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A B S T R A C T   

Soil and Water Assessment Tool (SWAT) is widely used for watershed-scale assessment of climate change im
pacts, but post-processing of model outputs is a tedious job. An R tool was developed in this study for batch 
processing of SWAT output results. A case study was then performed in the Double Mountain Fork Brazos 
watershed in the Texas Panhandle using an improved SWAT model with the R tool to evaluate the simulated 
future changes in water balance components, total nitrogen (TN) load, and crop growth over the watershed. The 
results showed that the average annual future surface runoff increased by 8.9–17.9 mm and 11.5–22.6 mm in the 
irrigated and dryland cotton areas, respectively. Similarly, future TN load in irrigated and dryland cotton areas 
increased by approximately 0.4–0.9 kg ha−1 and 1.9–2.4 kg ha−1. The yields of irrigated and dryland cotton 
increased by 91.1%–122.1% and 47.5%–84.0% under the future climate scenarios, respectively.   

1. Introduction 

Climate change is expected to present critical challenges for supply 
chain and production systems throughout the world (Papadopoulos and 
Balta, 2022). Changes in climatic conditions and the occurrence of 
extreme climatic events can have a substantial impact on the water, 
ecological, and agricultural resources (Arnell and Reynard, 1996). The 
average global surface temperature has increased by approximately 1 ◦C 
since 1850 (Intergovernmental Panel on Climate Change; IPCC, 2014). 
Climate warming accelerates the regional water cycle processes, causing 
the spatio-temporal redistribution of water resources. This also leads to 
changes in water resources availability, which in turn leads to changes in 
hydrological regimes and further impacts on regional socio-economic 
systems (Gleick, 1989; Al-Mukhtar et al., 2014). At the same time, 
climate change also aggravates the occurrence of extreme weather 
events, such as drought, flooding, etc., and thereby directly affects crop 
growth and development. The extremely high temperatures could reach 
the critical tolerance threshold of crop health. Extreme drought could 

result in water stress and induce a series of problems such as yield 
reduction or crop failure (Wing et al., 2021; Vesco et al., 2021; Kukal 
and Irmak, 2018). In addition, with the changes in rainfall-runoff re
lationships, the generation and migration of pollutants with the hydro
logic cycle as the carrier and the driving force will also vary (Zhang 
et al., 2021a; Wagner-Riddle et al., 2017), which can seriously threaten 
crop growth and environmental quality. Therefore, assessing the impact 
of climate change is of immense significance for effectively preventing 
the destruction of the agricultural environment of a basin and opti
mizing the management practices for soil and water conservation. 

Scenario construction is the foundation of climate change modeling, 
assessing climate change impacts and vulnerabilities, evaluating adap
tation and mitigation strategies, and analyzing climate change related 
policies (Nakićenović, 1996). A physically-based distributed hydrolog
ical model not only considers the spatial heterogeneity of the watershed 
but also accurately describes the hydrological process of the watershed. 
It can effectively simulate the long-term impact of climate change and 
land use conversion in a watershed and perform continuous simulation, 
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and therefore, it is appropriate for watersheds with large differences in 
spatial characteristics (Abbott and Refsgaard, 1996). The Soil and Water 
Assessment Tool (SWAT) model is used extensively and effectively for 
simulating water quantity and quality in different watersheds around 
the world (Hosseini and Bailey, 2022; Samimi et al., 2020; Kuti and 
Ewemoje, 2021). The model discretizes the watershed in various ways to 
represent the spatial heterogeneity and hydrological processes of the 
watershed. At a daily time step, SWAT can well simulate the impact of 
climate change on the watershed-scale hydrological cycle (Neitsch et al., 
2009; Arnold et al., 2012). Recently, SWAT has been extensively used to 
evaluate hydrological and water quality responses to climate variability 
and land use change. Marras et al. (2021) utilized the coupled 
EURO-CORDEX and SWAT model to show decreases in mean discharge 
and runoff due to decreased precipitation. Son et al. (2022) found that 
all hydrological components were decreased (such as evapotranspira
tion by −2.3%, percolation by −9.8%, and surface runoff by −11.5%) 
under climate change scenarios, and evapotranspiration (ET) and sur
face runoff were the most sensitive hydrological parameters in the 
future. Wang et al. (2020) examined responses of nitrate loading to 
climate change in the Upper Mississippi River Basin using an improved 
SWAT model with Freeze-Thaw cycle representation (SWAT-FT) and 
found that the SWAT-FT model simulated approximately a 50% increase 
in riverine nitrate loadings under the RCP8.5 scenario. Tan et al. (2022) 
utilized an improved SWAT model and simulated that yields of winter 
wheat (10.0–17.1%) and summer maize (6.1–12.6%) could increase in 
the future under SSP2-4.5 and SSP5-8.5 scenarios in the middle 
(2041–2070) and end (2071–2100) of 21st century, respectively. 

