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Abstract

In this paper, we present an efficient strategy to enumerate the number of k-cycles, g < k < 2g,
in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using
its polynomial parity-check matrix H. This strategy works for both (d,, d..)-regular and irregular QC-
LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be
used to describe walks of length m in the protograph and can therefore be sufficiently described by the
matrices By, (H) £ (H H T) Lm/2] H(m mod2) where m > 0. We provide formulas for the number of
k-cycles, Ny, by just taking into account repetitions in some multisets constructed from the matrices
B,,(H). This approach is shown to have low complexity. For example, in the case of QC-LDPC codes
based on the 3 x n, fully-connected protograph, the complexity of determining Ny, for k = 4,6,8,10
and 12, is O(n2log(N)), O(n?log(n,)log(N)), O(nlog*(n,)log(N)), O(ntlog(n,)log(N)) and
O(nSlog®(n,) log(N)), respectively. The complexity, depending logarithmically on the lifting factor
N, gives our approach, to the best of our knowledge, a significant advantage over previous works on

the cycle distribution of QC-LDPC codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes form a class of error-correcting codes that were dis-
covered by Gallager [1] in the early 1960s and that have been shown to be capacity-approaching.

Because of this, members of this ensemble are now part of many industry standards, including
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those developed by the Consultative Committee for Space Data System (CCSDS) [2]. The sub-
ensemble of quasi-cyclic LDPC (QC-LDPC) codes is attractive for both implementation and
analysis purposes since its members can be described in a compact and simple way [3], [4]. It is
well-known that the structure of QC-LDPC codes, and the graph representation of an LDPC code
in general, plays a fundamental role in determining the performance of the code under iterative
decoding algorithms. In fact, the girth [5], together with the number of short cycles [6], and other
graphical structures composed of short cycles, such as trapping sets [7], are important parameters
to measure the iterative decoding performance of the code. As a consequence, researchers have
been actively trying to find ways to not only reduce but eliminate, when possible, all the short
cycles in a graph [8], and/or combinations of those cycles [7], [9], [10], in an attempt to improve
the performance of the corresponding code.

It is well-known that enumerating the k-cycles in a general graph is hard [11], [12]. Conse-
quently, a lot of effort has been dedicated to reduce the complexity of solving these problems.
Several algorithms have been designed for cycle enumeration with complexities depending on
the number of vertices, the number of edges, and the number of cycles. For a graph G = (V, E)
with set of vertices V' and set of edges F, having cardinalities |V| and |E|, respectively, there are
some well-known algorithms designed to enumerate its cycles, including the Tarjan algorithm
[13] and the Johnson algorithm [14]. The complexities of these algorithms are O (|V'||E|(c + 1))
and O ((|V| + |E|)(c+ 1)), respectively, where ¢ is the number of cycles. Other approaches,
which will be elaborated upon below, focus on particular families of graphs and on specific
members of these families, like the family of bipartite graphs and, some of its members, the
Tanner graphs of QC-LDPC codes, for example.

The topic of enumerating cycles in a bipartite graph G = (V, E), where V = V.UV is the
set of vertices, V. and V; are the sets of check nodes and variable nodes, respectively, having
cardinalities |V.| and |Vj|, respectively, has a rich literature. In [6], an algorithm is presented to
count k-cycles, k = g,g + 2,9 + 4, in a bipartite graph with complexity growing as O (gn?),
where ¢ is the girth of G (the length of a shortest cycle in G) and n = max (|V.|, |V4]). In [15],
a message-passing algorithm for counting short cycles in a graph is presented. This algorithm
is capable of counting k-cycles, with ¢ < k < 2g — 2, in the case of bipartite graphs, with
complexity growing as O (g|E|*). In [16], a matrix of size 2|E| x 2|E|, called the directed

edge matrix, is constructed and used to count the number of short cycles. This strategy requires
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to calculate the trace of the kth power of this matrix or, equivalently, the eigenvalues of the
kth power of the adjacency matrix. Such an approach has complexity O (\E \3) and becomes
prohibitively high with an increase in the size of the Tanner graph.

In more recent works, a computational technique is presented in [8] to determine the numbers
of g-cycles in a (¢+1, d+ 1)-bi-regular bipartite graph from its adjacency matrix is given. These
results were extended in [17], providing a strategy to compute the multiplicity of k-cycles,
g+ 2 < k <2g— 2, in bi-regular bipartite graphs, as a function of the spectrum and the node
degrees (the number of neighbors connected to the nodes). This work also contains closed form
equations for the multiplicity of 4-cycles and 6-cycles in irregular bipartite graphs. In [18], a
technique/algorithm based on a modified breadth-first search (BFS) algorithm, which establishes
parent/child relationships between the nodes in the graph depending on their distance from the
source node, is proposed to count the short cycles of a bipartite graph. This approach has a
time complexity of O (|V|2A) to count g-cycles and (g + 2)-cycles, and a time complexity of
O (!V|2A2) to count (g + 4)-cycles, where A is the maximum node degree in the graph.

If a graph has a specific structure, such as a quasi-cyclic representation, then it is possible to
reduce the complexity of enumerating their cycles by exploiting said structure. The directed edge
matrix approach discussed in [16] was further analyzed in [19] in the case of QC-LDPC codes.
In this approach, the authors proved that if the LDPC code is quasi-cyclic, then its directed edge
matrix can be written as an array of circulant matrices. By exploiting the circulant structure to
compute the eigenvalues as in [20], the complexity of this approach is reduced from O (N 3\Eb|3)
to O (N \Eb\?’), where N is the lifting factor and |E,| is the number of edges in the protograph.

In this paper, we present an efficient strategy to count the number of k-cycles, k < 2g, in the
Tanner graph of QC-LDPC codes having girth g. This strategy, which works for both (d,, d.)-
regular and irregular QC-LDPC codes, is formally analyzed from a complexity perspective in the
case of the 3 x n, fully-connected (all-ones) protograph, and exemplified to count cycles using
an irregular protograph used in the CCSDS standards [2]. Our approach has low complexity,
shown to be depending logarithmically on the lifting factor N. Additionally, we illustrate how
we can easily generalize the strategy for the n. x n, case, with n. > 3, maintaining the same
low complexity. To the best of our knowledge, no such approach has been presented with such
low complexity, even though it is well known to use modulo operations to determine cycles in a

QC-LDPC graph [21], [22]. Consequently, this gives our approach a significant advantage over
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any previous work on the cycle distribution of QC-LDPC codes.

This paper is structured in the following way. In Section II, we introduce the necessary
definitions, notation and background. In Section III, we define an equivalence of closed walks,
that applies to TBC walks, to provide a general formula to count the number of k-cycles, N, for
k < 2g, in the Tanner graph of QC-LDPC codes. This formula works for both (d,, d..)-regular
(where d, and d. are the variable node and check node degrees, respectively) and irregular
protographs. We then present an efficient strategy to calculate N} in Section IV where we
restrict our attention to the fully-connected (all-ones) protograph and values 4 < k£ < 12. The
complexity of our approach is analyzed in Section V. In Section VI, we exemplify this strategy

in an irregular protograph, and we conclude the paper with some remarks in Section VII.

II. DEFINITIONS, NOTATION AND BACKGROUND

Let C be a QC-LDPC code, either (d,, d.)-regular or irregular, with block length n, N based

on the n. x n, protograph [23] described by the matrix B = (b;;) where b;; is a nonnegative

Ne XMy ?
integer for i € [n.] and j € [n,], and where [I] £ {0,1,...,] — 1}. Then C can be described by
a (scalar) parity-check matrix H = (Hj;), . , where each H;;, for i € [n ] and j € [n,], is a
summation of b;; N x N circulant permutation matrices if b;; is nonzero, and the N x N all-zero
matrix if b;; = 0. Graphically, this operation is equivalent to taking an N-fold graph cover, or
lifting, of the protograph. Here, N is called the lifting factor (lifting degree, or degree of the graph
cover). Let " denote the N x N circulant permutation matrix obtained by circularly shifting to
the left, by r positions modulo /N, the entries of the N x N identity matrix /. For simplicity
in the notation, let p;;(x) be the polynomial representation of H,;, where p;;(z) = l]ial a;x!
and o; € {0,1} for all [ € [N]. Each polynomial p;;(x) has weight b;;. Then we can rewrite the
parity-check matrix H, using the polynomial representation, as H = (pi;),, ., -

From the parity-check matrix H, we construct a bipartite graph G = (V| E), called a Tanner
graph [24], by considering H as its biadjacency matrix. This bipartite graph represents the QC-
LDPC code C obtained from H. The set V' is the set of vertices (or nodes) and F is the set of
edges, and their cardinalities are denoted by |V/| and |E|, respectively. Let denote the vertices
of G by v, for a = 0,1,2,...,|V| — 1, and the edges by e, for b = 0,1,2,...,|F| — 1.
Each edge e, has the form e, = (v, v.), for some v,,v. € V, and the vertices v, and v, are

called the endpoints of e. A (directed) walk W of length m in the graph G is an alternating
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sequence W = vgejvies - - - Uy_1€,Uy, of vertices and edges such that ¢, = (v;_1,v;) € E for all
1 <1 < m. The first vertex appearing in the alternating sequence, vy, is called the base point of
W. A walk W is said to be closed if the two endpoints are the same, this is, when vy = v,,,. A
closed walk W is backtrackless if ¢; # ¢; .1 for all [ =1,2,...,m — 1. A backtrackless closed
walk W is tailless if e,, # e;, and W is called, in this case, a TBC walk. A cycle is a closed
walk W having distinct vertices and distinct edges, and if its alternating sequence has k edges
in it, then we call W a k-cycle. The length of a shortest cycle is called the girth of the graph.

