dynamics of the energy storage systems under consideration are

very fast and therefore were assumed to be instantaneous. Therefore, to
add energy storage technology options to the model, solely information in
terms of the capital and operational cost per capacity ( $

kWh), the efficiency,
and the lifespan have to be specified. Land andwater use for energy storage
devices were assumed to be negligible.

3.2. Integrated modeling and optimization

3.2.1. Surrogate models
A set of sample results of the modeling of key components step are sum-

marized in Figs. 6 and 7. The sampling space was initially set to be between



Fig. 6.Modeling of key components results - Energy output vs. annualized cost.
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1⋅104 MWh
year and 2:5⋅105 MWh

year . In the case of wind the lowest power output with

a single turbine is derived to be 1:6⋅104 MWh
year . Accordingly, the wind surro-

gate model has a slightly different value range. The sample results turned
out to be sufficient for our optimization case studies, since the obtained re-
sults did not violate the yearly energy output range under investigation.
Apart from that, the accuracy of the obtained fits are comparably high
(for all cases R2 ≥ 0.99). Therefore, additional sampling is not necessary.
However, if desired, i.e. one later obtained optimization solution is at the
upper bound of the evaluated sampling range, further sampling points
can easily be added and the obtained correlations updated. Firstly, all gen-
erated data was approximated with a linear correlation. If the obtained ac-
curacy, in terms of the mean-square error (R2) was not sufficiently high (R2

≥ 0.96) a piecewise linear correlation is used instead. This modification
was only employed for the wind case for the surrogate model capturing
the correlation between power output and area, where two linear
Fig. 7.Modeling of key components
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correlations resulted in a sufficiently accurate fit (R1
2=0.965,R2

2=0.975).
If this were not the case a piecewise linear correlation with three sections
would have been employed next and so on. The linear correlations for the
presented wind case switch at 4:45⋅104 MWh

year . The accuracy of all generated

approximations is also summarized in Figs. 6 and 7. The developed surro-
gates can be used in the integrated model so as to retain its linearity and
tractability. These relationships were used to estimate the cost and land
needs of the energy generating technologies considered by the integrated
model. Additional costs incurred by energy storage were calculated from
the ratings and capacities of the utilized storage technologies.

3.2.2. Combined MILP model
The linear surrogate models developed in the previous step are used to

generate an integrated mixed-integer linear programming (MILP) model
that can holistically describe the energy system and all applicable options.
results - Energy output vs. area.
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The integrated MILP model takes power outputs of one solar panel, one
wind turbine, and 1 ha of crop land for biomass at hourly intervals, and
scales each power output accordingly to meet an hourly power demand.
The model has also the capability to optionally utilize energy storage tech-
nologies in order to meet the required energy demand. At each hour, the
power generated from each technology can either be stored, released
from the storage system, or directly outputted from the generating source
to the electricity grid. In order to reduce land use, the model allowed for
dual land use of growing biomass crops in between wind turbines. The ob-
jective of the model is to minimize cost; however, additional objectives,
such as limiting area or water use, can also be considered. Overall, this re-
sults in an integrated MILP model as presented in Eqs. (43) to (77).

The objective function (Eq. (43)) minimizes the summation of both op-
erating (Cop) and investment (Cinv) costs. Although, only the operating cost
of maize is to be considered, since the operating cost of all other technolo-
gies can be neglected in comparison to their investment cost. Regarding in-
vestment cost, all generating and storage technologies are taken into
account (Eq. (45)).

min Cop þ Cinv (43)

s:t:Cop ¼ Cmaize,op (44)

Cinv ¼ ∑
g∈G

Cg

Tlifespan
g

þ ∑
k∈K

Ck

Tlifespan
k

(45)

The total power balance is given in Eq. (46), whereas Eq. (47) ensures
that in each time point at least Ptarget has to be available to satisfy the set
power demand. Therefore, the generated power is calculated according to
the available technologies in Eq. (48), based on the relevant power output
data (Eq. (49)) and the respective number of used technologies (Eq. (50)).