When assessing the impacts of climate change using hydrological 
models and general circulation models (GCMs), uncertainty in the 
simulated hydro-climatic variables is inevitable (Wilby and Harris, 
2006). GCM credibility plays a significant role in the robustness of 
system modeling and decision-making. Downplaying GCM credibility 
may lead to over or under estimation in future scenarios, leading to 
biased climate change adaptation decisions (Zhang et al., 2021b). 
Thereby, choosing a single or several GCMs to analyze climate change 
neither covers enough uncertainties nor guarantees the reliability of the 
results (Mehr et al., 2020). Taking into account the uncertainty of GCM 
climate data, for example, Shen et al. (2018) predicted future changes in 
both climate (precipitation and air temperature) and the hydrological 
responses of the Hanjiang River watershed based on 20 different GCMs, 
and found that the uncertainty increased dramatically over time. Based 
on the data from 28 GCMs for the Manicouagan Basin, Chen et al. (2017) 
reported an increase in precipitation from 9.7% to 27.8%, and an in
crease in air temperature from 3.8 ◦C to 8.4 ◦C under RCP8.5 scenario. 
These studies demonstrated the importance of using data from multiple 
GCMs to evaluate the impacts of climate change on hydrology (Lee et al., 
2021). Predictions from an ensemble of multiple models can reduce the 
uncertainty of simulation results (Faramarzi et al., 2013; Asseng et al., 
2019; Yun et al., 2021). Therefore, 27 GCMs were selected from different 
countries and regions in this study. 

Coupled Model Intercomparison Project (CMIP) has been rigorously 
refined over the years to address uncertainties, from CMIP1 to the latest 
version of CMIP6 (O’Neill et al., 2016). Unlike previous CMIPs, the 
CMIP6 includes more GCMs and provides a more accurate description of 
geophysical processes. In addition, the future climate change scenarios 
in CMIP6 provide data for combined scenarios of Representative Con
centration Pathways (RCPs) used in CMIP5 and Shared Socioeconomic 
Pathways (SSPs) (O’Neill et al., 2016; Schlund et al., 2020), which 
consider future social and economic developments. And, CMIP6 added 3 
new emission paths, which greatly enriched the future climate database. 
When such huge meteorological data are invoked as the input data for 
SWAT to simulate the future hydrology, water quality, and crop growth, 
large output data becomes available. Manual processing of such massive 
data is not only time-consuming and labor-intensive, but also prone to 
accidental errors. Currently available data processing methods limit the 
availability of climate scenarios and GCMs to be used for some studies. 

In response to this challenge, in this study, R code was developed to 
design an algorithm specifically used for post-processing the SWAT 
output data (output.hru) at daily, monthly, and yearly time scales. This 
algorithm can quickly extract the required variables and organize them 
into CSV files for further use. 

The Double Mountain Fork Brazos (DMFB) watershed in the semi- 
arid Texas Panhandle was selected for this case study. Cotton (Gos
sypium hirsutum L.) land use accounts for approximately 30% of the 
study watershed area and approximately 40% of this cotton area is 
irrigated (National Agricultural Statistics Service; NASS, 2021). The 
Ogallala Aquifer serves as an important groundwater source for cotton 
irrigation. However, decades of intensive irrigation pumping combined 
with limited recharge have led to rapidly declining water levels (Colaizzi 
et al., 2009). Therefore, understanding the status of water resources in 
this region under global warming is of profound significance for devel
oping appropriate management practices for cotton production. In this 
study, the downscaled CMIP6 meteorological data were used to drive an 
improved SWAT model. The impacts of projected future climate change 
on major water balance components, water quality, and cotton yield in 
the DMFB watershed were assessed. The specific objectives of the study 
were to: (1) develop an algorithm for rapidly post-processing SWAT 
output data; (2) assess the long-term climate change effects on the hy
drologic cycle and total nitrogen load in the DMFB watershed under 
both irrigated and dryland cotton land uses; and (3) evaluate how the 
projected climate change affects the irrigated and dryland cotton 
production. 

2. Materials and methods 

2.1. Study area 

This study was conducted in the DMFB watershed in the semi-arid 
Texas Panhandle. The delineated area of this watershed is approxi
mately 6000 km2. The topography of the watershed is fairly flat. It is 
situated above the southern Ogallala Aquifer and more than 90% of 
agricultural irrigation in the area relies on this groundwater extraction. 
Cotton is a dominant crop, and cotton production holds enormous po
tential in this region. In general, cotton is planted around mid-May and 
harvested around the end of October in the Texas Panhandle. Defoliant 
is typically applied two weeks before harvesting when needed. The long- 
term average annual rainfall across the watershed varies between 457 
and 559 mm, and the long-term average annual maximum air temper
ature (Tmax) and minimum air temperature (Tmin) are approximately 
24 ◦C and 9 ◦C, respectively. 

2.2. SWAT and SWAT-MAD 

The SWAT model is a continuous-time, semi-distributed, process- 
based, and watershed-scale hydrologic model (Arnold et al., 1998). 
Primary components include a hydrology module, non-point source 
pollution module, crop growth module, etc. (Arnold et al., 2012). The 
ArcSWAT (revision 664) developed for the ArcGIS 10.2 platform was 
used in this study. 

Irrigation in HRUs may be scheduled manually by users or auto
matically applied by SWAT (Neitsch et al., 2011). Chen et al. (2018a) 
developed a more representative approach to automatically schedule 
irrigation and integrated a management allowed depletion (MAD) 
auto-irrigation method into the SWAT model. The MAD method triggers 
irrigation according to a user-defined allowable depletion percentage of 
plant available water, determined by the crop-specific maximum rooting 
depth and site-specific soil properties (Chen et al., 2018a).  

MAD method: (sol_sumfc - sol_sw) / PAW > MAD                              (1) 

where sol_sumfc is the amount of water held in the soil profile at field 
capacity (mm); sol_sw is the amount of water stored in soil profile on any 
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given day (mm); PAW is plant available water, determined by both plant 
maximum rooting depth and soil properties; and MAD is users defined 
water stress threshold that triggers irrigation, which expressed as a 
decimal value ranging from 0 to 1. MAD values approaching 0 indicate 
irrigation management that allows relatively less depletion of soil water 
before triggering irrigation, resulting in low crop water stress. By 
contrast, values approaching 1 denote irrigation management that al
lows relatively more depletion of soil water before applying irrigation, 
leading to high crop water stress. 