The adjacency matrix A = (A;;) is the symmetric binary matrix with A;; = 1 if (v;,v;) € E,
and A;; = 0 otherwise. After some reordering of the vertices, if necessary, we can write A, for

either the scalar or polynomial representation of H, in the compact expression

0 H
A= : ey
HT 0
where H' denotes the transpose of H. The powers of A, and in particular the matrices

Bt(H) Y (HHT> [t/2] H(t mod 2), t> 07 (2)

give information about the walks [25]. It is not difficult to see that, for any nonnegative integer

t, we have

By (H 0 0 B H
20(H) and A¥T! = 2c+1(H) : (3)
0 By(HT) Bua(HT) 0

AQt —

Since G is a bipartite graph, any k-cycle has even length, so k = 2m for some m. We can form
a walk of length k, or simply a k-walk, by taking the union of two walks of length m having
the same two endpoints. If all the vertices and edges traversed in this k-walk are distinct, then
the k-walk is a k-cycle. For example, if £ = 4, then any 4-cycle is formed by the union of two
different walks of length 2 having the same two endpoints. We can count the number of walks
of length 2 between any two vertices by calculating the square of the adjacency matrix A. For

A? = ((A?),;), notice that
=

(A%, =Y AyAy;. (4)
=0

The equation (4) gives the number of walks of length 2 between vertices v; and v; since we
have two edges joining v; to v; to v; whenever A; = A;; = 1. This argument was generalized

in the following theorem.

September 12, 2023 DRAFT

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 19,2023 at 18:58:15 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Journal on Selected Areas in Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2023.3315585

Theorem 1 ([26]). If A™ = ((A™),;) is the mth power of the adjacency matrix A, then the

entry (Am)ij is equal to the number of walks of length m between the vertices v; and v;.

The polynomial representation of QC-LDPC codes allows for a reduction in the complexity of
our computations, so we will work with the polynomial parity-check matrix rather than with its
scalar version. First, we consider the triangle operator A introduced in [25]. For two nonnegative
integers ¢ and f, define d = eAf 2 1ife>2and f =0, and d = eAf £ 0 otherwise. This
definition can be extended to matrices. For two s x ¢ matrices £ = (e;;) and F' = (fi;), we
define the s x ¢t matrix D = (d;;) £ EAF entry-wise, where d;; = e;; A fi; for all pairs
(i,7) € [s] x [t]. If E(z) and F(z) are the polynomial versions of £ and F', respectively, then
D(x) & E(x)AF(x), where D(z) is the polynomial version of D.

Theorem 2 ([25], [26]). A Tanner graph of an LDPC code with parity-check matrix H has
girth(H) > 21 if and only if B,,(H)AB,,_o(H) =0 for 2 <m <.

The kth power of the scalar adjacency matrix A of the Tanner graph can be used to determine
the number of k-walks between any two vertices, as we have seen in Theorem 1. The kth power
of the polynomial version of the adjacency matrix, however, does not help us to count the number
of k-walks between any two vertices of the Tanner graph, but, as we will see, it can be used
to describe the edges traversed in a k-walk between any two vertices in the protograph. For
example, if A is the polynomial version of the adjacency matrix (1), then

Net+ny,—1

(A7) () = Y Au(x)Ay(), (5)

and every term of the polynomial (A?), ;(x) is a product of the form z®iz% = g¢¥4, where
x% and % come from the polynomials A;(z) and A;;(x), respectively. Each one of the two
circulants z“ and x“ correspond to a unique edge in the protograph, and the order in which
they appear in the product is the order used to traverse the walk in the protograph. The exponent
cii + ¢, in consequence, corresponds to the two edges traversed from vertex v; to vertex v,
to vertex v; in the protograph. In the same way, every term of (A?’)ij (x) is a product of the
form zCitgciepchi = glitartcri and the exponent c; + ¢y, + ci; corresponds to the three edges
traversed in the protograph from vertex v; to vertex v; to vertex v, to vertex v;. In general,

every term of (A™), () is of the form x%t1zhiz - .. gmi = g teuit+mi and each one of
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them corresponds to a walk of length m and the specific order in which it is traversed, which
is nicely described by the way the matrix multiplication in (3) is performed. This allows us to

state a polynomial version of Theorem 1.

Theorem 3. [f A™ = ((A™),;()) is the mth power of the polynomial adjacency matrix A, then
every term of the polynomial (A™),;(x) is of the form x“h x> - - - xmi and corresponds to a

walk of length m between the vertices v; and v; in the protograph.

Definition 4. The exponent c;;, +c;1, +- - -+, ; corresponding to the product " x'z - - - g%mi

in Theorem 3 is called a permutation shift.

/ / / .
If ezt .. g% and z%hziz - 2% are two terms of the polynomial (A™),.(z) de-

scribing two m-walks between vertices v; and v; in the protograph, then the combination
Cily nC Clyp i n—Cl s —c) —c
x lex lilo o .. €T lm]m lmj « v lllZZ‘ il

of the first walk and the reversal of the second one describes a closed (2m)-walk that starts
and ends at the vertex v;, and that has the vertex v; midway. Hence, the entries (Am)”(x) of
the power A™ describe all the m-walks in the protograph and can be used to count certain
cycles in the Tanner graph. The strategy of counting cycles in the Tanner graph presented in this
paper requires to keep track of TBC walks in the protograph. This is why we are interested in
analyzing the way each walk is traversed. First, we introduce some required concepts on graph
covers.

At the beginning of this section, we explained the process to construct a Tanner graph from
a protograph. In the sequel, we will need a little more mathematical accuracy, so we define the
lifting process from a topological point of view. Let G = (V, E) be a protograph described by

matrix B = (b;;) . Each row and each column of B corresponds to a check node and a

nexny
variable node in the protograph, respectively. Once a lifting factor N is chosen, for each vertex
v € V in the protograph, either a check node or a variable node, we create /N copies of it
and denote them by @', for [ € [N]. For each edge e = (u,v) € E in the protograph, there
is, associated to it, a circulant permutation matrix 2, where a € [NN]. Once the value for a
is chosen, we create N copies of e and denote them by &, for [ € [N]. The vertices that are
endpoints of these edges are permuted in such a way that we have &' = (u!, p!=¢ med V)

let V={t'|veV,l€[N]} and E = {&| e € E,l € [N]}, then the graph G = (V, E) is an

 If we
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N-fold graph cover, or [ifting, of the protograph, and we call it the Tanner graph. The process of
creating the N copies ! of the vertex v and the IV copies & of the edge e induces a projection
map p : G — G, and we call p the natural projection map. The set of vertices {f}l lv e V} and
the set of edges {é' | e € E}, denoted by p~'(v) and p~'(e), respectively, are called the fiber
over the vertex v and the fiber over the edge e, respectively, under the natural projection map.

Lemmas 5 and 7, based on some results from [27], are useful to study both the images of

cycles in the Tanner graph and the preimages of TBC walks in the protograph.

Lemma 5 ([28], [29]). Let G be an N -fold graph cover of the protograph G. Let W be a k-walk
in G starting at vertex v and ending at vertex V', and having edge sequence ey, e, . . ., ey with
associated circulant permutation matrices x°',x%,...,x°. Then the permutation shift s that
maps v, the inverse image of v in G, to V', the inverse image of V' in G, through the walk W

is given by

T
L

5= (—1)isi+1 mod N. (6)

%

I
=)

Remark 6. If the walk W in Lemma 5 is traversed in the opposite direction starting at vertex

v’ and ending at vertex v, then its permutation shift is given by s = N —s mod N. O

We denote by Zy the additive group of integers modulo /N. For any element a € Zy, the

order of a is the smallest integer m such that ¢ = m -a = 0.

Lemma 7 ([28]). Let G be an N -fold graph cover of the protograph G and let W' be a k-cycle
in G. Then W' is projected onto a TBC walk W of length k /m, where m > 1 is the order of

the permutation shift of W in Zy.

Remark 8. The order of a TBC walk W, which is referred to as the order of its permutation
shift s in the previous lemmas when considered as an element of Zy, is given by N/ ged (N, s),

where s is as in (6) and gcd denotes the greatest common divisor. L]

We combine the following lemma with our analysis of TBC walk to count cycles in the Tanner

graph.

Lemma 9 ([30]). Let G be an N-fold graph cover of the protograph G and let W be a closed

k-walk in G. Then the inverse image of W in G is the union of N /m closed (km)-walks, where
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m > 1 is the order of the permutation shift of W in Zy.
We extend the result in Lemma 9, stated for closed k-walks, to TBC walks of length k.

Theorem 10. Let G be an N-fold graph cover of the protograph G and let W be a TBC walk
of length k in G. Then the inverse image of W in G is the union of N/m TBC walks of length

km, where m > 1 is the order of the permutation shift of W in Zy.

Proof: By Lemma 9, the inverse image of W is the union of N/m closed (km)-walks,
where m > 1 is the order of the permutation shift of W in Zy, since W is a closed walk. It
remains to show that each element W in the inverse image of W is backtrackless and tailless.
Assume that W = ejes - - - ¢;. The inverse image of a 2-walk ¢;e;q in W, for some [, gives a
2-walk epepyq in W. If the two edges ey and ey, are equal, meaning that the same edge is
being traversed consecutively in a row in opposite directions, their projection onto G will give
the same edge, contradicting the assumption that W backtrackless. Similarly, if the edges €;
and ej,,,, which are consecutive edges in W, are equal, then their projection onto G will give
the same edge, again contradicting the assumption that W is backtrackless. This concludes the

proof. [ ]

The following lemma explain why we restrict our analysis to k-cycles with k£ < 2g, where ¢

is the girth of the Tanner graph.

Lemma 11 ([15]). Let G be a graph with girth g. Then the set of TBC walks of length k

coincides with the set of k-cycles if k < 2g.

Notice that the set of TBC walks of length k£ and the set of k-cycles are not equal if k£ > 2g.
For the case when k = 2g, let W be a g-cycle. The double traversal of 7, denoted by W?2, is
a TBC walk of length 2g, but it is not a (2g)-cycle because the intermediate vertices are not

distinct. For k£ > 2g, a similar argument is used.