Ptotal ¼ ∑
t∈T

Pgen
t − ∑

t∈T, k∈K
Pstore
t,k þ ∑

t∈T , k∈K
Prelease
t,k (46)

Ptarget≤Pgen
t − ∑

t∈T, k∈K
Pstore
t,k þ ∑

t∈T , k∈K
Prelease
t,k ,∀t∈T (47)

Pgen
t ¼ pscale1t þ pscale2t þ pscale3t þ pscale4t ,∀t∈T (48)

Pscaleg
t ¼ pog,t ,∀g∈G (49)

pg ¼ ∑
t∈T

scaleg⋅p
scaleg
t ,∀g∈G (50)

Then, the cost of the respective technologies can be calculated using the
surrogate models according to Eqs. (51)–(55).

Csolar ¼ 0:60765⋅p1 þ 0:61188⋅p4 (51)

Cwind ¼ 0:45395⋅p3 (52)

Cbiomass ¼ 4440⋅pmax ,scale2 (53)

Ck ¼ capexck⋅κk þ capexpk ⋅P
rat
k ,∀k∈K (54)

Cmaize,op ¼ 0:004221⋅p2 (55)

Regarding maize, Eq. (56) ensures that the correct overall power gener-
ation is calculated and Eq. (57) derives the amount of maize farming land.
Further, the necessary land calculations are summarized in Eqs. (58) to
(63). Eqs. (58) to (60) calculate the effective area difference between
maize and wind to ensure the dual use land is not double counted. The
water demand is calculated according to Eq. (64).

pmax ,scale2 ≥ pscale2t ,∀t∈T (56)

scale2 ¼ Amaize (57)
8

Adif ¼ Awind−Amaize (58)

Adife≥0 (59)

Adife≥Adif (60)

Atotal ¼ Asolar þ Awind þ Adife (61)

Asolar ¼ Asol,fixed⋅p1 þ Asol,SAT ⋅p4 (62)

Awind ¼ ∑
j∈J

slopej⋅paj þ intj⋅zj (63)

watertotal ¼ 7000⋅scale2 (64)

Eqs. (65) to (70) summarize the piecewise linear correlations that are
used in Eq. (63) to calculate the necessary land based on the desired
power output. Eq. (65) ensures only one piecewise section is selected
while Eq. (66) sums the power output from each section, which is zero if
not selected. Eqs. (67) to (70) establish the boundaries of the piecewise sec-
tions.

∑
j∈J

zj ¼ 1 (65)

p3 ¼ ∑
j∈J

paj (66)

0≤pa j1 (67)

pa j1≤4:5⋅107⋅z j1 (68)

4:500001⋅107⋅z j2≤pa j2 (69)

pa j2≤2:5⋅1010⋅z j2 (70)

Lastly, the energy storage power balance, the energy storage power rat-
ing and capacity constraints, together with begin and end of life constraints
are summarized fromEqs. (71) to (77). Eq. (71) ensures energy balancing at
each time period. Eqs. (72) and (73) ensure the energy storage system does
not release or store more power than it is rated for, while Eq. (74) enforces
that the stored energy does not exceed the capacity of the system. Eq. (75)
sets aminimum amount of energy that must remain in storage, and Eq. (76)
ensures the amount of energy stored at the end of the time period is not less
than the beginning balance.

Pbat
t,k ¼ Pbat

t−1,k þ Pstore
t,k − Prelease

t,k ,∀k∈K& t∈T (71)

Prat
k ≥ Pstore

t,k ,∀k∈K& t∈T (72)

Prat
k ≥ Prelease

t,k ,∀k∈K& t∈T (73)

Pbat
t,k ≤ κk ,∀k∈K& t∈T (74)

Pbat
t,k ≥ 0:05⋅κk ,∀k∈K& t∈T (75)

∑
k∈K

Pbat
t8760,k ≥ ∑

k∈K
Pbat
t1,k (76)

Prelease
t1,k ≤ Pbat

t1,k, ∀k∈K (77)

For G = {solar fixed angle, solar single axis tracking, biomass,
wind}, T = {1,2,…,8760}, K = {PHS, CAES} and Tsolar

lifespan = Twindlifespan =
20 years, Tbiomass

lifespan = 15 years, TPHSlifespan = 50 years, TCAESlifespan = 30.

