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Abstract

In this paper, we present an efficient strategy to enumerate the number of k-cycles, g ≤ k < 2g,

in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using

its polynomial parity-check matrix H . This strategy works for both (dv, dc)-regular and irregular QC-

LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be

used to describe walks of length m in the protograph and can therefore be sufficiently described by the

matrices Bm(H) ,
(
HHT

)bm/2c
H(m mod 2), where m ≥ 0. We provide formulas for the number of

k-cycles, Nk, by just taking into account repetitions in some multisets constructed from the matrices

Bm(H). This approach is shown to have low complexity. For example, in the case of QC-LDPC codes

based on the 3× nv fully-connected protograph, the complexity of determining Nk, for k = 4, 6, 8, 10

and 12, is O(n2
v log(N)), O(n2

v log(nv) log(N)), O(n4
v log

4(nv) log(N)), O(n4
v log(nv) log(N)) and

O(n6
v log

6(nv) log(N)), respectively. The complexity, depending logarithmically on the lifting factor

N , gives our approach, to the best of our knowledge, a significant advantage over previous works on

the cycle distribution of QC-LDPC codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes form a class of error-correcting codes that were dis-

covered by Gallager [1] in the early 1960s and that have been shown to be capacity-approaching.

Because of this, members of this ensemble are now part of many industry standards, including
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those developed by the Consultative Committee for Space Data System (CCSDS) [2]. The sub-

ensemble of quasi-cyclic LDPC (QC-LDPC) codes is attractive for both implementation and

analysis purposes since its members can be described in a compact and simple way [3], [4]. It is

well-known that the structure of QC-LDPC codes, and the graph representation of an LDPC code

in general, plays a fundamental role in determining the performance of the code under iterative

decoding algorithms. In fact, the girth [5], together with the number of short cycles [6], and other

graphical structures composed of short cycles, such as trapping sets [7], are important parameters

to measure the iterative decoding performance of the code. As a consequence, researchers have

been actively trying to find ways to not only reduce but eliminate, when possible, all the short

cycles in a graph [8], and/or combinations of those cycles [7], [9], [10], in an attempt to improve

the performance of the corresponding code.

It is well-known that enumerating the k-cycles in a general graph is hard [11], [12]. Conse-

quently, a lot of effort has been dedicated to reduce the complexity of solving these problems.

Several algorithms have been designed for cycle enumeration with complexities depending on

the number of vertices, the number of edges, and the number of cycles. For a graph G = (V,E)

with set of vertices V and set of edges E, having cardinalities |V | and |E|, respectively, there are

some well-known algorithms designed to enumerate its cycles, including the Tarjan algorithm

[13] and the Johnson algorithm [14]. The complexities of these algorithms are O (|V ||E|(c+ 1))

and O ((|V |+ |E|)(c+ 1)), respectively, where c is the number of cycles. Other approaches,

which will be elaborated upon below, focus on particular families of graphs and on specific

members of these families, like the family of bipartite graphs and, some of its members, the

Tanner graphs of QC-LDPC codes, for example.

The topic of enumerating cycles in a bipartite graph G = (V,E), where V = Vc ∪ Vs is the

set of vertices, Vc and Vs are the sets of check nodes and variable nodes, respectively, having

cardinalities |Vc| and |Vs|, respectively, has a rich literature. In [6], an algorithm is presented to

count k-cycles, k = g, g + 2, g + 4, in a bipartite graph with complexity growing as O (gn3),

where g is the girth of G (the length of a shortest cycle in G) and n = max (|Vc|, |Vs|). In [15],

a message-passing algorithm for counting short cycles in a graph is presented. This algorithm

is capable of counting k-cycles, with g ≤ k ≤ 2g − 2, in the case of bipartite graphs, with

complexity growing as O
(
g|E|2

)
. In [16], a matrix of size 2|E| × 2|E|, called the directed

edge matrix, is constructed and used to count the number of short cycles. This strategy requires
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to calculate the trace of the kth power of this matrix or, equivalently, the eigenvalues of the

kth power of the adjacency matrix. Such an approach has complexity O
(
|E|3

)
and becomes

prohibitively high with an increase in the size of the Tanner graph.

In more recent works, a computational technique is presented in [8] to determine the numbers

of g-cycles in a (c+1, d+1)-bi-regular bipartite graph from its adjacency matrix is given. These

results were extended in [17], providing a strategy to compute the multiplicity of k-cycles,

g + 2 ≤ k ≤ 2g − 2, in bi-regular bipartite graphs, as a function of the spectrum and the node

degrees (the number of neighbors connected to the nodes). This work also contains closed form

equations for the multiplicity of 4-cycles and 6-cycles in irregular bipartite graphs. In [18], a

technique/algorithm based on a modified breadth-first search (BFS) algorithm, which establishes

parent/child relationships between the nodes in the graph depending on their distance from the

source node, is proposed to count the short cycles of a bipartite graph. This approach has a

time complexity of O
(
|V |2∆

)
to count g-cycles and (g + 2)-cycles, and a time complexity of

O
(
|V |2∆2

)
to count (g + 4)-cycles, where ∆ is the maximum node degree in the graph.

If a graph has a specific structure, such as a quasi-cyclic representation, then it is possible to

reduce the complexity of enumerating their cycles by exploiting said structure. The directed edge

matrix approach discussed in [16] was further analyzed in [19] in the case of QC-LDPC codes.

In this approach, the authors proved that if the LDPC code is quasi-cyclic, then its directed edge

matrix can be written as an array of circulant matrices. By exploiting the circulant structure to

compute the eigenvalues as in [20], the complexity of this approach is reduced from O
(
N3|Eb|3

)
to O

(
N |Eb|3

)
, where N is the lifting factor and |Eb| is the number of edges in the protograph.

In this paper, we present an efficient strategy to count the number of k-cycles, k < 2g, in the

Tanner graph of QC-LDPC codes having girth g. This strategy, which works for both (dv, dc)-

regular and irregular QC-LDPC codes, is formally analyzed from a complexity perspective in the

case of the 3× nv fully-connected (all-ones) protograph, and exemplified to count cycles using

an irregular protograph used in the CCSDS standards [2]. Our approach has low complexity,

shown to be depending logarithmically on the lifting factor N . Additionally, we illustrate how

we can easily generalize the strategy for the nc × nv case, with nc > 3, maintaining the same

low complexity. To the best of our knowledge, no such approach has been presented with such

low complexity, even though it is well known to use modulo operations to determine cycles in a

QC-LDPC graph [21], [22]. Consequently, this gives our approach a significant advantage over
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any previous work on the cycle distribution of QC-LDPC codes.

This paper is structured in the following way. In Section II, we introduce the necessary

definitions, notation and background. In Section III, we define an equivalence of closed walks,

that applies to TBC walks, to provide a general formula to count the number of k-cycles, Nk, for

k < 2g, in the Tanner graph of QC-LDPC codes. This formula works for both (dv, dc)-regular

(where dv and dc are the variable node and check node degrees, respectively) and irregular

protographs. We then present an efficient strategy to calculate Nk in Section IV where we

restrict our attention to the fully-connected (all-ones) protograph and values 4 ≤ k ≤ 12. The

complexity of our approach is analyzed in Section V. In Section VI, we exemplify this strategy

in an irregular protograph, and we conclude the paper with some remarks in Section VII.

II. DEFINITIONS, NOTATION AND BACKGROUND

Let C be a QC-LDPC code, either (dv, dc)-regular or irregular, with block length nvN based

on the nc×nv protograph [23] described by the matrix B = (bij)nc×nv
, where bij is a nonnegative

integer for i ∈ [nc] and j ∈ [nv], and where [l] , {0, 1, . . . , l − 1}. Then C can be described by

a (scalar) parity-check matrix H = (Hij)nc×nv
, where each Hij , for i ∈ [nc] and j ∈ [nv], is a

summation of bij N×N circulant permutation matrices if bij is nonzero, and the N×N all-zero

matrix if bij = 0. Graphically, this operation is equivalent to taking an N -fold graph cover, or

lifting, of the protograph. Here, N is called the lifting factor (lifting degree, or degree of the graph

cover). Let xr denote the N ×N circulant permutation matrix obtained by circularly shifting to

the left, by r positions modulo N , the entries of the N × N identity matrix I . For simplicity

in the notation, let pij(x) be the polynomial representation of Hij , where pij(x) =
∑N−1

l=0 alx
l

and al ∈ {0, 1} for all l ∈ [N ]. Each polynomial pij(x) has weight bij . Then we can rewrite the

parity-check matrix H , using the polynomial representation, as H = (pij)nc×nv
.

From the parity-check matrix H , we construct a bipartite graph G = (V,E), called a Tanner

graph [24], by considering H as its biadjacency matrix. This bipartite graph represents the QC-

LDPC code C obtained from H . The set V is the set of vertices (or nodes) and E is the set of

edges, and their cardinalities are denoted by |V | and |E|, respectively. Let denote the vertices

of G by va, for a = 0, 1, 2, . . . , |V | − 1, and the edges by eb, for b = 0, 1, 2, . . . , |E| − 1.

Each edge eb has the form eb = (va, vc), for some va, vc ∈ V , and the vertices va and vc are

called the endpoints of e. A (directed) walk W of length m in the graph G is an alternating
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sequence W = v0e1v1e2 · · · vm−1emvm of vertices and edges such that el = (vl−1, vl) ∈ E for all

1 ≤ l ≤ m. The first vertex appearing in the alternating sequence, v0, is called the base point of

W . A walk W is said to be closed if the two endpoints are the same, this is, when v0 = vm. A

closed walk W is backtrackless if el 6= el+1 for all l = 1, 2, . . . ,m− 1. A backtrackless closed

walk W is tailless if em 6= e1, and W is called, in this case, a TBC walk. A cycle is a closed

walk W having distinct vertices and distinct edges, and if its alternating sequence has k edges

in it, then we call W a k-cycle. The length of a shortest cycle is called the girth of the graph.