Remark 12. As a direct consequence of Lemmas 7 and 11, and Theorem 10, the TBC walks in
the protograph of a QC-LDPC code are the necessary and sufficient structures needed to describe

all the k-cycles, k < 2g, in the Tanner graph. 0J
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III. COUNTING CYCLES: A GENERAL PROTOGRAPH

The equivalence of closed walks is an important notion in this work.

Definition 13. Two closed walks W, and Wy are said to be equivalent if one can be obtained

from the other by a change of base point, a change in direction, or both.

If W is a closed walk of length £, then there are 2k equivalent closed walks to W/. In the
following definition, we introduce a set whose cardinality is used in the formulas for the number

of k-cycles, N, in the Tanner graph.

Definition 14. Let H be a polynomial parity-check matrix and let N be the lifting factor. For
integers d > 0 and f > 1, the set W (d, f) is defined as the collection of all nonequivalent TBC

walks of length d in the protograph having permutation shift of order f in Zy.

Remark 15. Notice that the construction of the set W (d, f) in Definition 14 depends on both
the protograph and the lifting factor N. In algebra, the additive group Zy has order N and the
order of every element is a divisor of N. Hence, if s is not a divisor of N, the set W(d, f)
is empty independently of the selection of the length d. For example, if N = 4, no element in
Z, has order 3 because 3 does not divide 4, so the set W (d,3) is empty for any value of d.
However, even if [ does divide N, there are instances where the set W (d, f) is automatically
empty. If the protograph is the n. x n, fully-connected (all-ones), it is not possible to obtain a
TBC walk of length 4 from the double traversal of a walk of length 2, forcing W (2, f) to be
empty. If the protograph is a multiedge graph, as we will discuss later, then it is possible to

have a nonempty set W (2, f). O

The following theorem gives the number of k-cycles in the Tanner graph using the walks

described by the entries of the polynomial parity-check matrix .

Theorem 16. Let H be the polynomial parity-check matrix of a protograph-based QC-LDPC

code with girth g, and let k be an even integer with 2 < k < 2g. Let
D(k) = {d| d divides k,d > 2,d even}

and, for any d € D(k), let W (d, k/d) denote the set of nonequivalent TBC walks of length d
having permutation shift of order k/d in Zy. Then the number Ny, of k-cycles, k < 2g, in the
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corresponding Tanner graph G with parity-check matrix H is given by

N
Ne= D0 | IWW@k/d) = 3 W k/d)] | - 7o, ™
deD(k) d'eD(k)
d'|d, d'<d

where N is the lifting factor.

Proof: Suppose that H has girth g. By Lemma 7, any k-cycle W in the Tanner graph
projects onto a (naturally shortest) TBC walk W of length d’ having permutation shift of order
k/d in Zy. Hence, to count the number of k-cycles in the Tanner graph, it is enough to count
the TBC walks that will be lifted to k-cycles.

Let I be a k-cycle in the Tanner graph and let W be its projection, a TBC walk of length
d' having permutation shift of order k/d’ in Zy. Let pgin (W) be the permutation shift of W.
Since W € W(d',k/d'), we have (k/d’) - psir(W) = 0 in Zy and, in particular, d’ is the
smallest positive integer satisfying this equation. For any d € D(k) such that d’ divides d and
d < d, traversing W d/d’ times gives us a TBC walk of length d. We denote the traversal by
W/ and its permutation shift, pge(W%?), is 0 in Zy. The inverse image of W4 is, then,
a collection of TBC walks that are not cycles in the Tanner graph since they are the cycles
in the inverse image of W, but traversed d/d’ times. Hence, the only elements in W (d, k/d)
that contribute to the number of cycles in the Tanner graph are those TBC walks that are
not a multiple traversal of shorter TBC walks having permutation shift of order smaller than
k/d in Zy. Rewriting this in symbols, the number of TBC walks satisfying this property is
p(d, k) = |\W(d,k/d)| = > aepwy |W(d',k/d’)| and, by Theorem 10, the number of k-cycles

d'|d, d'<d
that each one of them contribute is N/(k/d). Taking the sum of u(d,k) - N/(k/d) over all
d € D(k) gives equation (7). [

IV. COUNTING CYCLES: BINARY PROTOGRAPHS

The equation (7) in Theorem 16 gives the number of k-cycles in the Tanner graph of an
arbitrary QC-LDPC code. Since the Tanner graph is a graph cover of the protograph, and N > 1,
the former has, at least, the same number of vertices and edges as the latter. In practice, we
restrict N > 1, so counting TBC walks in the protograph, instead of directly counting cycles in

the Tanner graph, represents a reduction in the number of computations required to determine
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Nj. In this section, we focus on the fully-connected (all-ones) protograph and discuss how to
determine N} with a strategy that has complexity logarithmic on the lifting factor N. We show
that this involves determining the cardinality of the sets W (d, f), for integers d > 0 and f > 1,
in a simple way. We note that, by studying the all-ones protograph, we also have the framework
for any binary (regular or irregular) protograph because “masking” (replacing ones with zeros)
[31] makes the problem simpler since various exponents are removed from the calculation. In
Section VI, we show how to extend the approach to general (non-binary) protographs.

Let C be a QC-LDPC code with parity check matrix H given by

Zlo.o Zlot ... plony—1
xlo ghr oo gline—
H = , , _ ) ; )
xlnc—l,O xlnc—Ll e xlnc—lm/v—l

where [;; € [N] for i € [n.] and j € [n,]. In numerical examples, we can assume, without loss
of generality, that [ ; = ;o = 0 for i € [n.] and j € [n,], as a way to reduce the complexity of
the computations. In the theoretical results, however, we do not automatically set them to O in
order to analyze TBC walk patterns in detail.

Consider the following definition.

Definition 17. A multiset (shortened to mset) is a collection of elements in which elements are
allowed to repeat. The number of times an element occurs in a multiset is called its multiplicity.

The cardinality of a multiset is the sum of the multiplicities of its elements.

By Theorem 2, following the discussion in [32], girth(H) > 4 if and only if each one of the
(") msets {l;m — lym | m € [n,]}, for i <7, contains distinct elements in Zy. If one of these
msets has a repeated element (a repetition), some 4-cycles appears in the Tanner graph and the

exact amount of them is calculated in the following theorem.

Ne

9 ) msets

Theorem 18. Let H be as in (8). A repetition in any of the following (

./

Asir = lign =l | M € 0]}, 0 <7

lifts to exactly N 4-cycles in the Tanner graph. The total number of 4-cycles in the Tanner graph,
Ny, is given by
Ni=|W(4,1)- N, 9
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where W (4,1) is the set of all nonequivalent TBC walks associated to the repetitions in the

msets above.

Proof: The msets A; ;v = {li, — lym | m € [n,]}, © < ¢, describe all nonequivalent walks
of length 2 in the matrix /1. A repetition in any of the msets gives a TBC walk of length 4 with
permutation shift l; ,, — lir , — lir v + iy = 0 in Zy if m # m’. By Theorem 10, this TBC walk
lifts to N 4-cycles. The same approach works for all the other msets and, by letting W (4, 1) be

the set of all nonequivalent TBC walks associated to the repetitions, the result follows. [ ]

Example 19. Let H be the polynomial parity-check matrix given by

gho ghi o ghe ghs gha 1 1 1 1 1
H=|glo g gz g gl =11 g 22 28 2¢

This matrix has girth 4 for lifting factor N = 5. Calculating the three msets in Theorem 18 over
Zs, we obtain Ag; = {0,4,3,2,1}, Ag2 = {0,3,4,0,3}, and Ay, = {0,4,1,3,2}. Notice that
there are two repetitions in the second mset, so there are two elements in W (4, 1), specifically
W(4,1) = {ho—jo+j3— hs, h1 — j1+js — ha}. Hence, the number of 4-cycles Ny in the Tanner
graph is Ny = |[W(4,1)] - N =2 -5 = 10. If we take N = 10, then the parity-check matrix H
has girth 6. To confirm that there is no 4-cycle in H, we calculate the three msets in Theorem
18 over Zyo and we obtain Ag; = {0,9,8,7,6}, Apo = {0,8,9,5,3}, and A, ={0,9,1,8,7}.

Since there is no repetition in these msets, we conclude that Ny = 0. U

Remark 20. Theorem 18 was used to calculate the number of elements in W (4,1), but the
strategy can be modified in a straightforward way to count the number of elements in W (4, 2).
In this case, we are not simply targeting repetitions in the msets A; ;. Instead, we are looking for
two elements oy and oy with a; # oy, coming from the same mset, such that 2- (o — o) =0
in Zy. The double traversal of the TBC walk that corresponds to the permutation shift o; — oy
is an element of W (4,2). This approach is used to compute W (4,s), for any s, by requiring
s-(ag—ap)=0and t-(ay —ayp) #0, t € [s]\{0}, in Zy. O
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In the rest of the section, for space constraints, we will take n. = 3 in (8), so H is given by

xh(} .:Chl :L»hnufl
H = xiO xil e xinv—l . (10)
:C.jO x]l e :L-jnvfl

By Theorem 2, as discussed in [32], girth(H) > 6 if and only if, for m € [n,] and [ € [n,|\{m},

all the elements in each one of the msets
{h—ir+im, b = gi 4+ gmbs L=t by = Ji+ gm}s G = e By G — i i

are distinct. In the following theorem, we rewrite these conditions in a way that is helpful to

count 6-cycles in the Tanner graph.