In this study, the SWAT-MAD model was calibrated and validated for 
streamflow data at two United States Geological Survey (USGS) gages 
and county-level crop yields of both irrigated and dryland cotton. The 
SWAT-MAD model was also evaluated by county-level seasonal irriga
tion requirements of cotton and percolation amount. The total nitrogen 
(TN) load at the watershed outlet was also calibrated and validated in 
this study. The calibrated parameter values for the SWAT-MAD model 
are listed in Table S1. The SWAT-MAD model calibration and validation 
performance statistics for monthly streamflow at the stream gages 
(Table 1) were well above the “satisfactory” range suggested by Moriasi 
et al. (2007). The R2 and overall PBIAS were 0.21 and 2.3% when 
comparing SWAT-MAD simulated and observed irrigated cotton lint 
yield in Lynn County in the DMFB watershed (NASS, 2020). The simu
lated irrigation for cotton by the MAD auto-irrigation method 
(346.9 mm) was very close to the local survey data of 345.4 mm (NASS, 
2020). The SWAT-MAD model simulated percolation amount was also 
comparable with the values from local reports and literature (Chen et al., 
2018b). The NSE, R2, and PBIAS for monthly TN load prediction at the 
watershed outlet during the calibration period were 0.72, 0.75, and 
−13.8%, respectively (Table 1). Those values during the validation were 
0.73, 0.88, and 17.0%. The model performance ratings for the monthly 
TN load simulations using SWAT-MAD in the DMFB watershed were 
considered good for both the calibration and validation periods ac
cording to Moriasi et al. (2007) criteria. 

2.3. CMIP6 GCM data and scenario design 

Observed daily climate data for the study watershed, including Tmax, 
Tmin, solar radiation, and precipitation from 1981 to 2010 were obtained 
for seven weather stations from the Iowa Environmental Mesonet (https 
://mesonet.agron.iastate.edu/schoolnet/). Future climate scenario data 
were obtained from 27 GCMs, which are provided by the World Climate 
Research Program (WCRP) of CMIP6 (https://esgf-node.llnl.gov/project 

s/cmip6/). The raw GCMs from WCRP were in low spatial and temporal 
resolutions, hence the downscaled and bias-corrected methods devel
oped by Liu and Zuo (2012) were used to generate the daily datasets. 
The 27 CMIP6 GCMs were listed in Table 2. 

In this study, the water balances, TN load, and crop growth attributes 
of the watershed under climate change scenarios in the mid-21st century 
and the end of the 21st century were simulated. Two 35-year periods 
(from 2036 to 2070 and from 2066 to 2100) were selected to conduct 
future scenario simulations forced with both SSP2-4.5 and SSP5-8.5 
scenarios. The first five years of 2036–2040 and 2066–2070 served as 
the warmup periods. The CO2 concentration in SWAT was modified 
while inputting future climate data. The current version of SWAT does 
not allow inputting variable CO2 concentration values that change 
dynamically with time, and it allows only a fixed value for a period of 
simulation. Therefore, according to Meinshausen et al. (2011) and Van 
Vuuren et al. (2007), the 35-year average CO2 concentrations of the 
future climate scenarios (SSP2-4.5 and SSP5-8.5) in each of the two time 
periods were estimated and used as the CO2 concentrations in the 
SWAT-MAD model. The CO2 concentration in the historical period was 
kept as the default value of 330 ppm. The average CO2 concentrations in 
the two time periods under the two SSP scenarios were shown in Table 3. 

2.4. Overall R framework design 

In this study, post-processing R codes were developed for batch 
processing of SWAT outputs of the future climate change scenarios. The 
R code intellectualized the SWAT output post-processing procedure 
compared to the conventional manual processing, allowing for flexi
bility to obtain the climate, hydrological, water quality, and crop growth 
variables of the SWAT model from output.hru for different time steps 
(daily, monthly, and yearly). In this study, climatic variables, hydro
logical variables, TN load, and crop yield could be obtained from the 
monthly output.hru results, while the dynamic change of biomass 
(BIOM) and leaf area index (LAI) had to be obtained from the daily 
output.hru results. The monthly output.hru file of the SWAT model 
included both monthly and yearly results, so the yearly simulation re
sults were not needed to output separately using the newly developed R 
code. The future climate data of 27 GCMs for two time periods and two 

Table 1 
Performance statistics for monthly predictions of streamflow and total nitrogen 
load in the Double Mountain Fork Brazos watershed using the SWAT-MAD 
model.  

Streamflow Gage I Gage II 

Calibration Validation Calibration Validation 

(1994–2001) (2002–2009) (1994–2001) (2002–2009) 

Nash- 
Sutcliffe 
efficiency 
(NSE) 

0.86 (Very 
gooda) 

0.59 
(Satisfactory) 

0.63 
(Satisfactory) 

0.64 
(Satisfactory) 

R2 0.88 0.71 0.67 0.75 
Percent bias 

(PBIAS; %) 
14.6 8.5 12.9 −12.6 
(Good) (Very good) (Good) (Good) 

Total 
nitrogen 
loadb 

Calibration (1995–1997) Validation (1998–2000) 

NSE 0.72 (Good) 0.73 (Good) 
R2 0.75 0.88 
PBIAS −13.8 (Very good) 17.0 (Very good)  

a General model performance ratings suggested by Moriasi et al. (2007) for 
monthly predictions of streamflow and nitrogen. 

b The number of observed data used in the LOADEST estimation for total ni
trogen loads were 39 samples at the watershed outlet. 