3.2.3. Multi-objective optimization approach
Multi-objective optimization is used to simultaneously optimize cost,

water use and land use. The ϵ-constraint method was used to generate



Fig. 8. Total annualized cost vs percent area allowed.
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Pareto optimal solutions (Pappas et al., 2021), by expressing the land use
and water use objectives as constraints.

To investigate the water use objective, Eqs. (78) and (79) are added to
the combined MILP (Eqs. (44) to (77)).

Watertotal ≤ Watermax (78)

Watermax ¼ Ptarget ⋅ ratiowe (79)

Here, ratiowe denotes themaximumwater use to energy output ratio (m3

per kWh), e.g. 500 m3/kWh, and is varied to investigate the influence on
limited water use on the energy mix.

To investigate the land use objective, Eqs. (80) and (81) are added to the
combined MILP (Eqs. (44) to (77)).

Atotal ≤ Amax (80)

Amax ¼ Ptarget ⋅ ratioae (81)

In this case, ratioae determines the maximum land area use to energy
output ratio (ha per kWh), e.g. 0.00692 ha/kWh.

Additionally, the equationAdife≥ 0 is replacedwith the following equa-
tions:

M ⋅ ym ≥ Adif (82)

M ⋅ ym ≤ Adife (83)

Adif ≤ Adif (84)

Subsequently, similar to ratiowe, ratioae is varied to investigate the influ-
ence of limited land use on the energy mix.
Fig. 9. Technology allocations at vary
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The integrated multi-objective model was solved in GAMS using the
CPLEX solver.

4. Case study - renewable energy system design in Amarillo, TX

To demonstrate the model, a case study was performed for the design of
an energy system in Amarillo, Texas. The population in Texas is rapidly in-
creasing, and with that comes an increased demand for energy. The current
electrical grid in Texas relies heavily on fossil fuels, which create harmful
emissions. Therefore, fossil fuels alone will not be a desirable energy option
in the future. Renewable energy resources must be integrated into the grid
in order tomeet the energy demands for a growing population while reduc-
ing the environmental impact that comes from burning fossil fuels (Energy
Reliability Council of Texas, 2018). In Amarillo, renewable energy sources
in the form of wind and solar are plentiful. Furthermore, land for potential
wind and solar farms or biomass cultivation is generally available for pur-
chase. However, this region is highly water stressed. To illustrate the capa-
bilities of the developed framework and show the effect of these geographic
factors, two scenarioswere considered: one land and onewater constrained
scenario.

The solar and wind speed data used in this case study were obtained
from NREL for Amarillo, Texas in year 2015 (Fu et al., 2018).

4.1. Land constrained scenario

To evaluate the trade-offs between cost and land use, the area of land
use allowed was varied from the maximum land (corresponding to the
casewhen land usewas not a constraint), to theminimumof 8%of themax-
imum land use. This resulted in the generation of the Pareto front presented
in Fig. 8, that presents the effect of limited area on cost. As the area allowed
became more restricted, the minimum total cost to meet the required en-
ergy demand increased drastically.

The breakdown of the technologies used at each area limitation is
shown in Fig. 9, whereas Fig. 10 illustrates the land area used by each gen-
erating technology.

When the model is not constrained by area, it chooses to meet the en-
ergy demand entirely through biomass. The reason being that biomass is
the only generating technology that does not require energy storage,
allowing for cost savings. However, biomass requires the most land area.
So as the area becomes less available, themodelmust choose othermore ex-
pensive options to meet the energy demand within the constraints.

At the extreme cases of 8 and 11% area allowed, the model chooses sin-
gle axis tracking solar panels because they require the least amount of area
for the amount of energy output. These cases point out an interesting trade
off the model can make. In the 11% scenario, the model chooses to buy
more solar panels in order to avoid requiring large amounts of expensive
energy storage. In the 8% scenario, there is not enough area for additional
ing percentages of allowed area.