Theorem 21. Let H be as in (10) and, for m € [n,], consider the following msets

Av ={(, =iy +im) [ L€ [no], L #m}, By ={(lit = ji+ jm) | L € [n0], 1 # m},
Apm = (b = Gi 4 Jm) L€ 0], L#mY, Crn = {(Ljr = hi 4 ) [ L €[], 1 # m},

BLm = {(Z,Zl — hl —|— hm) | l € [nv],l 7é m}, Cg’m = {(l,jl — ’il —|—2m) | l - [ny],l 7£ m}

For I,I' € [ny), let (I,oq) € Ay and (I, o) € As,y, be such that o = . Then the repetition
oy = ay lifts to exactly N 6-cycles in the Tanner graph if | # l'. The same result follows if
the pair A .., Aa., is replaced by any of the pairs By ., Ba,, and Ci y,, Cs . Moreover, one
of these pairs, running over all m € [n,), is sufficient to describe all 6-cycles in H. Hence, the

total number of 6-cycles in the Tanner graph, Ns, is given by

where W (6, 1) is the set of all nonequivalent TBC walks associated to the repetitions in one of

the pairs above, and

|W(671)| = Z RALm,AQ,mv (12)

me[nv]

where R, ,, A, IS the number of repetitions oy = oy between the msets Ay, and Aj .
Proof: Suppose that there is a repetition in the pair A, ,,,, A3, as in the statement. Then, for
[,I' € [n,], there are oy = h; —i; + iy, and oy = hy — jy + jp With a; = ap in Zy. This implies
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that h;—i;+1,, = hy —jir+Jm in Zy, which is equivalent to have h;—i;+%,, — J+Jr —hy = 0 in
Zy. If | # I, then this permutation shift describes a TBC walk of length 6 and, by Theorem 10,
it lifts to exactly /V 6-cycles in the Tanner graph. If the repetition happens in the pair By ,,,, B2,
then for [,!" € [n,], there are 5, = iy — hy + h,, and 5y = iy — jy + j,, With B = By in Zy. This
implies that i, — h;+h,, — j+Jr —ip = 0in Zy. If [ # I/, then this permutation shift describes a
TBC walk of length 6 and, by Theorem 10, it lifts to exactly /V 6-cycles in the Tanner graph. If
the repetition happens in the pair C ,,, Cs,,, then we obtain, following the same idea as before,
Ji—h 4+ by — i + iy — Jy = 0 in Zy, for [,I' € [n,]. If [ # I, then the corresponding TBC
walk of length 6 lifts to exactly N 6-cycles in the Tanner graph by Theorem 10.

To show that only one of these pairs, running over all m € [n,], is sufficient to describe all 6-
cycles, it is enough to consider the TBC walks that they describe and apply a change of base point
or direction, or both. First, we show that any TBC walk constructed from the pair By ,,, Ba , 1S
equivalent to some TBC walk described in the pair A; ,,, A2,,. A TBC walk constructed from
the pair B; ,,, B2, involves a permutation shift of the form ¢ — h; + hy, — jm + jr — ip. If
h; becomes the base point and we reverse the direction of the TBC walk, then we obtain the

expression —(h; — i, + iy — jy + jm — Ry ). The assignment
l<1, m+«1!l and '+ m

gives the corresponding TBC walk described in the pair Aj,,, As,,. Similarly, a TBC walk
constructed from the pair C' ,,,Cs,, involves a permutation shift of the form j, — h; + h,,, —
tm + 1y — jJp. If h,, becomes the base point and we maintain the direction of the TBC walk,

then we obtain the expression h,, — ¢, + iy — ji + j; — h;. The assignment
l<m, m<+1l and ' <1

gives the corresponding TBC walk described in the pair A, ,,, Az .

The formula for Ng in (11) follows from equation (7) in Theorem 16. It remains to show that
|W(6,1)] is given by (12). Since the pair A, ,,, As,,, running over all m € [n,], is sufficient to
describe all the TBC walks of length 6, we use the unique TBC walk pattern h; — 9 + 7, —
Jm + Jv — hy and constructed all its equivalent walks. It turns out that no equivalent walk has
the same TBC walk pattern, so each repetition is counted exactly once, and we conclude the

proof. [ ]
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Example 22. Let H be as in Example 19 and take N = 5. Since H has girth 4, we can also
use our strategy to calculate 6-cycles in the Tanner graph. Following Theorem 21, we should
construct, for each m € [n,], the pair of msets A, ,,, Ay, (since only one of the three pairs is

sufficient). Some computations show that

AI,O = {(174>7(2’3)’(372)7(4’1)}7 A1,2 = {(0’2)5(171)a(374)7(4v3)}7 A1,4 = {(074)’(153)7(2v2)a(371)}7
A2,0 = {(173)7(274)7(370)a(473)}7 A2,2 = {(071)’(174)7(371)7(414)}a A2,4 = {(072)7(1a0)7(271)’(372)}'
Al,l = {(07 1)7 (2’4)7 (37 3)’ (47 2)}7 Al,S = {(0’ 3)) (17 2)’ (27 1)7 (4’ 4)}a

A2,1 = {(07 2>7 (27 1)7 (37 2)7 (470)}7 A2,3 = {(07 0)5 (17 3)7 (274>7 (47 3)})

Once all the pairs Ay ,,, Aa,,, for m € [n,], are constructed, we analyze each one separately.
For example, if m = 0, notice that (1,4) € A;o and (2,4) € Ayp. Since there is a repetition
in the second coordinate of these two elements and they differ in the first coordinate, then this
contributes one TBC walk of length 6 to the set W (6, 1). Hence, after applying the same strategy
for the other pairs, we obtain |1 (6,1)| = 16, so N = |W(6,1)] - N = 16 - 5 = 80. O

In the Appendix, we provide an algorithm to count 6-cycles based on Theorem 21.

Definition 23. Let W be a walk in the n. X n, fully-connected (all-ones) protograph. If W has

length k = 2m and its permutation shift is given by

halﬁl - hQQﬁl + h/a3B2 - ha4B2 + o e + hak7157n - hakﬁm’ (13)

we use the shorthand [he,, Ry, - - - Ray g1 o, - If W has length k = 2m + 1 and its permu-

tation shift is given by
halﬁl — ha261 + ha352 - h/Oé4B2 —I'_ Tt + hak_lﬁm - h’akﬁm + hak+16m+17 (14)
we use the shorthand [h,, by, .. hay | Pay. 181,82, B | Brsa

By Theorem 2, as discussed in [32], girth(H) > 8 if and only if the following nine equations

are satisfied:

Z gPiihlu e 4 gkl Aq =, Z gl hohdluw 4 plhiidluw A1 =, Z 2 H8Iluw AQ = 0,
w,VE [Nny] u,vE[ny] u,vE[ny]

Z glohohiluy 4 gliddidu, a1 = 0 Z 23w A = 0, Z 2l AQ = 0,
w,vE[ny] u,vE [Ny u,VE[ny]
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S elbii s n0 =0, S elbiae Ag =0, S el a0 =0,

u,vE[ny] u,vE[ny] w,vE[ny]

The exponents of the circulants in each one of these equations describe the walks of length 4
in the protograph, and these are the walks that we study to form the TBC walks of length 8
that can lift to 8-cycles in the Tanner graph. For example, there are two exponents in the first

equation, namely [h, 7,1, h], , and [h, j, j, h], . and they give three possible TBC walk patterns:

u,v’

[h‘7i7i7h7 h7i7i7h] [h7i7i7h7 h7j7j7 h}u}q_}ﬂ)”u/? [h’7j7j7 h? h’?j?jv h]u,v,v’,u"

! ’
uw,v,v"u’’

Notice that each of these three 8-walks is a TBC walk if the conditions u # v, v # v/, v # o/
and v’ # u are satisfied. Once all the TBC walk patterns have been constructed, from all the
nine equations above, the next task is to eliminate duplicates. The following list contains all 6
nonequivalent TBC walk patterns obtained from the equations above:
[h7i7i7h7 h7i7i7h]u7v7v/,u/7 [hajaja ha hajaja h}uﬂ)’ygu/a [h7i7Z-7j7j7i7i7h]u’v,v/7u/7
[hﬂiui?h? h7j7j7 h]u,v,v’,u” [h7j7j77:7i7j7j7 h]u7q}7q),’u/7 [%jaja@@juja i]u,v,v’,zL"

In the following theorem, we rewrite these conditions in a way that is helpful to count 8-cycles

in the Tanner graph.

Theorem 24. Let H be as in (10) and, for u,v € n,| with u # v, consider the following msets

Al,l = {(U, v, [hv Z.viv h]u,v)}7 A3,1 = {(U,'U, [h7j7j7 h]u,v)}7 A5,1 - {(u,v, [ha iaiaj]uﬂ))}a
A1,2 = {(ua v, [ha i1, h]u,v)}’ A3,2 = {(u,’u, [hujajv h]u,v)}> A572 = {<U7U: [ha i7i’j]u,v)}7
) Agy = {(u, v, [h, j, ], i]u,’l}>}7 Asy = {(u,v,[i, 4, ], i]u,l})}7

AQ,Q = {(U, v, [hvjvja h]uﬂ))}a A4,2 = {(U,'U, [h7j7j7 ’i]u,v)}a AG,Q = {(U,’U, [iajvjv i]u,v)}7

AQ,I = {(U, v, [h7 i77’.7 h]uv }7

)

For u,v,u’',v" € [ny)], let (u,v,0n,) € A11 and (U, V', ) € Arg be such that cu, ., = Q.
Then this repetition o, = ou v lifts to a collection of 8-cycles in the Tanner graph if u # v’ and
v # v'. The same result follows if the pair A, 1, Ay 2 is replaced by any of the other five pairs.
Moreover, these six pairs are sufficient to describe all 8-cycles. The total number of 8-cycles in

the Tanner graph, Ny, is given by
Ns = [W(4,2)] - N/2+ ([W(8, 1) — [W(4,2)]) - N, (15)
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where W (8, 1) is the set of all nonequivalent TBC walks associated to the repetitions in the msets
above and W (4,2) is the set of all nonequivalent TBC walks of length 4 having permutation
shift of order 2 in Zy. The cardinality of W (8, 1) is given by

1
2

1

1
*
RAQ,l,AQ,Q + RA3,1,A372 + _RA4,17A4,2 + 9

’W(& 1)‘ = 21,1,141,2 + 2

IR’A5,17A5,2 + RZG,LAG,Q’ (16)

where Rx, x, is the number of repetitions o, = o, between the msets X, and X,, the
coefficient of each Rx, x, is coming from the number of equivalent walks for the corresponding
TBC walk pattern, R, x, is given by

* 1 *C 1 *Nc
RXl,XQ = §RX1,X2 + ZRX17X27 (17)

*C *Nnc o, . _
and Rxl, x, and RXI’ x, are the numbers of repetitions cv, , = Q. between the msets X, and

Xy satisfying and not satisfying the conditions u' = v and v' = u, respectively.