Table 2 
List of 27 CMIP6 general circulation models (GCMs) considered in the study.  

Model ID Name Abbreviation Institution ID Country 

01 ACCESS-CM2 ACC1 BoM Australia 
02 ACCESS-ESM1-5 ACC2 BoM Australia 
03 BCC-CSM2-MR BCCC BCC China 
04 CanESM5 Can1 CCCMA Canada 
05 CanESM5-CanOE Can2 CCCMA Canada 
06 CIESM CIES THU China 
07 CMCC-CM2-SR5 CMCS CMCC Europe 
08 CNRM-CM CNR1 CNRM France 
09 CNRM-CM6-1-HR CNR2 CNRM France 
10 CNRM-ESM CNR3 CNRM France 
11 EC-Earth3 ECE1 EC-EARTH Europe 
12 EC-Earth3-Veg ECE2 EC-EARTH Europe 
13 FGOALS-g3 FGOA FGOALS China 
14 GFDL-ESM4 GFD1 NOAA GFDL America 
15 GFDL-CM4 GFD2 NOAA GFDL America 
16 GISS-E2-1-G GISS NASA GISS America 
17 HadGEM3-GC31-LL HadG MOHC Britain 
18 INM-CM4-8 INM1 INM Russia 
19 INM-CM5-0 INM2 INM Russia 
20 IPSL-CM6A-LR IPSL IPSL France 
21 MIROC6 MIR1 MIROC Japan 
22 MIROC-ES2L MIR2 MIROC Japan 
23 MPI-ESM1-2-HR MPI1 MPI-M Germany 
24 MPI-ESM1-2-LR MPI2 MPI-M Germany 
25 MRI-ESM2-0 MRIE MRI Japan 
26 NESM3 NESM NUIST China 
27 UKESM1-0-LL UKES Met Office Britain  
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SSP scenarios were inputted into SWAT-MAD first. In addition, the 
SWAT-MAD projects were run at both the monthly and daily scales, and 
a total of 218 output.hru files were obtained. All output.hru files were 
renamed according to the user’s need (naming example is shown in 
Figs. S1–S2) and then saved into two folders for monthly scale and daily 
scale, separately. 

As for how the R tool functions, firstly, the function determined the 
position information of the output variable (Fig. 1). The ‘MON’ column 
was used to distinguish results between monthly, yearly, and multi-year 
totals because the monthly scale output contained information on all 
three aspects. Specifically, when ‘MON’ column values are greater than 
999, they were identified as yearly scale results (simulation starting 
year, in this case, needs to be greater than 1000 A.D.). When the value of 
the ‘MON’ column was less than or equal to 12 and the row ordinal 
number was less than that of the last row for the yearly scale results, 
monthly scale results were obtained this way. The row ordinal of the 
‘MON’ column, starting from the first row below the last row ordinal of 
the yearly scale results to the end of all results in the output.hru file, was 
the multi-year summary results (Appendix S1). For the daily scale re
sults, the values of the ‘MON’ column represented the day of the year 
(DOY). Since the LAI and biomass values on the 366th day were 0 for 
cotton, the values on the 366th day of a leap year were deleted at the 
daily scale, which was conducive to the smooth operation of the code 
(Appendix S2). The R codes read all “.hru” files in the folders for 
monthly scale and daily scale, and cycled through all files in the order of 
“file name acquisition - read data - data filtering - save data”. Finally, the 
results for each time scale of 27 GCMs were combined into an inde
pendent CSV file for further data analysis or chart making (Fig. 1). 

3. Results 

3.1. Projected changes in the future climate of the watershed 

Overall, the long-term changes in annual Tmax, Tmin, and solar radi
ation showed increasing trends in the DMFB watershed from 2041 to 
2100 (Tables S2–S3). But the projected changes of annual precipitation 
were relatively small, with the mean and median percent changes of less 
than 3% (Fig. 2). Especially under the 2071–2100 SSP5-8.5 scenario, the 
mean percent changes in annual precipitation for irrigated and dryland 
cotton production areas were 1.5% and 1.2%, and the median percent 
changes were 2.7% and 2.0%, respectively (Fig. 2). This study revealed 
that the average annual precipitation gradually increased with 
increasing CO2 concentrations, while the average annual solar radiation 
decreased. In contrast to the SSP2-4.5 scenario, the SSP5-8.5 scenario 
showed a greater uncertainty in predicted future climate parameters for 
different time scales. Compared to the baseline period (1981–2010), the 
average annual precipitation during the growing season was projected 
to increase by 2.0% for irrigated cotton areas and 1.7% for dryland 
cotton areas during 2041–2070, and those increases were 5.0% and 
4.7% during 2071–2100 (Figs. S3–S4). The average annual Tmax during 
the growing season for irrigated cotton is expected to increase by 
2.03 ◦C, 2.62 ◦C, 2.67 ◦C, and 4.55 ◦C, and the average annual Tmin is 
projected to increase by 1.97 ◦C, 2.68 ◦C, 2.62 ◦C, and 4.89 ◦C under the 
2041–2070 SSP2-4.5, 2041–2070 SSP5-8.5, 2071–2100 SSP2-4.5, and 
2071–2100 SSP5-8.5 scenarios, respectively (Figs. S5 and S7). The mean 
annual Tmax for the dryland cotton growing period could rise by 2.44 ◦C 
and 3.71 ◦C, and the mean annual Tmin could rise by 2.47 ◦C and 4.07 ◦C 
during the period of 2041–2100 under two emission scenarios (Table 4; 
Figs. S6 and S8). For both cotton management practices, the increases in 
solar radiation were greater under the SSP2-4.5 scenario than the SSP5- 
8.5 scenario. The median percent changes in solar radiation during the 
growing season under the SSP2-4.5 and SSP5-8.5 scenarios were 0.6% 
and 0.2% for irrigated cotton, and 0.7% and 0.2% for dryland cotton, 
respectively (Table 5; Figs. S9–S10). 