The adjacency matrix A = (Aij) is the symmetric binary matrix with Aij = 1 if (vi, vj) ∈ E,

and Aij = 0 otherwise. After some reordering of the vertices, if necessary, we can write A, for

either the scalar or polynomial representation of H , in the compact expression

A =

 0 H

HT 0

 , (1)

where HT denotes the transpose of H . The powers of A, and in particular the matrices

Bt(H) ,
(
HHT

)bt/2c
H(t mod 2), t ≥ 0, (2)

give information about the walks [25]. It is not difficult to see that, for any nonnegative integer

t, we have

A2t =

B2t(H) 0

0 B2t(H
T)

 and A2t+1 =

 0 B2t+1(H)

B2t+1(H
T) 0

 . (3)

Since G is a bipartite graph, any k-cycle has even length, so k = 2m for some m. We can form

a walk of length k, or simply a k-walk, by taking the union of two walks of length m having

the same two endpoints. If all the vertices and edges traversed in this k-walk are distinct, then

the k-walk is a k-cycle. For example, if k = 4, then any 4-cycle is formed by the union of two

different walks of length 2 having the same two endpoints. We can count the number of walks

of length 2 between any two vertices by calculating the square of the adjacency matrix A. For

A2 = ((A2)ij), notice that

(A2)ij =

|V |−1∑
l=0

AilAlj. (4)

The equation (4) gives the number of walks of length 2 between vertices vi and vj since we

have two edges joining vi to vl to vj whenever Ail = Alj = 1. This argument was generalized

in the following theorem.
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Theorem 1 ([26]). If Am = ((Am)ij) is the mth power of the adjacency matrix A, then the

entry (Am)ij is equal to the number of walks of length m between the vertices vi and vj .

The polynomial representation of QC-LDPC codes allows for a reduction in the complexity of

our computations, so we will work with the polynomial parity-check matrix rather than with its

scalar version. First, we consider the triangle operator 4 introduced in [25]. For two nonnegative

integers e and f , define d = e4f , 1 if e ≥ 2 and f = 0, and d = e4f , 0 otherwise. This

definition can be extended to matrices. For two s × t matrices E = (eij) and F = (fij), we

define the s × t matrix D = (dij) , E4F entry-wise, where dij , eij4fij for all pairs

(i, j) ∈ [s]× [t]. If E(x) and F (x) are the polynomial versions of E and F , respectively, then

D(x) , E(x)4F (x), where D(x) is the polynomial version of D.

Theorem 2 ([25], [26]). A Tanner graph of an LDPC code with parity-check matrix H has

girth(H) > 2l if and only if Bm(H)4Bm−2(H) = 0 for 2 ≤ m ≤ l.

The kth power of the scalar adjacency matrix A of the Tanner graph can be used to determine

the number of k-walks between any two vertices, as we have seen in Theorem 1. The kth power

of the polynomial version of the adjacency matrix, however, does not help us to count the number

of k-walks between any two vertices of the Tanner graph, but, as we will see, it can be used

to describe the edges traversed in a k-walk between any two vertices in the protograph. For

example, if A is the polynomial version of the adjacency matrix (1), then

(A2)ij(x) =
nc+nv−1∑

l=0

Ail(x)Alj(x), (5)

and every term of the polynomial (A2)ij(x) is a product of the form xcilxclj = xcil+clj , where

xcil and xclj come from the polynomials Ail(x) and Alj(x), respectively. Each one of the two

circulants xcil and xclj correspond to a unique edge in the protograph, and the order in which

they appear in the product is the order used to traverse the walk in the protograph. The exponent

cil + clj , in consequence, corresponds to the two edges traversed from vertex vi to vertex vl

to vertex vj in the protograph. In the same way, every term of (A3)ij(x) is a product of the

form xcilxclkxckj = xcil+clk+ckj , and the exponent cil + clk + ckj corresponds to the three edges

traversed in the protograph from vertex vi to vertex vl to vertex vk to vertex vj . In general,

every term of (Am)ij(x) is of the form xcil1xcl1l2 · · · xclmj = xcil1+cl1l2+···+clmj , and each one of
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them corresponds to a walk of length m and the specific order in which it is traversed, which

is nicely described by the way the matrix multiplication in (3) is performed. This allows us to

state a polynomial version of Theorem 1.

Theorem 3. If Am = ((Am)ij(x)) is the mth power of the polynomial adjacency matrix A, then

every term of the polynomial (Am)ij(x) is of the form xcil1xcl1l2 · · · xclmj and corresponds to a

walk of length m between the vertices vi and vj in the protograph.

Definition 4. The exponent cil1 +cl1l2 +· · ·+clmj corresponding to the product xcil1xcl1l2 · · · xclmj

in Theorem 3 is called a permutation shift.

If xcil1xcl1l2 · · · xclmj and xc
′
il1xc

′
l1l2 · · · xc′lmj are two terms of the polynomial (Am)ij(x) de-

scribing two m-walks between vertices vi and vj in the protograph, then the combination

xcil1xcl1l2 · · · xclmjx−c
′
lmj · · · x−c

′
l1l2x−c

′
il1

of the first walk and the reversal of the second one describes a closed (2m)-walk that starts

and ends at the vertex vi, and that has the vertex vj midway. Hence, the entries (Am)ij(x) of

the power Am describe all the m-walks in the protograph and can be used to count certain

cycles in the Tanner graph. The strategy of counting cycles in the Tanner graph presented in this

paper requires to keep track of TBC walks in the protograph. This is why we are interested in

analyzing the way each walk is traversed. First, we introduce some required concepts on graph

covers.

At the beginning of this section, we explained the process to construct a Tanner graph from

a protograph. In the sequel, we will need a little more mathematical accuracy, so we define the

lifting process from a topological point of view. Let G = (V,E) be a protograph described by

matrix B = (bij)nc×nv
. Each row and each column of B corresponds to a check node and a

variable node in the protograph, respectively. Once a lifting factor N is chosen, for each vertex

v ∈ V in the protograph, either a check node or a variable node, we create N copies of it

and denote them by ṽl, for l ∈ [N ]. For each edge e = (u, v) ∈ E in the protograph, there

is, associated to it, a circulant permutation matrix xa, where a ∈ [N ]. Once the value for a

is chosen, we create N copies of e and denote them by ẽl, for l ∈ [N ]. The vertices that are

endpoints of these edges are permuted in such a way that we have ẽl = (ul, vl−a mod N). If we

let Ṽ =
{
ṽl | v ∈ V, l ∈ [N ]

}
and Ẽ =

{
ẽl | e ∈ E, l ∈ [N ]

}
, then the graph G̃ = (Ṽ , Ẽ) is an
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N -fold graph cover, or lifting, of the protograph, and we call it the Tanner graph. The process of

creating the N copies ṽl of the vertex v and the N copies ẽl of the edge e induces a projection

map p : G̃→ G, and we call p the natural projection map. The set of vertices
{
ṽl | v ∈ V

}
and

the set of edges
{
ẽl | e ∈ E

}
, denoted by p−1(v) and p−1(e), respectively, are called the fiber

over the vertex v and the fiber over the edge e, respectively, under the natural projection map.

Lemmas 5 and 7, based on some results from [27], are useful to study both the images of

cycles in the Tanner graph and the preimages of TBC walks in the protograph.

Lemma 5 ([28], [29]). Let G̃ be an N -fold graph cover of the protograph G. Let W be a k-walk

in G starting at vertex v and ending at vertex v′, and having edge sequence e1, e2, . . . , ek with

associated circulant permutation matrices xs1 , xs2 , . . . , xsk . Then the permutation shift s that

maps ṽ, the inverse image of v in G̃, to ṽ′, the inverse image of v′ in G̃, through the walk W̃

is given by

s =
k−1∑
i=0

(−1)isi+1 mod N. (6)

Remark 6. If the walk W in Lemma 5 is traversed in the opposite direction starting at vertex

v′ and ending at vertex v, then its permutation shift is given by s′ = N − s mod N . �

We denote by ZN the additive group of integers modulo N . For any element a ∈ ZN , the

order of a is the smallest integer m such that am = m · a = 0.

Lemma 7 ([28]). Let G̃ be an N -fold graph cover of the protograph G and let W ′ be a k-cycle

in G̃. Then W ′ is projected onto a TBC walk W of length k/m, where m ≥ 1 is the order of

the permutation shift of W in ZN .

Remark 8. The order of a TBC walk W , which is referred to as the order of its permutation

shift s in the previous lemmas when considered as an element of ZN , is given by N/ gcd (N, s),

where s is as in (6) and gcd denotes the greatest common divisor. �

We combine the following lemma with our analysis of TBC walk to count cycles in the Tanner

graph.

Lemma 9 ([30]). Let G̃ be an N -fold graph cover of the protograph G and let W be a closed

k-walk in G. Then the inverse image of W in G̃ is the union of N/m closed (km)-walks, where
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m ≥ 1 is the order of the permutation shift of W in ZN .

We extend the result in Lemma 9, stated for closed k-walks, to TBC walks of length k.

Theorem 10. Let G̃ be an N -fold graph cover of the protograph G and let W be a TBC walk

of length k in G. Then the inverse image of W in G̃ is the union of N/m TBC walks of length

km, where m ≥ 1 is the order of the permutation shift of W in ZN .

Proof: By Lemma 9, the inverse image of W is the union of N/m closed (km)-walks,

where m ≥ 1 is the order of the permutation shift of W in ZN , since W is a closed walk. It

remains to show that each element W̃ in the inverse image of W is backtrackless and tailless.

Assume that W = e1e2 · · · ek. The inverse image of a 2-walk elel+1 in W , for some l, gives a

2-walk ẽl′ ˜el′+1 in W̃ . If the two edges ẽl′ and ˜el′+1 are equal, meaning that the same edge is

being traversed consecutively in a row in opposite directions, their projection onto G will give

the same edge, contradicting the assumption that W backtrackless. Similarly, if the edges ẽ1

and ˜ekm, which are consecutive edges in W̃ , are equal, then their projection onto G will give

the same edge, again contradicting the assumption that W is backtrackless. This concludes the

proof.

The following lemma explain why we restrict our analysis to k-cycles with k < 2g, where g

is the girth of the Tanner graph.

Lemma 11 ([15]). Let G be a graph with girth g. Then the set of TBC walks of length k

coincides with the set of k-cycles if k < 2g.

Notice that the set of TBC walks of length k and the set of k-cycles are not equal if k ≥ 2g.

For the case when k = 2g, let W be a g-cycle. The double traversal of W , denoted by W 2, is

a TBC walk of length 2g, but it is not a (2g)-cycle because the intermediate vertices are not

distinct. For k > 2g, a similar argument is used.

Remark 12. As a direct consequence of Lemmas 7 and 11, and Theorem 10, the TBC walks in

the protograph of a QC-LDPC code are the necessary and sufficient structures needed to describe

all the k-cycles, k < 2g, in the Tanner graph. �
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III. COUNTING CYCLES: A GENERAL PROTOGRAPH

The equivalence of closed walks is an important notion in this work.

Definition 13. Two closed walks W1 and W2 are said to be equivalent if one can be obtained

from the other by a change of base point, a change in direction, or both.

If W is a closed walk of length k, then there are 2k equivalent closed walks to W . In the

following definition, we introduce a set whose cardinality is used in the formulas for the number

of k-cycles, Nk, in the Tanner graph.

Definition 14. Let H be a polynomial parity-check matrix and let N be the lifting factor. For

integers d ≥ 0 and f ≥ 1, the set W (d, f) is defined as the collection of all nonequivalent TBC

walks of length d in the protograph having permutation shift of order f in ZN .