Proof: To show that a repetition in any of these pairs lifts to a collection of 8-cycles in
the Tanner graph, we proceed as before. Consider a repetition in the pair A, 1, A; o, so there are
u,v,u',v" € [n,] such that o, = [h,i,, k], , o = [h,i,4,h],

o and Ay = Oy o in ZN.

Then this is equivalent to [h, i, 4, h, h, 1,1, h] , = 0in Zy. To guarantee that this permutation

shift represents a TBC walk, in addition to the conditions u # v and u’ # v’ required in the
construction of the msets A;; and A; 5, respectively, we need to ensure that u # ' and v # v'.
By Theorem 10, this TBC walk lifts to a collection of 8-cycles. The same approach works for the
remaining pairs. The proof that these msets are sufficient to describe all 8-cycles was addressed
before the statement of the theorem.

The formula for Ny in (15) follows from equation (7) in Theorem 16. It remains to show
that [W (8, 1)| is given by (16). Once a TBC walk pattern is fixed, say [h, 4,4, b, b, j, j, 1], 4 .0
for some u,v,u’,v" € [n,], it is possible that at least one of its equivalent walks has the same
pattern. In this case, there is only one equivalent walk with the same TBC walk pattern and

it has permutation shift [h,i, 4, h, h, j, j, h] Hence, when analyzing the contribution of

vuu vt
the repetitions in the pair Ay, As, to the set 1W(8, 1), we have to divide the total number of
repetitions by the number of equivalent expressions for the TBC walk pattern, which is 2 in this
case. This is due to the fact that the tuples (u,v,v’,u') and (v, u,u’,v’) are always distinct since

we require u # v,v # v, v # u' and v’ # u. If we do the same for all the nonequivalent TBC
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walk patterns, we obtain the following equivalent walks:
[h7 7:7 /1:7 h’ h’ 7:7 i’ h:lﬁ’ 5 6 {(u7 U? Ul? ul)? (’UI7 ul? u? U)) (U7 u? ul? ,U/)7 (ul7 /U,7 U? u)};
[h7 Z-7 i? h) h‘?j) j? h]ﬁ? 5 E {<u7 U? ,U” u/), (U7 u? ul7 v/)}’
[h7 j? j7 h7 h7 j7 j7 h:lﬂ? /3 E {<u7 /U7 /U/7 ul)? (U/7 ul? u? /U)7 (/U7 u’ ul7 Ul)? (ul7 ’Ul7 /U7 u)};
[h'ajaja i? iajaja h]ﬁa 6 € {(U, v, Ul? U,), (ulv U/v v, U’)}a
h7 i7?:7 '7 '7 7;7i7h Y /8 E u7U7,U/7u/ Y ul7 Ul? v?“ ;
JsJ 8
[/1:7 j’ j? /’:7 i?j? j? /l::|67 /8 E {<u7 /U7 /U/7 ul)? (U,7 ul? u’ /U)7 (/U7 u? ul? Ul)? (ul7 Ul? /U7 u)}'
In the case of the pairs Ayq, Aso and Aj;, A5, the tuples (u,v,v',u’) and (v, v',v,u) are
always distinct by the same reason as for the pair As 1, A2 2. The case is different for the pairs
Ay, A1 and Ay, Ao and Ag 1, Ago. The four tuples (u, v, o', '), (v, v, u,v), (v,u, v, v") and
u,v,v,u) are not necessarl 1stinct. In fact, there are two possible scenarios: either v’ = v
s ily disti In f: h possibl i ither v’
and v' = u, which gives only two distinct tuples, or the four tuples are all distinct. The total

contribution coming from the first scenario should be divided by 2, and the total contribution

coming from the second scenario should be divided by 4. This analysis concludes the proof. W

Example 25. Let H be the parity-check matrix of the [155, 64, 20] Tanner code given by
H = |25 210 220 .9 18] (18)

Then H has girth 8 for N = 31. We use Theorem 24 to count the number of 8-cycles, N, in
the Tanner graph. Some computations show that R 4 , = %(O) + i(()) =0, Rag 4., = 10,

R*Ag,,l,Agyg = l<0) + %1(0) = O’ 7?’144,17144,2 = 10’ 7?’145,17145,2 = 10’ and RZGJ,A&Q = l(o> + %(0) = 0’

2 2
so [W(8,1)] =04 1(10)+0+ 2(10) 4+ 1(10) +0 = 15 and Nz = [W(8,1)|- N = 15- 31 = 465.
O

By Theorem 2, girth(H) > 10 if and only if, for each m € [n,], all the elements in each one

of the msets
{[h7 i1, h’h]u,v|m7 [h’jaja h|h]u,u\m7 [hujvja i’i]u,v\m? [hv i, 7’-7j’j]u,v|m ’ u,v € [nv]a u 7é v,v 7é m}a
{[iajaja hlh]uﬂ; m? [Z7 h7 ha /L|Z:|u’/y m? [i7j7j7 Z’Z]u’v m? [17 h7 h7j|j]u7y m | u,v S [nv]7 u 7£ v,V 7£ m}7
\ | | |
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{[]7 /L.v 7:7 h|h]u7fu|m7 [j’ h7 h7 /L.|/I::|u7q}|m7 []7 h7 h7 j|j]u’ru|m7 [j? ia Z?]|j:|u7/1)‘m ’ u,v S [nv], u 7é v,v 7é m}»

are distinct. Following the strategy used before, the elements in each one of these msets describe
the walks of length 5 in the protograph, and these are the walks that we study to form the TBC
walks of length 10 that can lift to 10-cycles in the Tanner graph. In the following theorem, we

rewrite these conditions in a way that is helpful to count 10-cycles in the Tanner graph.

Theorem 26. Let H be as in (10) and, for u,v € [n,], with u # v and v # m, consider the

following msets

Al,m = {(U, [ha Z'7Z.7 h|h]u’v‘m)}7 Bl,m = {(ua [h7j7j7 h|h]u’v|m)}7 Ol,m = {(u7 [h7j7j7l|l]u7y|m)}7

A2,m - {(U, [hvjaja Z|Z:|u7ylm)}7 BQ,m = {(ua [h7j7j7 Z|Z]u7v‘m)}7 C2,m = {(U;, [ha Z7Za]|j]u7v‘m)}

For u,u' € [n,), let (u,a) € Ay and (U, ) € Agy, be such that o, = . Then this
repetition o, = o lifts to a collection of 10-cycles in the Tanner graph if u # u'. The same
result follows if the pair Ay ,,, Aa,, is replaced by any of the pairs By, Ba ., and C yy, Co .
Moreover, these msets, running over all m € [n,], are sufficient to describe all 10-cycles. The

total number of 10-cycles in the Tanner graph, Ny, is given by
Ny = |[W(10,1)| - N, (19)
where W (10, 1) is the set of all TBC walks associated to the repetitions in the msets above, and

|W(107 1)| = Z RAI,M7A2,TT’L + RBl,m,yBQ,m + Rcl,m,ch,m7 (20)

me[nv]

where Rx, .. x,,. is the number of repetitions o, = o, between the msets X ,, and Xy .

Proof: To show that a repetition in any of these msets lifts to a collection of 10-cycles in
the Tanner graph, we proceed as before. Consider a repetition in the pair A ,,, As,,, so there
are u,v,u’,v" € [n,] such that o, = [h, 1,1, h|h] ay = [h,j, 7,1, vim ANy = vy

u,v|m?

in Zy. This is equivalent to [h,i,i, h, h, 4,1, ], j, h] , = 0 in Zy. To guarantee that this

permutation shift represents a TBC walk, additionally to the conditions v # v,v # m and
u’ # v',v" # m required in the construction of the msets A, ,, and A, ,,, respectively, we need
to ensure that u # u’. By Theorem 10, this TBC walk lifts to a collection of N 10-cycles. The

same approach works for the pairs By ,,, By, and C ,,, Co .
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To prove that these pairs are sufficient to describe all 10-cycles in the Tanner graph, it is enough
to analyze the three msets described in the calculation of the conditions. From the first mset
{[h’ i> i’ h‘h]u,v\m’ [h,j,j, h‘h’]u,v|m7 [h7j>j> ili]u,v|m7 [hv i’ iaj'ﬂu,v\m | u,v € [nv]7 u 7& v,V 7& m}’
there are only 5 ways to form a TBC walk and these are given by the following TBC walk

patterns:

[h7i7i7ha hai7iajaj7 h] [hijjv hv hyiaimjvja h]u,v,m,v’,u” [hajaj7i7i7j7j7iai7h]u7v7m7v/7u“

u,v,m,v’ u'?

[h72‘7i7h7h7j7j7?;7i7h] [h7j7j’h’7h/7j7j’i7i’h’:|

w,v,m,v’ u’’ u,v,m,’ u’?

The second pattern is equivalent to the first one by considering the assignment given by
usv, veu, meu, vV, and U <+ m.

The third pattern is not equivalent to the first one, and it is not difficult to see that since the
circulants 2% and 27" are visited a different amount of times. The fourth pattern is equivalent to

the first one by considering the assignment (as before) given by

u+v, veu, meu, vV, and U <+ m.

The fifth pattern is not equivalent to the first one nor to the third one since the circulants z™
and 27!, and 2™ and x%, respectively, are visited a different amount of times. The same strategy
is used to show that each TBC walk pattern described by the other two msets is equivalent to
one of the three nonequivalent patterns described here. Hence, these three pairs, running over
all m € [n,], are sufficient to describe all 10-cycles.