3.2. Climate change impacts on hydrology 

The annual actual evapotranspiration (ETa) for dryland cotton was 
projected to decrease during 2041–2100 under two SSP scenarios. For 
irrigated cotton, only the 2071–2100 SSP5-8.5 scenario showed a 9.3% 
decrease in the mean annual ETa, whereas the rest of the scenarios 
showed slight increases (Fig. 3). A high variation in annual ETa was 

Table 3 
Description of the future climate change scenarios.  

Periods SSPs CO2 concentration (ppm) 

Historical period (1981–2010) – 330 
2041–2070 SSP2-4.5a 497 
2071–2100 SSP2-4.5 533 
2041–2070 SSP5-8.5a 578 
2071–2100 SSP5-8.5 807  

a SSP2-4.5: radiative forcing of 4.5 W m−2 and mid-range emission; SSP5-8.5: 
radiative forcing of 8.5 W m−2 and high-end emission (O’Neill et al., 2016). 

Fig. 1. Flowchart of post-processing R tool for SWAT output.hru processing.  
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found among different GCMs, especially under the SSP5-8.5 scenario, 
the percent changes in annual ETa ranged from −4.1% to −13.9% for 
irrigated cotton and −29.5% to 29.4% for dryland cotton during 
2071–2100 (Fig. 3). Based on the future climate data projected by 
27 GCMs, the results showed greater uncertainty under dryland condi
tions than under irrigated conditions. The ETa indicated a higher level of 
uncertainty during April and September for both cotton management 

practices. The projected changes in mean and median ETa during the 
growing season for irrigated cotton ranged from −13.4% to 1.4% and 
−11.2%–1.9%, respectively. The decrease in mean and median ETa 
during the growing season for dryland cotton varied from 5.1 to 7.9% 
and 2.9%–8.1%, respectively (Figs. S11–S12). The future irrigation 
water use showed similar increasing trends under all scenarios, except 
for the 2071–2100 SSP5-8.5 scenario, in which the median percent 
change in irrigation water use was −17.5% (Fig. 3). Nevertheless, the 
magnitude of change in irrigation water use during the cotton growing 
season was slightly larger, with values of 5.6%, 2.5%, and 6.8%, under 
the 2041–2070 SSP2-4.5, 2041–2070 SSP5-8.5, and 2071–2100 SSP2- 
4.5 scenarios, respectively (Fig. S13). The change in irrigation water 
use decreased by 18.0% under the 2071–2100 SSP5-8.5 scenario. 

The mean annual surface runoff in the DMFB watershed indicated an 
increasing trend under all climate change scenarios (Fig. 3). Under the 
2041–2070 SSP2-4.5 and 2041–2070 SSP5-8.5 scenarios, the mean 
annual surface runoff increased by 8.9 mm and 13.4 mm, respectively, 
for irrigated cotton, and 11.5 mm and 17.8 mm, respectively, for dryland 
cotton. During the period of 2071–2100, the annual mean surface runoff 
for irrigated cotton increased by 10.1 mm under the SSP2-4.5 scenario 
and 17.9 mm under the SSP5-8.5 scenario, and the increased values for 
dryland cotton were 14.1 mm and 22.6 mm. However, the simulated 
surface runoff results under the SSP5-8.5 scenario exhibited substantial 
uncertainty for both cotton management practices. For example, the 

Fig. 2. Changes in precipitation (a), solar radiation (b), maximum air temperature (c), and minimum air temperature (d) between future and historical periods for 
27 GCM models. The blue plots display trends for irrigated cotton and the yellow plots display trends for dryland cotton. Average changes are shown by solid circles, 
the medians are represented by solid diamonds, whereas minimum, first quartile, third quartile, and maximum are presented as violin plots. 

Table 4 
Mean and Median changes in maximum air temperature (Tmax), minimum air 
temperature (Tmin), surface runoff, and total nitrogen load during the cotton 
growth period from 2041 to 2100.  

Scenarios Cotton Statistic Tmax/ 
◦C 

Tmin/ 
◦C 

Surface 
runoff/ 
mm 

Total 
nitrogen 
load/kg 
ha−1 

SSP2-4.5 Irrigated Mean 2.35 2.30 1.5 0.1 
Median 2.29 2.24 0.4 0.0 

Dryland Mean 2.44 2.47 2.0 0.3 
Median 2.40 2.40 1.0 0.1 

SSP5-8.5 Irrigated Mean 3.59 3.78 2.4 0.1 
Median 3.31 3.36 0.9 0.0 

Dryland Mean 3.71 4.07 3.1 0.4 
Median 3.48 3.64 1.5 0.2  

Table 5 
Change percentages (%) of Mean and Median values for precipitation, solar radiation, actual evapotranspiration, and irrigation during the cotton growing period 2041- 
2100.  