Remark 15. Notice that the construction of the set W (d, f) in Definition 14 depends on both

the protograph and the lifting factor N . In algebra, the additive group ZN has order N and the

order of every element is a divisor of N . Hence, if s is not a divisor of N , the set W (d, f)

is empty independently of the selection of the length d. For example, if N = 4, no element in

Z4 has order 3 because 3 does not divide 4, so the set W (d, 3) is empty for any value of d.

However, even if f does divide N , there are instances where the set W (d, f) is automatically

empty. If the protograph is the nc × nv fully-connected (all-ones), it is not possible to obtain a

TBC walk of length 4 from the double traversal of a walk of length 2, forcing W (2, f) to be

empty. If the protograph is a multiedge graph, as we will discuss later, then it is possible to

have a nonempty set W (2, f). �

The following theorem gives the number of k-cycles in the Tanner graph using the walks

described by the entries of the polynomial parity-check matrix H .

Theorem 16. Let H be the polynomial parity-check matrix of a protograph-based QC-LDPC

code with girth g, and let k be an even integer with 2 ≤ k < 2g. Let

D(k) = {d | d divides k, d ≥ 2, d even}

and, for any d ∈ D(k), let W (d, k/d) denote the set of nonequivalent TBC walks of length d

having permutation shift of order k/d in ZN . Then the number Nk of k-cycles, k < 2g, in the
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corresponding Tanner graph G with parity-check matrix H is given by

Nk =
∑

d∈D(k)

|W (d, k/d)| −
∑

d′∈D(k)
d′|d, d′<d

|W (d′, k/d′)|

 · Nk/d, (7)

where N is the lifting factor.

Proof: Suppose that H has girth g. By Lemma 7, any k-cycle W̃ in the Tanner graph

projects onto a (naturally shortest) TBC walk W of length d′ having permutation shift of order

k/d′ in ZN . Hence, to count the number of k-cycles in the Tanner graph, it is enough to count

the TBC walks that will be lifted to k-cycles.

Let W̃ be a k-cycle in the Tanner graph and let W be its projection, a TBC walk of length

d′ having permutation shift of order k/d′ in ZN . Let pshift(W ) be the permutation shift of W .

Since W ∈ W (d′, k/d′), we have (k/d′) · pshift(W ) = 0 in ZN and, in particular, d′ is the

smallest positive integer satisfying this equation. For any d ∈ D(k) such that d′ divides d and

d′ < d, traversing W d/d′ times gives us a TBC walk of length d. We denote the traversal by

W d/d′ , and its permutation shift, pshift(W
d/d′), is 0 in ZN . The inverse image of W d/d′ is, then,

a collection of TBC walks that are not cycles in the Tanner graph since they are the cycles

in the inverse image of W , but traversed d/d′ times. Hence, the only elements in W (d, k/d)

that contribute to the number of cycles in the Tanner graph are those TBC walks that are

not a multiple traversal of shorter TBC walks having permutation shift of order smaller than

k/d in ZN . Rewriting this in symbols, the number of TBC walks satisfying this property is

µ(d, k) = |W (d, k/d)| −
∑

d′∈D(k)
d′|d, d′<d

|W (d′, k/d′)| and, by Theorem 10, the number of k-cycles

that each one of them contribute is N/(k/d). Taking the sum of µ(d, k) · N/(k/d) over all

d ∈ D(k) gives equation (7).

IV. COUNTING CYCLES: BINARY PROTOGRAPHS

The equation (7) in Theorem 16 gives the number of k-cycles in the Tanner graph of an

arbitrary QC-LDPC code. Since the Tanner graph is a graph cover of the protograph, and N ≥ 1,

the former has, at least, the same number of vertices and edges as the latter. In practice, we

restrict N > 1, so counting TBC walks in the protograph, instead of directly counting cycles in

the Tanner graph, represents a reduction in the number of computations required to determine
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Nk. In this section, we focus on the fully-connected (all-ones) protograph and discuss how to

determine Nk with a strategy that has complexity logarithmic on the lifting factor N . We show

that this involves determining the cardinality of the sets W (d, f), for integers d ≥ 0 and f ≥ 1,

in a simple way. We note that, by studying the all-ones protograph, we also have the framework

for any binary (regular or irregular) protograph because “masking” (replacing ones with zeros)

[31] makes the problem simpler since various exponents are removed from the calculation. In

Section VI, we show how to extend the approach to general (non-binary) protographs.

Let C be a QC-LDPC code with parity check matrix H given by

H =


xl0,0 xl0,1 · · · xl0,nv−1

xl1,0 xl1,1 · · · xl1,nv−1

...
... . . . ...

xlnc−1,0 xlnc−1,1 · · · xlnc−1,nv−1

 , (8)

where lij ∈ [N ] for i ∈ [nc] and j ∈ [nv]. In numerical examples, we can assume, without loss

of generality, that l0,j = li,0 = 0 for i ∈ [nc] and j ∈ [nv], as a way to reduce the complexity of

the computations. In the theoretical results, however, we do not automatically set them to 0 in

order to analyze TBC walk patterns in detail.

Consider the following definition.

Definition 17. A multiset (shortened to mset) is a collection of elements in which elements are

allowed to repeat. The number of times an element occurs in a multiset is called its multiplicity.

The cardinality of a multiset is the sum of the multiplicities of its elements.

By Theorem 2, following the discussion in [32], girth(H) > 4 if and only if each one of the(
nc

2

)
msets {li,m − li′,m | m ∈ [nv]}, for i < i′, contains distinct elements in ZN . If one of these

msets has a repeated element (a repetition), some 4-cycles appears in the Tanner graph and the

exact amount of them is calculated in the following theorem.

Theorem 18. Let H be as in (8). A repetition in any of the following
(
nc

2

)
msets

Ai,i′ = {li,m − li′,m | m ∈ [nv]}, i < i′,

lifts to exactly N 4-cycles in the Tanner graph. The total number of 4-cycles in the Tanner graph,

N4, is given by

N4 = |W (4, 1)| ·N, (9)
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where W (4, 1) is the set of all nonequivalent TBC walks associated to the repetitions in the

msets above.

Proof: The msets Ai,i′ = {li,m − li′,m | m ∈ [nv]}, i < i′, describe all nonequivalent walks

of length 2 in the matrix H . A repetition in any of the msets gives a TBC walk of length 4 with

permutation shift li,m− li′,m− li′,m′+ li,m′ = 0 in ZN if m 6= m′. By Theorem 10, this TBC walk

lifts to N 4-cycles. The same approach works for all the other msets and, by letting W (4, 1) be

the set of all nonequivalent TBC walks associated to the repetitions, the result follows.

Example 19. Let H be the polynomial parity-check matrix given by

H =


xh0 xh1 xh2 xh3 xh4

xi0 xi1 xi2 xi3 xi4

xj0 xj1 xj2 xj3 xj4

 =


1 1 1 1 1

1 x x2 x3 x4

1 x2 x x5 x7

 .

This matrix has girth 4 for lifting factor N = 5. Calculating the three msets in Theorem 18 over

Z5, we obtain A0,1 = {0, 4, 3, 2, 1}, A0,2 = {0, 3, 4, 0, 3}, and A1,2 = {0, 4, 1, 3, 2}. Notice that

there are two repetitions in the second mset, so there are two elements in W (4, 1), specifically

W (4, 1) = {h0−j0 +j3−h3, h1−j1 +j4−h4}. Hence, the number of 4-cycles N4 in the Tanner

graph is N4 = |W (4, 1)| · N = 2 · 5 = 10. If we take N = 10, then the parity-check matrix H

has girth 6. To confirm that there is no 4-cycle in H , we calculate the three msets in Theorem

18 over Z10 and we obtain A0,1 = {0, 9, 8, 7, 6}, A0,2 = {0, 8, 9, 5, 3}, and A1,2 = {0, 9, 1, 8, 7}.

Since there is no repetition in these msets, we conclude that N4 = 0. �

Remark 20. Theorem 18 was used to calculate the number of elements in W (4, 1), but the

strategy can be modified in a straightforward way to count the number of elements in W (4, 2).

In this case, we are not simply targeting repetitions in the msets Ai,i′ . Instead, we are looking for

two elements αl and αl′ with αl 6= αl′ , coming from the same mset, such that 2 · (αl − αl′) = 0

in ZN . The double traversal of the TBC walk that corresponds to the permutation shift αl − αl′

is an element of W (4, 2). This approach is used to compute W (4, s), for any s, by requiring

s · (αl − αl′) = 0 and t · (αl − αl′) 6= 0, t ∈ [s]\{0}, in ZN . �
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In the rest of the section, for space constraints, we will take nc = 3 in (8), so H is given by

H =


xh0 xh1 · · · xhnv−1

xi0 xi1 · · · xinv−1

xj0 xj1 · · · xjnv−1

 . (10)

By Theorem 2, as discussed in [32], girth(H) > 6 if and only if, for m ∈ [nv] and l ∈ [nv]\{m},

all the elements in each one of the msets

{hl − il + im, hl − jl + jm}, {il − hl + hm, il − jl + jm}, {jl − hl + hm, jl − il + im},

are distinct. In the following theorem, we rewrite these conditions in a way that is helpful to

count 6-cycles in the Tanner graph.

Theorem 21. Let H be as in (10) and, for m ∈ [nv], consider the following msets

A1,m = {(l, hl − il + im) | l ∈ [nv], l 6= m},

A2,m = {(l, hl − jl + jm) | l ∈ [nv], l 6= m},

B1,m = {(l, il − hl + hm) | l ∈ [nv], l 6= m},

B2,m = {(l, il − jl + jm) | l ∈ [nv], l 6= m},

C1,m = {(l, jl − hl + hm) | l ∈ [nv], l 6= m},

C2,m = {(l, jl − il + im) | l ∈ [nv], l 6= m}.

For l, l′ ∈ [nv], let (l, αl) ∈ A1,m and (l′, αl′) ∈ A2,m be such that αl = αl′ . Then the repetition

αl = αl′ lifts to exactly N 6-cycles in the Tanner graph if l 6= l′. The same result follows if

the pair A1,m, A2,m is replaced by any of the pairs B1,m, B2,m and C1,m, C2,m. Moreover, one

of these pairs, running over all m ∈ [nv], is sufficient to describe all 6-cycles in H . Hence, the

total number of 6-cycles in the Tanner graph, N6, is given by

N6 = |W (6, 1)| ·N, (11)

where W (6, 1) is the set of all nonequivalent TBC walks associated to the repetitions in one of

the pairs above, and

|W (6, 1)| =
∑
m∈[nv ]

RA1,m,A2,m , (12)

where RA1,m,A2,m is the number of repetitions αl = αl′ between the msets A1,m and A2,m.