The formula for Ny in (19) follows from equation (7) in Theorem 16. It remains to show
that |[W(10,1)| is given by (20). Since the pairs X ,,, X2, with X € {A, B,C} and run-
ning over all m € [n,], are sufficient to describe all the TBC walks of length 10, we used
h,j,3,h,hyi i, 7,7, h]

the three TBC walk patterns [h, 1,4, h, h, 4,1, j, j, h] and

u,v,m,v’ u’? [ u,v,m,v’ u?

h,J,j,4,%,7, 5,9, 1, h], , o to construct all their equivalent walks. It turns out that none of
the corresponding equivalent walks has any of this three TBC walk patterns, so each repetition

is counted exactly once, and we conclude the proof. [ ]

Example 27. Let H be the parity-check matrix of the [155, 64, 20] Tanner code given by (18) in

Example 25. We use Theorem 26 to count the number of 10-cycles in the Tanner graph. For each
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m € [5], we need to construct the three pairs A ,,, Az, Bim, Ba and CY ,, Cs 1, By Theorem
26, for each pair X ,,, Xom, X € {A, B,C} and m € [5], we need to find (u, o) € X, and
(v, ) € Xo,m such that o, = a,y and u # ' for some u,u’ € [5]. A careful analysis of
these msets shows that, for each pair, we obtain 8 repetitions of this type. This implies that

W (10,1)| = 35 - 8 = 120. Therefore, Vi = [W(10,1)| - N = 120 - 31 = 3720. 0

It is well known that the girth of a QC-LDPC code based on the fully-connected (all-ones)
protograph is upper bounded by 12 [33], meaning that the existence of an inevitable cycle of
length 12 is independent on the selection of circulants. Following the same strategy as before,

we obtain the following list contains all 13 nonequivalent TBC walk patterns, with indices

H,B = [.]u,v,w,w’,v/,u’:

[h,7,7,%,4,h, h,i,i, 7,7, h]ﬁ, [h, 7,4, h,h,i,i,h b, g, g, h]ﬂ, [h, 7,4, h,h, 3, 7,4,4, 7, 4, h]ﬂ,
[h,7,7,%,4,h,h, 7, 7,11, h]ﬁ, (h, 7,4, h,h, 1,0, 7,7, 1, h]ﬁ, (h,7,4,4,%, 7,7, ,1, 7, ], h]ﬁ,
[hyi i, hyhyi, i, hy by, h]ﬁ, [h,1,1,7,7,%,%, ], 7,11, h]ﬁ, [i,7,0,0,0,9,7,%,%, ], J, i]ﬁ.
[h,i,i,h,h,i i h,h,j, 7, h]ﬁ, [hyiyi, hyh, g, 5,01, 7, 7, h]ﬂ,

[h,i,1,h,h,i,1,7,7,1,1, h]ﬁ, h,j,5,h,h, 5,9, h, b, 7,7, h]ﬁ,

In the following theorem, we rewrite these conditions in a way that is helpful to count 12-cycles

in the Tanner graph.

Theorem 28. Let H be as in (10) and, for u,v,w € [n,| with u # v, v # w, consider the

following msets

Ary = {(u,v,w, [h,5,5,%,4, k], 4, )} As2 = {(w,v,w,[h,4,4,5, 5,4y 4 0) ) Ao = {(w,v,w,[h, 5,5, 7, R, Gl )}
A2 = {(u,v,w,[h, 5, 5, 4,4, 8], 4, ) ) As1 ={(uw,v,w,[h, j,5,h, hyil,, )} Avo2 = {(u,v,w, (B4, 5 by Byl 4 0) )
Az = {(u,v,w, [k, §, 5,1,4,h], , )} As,2 = {(u,v,w, [k, 5,5, h, hyd], )Y A = {(w,v,w, [R5, 5, R b Gl 0 0) t
Az2 = {(u,v,w, [k, 4,4, 5,5, k], 4 )} Arn = {(w,v,w,[h, 5,5, hy hyily 4, )} Arre = {(w,v,w,[hy 5,5, 8,4, 5]y 4 00 )
Az 1 = {(u,v,w, [h, 1,1, h, h, i]u’v’w)}, A7 o = {(u,v,w,[h,i,i,j,j,i]um’w)}7 A12,1 = {(u,v,w, [h,j7j,i,i,j]u’v’w)}7
As2 = {(u,v,w, [h, i, 4, hy hy i, 4, )} Asg,1 = {(u,v,w, [h, 4,4, 5, 5,4, » )} Ar2,2 = {(u, v, w, [h, §, 5,4, 514 4 )}
As1 = {(u,v,w,[h,i,i,h,h, i]um’w)}, Ago = {(u,v,w,[h,i,i,j,j,i]uw’w)}, Ai3,1 = {(u,v,w, [i,j,j,i,i,j]uﬂv’w)},
As o = {(u,v,w, [h,j,j,h,h,i]u’vﬂﬂ)}7 Ag1 = {(u,v,w,[h,i,i,h,h,j}u’v,w)}, Ai3,2 = {(u,v,w, [i,j,j,i,i,j]uyvﬁw)}.
As1 = {(u,v,w, [h, 3,4, h, h, i, ,, )} Ag2 = {(u,v,w,[h, 5,5, 8,5 5]y 4 00)
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Let (u, v, W, Qyp) € Arq and (W, V', W', 0y ) € A1 o be such that auy . = Qo . Then
this repetition ov, .. = uy v lifts to a collection of 12-cycles in the Tanner graph if u # u’
and w # w'. The same result follows if the pair A, 1, A1 is replaced by any of the other pairs.
Moreover, these pairs are sufficient to describe all 12-cycles. The total number of 12-cycles in

the Tanner graph, Ns, is given by

where W (12,1) is the set of all nonequivalent TBC walks associated to the repetitions in the
msets above, and W (4,3) and W (6, 2) are the sets of all nonequivalent TBC walks of length 4
and 6, respectively, having permutation shift of order 3 and 2 in Zy, respectively. The cardinality
of W(12,1) is given by

1 N x 1 1 1 1
’W(127 1)' = §RA1,1,A1,2 + RA2717A272 + RA3717A372 + §RA4,1,A4,2 + 57?'145,1,145}2 + 57—‘)'146,1,146,2 + ERA7,1,A7,2

1 1 1 1
+ §RA8,17A8,2 + 57—‘)'149,1,149,2 + Rjrm,l,Aloyg + §RA11,1,A11,2 + ERA12,17A12,2 + Rz*lg,l,Alg,zv
(22)
where Rx, x, is the number of repetitions o, ., = Q. o between the msets X, and X, the

coefficient of each Rx, x, is coming from the number of equivalent walks for the corresponding

TBC walk pattern, Ry, | 4, , is given by

1
* ke T nc
Az 1,A22 RAQ,LAQ,Q + 2RA2,1,A2,2’ (23)

*C *NC .. o
R, 1 4y, and R, 4, , are the numbers of repefifions cyyw = Ou v between the msets As
and A, satisfying, and not satisfying, the conditions ' = w, v' = v and W' = u, respectively,

)k : o
R¥, x, is given by

K3k 1 **C 1 **NC
Xl,XQ = §RX17X2 + ERXMXQ’ (24)

and, RY x, and RY ", are the numbers of repetitions iy y. = Qv between the msets
X1 and X5 satisfying, and not satisfying, the conditions v' = v, v = u = w and W' = v,

respectively.

Proof: To show that a repetition in any of these pairs lifts to a collection of 12-cycles in
the Tanner graph, we proceed as before. Consider a repetition in the pair A; 1, A; o, so there are

P L L
u, v, w,u’, v, w' € [n,] such that . yw = [h, J,3,4,9, h], 4 4o Quwrwr = [R5, 53,3, By 0 and
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Quw = Qe i Zy. Then this is equivalent to [h, 7, 7,4,4, h, h,i,1, j, ], h]uw’w,w,,v,’u, =0in
Zy . To guarantee that this permutation shift represents a TBC walk, additionally to the conditions
u # v and v # w, and v’ # v' and v' # w' required in the construction of the msets A, ; and
A, o, respectively, we need to ensure that u # u' and w # w’. By Theorem 10, this TBC walk
lifts to a collection of 12-cycles. The same approach works for the remaining pairs. The proof
that these msets are sufficient to describe all 12-cycles was addressed before the statement of

the theorem.

The formula for N7, in (21) follows from equation (7) in Theorem 16. It remains to show that
|W(12,1)] is given by (22). If for each nonequivalent TBC walk pattern we find the equivalent

walks, then we obtain the following:

I

h7 ‘7 ‘7 Z.’ 7:7 h? h7/l:7 /1:7 .7 ‘7h Y B E u? /U7 w7 w/7/U/’ ul ) ul7v,7 w/7w71}7u
JsJ s Jyhlg

}
9 ‘7 ‘7 '7 ‘7 9 9 ‘7 .7 '7 ‘7 J 7 9 9 /7 /7 ! 9 /7 /7 I? J ? ;

[h]j@@hh]jzzh]ﬁ B e {(u,v,w,w v u"), (W, v v uv,w)}

[hyiyiy by by by hyisishl g, Be {(u,v, w0, 04, (w,w', o' ul s u,v), (00 u,0,w,w0),

(v, u, v’ 0" W' w), (W w, v, u, w0, (W 0w w, v u) b

!/

I

[h’?i??’-?h? h/72'77/-7 h? h?j?j? h]ﬁ’ 5 E {<U7U7w7w/7vl7u,>7(w/7w7v7u’ul7v

)
[h7 /1:7/[:7 h? h’7/i7 i?j7j7 /1:7/[:7 h]ﬁ? /B E {<u7/l)7w7 w/7/U/7 ul)?(/U7 u? u/7/U/7w,7 w) Y

I

[h7j7j7 h7 h7,[:’ 7:7 h7 h?j?j? h:lﬁ? 6 6 {(u7v7w7w/7vlﬂ ul)? (ul7v,7w/7w7v7u)