Scenarios Cotton Statistic Precipitation Solar radiation Actual evapotranspiration Irrigation 

SSP2-4.5 Irrigated Mean 2.4 0.6 1.4 6.2 
Median −1.2 0.6 1.4 6.4 

Dryland Mean 2.0 0.6 −5.6 – 
Median −2.2 0.7 −5.5 – 

SSP5-8.5 Irrigated Mean 4.9 0.1 −6.7 −7.7 
Median 3.7 0.2 −5.4 −4.0 

Dryland Mean 4.5 0.1 −6.8 – 
Median 0.9 0.2 −5.5 –  
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projected change range in surface runoff among 27 GCMs was approxi
mately 30 mm under the SSP2-4.5 scenario and it was over 60 mm under 
the SSP5-8.5 scenario (Fig. 3). Based on the monthly analysis, the 
change in surface runoff during the non-growing season was small and 
showed a low uncertainty. During the growing season, the maximum 

increase in monthly surface runoff is expected to occur in September 
with a high uncertainty (Figs. S14–S15). The surface runoff changes 
during the growing season in irrigated areas could increase with 
increasing CO2 concentrations. Results also found that the average in
crease in annual surface runoff differed from 1.4 mm to 2.1 mm in the 

Fig. 3. Changes in actual evapotranspiration (a), irrigation (b), and surface runoff (c) between future and historical periods for 27 GCM models. The blue plots 
display trends for irrigated cotton and the yellow plots display trends for dryland cotton. Average changes are shown by solid circles, the medians are represented by 
solid diamonds, whereas minimum, first quartile, third quartile, and maximum are presented as violin plots. 
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mid-21st century and 1.6 mm–2.7 mm by the end of the 21st century. A 
similar trend was observed for dryland cotton, and the average surface 
runoff showed an annual increase from 1.8 mm to 2.8 mm in the mid- 
21st century and 2.2 mm–3.5 mm by the end of the 21st century. The 
above results indicated that the hydrological cycle in the DMFB water
shed was strongly influenced by future climate, with a greater magni
tude of changes under the SSP5-8.5 scenario. 

3.3. Climate change effects on water quality 

Surface runoff has been recognized as one of the common causes and 
transport pathways for agricultural non-point source pollution, and 
changes in surface runoff caused by climate change could affect the 
future TN load in the DMFB watershed. The simulated results for TN load 
were consistent with the trend of surface runoff, which showed an 
increasing trend in the future. Under four climate change scenarios, the 
mean and median TN load for irrigated cotton increased by 0.4 kg ha−1 

to 0.9 kg ha−1 and 0.3 kg ha−1 to 0.7 kg ha−1, respectively; the mean and 
median annual TN load for dryland cotton ranged from 1.9 kg ha−1 to 
2.4 kg ha−1 and from 1.7 kg ha−1 to 2.1 kg ha−1, respectively (Fig. 4). 
Meanwhile, the two SSP emission scenarios consistently projected 
increasing trends in TN load during the growing season under both 
irrigated and dryland conditions, and the change in TN load was 
negligible during the non-growing season, as expected. The mean and 
median change in TN load during the growing season increased from 
0.06 kg ha−1 to 0.13 kg ha−1 and from 0.02 kg ha−1 to 0.05 kg ha−1 

(irrigated cotton), and from 0.30 kg ha−1 to 0.37 kg ha−1 and from 
0.10 kg ha−1 to 0.18 kg ha−1 (dryland cotton), respectively 
(Figs. S16–S17). 

3.4. Responses of cotton yields to climate change 

The future cotton lint yields, biomass, and LAI for both irrigated and 
dryland conditions were simulated using the SWAT-MAD model and 
GCM-projected future climate data. In the mid to late 21st century, under 
the SSP2-4.5 and SSP5-8.5 scenarios, the future cotton lint yield simu
lated by all GCMs changed remarkably. The simulated cotton lint yield 
in the DMFB watershed increased from 91.1% to 122.1% under irrigated 
conditions and from 47.5% to 84.0% under dryland conditions (Fig. 5). 
Compared to the results from the SSP2-4.5 scenario, the SSP5-8.5 sce
nario showed higher CO2 concentration and greater increases in cotton 
lint yields. The simulated cotton lint yields under both irrigated and 

dryland conditions increased by 98.4% and 50.6%, respectively, under 
the SSP2-4.5 scenario. The simulated percent changes in cotton lint 
yields under both irrigated and dryland conditions were 116.7% and 
72.3%, respectively, under the SSP5-8.5 scenario (Table S3). Dry matter 
accumulation is the material basis for crop yield. The simulated changes 
in biomass approximately exhibited S-shaped curves for both irrigated 
and dryland cotton. The biomass could increase with increasing CO2 
concentrations, and the stage of rapid biomass accumulation could occur 
earlier. Simulated biomass increased by 4 Mg ha−1 to 6.4 Mg ha−1 for 
irrigated cotton and 1.5 Mg ha−1 to 2.5 Mg ha−1 for dryland cotton 
under future scenarios, compared to the historical period (Fig. 5). 