Proof: Suppose that there is a repetition in the pair A1,m, A2,m as in the statement. Then, for

l, l′ ∈ [nv], there are αl = hl− il + im and αl′ = hl′ − jl′ + jm with αl = αl′ in ZN . This implies
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that hl−il+im = hl′−jl′+jm in ZN , which is equivalent to have hl−il+im−jm+jl′−hl′ = 0 in

ZN . If l 6= l′, then this permutation shift describes a TBC walk of length 6 and, by Theorem 10,

it lifts to exactly N 6-cycles in the Tanner graph. If the repetition happens in the pair B1,m, B2,m,

then for l, l′ ∈ [nv], there are βl = il−hl +hm and βl′ = il′ − jl′ + jm with βl = βl′ in ZN . This

implies that il−hl+hm−jm+jl′−il′ = 0 in ZN . If l 6= l′, then this permutation shift describes a

TBC walk of length 6 and, by Theorem 10, it lifts to exactly N 6-cycles in the Tanner graph. If

the repetition happens in the pair C1,m, C2,m, then we obtain, following the same idea as before,

jl − hl + hm − im + il′ − jl′ = 0 in ZN , for l, l′ ∈ [nv]. If l 6= l′, then the corresponding TBC

walk of length 6 lifts to exactly N 6-cycles in the Tanner graph by Theorem 10.

To show that only one of these pairs, running over all m ∈ [nv], is sufficient to describe all 6-

cycles, it is enough to consider the TBC walks that they describe and apply a change of base point

or direction, or both. First, we show that any TBC walk constructed from the pair B1,m, B2,m is

equivalent to some TBC walk described in the pair A1,m, A2,m. A TBC walk constructed from

the pair B1,m, B2,m involves a permutation shift of the form il − hl + hm − jm + jl′ − il′ . If

hl becomes the base point and we reverse the direction of the TBC walk, then we obtain the

expression −(hl − il + il′ − jl′ + jm − hm). The assignment

l ← l, m← l′ and l′ ← m

gives the corresponding TBC walk described in the pair A1,m, A2,m. Similarly, a TBC walk

constructed from the pair C1,m, C2,m involves a permutation shift of the form jl − hl + hm −

im + il′ − jl′ . If hm becomes the base point and we maintain the direction of the TBC walk,

then we obtain the expression hm − im + il′ − jl′ + jl − hl. The assignment

l ← m, m← l′ and l′ ← l

gives the corresponding TBC walk described in the pair A1,m, A2,m.

The formula for N6 in (11) follows from equation (7) in Theorem 16. It remains to show that

|W (6, 1)| is given by (12). Since the pair A1,m, A2,m, running over all m ∈ [nv], is sufficient to

describe all the TBC walks of length 6, we use the unique TBC walk pattern hl − il + im −

jm + jl′ − hl′ and constructed all its equivalent walks. It turns out that no equivalent walk has

the same TBC walk pattern, so each repetition is counted exactly once, and we conclude the

proof.
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Example 22. Let H be as in Example 19 and take N = 5. Since H has girth 4, we can also

use our strategy to calculate 6-cycles in the Tanner graph. Following Theorem 21, we should

construct, for each m ∈ [nv], the pair of msets A1,m, A2,m (since only one of the three pairs is

sufficient). Some computations show that

A1,0 = {(1, 4), (2, 3), (3, 2), (4, 1)},

A2,0 = {(1, 3), (2, 4), (3, 0), (4, 3)},

A1,1 = {(0, 1), (2, 4), (3, 3), (4, 2)},

A2,1 = {(0, 2), (2, 1), (3, 2), (4, 0)},

A1,2 = {(0, 2), (1, 1), (3, 4), (4, 3)},

A2,2 = {(0, 1), (1, 4), (3, 1), (4, 4)},

A1,3 = {(0, 3), (1, 2), (2, 1), (4, 4)},

A2,3 = {(0, 0), (1, 3), (2, 4), (4, 3)},

A1,4 = {(0, 4), (1, 3), (2, 2), (3, 1)},

A2,4 = {(0, 2), (1, 0), (2, 1), (3, 2)}.

Once all the pairs A1,m, A2,m, for m ∈ [nv], are constructed, we analyze each one separately.

For example, if m = 0, notice that (1, 4) ∈ A1,0 and (2, 4) ∈ A2,0. Since there is a repetition

in the second coordinate of these two elements and they differ in the first coordinate, then this

contributes one TBC walk of length 6 to the set W (6, 1). Hence, after applying the same strategy

for the other pairs, we obtain |W (6, 1)| = 16, so N6 = |W (6, 1)| ·N = 16 · 5 = 80. �

In the Appendix, we provide an algorithm to count 6-cycles based on Theorem 21.

Definition 23. Let W be a walk in the nc× nv fully-connected (all-ones) protograph. If W has

length k = 2m and its permutation shift is given by

hα1β1
− hα2β1

+ hα3β2
− hα4β2

+ · · ·+ hαk−1βm
− hαkβm

, (13)

we use the shorthand [hα1 , hα2 , . . . , hαk
]β1,β2,...,βm . If W has length k = 2m+ 1 and its permu-

tation shift is given by

hα1β1
− hα2β1

+ hα3β2
− hα4β2

+ · · ·+ hαk−1βm
− hαkβm

+ hαk+1βm+1
, (14)

we use the shorthand [hα1 , hα2 , . . . , hαk
|hαk+1

]β1,β2,...,βm|βm+1

By Theorem 2, as discussed in [32], girth(H) > 8 if and only if the following nine equations

are satisfied:

∑
u,v∈[nv ]

x[h,i,i,h]u,v + x[h,j,j,h]u,v41 = 0,

∑
u,v∈[nv ]

x[i,h,h,i]u,v + x[i,j,j,i]u,v41 = 0,

∑
u,v∈[nv ]

x[j,h,h,j]u,v + x[j,i,i,j]u,v41 = 0,

∑
u,v∈[nv ]

x[h,j,j,i]u,v40 = 0,

∑
u,v∈[nv ]

x[h,i,i,j]u,v40 = 0,

∑
u,v∈[nv ]

x[i,h,h,j]u,v40 = 0,
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∑
u,v∈[nv ]

x[i,j,j,h]u,v40 = 0,
∑

u,v∈[nv ]

x[j,i,i,h]u,v40 = 0,
∑

u,v∈[nv ]

x[j,h,h,i]u,v40 = 0.

The exponents of the circulants in each one of these equations describe the walks of length 4

in the protograph, and these are the walks that we study to form the TBC walks of length 8

that can lift to 8-cycles in the Tanner graph. For example, there are two exponents in the first

equation, namely [h, i, i, h]u,v and [h, j, j, h]u,v, and they give three possible TBC walk patterns:

[h, i, i, h, h, i, i, h]u,v,v′,u′ , [h, i, i, h, h, j, j, h]u,v,v′,u′ , [h, j, j, h, h, j, j, h]u,v,v′,u′ .

Notice that each of these three 8-walks is a TBC walk if the conditions u 6= v, v 6= v′, v′ 6= u′

and u′ 6= u are satisfied. Once all the TBC walk patterns have been constructed, from all the

nine equations above, the next task is to eliminate duplicates. The following list contains all 6

nonequivalent TBC walk patterns obtained from the equations above:

[h, i, i, h, h, i, i, h]u,v,v′,u′ ,

[h, i, i, h, h, j, j, h]u,v,v′,u′ ,

[h, j, j, h, h, j, j, h]u,v,v′,u′ ,

[h, j, j, i, i, j, j, h]u,v,v′,u′ ,

[h, i, i, j, j, i, i, h]u,v,v′,u′ ,

[i, j, j, i, i, j, j, i]u,v,v′,u′ .

In the following theorem, we rewrite these conditions in a way that is helpful to count 8-cycles

in the Tanner graph.

Theorem 24. Let H be as in (10) and, for u, v ∈ [nv] with u 6= v, consider the following msets

A1,1 = {(u, v, [h, i, i, h]u,v)},

A1,2 = {(u, v, [h, i, i, h]u,v)},

A2,1 = {(u, v, [h, i, i, h]u,v)},

A2,2 = {(u, v, [h, j, j, h]u,v)},

A3,1 = {(u, v, [h, j, j, h]u,v)},

A3,2 = {(u, v, [h, j, j, h]u,v)},

A4,1 = {(u, v, [h, j, j, i]u,v)},

A4,2 = {(u, v, [h, j, j, i]u,v)},

A5,1 = {(u, v, [h, i, i, j]u,v)},

A5,2 = {(u, v, [h, i, i, j]u,v)},

A6,1 = {(u, v, [i, j, j, i]u,v)},

A6,2 = {(u, v, [i, j, j, i]u,v)},

For u, v, u′, v′ ∈ [nv], let (u, v, αu,v) ∈ A1,1 and (u′, v′, αu′,v′) ∈ A1,2 be such that αu,v = αu′,v′ .

Then this repetition αu,v = αu′,v′ lifts to a collection of 8-cycles in the Tanner graph if u 6= u′ and

v 6= v′. The same result follows if the pair A1,1, A1,2 is replaced by any of the other five pairs.

Moreover, these six pairs are sufficient to describe all 8-cycles. The total number of 8-cycles in

the Tanner graph, N8, is given by

N8 = |W (4, 2)| ·N/2 + (|W (8, 1)| − |W (4, 2)|) ·N, (15)
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where W (8, 1) is the set of all nonequivalent TBC walks associated to the repetitions in the msets

above and W (4, 2) is the set of all nonequivalent TBC walks of length 4 having permutation

shift of order 2 in ZN . The cardinality of W (8, 1) is given by

|W (8, 1)| = R∗A1,1,A1,2
+

1

2
RA2,1,A2,2 +R∗A3,1,A3,2

+
1

2
RA4,1,A4,2 +

1

2
RA5,1,A5,2 +R∗A6,1,A6,2

, (16)

where RX1,X2 is the number of repetitions αu,v = αu′,v′ between the msets X1 and X2, the

coefficient of each RX1,X2 is coming from the number of equivalent walks for the corresponding

TBC walk pattern, R∗X1,X2
is given by

R∗X1,X2
=

1

2
R∗cX1,X2

+
1

4
R∗ncX1,X2

, (17)

and R∗cX1,X2
and R∗ncX1,X2

are the numbers of repetitions αu,v = αu′,v′ between the msets X1 and

X2 satisfying and not satisfying the conditions u′ = v and v′ = u, respectively.

Proof: To show that a repetition in any of these pairs lifts to a collection of 8-cycles in

the Tanner graph, we proceed as before. Consider a repetition in the pair A1,1, A1,2, so there are

u, v, u′, v′ ∈ [nv] such that αu,v = [h, i, i, h]u,v, αu′,v′ = [h, i, i, h]u′,v′ and αu,v = αu′,v′ in ZN .