Fig. 10. Area allocation per generating technology.
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panels, so additional storage capacity is required to stay within area restric-
tions.

4.2. Water constrained

To evaluate the trade-offs between cost and water use, the amount of
water use allowedwas varied from themaximumwater usage (correspond-
ing to the case when water use was not a constraint), to the minimum of
zero water usage. This resulted in the generation of the Pareto front pre-
sented in Fig. 11, that presents the effect of limited water use on the cost
of the energy system. As water use became more restricted, the total cost
of the system increased, however, not as drastically as the land restricted
case.

The breakdown of the technologies used at each water limitation is
shown in Fig. 12.

When the model is not constrained by water, it chooses to utilize only
biomass to meet the energy demand. This is for the same reason as the
Fig. 11. Total annualized cost vs percent water usage allowed.

Fig. 12. Technology allocations at varyin
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limited area scenario, where biomass is the least expensive option because
it does not require energy storage. However, biomass is the only technology
that requires water use. So as water use becomes more restricted, the en-
ergy demand must be met through other options.

Since the other generating technologies do not require water use, the
model is free to choose any of these options to replace biomass as the
allowed water use is reduced. The wind turbines are less expensive per en-
ergy output than both solar panel options, so the model chooses to mostly
utilize this option to meet the energy demand. However, relying on one
generating technology would have requiredmore energy storage. By diver-
sifying to include solar panels with the wind turbines, the lowwind periods
can be supplemented by solar energy, reducing the need for large and ex-
pensive storage systems.

5. Conclusion

A literature gap has been identified regarding comprehensive studies
holistically addressing energy-water-land nexus considerations for the de-
sign of renewable energy systems.

The proposed framework can address this gap by analyzing renewable
energy data in terms of wind speeds, solar irradiance and biomass resource
consumption, along with regional factors and perspectives in a combined
MILP model. Local restrictions regarding water and land use can be taken
into consideration to incorporate the environmental impact of solution
strategies, and explore trade-offs between water, energy, land and cost.

The developed model framework can easily be adjusted to various re-
gions by modifying the specified input data and restrictions. Therefore,
the key contributions of this work are:

• Development of detailed optimization models of key technological com-
ponents of energy systems that include water and land interactions.
g percentages of allowed water use.
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• Development of a holistic integrated optimization model for infrastruc-
ture planning of energy systems, that takes as input detailed key compo-
nent models.

• Development of a multi-objective optimization solution approach for
energy-water-land nexus trade-off analysis.

Additionally, the presented case study demonstrates that a multi-scale
multi-objective approach to optimizing renewable energy generation and
storage systems is essential for considering all of the relevant factors in-
volved in future energy infrastructure planning decisions. The results also
underline the significance of geographic factors and resource availability
on the transition towards renewable energy generation. Future work can
expand on including more technology options, e.g. add switchgrass as an
additional biomass option or analyze various options regarding solar
panel and inverter combinations. Further, the applied surrogate models
can be replaced by taking into accountmore technology-specific factors. Ul-
timately, the proposedmodel can also be applied for a different region with
adjusted objectives.

Abbreviations

CAES compressed air energy storage
GHG global greenhouse gas
MILP mixed-integer linear program
MINLP mixed-integer nonlinear program
PHS pumped hydropower storage
SAT single axis tracking

Parameters

νn, t′ wind speed at day n and time t at hub height of wind turbine
νn, t0 measured wind speed at day n and time t
νci cut in speed of wind turbine
νco cut out speed of wind turbine
νn nominal speed of wind turbine
νr, n, t wind speed at day n and time t at hub height of wind turbine in

row r
Asol, fixed area required per energy output of fixed solar panels (ha/kWh/

year)
Asol, SAT area required per energy output of fixed solar panels (ha/kWh/

year)
Apanel surface area os a single solar panel
Arot rotor area of wind turbine
b intercept of wind speed vs. power output correlation
CL cost of land occupied by a single turbine
capexkc capital cost of storage technology k for capacity
capexkp capital cost of storage technology k for power rating
D rotor diameter of wind turbine
fNREL solar panel cost factor including all cost except land cost
H hub height of wind turbine
intj Y-intercept of piecewise section, power output wind farm vs.