I

[h7j7j7 h? h7i77;7j7j7i77;7h]ﬁ’ 5 E {<U7U7w7w/7vl7u,>7 (/U7u7u/7/0/7w/7w

)
[h7i7i7j7j7i7i7j7j7i7i7h] Y /8E {<u7/l)7w7w/7/l}/7u/>7(U/7U/7w/7w7v7u) Y
B

I

}
}
}
}
}
}

[h7i’ /1:7 h? h’j7j7i7 i’j’j? h]ﬁ’ 5 6 {(u7 U’ w’ w/7U/’ ul)? (U7 u’ u/7?j/7w/’ w)
[h7j7j7 h7 h7j7j7 h7 h7j7j7 h]ﬁ’ ﬁ E {<u7v7w7wl7vl7u/>7(w7wl7 UI? ul7u7 ’U)’('U/, 'L[//’ u7 v’ w7 wl)’
(v, u, v, 0w w), (W w, v, u, w0, (W 0w w, v u) b
[h’j7j7 h7 h7j7j7i7 i?j’j’ h]ﬁ’ 5 6 {(u7v7w7w/7vl7u/)7(v7u’ u/7?‘}/7w/’ w)};
[h7j7j7?:7 Z’?j’j7i7 i’j?j? h]ﬁ’ 5 E {<U7U7w7wl7vl7u/>7(ul7v/7wl7w7v7u)};
Z’7 .7 .7 i77:7 .7 .7 7:7/L.7 .7 '7/[: ) 6 E u7 U? w7 w/’/l}/7 u/ M w7w/7 Ul’ u/7u7v ) Ul’ u/7 u7 U7 w7 w, ;
(i, 7, 4,4,%, 4,34, 4, 3, J, i) 5

/ / / / / / / / /
(v, u, v, v W w), (W w, v, u,u’ "), (W, 0w w, v, u)
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Recall that once we choose a TBC walk pattern 1/ having permutation shift [W]W’w’w,,y,’u,,
we need to impose the conditions u # v, v # w, w # w', W' # V', v # /, and v # u to
make it a TBC walk. For the pair A,, 1, A,,» with m € {1,6,8,12}, the two tuples of indices
(u,v,w,w' ;v ,v') and (v, v, W', w,v,u) are always distinct, otherwise we will have v’ = u and
w’ = w. Hence, every TBC walk having this TBC walk pattern is always counted twice. The
same situation happens in the following pairs and tuples of indices:

o pair Ay, Ay and tuples of indices (u,v,w,w’, v, '), (W', w,v,u,u’,v"); and

e pair A, 1, Ao withm € {5,7,9, 11} and tuples of indices (u, v, w,w’, v, u'), (v, u, v, v', W', w).
For the pair Aj 1, As 5, the two tuples of indices (u, v, w,w’,v’,u') and (w', v, v, u, v, w) are not
always distinct. There are two possible scenarios: either ©' = w, v" = v and w’ = u, which gives
only one distinct tuple, or the two tuples are distinct. The total contribution coming from the first
scenario is taken as it is, and the total contribution coming from the second scenario should be
divided by 2. The case is different for the pairs As 1, A3, Aj0.1, A102 and A;31, Ai32. The six tu-
ples (u, v, w, w’ V', u'), (w,w', v v u,v), (v, v, u,v,w,w), (v,u, v, 0w w), (W, wovuu, )
and (u/,v',w’, w,v,u) are not necessarily distinct. In fact, there are two possible scenarios: either
v =wv,v =wu = w and w = v, which gives only two distinct tuples, or the six tuples are
all distinct. The total contribution coming from the first scenario should be divided by 2, and
the total contribution coming from the second scenario should be divided by 6. This analysis

concludes the proof. [ ]

Example 29. Let H be the parity-check matrix of the [155,64,20] Tanner code given by (18)
in Example 25. We use Theorem 28 to count the number of 12-cycles in the Tanner graph.
Our computations show that R, , 4,, = 110, R}, 4,, = 0+ £(110) = 55, Ry Ase =
1(0) + %(180) = 30, Ray1,45, = 130, Ragy,45, = 150, Rag,, 46, = 150, Ra,; 4., = 110,

2

RA8,17A8,2 = 130, RAg,l,A9,2 = 110, Rtl*lo,l,Amg = %(O> + %(180) = 30, 7—‘)’/111,171411,2 = 130,
Rarmrdiss = 150, R, a,, = 3(0) + £(180) = 30. Hence, [W(12,1)| = 3(110) + 55 + 30 +
1(130) + 1(150) + 1(150) + £(110) + 1(130) + 3(110) + 30 + 1(130) + 3(150) + 30 = 730.
Therefore, Mo = |[W(12,1)| - N = 730 - 31 = 22630. O

Remark 30. The Tanner graph of a QC-LDPC code based on the n. x n, fully-connected
protograph, with 2 < n,. < n,, has girth at most 12 [33]. Hence, equation (7) can be used

to count cycles of length up to 22. For space constraints, we are not including the analysis to
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determine N with k& = 14,16, 18,20, 22, although similar expressions and algorithms can be

obtained in the same way. 0

V. COMPLEXITY

In this section, we determine the complexity of our approach and compare it to other results in
the literature. Let H be the parity-check matrix of a QC-LDPC code given in (10) and let N be
the lifting factor. The following analysis is performed for the 3 x n, fully-connected protograph,
but it is not difficult to see that a generalization of our strategy for the n. x n, fully-connected
protograph, with n. > 3, having Theorem 18 as a reference, involves the same complexity, with
the exception that more msets should be calculated.

In Theorem 18, to count the number of 4-cycles in the Tanner graph, we need to construct

the (”2) = % msets A, = {lim — lvm | m € [n]}, © < ¢, and check for repetitions in

(no—1)ny

each one of them. Since each mset has n, elements, it is sufficient to do 5

comparisons
in each one of them. This implies that the complexity of determining N is O(n?log(N)).

To count the number of 6-cycles in the Tanner graph using Theorem 21, we need to construct
one pair of msets Ay, = {(I,hy — i, + i) | L € [n),1 # m} and Ag,, = {(l,hy — Ji + i) |
[ € [ny],l # m}, for each m € [n,]. Both msets A, and A,,, have n, — 1 elements. If
(l,u) € A1y and (I, ap) € Ay, for some 1" € [n,], we are interested in repetitions a; = oy
such that [ # [’. This implies that the complexity of determining N is O(n?log(n,)log(N)).

To determine the complexity of counting 8-cycles in the Tanner graph, we proceed as before
and use Theorem 24 and, in particular, equations (15) and (16). In this case, we need to construct
the six pairs X, Xy in Theorem 24. Each one of these msets has n,(n, — 1) elements. If
(U, v, ) € Xy and (0,0, ayy ) € Xy for some u, v, u',v" € [n,] with u # v and «’ # v, we
are interested in repetitions v, = o, such that v # v’ and v # v’. The equation in (16) impose
the additional requirement to verify, in the worst case scenario, whether v/ = v and v' = u is
true or false. Combining all of this, the complexity of determining N is O(n?log*(n,) log(N)).

To count the number of 10-cycles in the Tanner graph, we use Theorem 26. In this theorem,
we need to construct three pairs X ,,,, X, with X € {A, B, C'}, running over m € [n,], and
check whether for elements (u, o) € X1, and (v, ay) € X, with u, v’ € [n,], we have that
u # u' and o, = auy. Once a value for m is chosen, there are two indices required to construct

both «, and «,s. The complexity of determining Ny is, in consequence, O(n? log(n,)log(N)).
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Theorem 28 and, in particular, equations (21) and (22), are used to count the number of 12-
cycles in the Tanner graph. In this case, we need to construct the thirteen pairs of msets X, X5
given in the statement of the theorem. For u, v, w, v, v, w" € [n,], we want to identify tuples
(U, v, W, Q) € Xy and (v, V', W', a4y ) € Xo such that u # v, v # w, v # v/, v # W'
and vy = . TO construct each v, .., and o, ., We need to choose three indices.
The worst case scenario happens when determining the value RY, y, in equation (22), where
we need to check whether v/ = v, v/ = v = w, and w’ = v is true or false. When combined,
this has complexity O(nSlog®(n,,)log(N)).

Although omitted for space constraints, an argument similar to the analysis above can be used
to conclude that the complexity of determining NV}, is upper-bounded by O(nqlf/ >“og(n,) log(N))
if k = 14, 18 and 22, and O(nff/2 log"?(n,) log(N)) if k = 16 and 20. We recall that the reason to
limit our analysis to k£ < 22, in the case of the fully-connected protograph, follows from Lemma
11 and Remark 30. For the general case, if the protograph is any graph described by the base
matrix B = <bij)ncmv’ where we allow the protograph to be a multi-edge graph, a similar analysis
can be used. The weight of the ith row of B, denoted by Bioy(s), 18 given by By ) = > €[] bij.
Let w0y denote the maximum row weight of B, S0 Wy = maxcpy, {Bmw(i)}. In the worst-case
scenario, the complexity of determining N}, k < 2g, is given by O(wff)/w2 108%/2 (W ) log (V).

To show how fast we can calculate the number of k-cycles, NV, in the Tanner graph of a QC-
LDPC code, we include some tables. Table I shows the number of k-cycles for the parity-check
matrix H in Example 25 for lifting factor N. For the same parity-check matrix H, in Table II, we
provide the time taken to count the number of k-cycles using our algorithms. The computations
were done using SageMath [34] in a MacBook Pro (13-inch, 2018, Four Thunderbolt 3 Ports)
with a 2.3 GHz Quad-Core Intel Core 15 processor and 16 GB 2133 MHz LPDDR3 of memory.

VI. COUNTING CYCLES: A MULTI-EDGE PROTOGRAPH

In Section IV, we analyzed how to count the number of k-cycles, 4 < k < 12, in a Tanner
graph lifted from the fully-connected (all-ones) protograph using a description of the TBC walks
in the protograph. The strategy of using the TBC walks to count k-cycles in the Tanner graph

only works when k£ < 2g. In this section, we apply this strategy to an irregular protograph.
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TABLE I

NUMBER OF k-CYCLES, N, FOR H IN EXAMPLE 25 FOR LIFTING FACTOR N.

k
N
4 6 8 10 12

5 25 55 — — —

10 10 50 — — —

15 30 45 — — —

20 0 20 630 3540 —

25 0 25 600 3575 —

31 0 0 465 3720 22630
50 0 0 550 3600 22275
75 0 0 825 4650 26475
100 0 0 1100 6200 35100
125 0 o0 1375 7750 43875
150 0 0 1650 9300 52650
175 0 0 1925 10850 61425
200 0 o0 2200 12400 70200
500 0 o0 5500 31000 175500
1000 0 0 11000 62000 351000

Fig. 1. [Irregular protograph in the CCSDS standards.