Then this is equivalent to [h, i, i, h, h, i, i, h]u,v,v′,u′ = 0 in ZN . To guarantee that this permutation

shift represents a TBC walk, in addition to the conditions u 6= v and u′ 6= v′ required in the

construction of the msets A1,1 and A1,2, respectively, we need to ensure that u 6= u′ and v 6= v′.

By Theorem 10, this TBC walk lifts to a collection of 8-cycles. The same approach works for the

remaining pairs. The proof that these msets are sufficient to describe all 8-cycles was addressed

before the statement of the theorem.

The formula for N8 in (15) follows from equation (7) in Theorem 16. It remains to show

that |W (8, 1)| is given by (16). Once a TBC walk pattern is fixed, say [h, i, i, h, h, j, j, h]u,v,v′,u′

for some u, v, u′, v′ ∈ [nv], it is possible that at least one of its equivalent walks has the same

pattern. In this case, there is only one equivalent walk with the same TBC walk pattern and

it has permutation shift [h, i, i, h, h, j, j, h]v,u,u′,v′ . Hence, when analyzing the contribution of

the repetitions in the pair A2,1, A2,2 to the set W (8, 1), we have to divide the total number of

repetitions by the number of equivalent expressions for the TBC walk pattern, which is 2 in this

case. This is due to the fact that the tuples (u, v, v′, u′) and (v, u, u′, v′) are always distinct since

we require u 6= v, v 6= v′, v′ 6= u′ and u′ 6= u. If we do the same for all the nonequivalent TBC
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walk patterns, we obtain the following equivalent walks:

[h, i, i, h, h, i, i, h]β, β ∈ {(u, v, v
′, u′), (v′, u′, u, v), (v, u, u′, v′), (u′, v′, v, u)};

[h, i, i, h, h, j, j, h]β, β ∈ {(u, v, v
′, u′), (v, u, u′, v′)};

[h, j, j, h, h, j, j, h]β, β ∈ {(u, v, v
′, u′), (v′, u′, u, v), (v, u, u′, v′), (u′, v′, v, u)};

[h, j, j, i, i, j, j, h]β, β ∈ {(u, v, v
′, u′), (u′, v′, v, u)};

[h, i, i, j, j, i, i, h]β, β ∈ {(u, v, v
′, u′), (u′, v′, v, u)};

[i, j, j, i, i, j, j, i]β, β ∈ {(u, v, v
′, u′), (v′, u′, u, v), (v, u, u′, v′), (u′, v′, v, u)}.

In the case of the pairs A4,1, A4,2 and A5,1, A5,2, the tuples (u, v, v′, u′) and (u′, v′, v, u) are

always distinct by the same reason as for the pair A2,1, A2,2. The case is different for the pairs

A1,1, A1,2 and A3,1, A3,2 and A6,1, A6,2. The four tuples (u, v, v′, u′), (v′, u′, u, v), (v, u, u′, v′) and

(u′, v′, v, u) are not necessarily distinct. In fact, there are two possible scenarios: either u′ = v

and v′ = u, which gives only two distinct tuples, or the four tuples are all distinct. The total

contribution coming from the first scenario should be divided by 2, and the total contribution

coming from the second scenario should be divided by 4. This analysis concludes the proof.

Example 25. Let H be the parity-check matrix of the [155, 64, 20] Tanner code given by

H =


x x2 x4 x8 x16

x5 x10 x20 x9 x18

x25 x19 x7 x14 x28

 . (18)

Then H has girth 8 for N = 31. We use Theorem 24 to count the number of 8-cycles, N8, in

the Tanner graph. Some computations show that R∗A1,1,A1,2
= 1

2
(0) + 1

4
(0) = 0, RA2,1,A2,2 = 10,

R∗A3,1,A3,2
= 1

2
(0) + 1

4
(0) = 0, RA4,1,A4,2 = 10, RA5,1,A5,2 = 10, and R∗A6,1,A6,2

= 1
2
(0) + 1

4
(0) = 0,

so |W (8, 1)| = 0 + 1
2
(10) + 0 + 1

2
(10) + 1

2
(10) + 0 = 15 and N8 = |W (8, 1)| ·N = 15 · 31 = 465.

�

By Theorem 2, girth(H) > 10 if and only if, for each m ∈ [nv], all the elements in each one

of the msets

{[h, i, i, h|h]u,v|m, [h, j, j, h|h]u,v|m, [h, j, j, i|i]u,v|m, [h, i, i, j|j]u,v|m | u, v ∈ [nv], u 6= v, v 6= m},

{[i, j, j, h|h]u,v|m, [i, h, h, i|i]u,v|m, [i, j, j, i|i]u,v|m, [i, h, h, j|j]u,v|m | u, v ∈ [nv], u 6= v, v 6= m},
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{[j, i, i, h|h]u,v|m, [j, h, h, i|i]u,v|m, [j, h, h, j|j]u,v|m, [j, i, i, j|j]u,v|m | u, v ∈ [nv], u 6= v, v 6= m},

are distinct. Following the strategy used before, the elements in each one of these msets describe

the walks of length 5 in the protograph, and these are the walks that we study to form the TBC

walks of length 10 that can lift to 10-cycles in the Tanner graph. In the following theorem, we

rewrite these conditions in a way that is helpful to count 10-cycles in the Tanner graph.

Theorem 26. Let H be as in (10) and, for u, v ∈ [nv], with u 6= v and v 6= m, consider the

following msets

A1,m = {(u, [h, i, i, h|h]u,v|m)},

A2,m = {(u, [h, j, j, i|i]u,v|m)},

B1,m = {(u, [h, j, j, h|h]u,v|m)},

B2,m = {(u, [h, j, j, i|i]u,v|m)},

C1,m = {(u, [h, j, j, i|i]u,v|m)},

C2,m = {(u, [h, i, i, j|j]u,v|m)}.

For u, u′ ∈ [nv], let (u, αu) ∈ A1,m and (u′, αu′) ∈ A2,m be such that αu = αu′ . Then this

repetition αu = αu′ lifts to a collection of 10-cycles in the Tanner graph if u 6= u′. The same

result follows if the pair A1,m, A2,m is replaced by any of the pairs B1,m, B2,m and C1,m, C2,m.

Moreover, these msets, running over all m ∈ [nv], are sufficient to describe all 10-cycles. The

total number of 10-cycles in the Tanner graph, N10, is given by

N10 = |W (10, 1)| ·N, (19)

where W (10, 1) is the set of all TBC walks associated to the repetitions in the msets above, and

|W (10, 1)| =
∑
m∈[nv ]

RA1,m,A2,m +RB1,m,B2,m +RC1,m,C2,m , (20)

where RX1,m,X2,m is the number of repetitions αu = αu′ between the msets X1,m and X2,m.

Proof: To show that a repetition in any of these msets lifts to a collection of 10-cycles in

the Tanner graph, we proceed as before. Consider a repetition in the pair A1,m, A2,m, so there

are u, v, u′, v′ ∈ [nv] such that αu = [h, i, i, h|h]u,v|m, αu′ = [h, j, j, i|i]u′,v′|m and αu = αu′

in ZN . This is equivalent to [h, i, i, h, h, i, i, j, j, h]u,v,m,v′,u′ = 0 in ZN . To guarantee that this

permutation shift represents a TBC walk, additionally to the conditions u 6= v, v 6= m and

u′ 6= v′, v′ 6= m required in the construction of the msets A1,m and A2,m, respectively, we need

to ensure that u 6= u′. By Theorem 10, this TBC walk lifts to a collection of N 10-cycles. The

same approach works for the pairs B1,m, B2,m and C1,m, C2,m.
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To prove that these pairs are sufficient to describe all 10-cycles in the Tanner graph, it is enough

to analyze the three msets described in the calculation of the conditions. From the first mset

{[h, i, i, h|h]u,v|m, [h, j, j, h|h]u,v|m, [h, j, j, i|i]u,v|m, [h, i, i, j|j]u,v|m | u, v ∈ [nv], u 6= v, v 6= m},

there are only 5 ways to form a TBC walk and these are given by the following TBC walk

patterns:

[h, i, i, h, h, i, i, j, j, h]u,v,m,v′,u′ ,

[h, i, i, h, h, j, j, i, i, h]u,v,m,v′,u′ ,

[h, j, j, h, h, i, i, j, j, h]u,v,m,v′,u′ ,

[h, j, j, h, h, j, j, i, i, h]u,v,m,v′,u′ ,

[h, j, j, i, i, j, j, i, i, h]u,v,m,v′,u′ .

The second pattern is equivalent to the first one by considering the assignment given by

u← v, v ← u, m← u′, v′ ← v′, and u′ ← m.

The third pattern is not equivalent to the first one, and it is not difficult to see that since the

circulants xil and xjl are visited a different amount of times. The fourth pattern is equivalent to

the first one by considering the assignment (as before) given by

u← v, v ← u, m← u′, v′ ← v′, and u′ ← m.

The fifth pattern is not equivalent to the first one nor to the third one since the circulants xhl

and xjl , and xhl and xil , respectively, are visited a different amount of times. The same strategy

is used to show that each TBC walk pattern described by the other two msets is equivalent to

one of the three nonequivalent patterns described here. Hence, these three pairs, running over

all m ∈ [nv], are sufficient to describe all 10-cycles.

The formula for N10 in (19) follows from equation (7) in Theorem 16. It remains to show

that |W (10, 1)| is given by (20). Since the pairs X1,m, X2,m, with X ∈ {A,B,C} and run-

ning over all m ∈ [nv], are sufficient to describe all the TBC walks of length 10, we used

the three TBC walk patterns [h, i, i, h, h, i, i, j, j, h]u,v,m,v′,u′ , [h, j, j, h, h, i, i, j, j, h]u,v,m,v′,u′ , and

[h, j, j, i, i, j, j, i, i, h]u,v,m,v′,u′ to construct all their equivalent walks. It turns out that none of

the corresponding equivalent walks has any of this three TBC walk patterns, so each repetition

is counted exactly once, and we conclude the proof.