The simulated LAI during the baseline period (1981–2021) showed 
an S-shape curve. However, LAI showed a downward opening parabola 
during the simulation periods of 2041–2070 and 2071–2100. The 
simulated LAI increased rapidly in the early growth stage and reached 
the maximum at the full development stage. The simulated LAI was 
generally lower in dryland conditions than in irrigated conditions under 
all scenarios (Fig. 5). Under the baseline scenario (CO2 = 330 ppm), the 
simulated LAI leveled off around DOY 111 for irrigated cotton 
(4.6 m2 m−2) and around DOY 105 for dryland cotton (2.8 m2 m−2). For 
irrigated cotton, the LAI reached a maximum value of 4.7 m2 m−2 on 
DOY 108 and began to decline after 20 days under the 2041–2070 SSP2- 
4.5 scenario. The trends of LAI were similar under the 2071–2100 SSP2- 
4.5 and 2041–2070 SSP5-8.5 scenarios, which reached a maximum 
value of 4.6 m2 m−2 on DOY 84 and DOY 85, respectively, and began to 
decline on DOY 127 and DOY 122, respectively. Under the SSP5-8.5 
scenario, the simulated LAI reached a maximum value of 4.5 m2 m−2 

on DOY 77 and started to decrease after one month. For dryland cotton, 
LAI reached a maximum value of 3.1 m2 m−2 on DOY 102 under the 
2041–2070 SSP2-4.5 scenario and started to decrease after 19 days. The 
2071–2100 SSP2-4.5 and 2041–2070 SSP5-8.5 scenarios simulated 
similar trends in LAI, which reached a maximum value of 3.1 m2 m−2 on 
DOY 79 and 82 and began to decline on DOY 127 and 122, respectively. 
The simulated LAI reached a maximum value of 3.5 m2 m−2 on DOY 77 
and started to decrease after 24 days under the 2071–2100 SSP5-8.5 
scenario (Fig. 5). 

4. Discussion 

The CMIP6 projected air temperatures showed that the climate in the 
DMFB watershed could generally become warmer under most scenarios, 
and all 27 GCMs projected air temperature increases ranging from 1.5 ◦C 

Fig. 4. Changes in total nitrogen load between future and historical periods for 27 GCM models. The blue plots display trends in irrigated cotton and the yellow plots 
display trends in dryland cotton. Average changes are shown by solid circles, the medians are represented by solid diamonds, whereas minimum, first quartile, third 
quartile, and maximum are presented as violin plots. 
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to 5 ◦C by the mid to late 21st century. Awal et al. (2016) predicted that 
Tmin and Tmax could increase by 2 ◦C and 3 ◦C on average in the 2055s 
and 2090s, respectively, under three greenhouse gas emissions scenarios 
(A2, A1B, and B1) in the Brazos Headwaters Basin, Texas. Projected 
climate data used in this study showed that overall future precipitation 
remained nearly unchanged compared to the baseline. Venkataraman 
et al. (2016) reported that precipitation could increase in most parts of 
Texas by the second half of the 21st century under the RCP4.5 scenario, 
while Herrera-Pantoja and Hiscock (2015) reported a decrease in pre
cipitation in some semi-arid areas. Li et al. (2012) used the data from 
36 GCMs and reported the trend of precipitation change for the period 
1950–2099 in Houston, Texas; they found that annual average precipi
tation could decrease apparently under the RCP8.5 scenario but remain 
relatively constant under the RCP2.6 scenario. In this study, solar ra
diation was found to increase noticeably by approximately 10%. Other 
studies also reported similar increasing trends in solar radiation in the 
future (Rempel et al., 2021; Xiao et al., 2020). 

The results from this study showed a decrease (less than 3.5%) in 
future annual ETa for dryland cotton under the SSP2-4.5 and SSP5-8.5 
scenarios. The projected increase in air temperatures did not lead to 
an increase in ETa, which was consistent with other long-term climate 
change studies (Dinpashoh et al., 2011; Jhajharia et al., 2015; Ven
kataraman et al., 2016). Simulated annual ETa for irrigated cotton 
showed increasing trends under all climate change scenarios, except for 
the 2071–2100 SSP5-8.5 scenario, which projected a decrease in ETa by 
up to 9.3%. The changes in ETa could be directly or indirectly affected by 
many factors such as CO2 concentrations, air temperatures, precipita
tion, solar radiation, irrigation managment, etc.; therefore, it was diffi
cult to determine which single factor attributed to the changes in ETa. 
The simulated changes in irrigation water use and ETa by coupling the 
SWAT-MAD model and GCMs in the study watershed showed similar 
trends. Moreover, under the 2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 
and 2041–2070 SSP5-8.5 scenarios, the results showed an increase in 
simulated annual irrigation water use, which was most probably due to 
the increase in ETa while holding precipitation relatively constant. 
However, under the 2071–2100 SSP5-8.5 scenario, the highest CO2 
concentration (807 ppm) was simulated, which led to the partial closure 
of stomatal apertures and hence inhibited transpiration (Conley et al., 
2001; Leuzinger and KÖRner, 2007; Bunce and Nasyrov, 2012). The 
decrease in ETa in this study would then lead to reductions in the annual 

irrigation water use by cotton. The simulated median annual surface 
runoff for both irrigated and dryland cotton showed evident increases 
under all four scenarios, with greater increases under dryland condi
tions. In the irrigated cotton areas, an adequate supply of water and 
fertilizer would lead to better crop growth and sufficient ground cover. 
Therefore, under future climate scenarios, precipitation or irrigation 
water might be trapped by branches and leaves or used mainly for crop 
transpiration, which would increase the cotton biomass and hence 
reduce the surface runoff. Accordingly, the changes in TN load were 
closely correlated to surface runoff, and the increase in surface runoff 
under future climate scenarios would inevitably increase nitrogen loss 
from the cotton fields and thus cause surface water pollution (Wei et al., 
2021; Hanrahan et al., 2021). Therefore, appropriate mitigation and 
adaptation strategies need to be implemented to reduce the negative 
impact of climate change on hydrology and water quality. 