area
Lpanel width of solar panel
Lspacing necessary distance between two neighboring solar panels
M big M constraint
m slope of wind speed vs. power output correlation
P capacity of a single solar panel
pn nominal power output of a single wind turbine
Pdemand power demand to be satisfied by the wind farm
ptscaleg fixed scaled power output of generating technology g in time t
Ptarget target constant power output
pd power demand to be satisfied
PO power output of a single solar panel
pog, t solar, wind, and maize power output at individual scale at time t
R rotor radius of wind turbine
11
ratioae maximum area use to energy output ratio
ratiowe maximum water use to energy output ratio
slopej slope of piecewise section, power output wind farm vs. area
Tlifespan years of expected lifespan of technologies G and K
x2 area between wind turbines

Sets

C column index for wind turbine placing
GB gearbox options of wind turbine, GB = {Three − Stage

Planetary/Helical, Single − Stage Drive with Medium −
Speed Generator, Multi− Path Drive with Multiple Generators,
Direct Drive}

GEN generator options of wind turbine,GEN={Three− Stage Drive
with High − Speed Generator, Single − Stage Drive with Me-
dium − Speed and Permanent − Magnet Generator, Multi −
Path Drive with Permanent − Magnet Generator, Direct Drive}

G generating technologies,G={solar fixed angle, solar single axis
tracking, biomass, wind}

I piecewise section, wind speed vs. power, I = {i1, i2, i3}
J piecewise sections, area vs. power, J = {j1, j2}
K storage technologies, K = {PHS, CAES}
N representative days in time horizon, N = {1,2,3,4}
R row index for wind turbine placing
T hours in time horizon, T = {t1, …, t8760}
U cost contributors of a single wind turbine, U = {blade, hub,

pitch, nose, shaft, bearing, brake, elec, yaw, cool, nac, safety,
tower, found, int , gearbox, gen, main, platform, trans, road, in-
stall, permit}

X inverter and solar panel combinations

Variables

κk capacity of storage technology k
κplant capacity of solar farm
ϕ azimuth angle of solar panel
θ tilt angle of solar panel
A area
Adife effective area difference between wind and maize
Adif area difference between wind and maize
Amaize area required for biomass farming
Asolar area required for fixed and SAT solar panel systems
Atotal total area of all generating technologies
Awind area required for wind turbines
Cemp overall cost of a single wind turbine (empirical correlations)
Cinv investment cost
Cland cost of land
Cmaize, op operating cost of biomass system
Cop operating cost
Cpanels cost of solar panels
CP cost of a single solar panel
Ctotal overall cost
Cturbine cost of wind turbines
Ck cost of storage technology k
Cbiomass cost of biomass
Csolar cost of solar farm (single axis tracking and fixed angle)
Cwind cost of wind farm
fi, c, r, n, t auxiliary wind speed for piecewise linear correlation, wind
speed vs. power output of wind turbine
N number of solar panels
Nturbine number of wind turbines
Nc number of wind turbines in all columns at row 1
Nr number of wind turbines in all rows at column 1
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Pt, kbat power in storage technology k at time t
Ptgen generated power in time t
pmax, scale2 maximum amount of maize output
Pkrat power rating of storage technology k
Pt, krelease power released from storage technology k in time t
Pt, kstore power entered into storage technology k in time t
Ptotal total energy output in time horizon
pg power output of generating technology g
paj piecewise power, area vs. energy
poc, r, n, t power output of a single wind turbine at time t on day n in posi-

tion c, r
scaleg number of solar panels, wind turbines, or area of maize
watermax maximum allowed water use
watertotal used water (m3/year)
yc, rt, buy binary variable for wind turbine purchase at time t in position c, r
yc, r, n, tt, op binary variable for wind turbine operation at time t on day n in

position c, r
ym binary variable for maize land cost
zj piecewise binary, area vs. energy
zi, c, r, n, tpiecewise binary, wind speed vs. power output of wind turbine
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