Example 27. Let H be the parity-check matrix of the [155, 64, 20] Tanner code given by (18) in

Example 25. We use Theorem 26 to count the number of 10-cycles in the Tanner graph. For each
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m ∈ [5], we need to construct the three pairs A1,m, A2,m, B1,m, B2,m and C1,m, C2,m. By Theorem

26, for each pair X1,m, X2,m, X ∈ {A,B,C} and m ∈ [5], we need to find (u, αu) ∈ X1,m and

(u′, αu′) ∈ X2,m such that αu = αu′ and u 6= u′ for some u, u′ ∈ [5]. A careful analysis of

these msets shows that, for each pair, we obtain 8 repetitions of this type. This implies that

|W (10, 1)| = 3 · 5 · 8 = 120. Therefore, N10 = |W (10, 1)| ·N = 120 · 31 = 3720. �

It is well known that the girth of a QC-LDPC code based on the fully-connected (all-ones)

protograph is upper bounded by 12 [33], meaning that the existence of an inevitable cycle of

length 12 is independent on the selection of circulants. Following the same strategy as before,

we obtain the following list contains all 13 nonequivalent TBC walk patterns, with indices

[·]β = [·]u,v,w,w′,v′,u′ :

[h, j, j, i, i, h, h, i, i, j, j, h]β,

[h, j, j, i, i, h, h, j, j, i, i, h]β,

[h, i, i, h, h, i, i, h, h, i, i, h]β,

[h, i, i, h, h, i, i, h, h, j, j, h]β,

[h, i, i, h, h, i, i, j, j, i, i, h]β,

[h, j, j, h, h, i, i, h, h, j, j, h]β,

[h, j, j, h, h, i, i, j, j, i, i, h]β,

[h, i, i, j, j, i, i, j, j, i, i, h]β,

[h, i, i, h, h, j, j, i, i, j, j, h]β,

[h, j, j, h, h, j, j, h, h, j, j, h]β,

[h, j, j, h, h, j, j, i, i, j, j, h]β,

[h, j, j, i, i, j, j, i, i, j, j, h]β,

[i, j, j, i, i, j, j, i, i, j, j, i]β.

In the following theorem, we rewrite these conditions in a way that is helpful to count 12-cycles

in the Tanner graph.

Theorem 28. Let H be as in (10) and, for u, v, w ∈ [nv] with u 6= v, v 6= w, consider the

following msets

A1,1 = {(u, v, w, [h, j, j, i, i, h]u,v,w)},

A1,2 = {(u, v, w, [h, j, j, i, i, h]u,v,w)},

A2,1 = {(u, v, w, [h, j, j, i, i, h]u,v,w)},

A2,2 = {(u, v, w, [h, i, i, j, j, h]u,v,w)},

A3,1 = {(u, v, w, [h, i, i, h, h, i]u,v,w)},

A3,2 = {(u, v, w, [h, i, i, h, h, i]u,v,w)},

A4,1 = {(u, v, w, [h, i, i, h, h, i]u,v,w)},

A4,2 = {(u, v, w, [h, j, j, h, h, i]u,v,w)},

A5,1 = {(u, v, w, [h, i, i, h, h, i]u,v,w)},

A5,2 = {(u, v, w, [h, i, i, j, j, i]u,v,w)},

A6,1 = {(u, v, w, [h, j, j, h, h, i]u,v,w)},

A6,2 = {(u, v, w, [h, j, j, h, h, i]u,v,w)},

A7,1 = {(u, v, w, [h, j, j, h, h, i]u,v,w)},

A7,2 = {(u, v, w, [h, i, i, j, j, i]u,v,w)},

A8,1 = {(u, v, w, [h, i, i, j, j, i]u,v,w)},

A8,2 = {(u, v, w, [h, i, i, j, j, i]u,v,w)},

A9,1 = {(u, v, w, [h, i, i, h, h, j]u,v,w)},

A9,2 = {(u, v, w, [h, j, j, i, i, j]u,v,w)},

A10,1 = {(u, v, w, [h, j, j, h, h, j]u,v,w)},

A10,2 = {(u, v, w, [h, j, j, h, h, j]u,v,w)},

A11,1 = {(u, v, w, [h, j, j, h, h, j]u,v,w)},

A11,2 = {(u, v, w, [h, j, j, i, i, j]u,v,w)},

A12,1 = {(u, v, w, [h, j, j, i, i, j]u,v,w)},

A12,2 = {(u, v, w, [h, j, j, i, i, j]u,v,w)},

A13,1 = {(u, v, w, [i, j, j, i, i, j]u,v,w)},

A13,2 = {(u, v, w, [i, j, j, i, i, j]u,v,w)}.
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Let (u, v, w, αu,v,w) ∈ A1,1 and (u′, v′, w′, αu′,v′,w′) ∈ A1,2 be such that αu,v,w = αu′,v′,w′ . Then

this repetition αu,v,w = αu′,v′,w′ lifts to a collection of 12-cycles in the Tanner graph if u 6= u′

and w 6= w′. The same result follows if the pair A1,1, A1,2 is replaced by any of the other pairs.

Moreover, these pairs are sufficient to describe all 12-cycles. The total number of 12-cycles in

the Tanner graph, N12, is given by

N12 = |W (4, 3)| ·N/3 + |W (6, 2)| ·N/2 + (|W (12, 1)| − |W (4, 3)| − |W (6, 2)|) ·N, (21)

where W (12, 1) is the set of all nonequivalent TBC walks associated to the repetitions in the

msets above, and W (4, 3) and W (6, 2) are the sets of all nonequivalent TBC walks of length 4

and 6, respectively, having permutation shift of order 3 and 2 in ZN , respectively. The cardinality

of W (12, 1) is given by

|W (12, 1)| = 1

2
RA1,1,A1,2 +R∗A2,1,A2,2

+R∗∗A3,1,A3,2
+

1

2
RA4,1,A4,2 +

1

2
RA5,1,A5,2 +

1

2
RA6,1,A6,2 +

1

2
RA7,1,A7,2

+
1

2
RA8,1,A8,2 +

1

2
RA9,1,A9,2 +R∗∗A10,1,A10,2

+
1

2
RA11,1,A11,2 +

1

2
RA12,1,A12,2 +R∗∗A13,1,A13,2

,

(22)

where RX1,X2 is the number of repetitions αu,v,w = αu′,v′,w′ between the msets X1 and X2, the

coefficient of each RX1,X2 is coming from the number of equivalent walks for the corresponding

TBC walk pattern, R∗A2,1,A2,2
is given by

R∗A2,1,A2,2
= R∗cA2,1,A2,2

+
1

2
R∗ncA2,1,A2,2

, (23)

R∗cA2,1,A2,2
and R∗ncA2,1,A2,2

are the numbers of repetitions αu,v,w = αu′,v′,w′ between the msets A2,1

and A2,2 satisfying, and not satisfying, the conditions u′ = w, v′ = v and w′ = u, respectively,

R∗∗X1,X2
is given by

R∗∗X1,X2
=

1

2
R∗∗cX1,X2

+
1

6
R∗∗ncX1,X2

, (24)

and, R∗∗cX1,X2
and R∗∗ncX1,X2

are the numbers of repetitions αu,v,w = αu′,v′,w′ between the msets

X1 and X2 satisfying, and not satisfying, the conditions u′ = v, v′ = u = w and w′ = v,

respectively.

Proof: To show that a repetition in any of these pairs lifts to a collection of 12-cycles in

the Tanner graph, we proceed as before. Consider a repetition in the pair A1,1, A1,2, so there are

u, v, w, u′, v′, w′ ∈ [nv] such that αu,v,w = [h, j, j, i, i, h]u,v,w, αu′,v′,w′ = [h, j, j, i, i, h]u′,v′,w′ and
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αu,v,w = αu′,v′,w′ in ZN . Then this is equivalent to [h, j, j, i, i, h, h, i, i, j, j, h]u,v,w,w′,v′,u′ = 0 in

ZN . To guarantee that this permutation shift represents a TBC walk, additionally to the conditions

u 6= v and v 6= w, and u′ 6= v′ and v′ 6= w′ required in the construction of the msets A1,1 and

A1,2, respectively, we need to ensure that u 6= u′ and w 6= w′. By Theorem 10, this TBC walk

lifts to a collection of 12-cycles. The same approach works for the remaining pairs. The proof

that these msets are sufficient to describe all 12-cycles was addressed before the statement of

the theorem.

The formula for N12 in (21) follows from equation (7) in Theorem 16. It remains to show that

|W (12, 1)| is given by (22). If for each nonequivalent TBC walk pattern we find the equivalent

walks, then we obtain the following:

[h, j, j, i, i, h, h, i, i, j, j, h]β, β ∈ {(u, v, w, w
′, v′, u′), (u′, v′, w′, w, v, u)};

[h, j, j, i, i, h, h, j, j, i, i, h]β, β ∈ {(u, v, w, w
′, v′, u′), (w′, v′, u′, u, v, w)};

[h, i, i, h, h, i, i, h, h, i, i, h]β, β ∈ {(u, v, w, w
′, v′, u′), (w,w′, v′, u′, u, v), (v′, u′, u, v, w, w′),

(v, u, u′, v′, w′, w), (w′, w, v, u, u′, v′), (u′, v′, w′, w, v, u)};

[h, i, i, h, h, i, i, h, h, j, j, h]β, β ∈ {(u, v, w, w
′, v′, u′), (w′, w, v, u, u′, v′)};

[h, i, i, h, h, i, i, j, j, i, i, h]β, β ∈ {(u, v, w, w
′, v′, u′), (v, u, u′, v′, w′, w)};

[h, j, j, h, h, i, i, h, h, j, j, h]β, β ∈ {(u, v, w, w
′, v′, u′), (u′, v′, w′, w, v, u)};

[h, j, j, h, h, i, i, j, j, i, i, h]β, β ∈ {(u, v, w, w
′, v′, u′), (v, u, u′, v′, w′, w)};

[h, i, i, j, j, i, i, j, j, i, i, h]β, β ∈ {(u, v, w, w
′, v′, u′), (u′, v′, w′, w, v, u)};

[h, i, i, h, h, j, j, i, i, j, j, h]β, β ∈ {(u, v, w, w
′, v′, u′), (v, u, u′, v′, w′, w)};

[h, j, j, h, h, j, j, h, h, j, j, h]β, β ∈ {(u, v, w, w
′, v′, u′), (w,w′, v′, u′, u, v), (v′, u′, u, v, w, w′),

(v, u, u′, v′, w′, w), (w′, w, v, u, u′, v′), (u′, v′, w′, w, v, u)};

[h, j, j, h, h, j, j, i, i, j, j, h]β, β ∈ {(u, v, w, w
′, v′, u′), (v, u, u′, v′, w′, w)};

[h, j, j, i, i, j, j, i, i, j, j, h]β, β ∈ {(u, v, w, w
′, v′, u′), (u′, v′, w′, w, v, u)};

[i, j, j, i, i, j, j, i, i, j, j, i]β, β ∈ {(u, v, w, w
′, v′, u′), (w,w′, v′, u′, u, v), (v′, u′, u, v, w, w′);

(v, u, u′, v′, w′, w), (w′, w, v, u, u′, v′), (u′, v′, w′, w, v, u)}.
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Recall that once we choose a TBC walk pattern W having permutation shift [W ]u,v,w,w′,v′,u′ ,

we need to impose the conditions u 6= v, v 6= w, w 6= w′, w′ 6= v′, v′ 6= u′, and u′ 6= u to

make it a TBC walk. For the pair Am,1, Am,2 with m ∈ {1, 6, 8, 12}, the two tuples of indices

(u, v, w, w′, v′, u′) and (u′, v′, w′, w, v, u) are always distinct, otherwise we will have u′ = u and

w′ = w. Hence, every TBC walk having this TBC walk pattern is always counted twice. The

same situation happens in the following pairs and tuples of indices:

• pair A4,1, A4,2 and tuples of indices (u, v, w, w′, v′, u′), (w′, w, v, u, u′, v′); and

• pair Am,1, Am,2 with m ∈ {5, 7, 9, 11} and tuples of indices (u, v, w, w′, v′, u′), (v, u, u′, v′, w′, w).