The projected climate change caused an increase in simulated cotton 
lint yield in the DBMF watershed, which was comparable to the results 
reported in other studies (Adhikari et al., 2016; Kothari et al., 2021), but 
the magnitude of increase was different. This study showed increases in 
cotton lint yields in the range of 91.1%–122.1% for irrigated cotton and 
47.5%–84.0% for dryland cotton, which were higher than the cotton lint 
yield change (14%–29% increase) projected in the study of Adhikari 
et al. (2016) for simulation period of 2041–2070. Other relative pa
rameters such as biomass and LAI were analyzed in this study to 
investigate possible factors that would influence the cotton lint yield. 
The simulated maximum biomass yields for both cotton management 
practices were higher than the biomass yields under the respective 
baseline scenarios, which supported the findings of increases in cotton 
lint yields in the future. The changes in simulated LAI under all four 
climate change scenarios demonstrated that climate change would lead 
to a shorter growing season in cotton, as higher air temperatures could 
accelerate maturation and shorten the growth period (Sharma et al., 
2021). Cotton plants are heat-tolerant and can grow well within an 
optimum air temperature range, and low air temperature can adversely 
affect the cotton lint yield. The accumulated temperature ≥10 ◦C might 
result in a positive effect on the growth and development of cotton and 
thus influence the final yield (Pettigrew, 2008; Li et al., 2020). Thereby, 
under the SSP2-4.5 and SSP5-8.5 scenarios, elevated air temperatures 
promoted increases in cotton lint yield. The natural cotton defoliation 
during the baseline period was not sufficient to support direct harvesting 

Fig. 5. Changes in irrigated and dryland cotton growth variables of daily biomass (BIOM) values (a and b), daily leaf area index (LAI) values (c and d), and yields (e 
and f) between future and historical periods for 27 GCM models. 
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by machinery. But the early defoliation under the future climate sce
narios implied an earlier shedding of cotton leaves, which would 
potentially reduce the use of defoliants in harvesting and simplify the 
production processes (Liao et al., 2020). 

Due to the complexity of climate change issues and the limitations of 
human cognition, the projected changes in future climate showed a high 
variation among different GCMs. There were many causes of un
certainties in climate projections (e.g., downscaling approach, GCM 
selection, etc.), with the GCM selections being the primary reason for 
uncertainties in future climate projections (Lee et al., 2021). GCMs have 
different underlying assumptions, and the more GCMs were selected in a 
study, the more it could reflect the variety of situations that might occur 
in the future (Lutz et al., 2016). The newly developed R code can be used 
to extract and analyze the SWAT outputs more efficiently, and obtain the 
corresponding changes in hydrology, water quality, and crop growth at 
yearly, monthly, and daily scales. The R code accurately extracted and 
organized the data of all 109 scenarios in approximately 24–32 h, which 
saved a substantial amount of labor and prevented potential errors 
caused by manual processing. When evaluating the impact of future 
climate change on regional water resources and crop production, it is 
important to use more GCMs to capture the uncertainty. With the 
continuous improvement and increase in the number of GCMs, this R 
code will become an important post-processing tool for the SWAT users 
to study climate change impacts on the “Soil-Water-Food” coupling 
systems. 

5. Conclusions 

The changes in meteorological variables, water balance components, 
total nitrogen load, and cotton growth parameters were simulated under 
changing climate based on 27 CMIP6 GCM projections and a well- 
calibrated SWAT-MAD model under four climate change scenarios in 
the DMFB watershed of the Texas Panhandle. The simulation results 
demonstrated that air temperatures and solar radiation increased under 
future climate scenarios, while the precipitation slightly decreased. In 
future climate scenarios, ETa declined during the dryland cotton 
growing season. However, in the irrigated cotton growing season, only 
in the 2071–2100 SSP5-8.5 scenario, the amount of irrigation and ETa 
showed a downward trend, and the median values of the reductions 
were 16.3% and 11.2%, respectively. The irrigation amount and ETa in 
the growing season of irrigated cotton under the other three scenarios 
showed an upward trend, and the median percentage changes were 
3.2%–7.5% and 0.2%–1.9%, respectively. Clearly elevated CO2 con
centration was the major factor for the decrease in ETa and irrigation 
under the 2071–2100 SSP5-8.5 scenario. In addition, both surface runoff 
and TN load increased for two cotton management practices under the 
four climate scenarios, which increased the risk of non-point source 
pollution in the watershed. Both cotton yields were expected to increase 
under the four climate change scenarios, and the average annual in
crease in irrigated cotton yield was nearly double compared to that of 
dryland cotton yield. Predicting potential ecological and environmental 
threats in the watershed in the future enable making scientific and 
reasonable decisions on production and ecological protection for 
watershed management agencies. The use of the newly developed R 
code has greatly improved the processing capabilities for long-term, 
multi-scenario, and multi-variable SWAT-MAD output results, and it 
can serve as a useful tool and provide technical support for efficiently 
studying the future climate change impacts. 

Software availability 

Name of software: SWAT post-processing R tool. 
Description: The SWAT post-processing R tool was developed for 

batch processing of SWAT outputs of the future climate change sce
narios, allowing for flexibility to obtain the climate, hydrological, water 
quality, and crop growth variables of the SWAT model from output.hru 

for different time steps (daily, monthly, and yearly). 
Developers: Haipeng Liu and Yong Chen. 
Year available: 2022. 
Availability and Cost: Open source. 
Language: R. 
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