For the pair A2,1, A2,2, the two tuples of indices (u, v, w, w′, v′, u′) and (w′, v′, u′, u, v, w) are not

always distinct. There are two possible scenarios: either u′ = w, v′ = v and w′ = u, which gives

only one distinct tuple, or the two tuples are distinct. The total contribution coming from the first

scenario is taken as it is, and the total contribution coming from the second scenario should be

divided by 2. The case is different for the pairs A3,1, A3,2, A10,1, A10,2 and A13,1, A13,2. The six tu-

ples (u, v, w, w′, v′, u′), (w,w′, v′, u′, u, v), (v′, u′, u, v, w, w′), (v, u, u′, v′, w′, w), (w′, w, v, u, u′, v′)

and (u′, v′, w′, w, v, u) are not necessarily distinct. In fact, there are two possible scenarios: either

u′ = v, v′ = u = w and w′ = v, which gives only two distinct tuples, or the six tuples are

all distinct. The total contribution coming from the first scenario should be divided by 2, and

the total contribution coming from the second scenario should be divided by 6. This analysis

concludes the proof.

Example 29. Let H be the parity-check matrix of the [155, 64, 20] Tanner code given by (18)

in Example 25. We use Theorem 28 to count the number of 12-cycles in the Tanner graph.

Our computations show that RA1,1,A1,2 = 110, R∗A2,1,A2,2
= 0 + 1

2
(110) = 55, R∗∗A3,1,A3,2

=

1
2
(0) + 1

6
(180) = 30, RA4,1,A4,2 = 130, RA5,1,A5,2 = 150, RA6,1,A6,2 = 150, RA7,1,A7,2 = 110,

RA8,1,A8,2 = 130, RA9,1,A9,2 = 110, R∗∗A10,1,A10,2
= 1

2
(0) + 1

6
(180) = 30, RA11,1,A11,2 = 130,

RA12,1,A12,2 = 150, R∗∗A13,1,A13,2
= 1

2
(0) + 1

6
(180) = 30. Hence, |W (12, 1)| = 1

2
(110) + 55 + 30 +

1
2
(130) + 1

2
(150) + 1

2
(150) + 1

2
(110) + 1

2
(130) + 1

2
(110) + 30 + 1

2
(130) + 1

2
(150) + 30 = 730.

Therefore, N12 = |W (12, 1)| ·N = 730 · 31 = 22630. �

Remark 30. The Tanner graph of a QC-LDPC code based on the nc × nv fully-connected

protograph, with 2 ≤ nc < nv, has girth at most 12 [33]. Hence, equation (7) can be used

to count cycles of length up to 22. For space constraints, we are not including the analysis to
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determine Nk with k = 14, 16, 18, 20, 22, although similar expressions and algorithms can be

obtained in the same way. �

V. COMPLEXITY

In this section, we determine the complexity of our approach and compare it to other results in

the literature. Let H be the parity-check matrix of a QC-LDPC code given in (10) and let N be

the lifting factor. The following analysis is performed for the 3×nv fully-connected protograph,

but it is not difficult to see that a generalization of our strategy for the nc × nv fully-connected

protograph, with nc > 3, having Theorem 18 as a reference, involves the same complexity, with

the exception that more msets should be calculated.

In Theorem 18, to count the number of 4-cycles in the Tanner graph, we need to construct

the
(
nc

2

)
= nc(nc−1)

2
msets Ai,i′ = {li,m − li′,m | m ∈ [nv]}, i < i′, and check for repetitions in

each one of them. Since each mset has nv elements, it is sufficient to do (nv−1)nv

2
comparisons

in each one of them. This implies that the complexity of determining N4 is O(n2
v log(N)).

To count the number of 6-cycles in the Tanner graph using Theorem 21, we need to construct

one pair of msets A1,m = {(l, hl − il + im) | l ∈ [nv], l 6= m} and A2,m = {(l, hl − jl + jm) |

l ∈ [nv], l 6= m}, for each m ∈ [nv]. Both msets A1,m and A2,m have nv − 1 elements. If

(l, αl) ∈ A1,m and (l′, αl′) ∈ A2,m for some l, l′ ∈ [nv], we are interested in repetitions αl = αl′

such that l 6= l′. This implies that the complexity of determining N6 is O(n2
v log(nv) log(N)).

To determine the complexity of counting 8-cycles in the Tanner graph, we proceed as before

and use Theorem 24 and, in particular, equations (15) and (16). In this case, we need to construct

the six pairs X1, X2 in Theorem 24. Each one of these msets has nv(nv − 1) elements. If

(u, v, αu,v) ∈ X1 and (u′, v′, αu′,v′) ∈ X2 for some u, v, u′, v′ ∈ [nv] with u 6= v and u′ 6= v′, we

are interested in repetitions αu,v = αu′,v′ such that u 6= u′ and v 6= v′. The equation in (16) impose

the additional requirement to verify, in the worst case scenario, whether u′ = v and v′ = u is

true or false. Combining all of this, the complexity of determining N8 is O(n4
v log4(nv) log(N)).

To count the number of 10-cycles in the Tanner graph, we use Theorem 26. In this theorem,

we need to construct three pairs X1,m, X2,m, with X ∈ {A,B,C}, running over m ∈ [nv], and

check whether for elements (u, αu) ∈ X1,m and (u′, αu′) ∈ X2,m, with u, u′ ∈ [nv], we have that

u 6= u′ and αu = αu′ . Once a value for m is chosen, there are two indices required to construct

both αu and αu′ . The complexity of determining N10 is, in consequence, O(n4
v log(nv) log(N)).
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Theorem 28 and, in particular, equations (21) and (22), are used to count the number of 12-

cycles in the Tanner graph. In this case, we need to construct the thirteen pairs of msets X1, X2

given in the statement of the theorem. For u, v, w, u′, v′, w′ ∈ [nv], we want to identify tuples

(u, v, w, αu,v,w) ∈ X1 and (u′, v′, w′, αu′,v′,w′) ∈ X2 such that u 6= v, v 6= w, u′ 6= v′, v′ 6= w′

and αu,v,w = αu′,v′,w′ . To construct each αu,v,w and αu′,v′,w′ , we need to choose three indices.

The worst case scenario happens when determining the value R∗∗X1,X2
in equation (22), where

we need to check whether u′ = v, v′ = u = w, and w′ = v is true or false. When combined,

this has complexity O(n6
v log6(nv) log(N)).

Although omitted for space constraints, an argument similar to the analysis above can be used

to conclude that the complexity of determiningNk is upper-bounded by O(n
k/2−1
v log(nv) log(N))

if k = 14, 18 and 22, and O(n
k/2
v logk/2(nv) log(N)) if k = 16 and 20. We recall that the reason to

limit our analysis to k ≤ 22, in the case of the fully-connected protograph, follows from Lemma

11 and Remark 30. For the general case, if the protograph is any graph described by the base

matrix B = (bij)nc×nv
, where we allow the protograph to be a multi-edge graph, a similar analysis

can be used. The weight of the ith row of B, denoted by Brow(i), is given by Brow(i) =
∑

j∈[nv ]
bij .

Let wrow denote the maximum row weight of B, so wrow = maxi∈[nc]

{
Brow(i)

}
. In the worst-case

scenario, the complexity of determining Nk, k < 2g, is given by O(w
k/2
row logk/2(wrow) log(N)).

To show how fast we can calculate the number of k-cycles, Nk, in the Tanner graph of a QC-

LDPC code, we include some tables. Table I shows the number of k-cycles for the parity-check

matrix H in Example 25 for lifting factor N . For the same parity-check matrix H , in Table II, we

provide the time taken to count the number of k-cycles using our algorithms. The computations

were done using SageMath [34] in a MacBook Pro (13-inch, 2018, Four Thunderbolt 3 Ports)

with a 2.3 GHz Quad-Core Intel Core i5 processor and 16 GB 2133 MHz LPDDR3 of memory.

VI. COUNTING CYCLES: A MULTI-EDGE PROTOGRAPH

In Section IV, we analyzed how to count the number of k-cycles, 4 ≤ k ≤ 12, in a Tanner

graph lifted from the fully-connected (all-ones) protograph using a description of the TBC walks

in the protograph. The strategy of using the TBC walks to count k-cycles in the Tanner graph

only works when k < 2g. In this section, we apply this strategy to an irregular protograph.
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TABLE I

NUMBER OF k-CYCLES, Nk , FOR H IN EXAMPLE 25 FOR LIFTING FACTOR N .

N
k

4 6 8 10 12

5 25 55 − − −

10 10 50 − − −

15 30 45 − − −

20 0 20 630 3540 −

25 0 25 600 3575 −

31 0 0 465 3720 22630

50 0 0 550 3600 22275

75 0 0 825 4650 26475

100 0 0 1100 6200 35100

125 0 0 1375 7750 43875

150 0 0 1650 9300 52650

175 0 0 1925 10850 61425

200 0 0 2200 12400 70200

500 0 0 5500 31000 175500

1000 0 0 11000 62000 351000

Fig. 1. Irregular protograph in the CCSDS standards.

Consider the QC-LDPC code having parity-check matrix H given by

H =


1 + x7 x2 x14 x6 0 1 x13 1

x6 1 + x15 1 x 1 0 1 x7

x4 x 1 + x15 x14 x11 1 0 x3

1 x x9 1 + x13 x14 x 1 0

 , (25)

and lifting factor N = 16. This code has parameters [128, 64, 14] and is obtained by lifting the

irregular protograph in Figure 1. It is part of the Consultative Committee for Space Data Systems
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TABLE II

TIME TAKEN TO COUNT THE NUMBER OF k-CYCLES, Nk , FOR H IN EXAMPLE 25 FOR LIFTING FACTOR N USING OUR

APPROACH.

N
k

4 6 8 10 12

5 84.4 µs 252 µs − − −

10 83.4 µs 244 µs − − −

15 86.6 µs 246 µs − − −

20 86.0 µs 247 µs 2.85 ms 5.01 ms −

25 86.8 µs 246 µs 2.78 ms 4.96 ms −

31 85.5 µs 246 µs 2.77 ms 5.18 ms 63.1 ms

50 85.8 µs 244 µs 2.97 ms 5.06 ms 64.2 ms

75 85.1 µs 247 µs 2.57 ms 5.08 ms 64.4 ms

100 84.6 µs 252 µs 2.82 ms 5.02 ms 65.0 ms

125 85.7 µs 246 µs 2.77 ms 4.97 ms 64.3 ms

150 86.7 µs 244 µs 2.97 ms 5.02 ms 64.6 ms

175 83.1 µs 244 µs 2.88 ms 5.03 ms 63.9 ms

200 87.7 µs 247 µs 2.93 ms 5.06 ms 64.1 ms

500 88.0 µs 254 µs 3.03 ms 5.25 ms 65.5 ms

1000 87.5 µs 257 µs 3.04 ms 5.16 ms 65.0 ms

(CCSDS) standards [2]. We can write a general version for the parity-check matrix H in the

following way

H =


xh1 + xh2 xh3 xh4 xh5 0 xh6 xh7 xh8

xi1 xi2 + xi3 xi4 xi5 xi6 0 xi7 xi8

xj1 xj2 xj3 + xj4 xj5 xj6 xj7 0 xj8

xk1 xk2 xk3 xk4 + xk5 xk6 xk7 xk8 0

 . (26)

Since we are interested in studying the cycle structure of this protograph, we will apply the

same strategy used in Section IV. To do this, we use again Theorem 2 and the product HHT.

Notice that HHT = 8I + CH , where the entries (CH)ij of the matrix CH are given by

(CH)11 = xh1−h2 + xh2−h1 ,

(CH)12 = (CH)T21 = xh1−i1 + xh2−i1 + xh3−i2 + xh3−i3 + xh4−i4 + xh5−i5 + xh7−i7 + xh8−i8 ,

(CH)13 = (CH)T31 = xh1−j1 + xh2−j1 + xh3−j2 + xh4−j3 + xh4−j4 + xh5−j5 + xh6−j7 + xh8−j8 ,
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(CH)14 = (CH)T41 = xh1−k1 + xh2−k1 + xh3−k2 + xh4−k3 + xh5−k4 + xh5−k5 + xh6−k7 + xh7−k8 ,

(CH)22 = xi2−i3 + xi3−i2 ,

(CH)23 = (CH)T32 = xi1−j1 + xi2−j2 + xi3−j2 + xi4−j3 + xi4−j4 + xi5−j5 + xi6−j6 + xi8−j8 ,

(CH)24 = (CH)T42 = xi1−k1 + xi2−k2 + xi3−k2 + xi4−k3 + xi5−k4 + xi5−k5 + xi6−k6 + xi7−k8 ,

(CH)33 = xj3−j4 + xj4−j3 ,

(CH)34 = (CH)T43 = xj1−k1 + xj2−k2 + xj3−k3 + xj4−k3 + xj5−k4 + xj5−k5 + xj6−k6 + xj7−k7 ,

(CH)44 = xk4−k5 + xk5−k4 .

As we discussed before, girth(H) > 4 if and only if HHT4I = 0. If there is a repetition in

one of the msets of exponents of Cij , some 4-cycles may appear in the Tanner graph depending

on where the repetitions are coming from. For example, in entry (CH)11 there are two exponents

describing two walks, h1− h2 and h2− h1, so we obtain only one possible TBC walk of length

4 (formed by combining the first walk and the reversal of the second one) having permutation

shift given by h1−h2 +h1−h2. If we consider the entry (CH)12, it has eight exponents, h1− i1,

h2− i1, h3− i2, h3− i3, h4− i4, h5− i5, h7− i7 and h8− i8. However, the combination of two

of them does not guarantee the appearance of 4-cycles in the Tanner because they may not be

describing a TBC walk in the protograph. For example, combining h1 − i1 and h2 − i1 gives a

walk of length 4 having permutation shift h1 − i1 + i1 − h2, which is not a TBC walk because

the circulant xi1 is traversed twice (in opposite directions) consecutively in a row. If the second

walk is h3 − i2 instead, then we have a TBC walk with permutation shift h1 − i1 + i2 − h3

that lifts to a collection of 4-cycles in the Tanner graph if its value is 0 in ZN . There are 160

nonequivalent TBC walks obtained in this fashion and we use them to count 4-cycles in the

Tanner graph.

Theorem 31. Let H be as in (26). Then there are 160 nonequivalent TBC walks of length 4.

These TBC walks are sufficient to describe all 4-cycles in H . The set W (4, 1) is the collection

of those TBC walks α in this list with α = 0 in ZN . Hence, the total number of 4-cycles in the

Tanner graph, N4, is given by

N4 = |W (2, 2)| ·N/2 + (|W (4, 1)| − |W (2, 2)|) ·N. (27)

Proof: The 160 nonequivalent TBC walks of length 4 are easily obtained by combining
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exponents in the entries (CH)ij above. The facts that these TBC walks are sufficient to describe

all 4-cycles in H and that any of them being 0 lifts to a collection of 4-cycles in the Tanner

graph follows from the strategy used in Section IV. The formula for N4 in (27) follows from

equation (7) in Theorem 16, and we conclude the proof.

Remark 32. There is a noticeable difference between the formulas in (9) and (27) for the

number of 4-cycles, N4, in the cases of the fully-connected (all-ones) protograph and the irregular

protograph in this section, respectively. In the first case, we cannot have a TBC walk of length

2 in the protograph because any pair of check and variable nodes have at most one edge joining

them. This requires any TBC walk to have length at least 4 taking into account that the protograph

is a bipartite graph. In the second case, it is possible to have a TBC walk of length 2 since there

are some pairs of check and variable nodes with two edges joining them. �

Example 33. Let H be as in (25) and let the lifting factor be N = 16. Then H has girth 6, so

the number of 4-cycles, N4, is 0 and we can verify this in the following way. Some computations

show that there are no TBC walk of length 2 having permutation shift of order 2 in Z16, and that

none of the TBC walks of length 4 described in Theorem 31 have permutation shift 0 in Z16.

Hence, the number of 4-cycles, N4, in the Tanner graph is N4 = |W (2, 2)| · 16/2 + (|W (4, 1)|−

|W (2, 2)|) · 16 = 0 · 16/2 + (0− 0) · 16 = 0. �

In the following example, we apply the strategy used before to count k-cycles, k > 4, in

another parity-check matrix H based on (26). The formulas for Nk should be adapted for the

irregular protograph as we did in (27).

Example 34. For lifting factor N = 64, consider the parity-check matrix H given by

H =


1 + x63 x30 x50 x25 0 x43 x62 1

x56 1 + x61 x50 x23 1 0 x37 x26

x16 1 1 + x55 x27 x56 1 0 x43

x35 x56 x62 1 + x11 x58 x3 1 0

 .
This matrix has girth 6 and we use the strategy used before to count the number of k-cycles,

6 ≤ k < 12, in the associated Tanner graph. To count 6-cycles, it is enough to count the number

of TBC walks of length 6 having permutation shift 0 in Z64. The permutation shifts of these

TBC walks are:
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h4 − j4 + j1 − k1 + k7 − h6,

h8 − j8 + j2 − k2 + k1 − h1,

h2 − j1 + j4 − k3 + k7 − h6,

h3 − j2 + j4 − j3 + j8 − h8,

h8 − j8 + j4 − k3 + k5 − h5,

h7 − i7 + i5 − j5 + j8 − h8,

h1 − k1 + k5 − k4 + k7 − h6,

h1 − i1 + i6 − k6 + k5 − h5,

h3 − j2 + j6 − k6 + k1 − h2,

h4 − i4 + i8 − j8 + j1 − h2,

i3 − i2 + i4 − j3 + j8 − i8,

i1 − j1 + j7 − k7 + k8 − i7,

i6 − j6 + j7 − k7 + k2 − i3,

j2 − k2 + k4 − k5 + k7 − j7.

Since these expressions are congruent to 0 modulo 64, and there are 14 of them, then there are

N6 = 14 · 64/1 = 896 6-cycles in the Tanner graph.

An 8-cycle in the Tanner graph projects onto a TBC walk of length 2 with permutation shift

of order 4 in Z64 (traversed four times), onto a TBC walk of length 4 with permutation shift of

order 2 in Z64 (traversed twice) or onto a TBC walk of length 8 with permutation shift 0 having

no subgraph of smaller length with permutation shift 0. There is no TBC walk of length 2 with

permutation shift of order 4 in Z64. There are three TBC walks of length 4 with permutation

shift of order 2, and these are h3− j2 + j5−h5, i1− j1 + j6− i6 and i3−k2 +k8− i7. These TBC

walks contribute 3 ·64/2 = 96 8-cycles in the Tanner graph. There are 539 TBC walks of length

8 with permutation shift 0, including the double traversal of the three TBC walks of length 4,

so there are 536 TBC walks contributing (539− 3) · 64/1 = 34304 8-cycles in the Tanner graph.

Hence, the total number of 8-cycles in the Tanner graph is N8 = 96 + 34304 = 34400.

A 10-cycle in the Tanner graph can only project onto a TBC walk of length 10 with permutation

shift 0. There are 9142 of these TBC walks, so the total number of 10-cycles in the Tanner graph

is N10 = 9142 · 64/1 = 585088. �

VII. CONCLUDING REMARKS

This paper discusses an efficient strategy to count cycles in the Tanner graph of arbitrary QC-

LDPC codes. We use some results on graph covers involving the images of cycles in the Tanner

graph and the preimages of tailless backtrackless closed walks in the protograph to provide closed

formulas for the number of k-cycles, Nk, by just taking into account repetitions in some msets

constructed from the matrices Bm(H). Our strategy has been shown to reduce the complexity of

determining Nk, giving our approach a significant advantage over previous works on the cycle

distribution of QC-LDPC codes.
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APPENDIX

Algorithm 1 shows how we use Theorem 21 to count 6-cycles in the Tanner graph of QC-

LDPC codes based on the 3× nv fully-connected protograph. Let V [k] denote the kth element

in the list, set or tuple V . Indexing starts with 0.

Algorithm 1 Counting 6-cycles
Input: Exponents in polynomial parity-check matrix (10), nv, N .

Initialize W6,1 = 0.

for m = 0 to nv − 1 do

A1,m ← {(l, hl − il + im) | l ∈ [nv], l 6= m}

A2,m ← {(l, hl − jl + jm) | l ∈ [nv], l 6= m}

for α = 0 to nv − 1 do

for β = 0 to nv − 1 do

if α 6= β and A1,m[α][1] == A2,m[β][1] then

W6,1+ = 1

else

continue

return W6,1 ·N

This algorithm can be easily adapted to count longer cycles using the results of this paper.

We do not include them for space constraints.
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