Consider the QC-LDPC code having parity-check matrix A given by

(1447 x? x4 20 0 1 13 1]
28 1421 1 x 1 0 1
H = , (25)
xt T 14 21 x4 211 0 28
1 x x? 1+2% 2% =z 1 0]

and lifting factor N = 16. This code has parameters [128,64, 14] and is obtained by lifting the

irregular protograph in Figure 1. It is part of the Consultative Committee for Space Data Systems
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TABLE II
TIME TAKEN TO COUNT THE NUMBER OF k-CYCLES, N}, FOR H IN EXAMPLE 25 FOR LIFTING FACTOR N USING OUR

APPROACH.

5 84.4 us 252 us - - -

10 83.4 us 244 us - - —

15 86.6 us 246 us - - —
20 86.0 us 247 pus 285 ms 5.01 ms —
25 86.8 us 246 us 278 ms  4.96 ms —

31 8.5 pus 246 us 277 ms  5.18 ms  63.1 ms
50 88 us 244 pus 297 ms  5.06 ms  64.2 ms
75 85.1 us 247 pus 257 ms 508 ms 64.4 ms
100 84.6 us 252 pus  2.82ms 5.02ms 65.0 ms
125 85.7 us 246 us 277 ms 497 ms 64.3 ms
150 86.7 us 244 us 297 ms 502 ms 64.6 ms
175 83.1 us 244 us 288 ms 503 ms 63.9 ms
200 877 us 247 us 293 ms 5.06 ms 64.1 ms
500 88.0 us 254 us 3.03ms 525 ms 65.5 ms
1000 || 87.5 us 257 pus 3.04ms 5.16 ms 65.0 ms

(CCSDS) standards [2]. We can write a general version for the parity-check matrix H in the

following way

xh 4 ghe xhs xha xhs 0 ghe ght ghs
xh x4 g’ xh x's 0 gt s
H = . . . 4 . . . - (26)
x.]l x]2 x]S + x]‘l :L’.]5 l'JG :L‘]7 0 x]s
xk xk2 xks ks 4 ghs ghe gkt ks

Since we are interested in studying the cycle structure of this protograph, we will apply the
same strategy used in Section IV. To do this, we use again Theorem 2 and the product HH'.

Notice that HH T = 81 + C}y, where the entries (C’H)ij of the matrix C'y are given by
e
(CH>12 — (OH); = gi—a 4 phe— T phs—i2 + phs—is + pha—ia 4 phs—is i phr—ir 4+ xhsfiz@,
(OH>13 — (CH); — i 4 =i 4 phs—iz 4 pha—Js 4 pha—ja + phs—s 4 phe—ir 4 xhs—js7
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T h1—k ho—k h3—k ha—k hs—k hs—ks he—k hr—k
(CH>14:(OH)41:551 1y ghe=R 4 phe=he | pha—ks 4 pho—Ra 4 pRs—hs | p6—RT 4 nh7 87
(CH)gy = 27" + 2877,

T . o o o o . o o
(CH)32 = g o plemiz 4 pisTiz 4 glamis 4 plamia 4 gds—is 4 pde—ie 4 s s

Q

=

g
[

T o o o L o - o o
(OH>24 — (CH)42 — itk 4 g2 k2 4 ogis k2 4 gl k3 +opls k4 4ol ks 4 gle ke 4 gt ks)
(CH)53 = pJs—Ja + pJa—I3

: Y

T o o o . . . o .

(CH>34 — (CH)43 — pii—hk 4 ogle k2 RpWE k3 e ks 4 ogds k4 4 gls ks 4 s ke + 7 k7’
(CH> — pka=ks + rhks—ka

44 — :

As we discussed before, girth(H) > 4 if and only if HHTAI = 0. If there is a repetition in
one of the msets of exponents of C;;, some 4-cycles may appear in the Tanner graph depending
on where the repetitions are coming from. For example, in entry (C'y),, there are two exponents
describing two walks, h; — hs and hy — by, so we obtain only one possible TBC walk of length
4 (formed by combining the first walk and the reversal of the second one) having permutation
shift given by hy — hy + hy — ho. If we consider the entry (C'y),,., it has eight exponents, hy — iy,
hy — i1, hs — 19, hg — 13, hy — 14, hs — 15, hy — 17 and hg — 5. However, the combination of two
of them does not guarantee the appearance of 4-cycles in the Tanner because they may not be
describing a TBC walk in the protograph. For example, combining h; — 4 and hy — 41 gives a
walk of length 4 having permutation shift h; — iy + i1 — hs, which is not a TBC walk because
the circulant 2% is traversed twice (in opposite directions) consecutively in a row. If the second
walk is hg — 17 instead, then we have a TBC walk with permutation shift h; — ¢; + 7o — h3
that lifts to a collection of 4-cycles in the Tanner graph if its value is O in Zy. There are 160
nonequivalent TBC walks obtained in this fashion and we use them to count 4-cycles in the

Tanner graph.

Theorem 31. Let H be as in (26). Then there are 160 nonequivalent TBC walks of length 4.
These TBC walks are sufficient to describe all 4-cycles in H. The set W (4,1) is the collection
of those TBC walks « in this list with o = 0 in Zy. Hence, the total number of 4-cycles in the

Tanner graph, N, is given by
Ni=|W(2,2)]- N/2+ (W4, 1)] - [W(2,2)]) - . @7
Proof: The 160 nonequivalent TBC walks of length 4 are easily obtained by combining
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exponents in the entries (Cp), ; above. The facts that these TBC walks are sufficient to describe
all 4-cycles in H and that any of them being O lifts to a collection of 4-cycles in the Tanner
graph follows from the strategy used in Section IV. The formula for A in (27) follows from

equation (7) in Theorem 16, and we conclude the proof. [ |

Remark 32. There is a noticeable difference between the formulas in (9) and (27) for the
number of 4-cycles, Ny, in the cases of the fully-connected (all-ones) protograph and the irregular
protograph in this section, respectively. In the first case, we cannot have a TBC walk of length
2 in the protograph because any pair of check and variable nodes have at most one edge joining
them. This requires any TBC walk to have length at least 4 taking into account that the protograph
is a bipartite graph. In the second case, it is possible to have a TBC walk of length 2 since there

are some pairs of check and variable nodes with two edges joining them. ([l

Example 33. Let H be as in (25) and let the lifting factor be N = 16. Then H has girth 6, so
the number of 4-cycles, Ny, is 0 and we can verify this in the following way. Some computations
show that there are no TBC walk of length 2 having permutation shift of order 2 in Z,g4, and that
none of the TBC walks of length 4 described in Theorem 31 have permutation shift O in Zq4.
Hence, the number of 4-cycles, N, in the Tanner graph is Ny = |W(2,2)]-16/2+ (|W(4,1)] —
W(2,2)])-16=0-16/2+ (0 —0) - 16 = 0. U

In the following example, we apply the strategy used before to count k-cycles, £ > 4, in
another parity-check matrix H based on (26). The formulas for N} should be adapted for the
irregular protograph as we did in (27).

Example 34. For lifting factor NV = 64, consider the parity-check matrix [ given by

'1 4 263 230 250 225 0 % 262 1
256 1+ 261 250 23 1 0 237 226
H =
.2516 1 1 + 33'55 1.27 .2556 1 O .%'43
235 256 262 1421l 258 23 1 0

This matrix has girth 6 and we use the strategy used before to count the number of k-cycles,
6 < k < 12, in the associated Tanner graph. To count 6-cycles, it is enough to count the number
of TBC walks of length 6 having permutation shift O in Zg,. The permutation shifts of these
TBC walks are:

September 12, 2023 DRAFT

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 19,2023 at 18:58:15 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Journal on Selected Areas in Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2023.3315585

32

h4 — ja + j1 — k1 + k7 — he, hg — jg + ja — k3 + ks — hs, h3 — j2 + jo — ke + k1 — ha, i — j6 + j7 — k7 + k2 — i3,
hg — js + j2 — k2 + k1 — ha, h7 —i7 +1i5 — j5 + js — hs, ha —i4 +is — js + j1 — ha, J2 — ko2 + kg — ks + k7 — jr.
ha —j1 +ja — ks +kr —hs, hi1—ki+ks—ks+ k7 — he, i3 — 2 + 144 — J3 + jg — is,

hs — j2 + ja — j3 + js — hs, hy — i1 +1i6 — ke + ks — hs, i1 —J1+ g7 — k7 + ks — i,

Since these expressions are congruent to 0 modulo 64, and there are 14 of them, then there are
Ng =14 -64/1 = 896 6-cycles in the Tanner graph.

An 8-cycle in the Tanner graph projects onto a TBC walk of length 2 with permutation shift
of order 4 in Zg, (traversed four times), onto a TBC walk of length 4 with permutation shift of
order 2 in Zg, (traversed twice) or onto a TBC walk of length 8 with permutation shift O having
no subgraph of smaller length with permutation shift 0. There is no TBC walk of length 2 with
permutation shift of order 4 in Zgy. There are three TBC walks of length 4 with permutation
shift of order 2, and these are h3 — jo + j5 — hs, i1 — j1 + je — i¢ and i3 — ko + kg — i7. These TBC
walks contribute 3-64/2 = 96 8-cycles in the Tanner graph. There are 539 TBC walks of length
8 with permutation shift 0, including the double traversal of the three TBC walks of length 4,
so there are 536 TBC walks contributing (539 — 3) -64/1 = 34304 8-cycles in the Tanner graph.
Hence, the total number of 8-cycles in the Tanner graph is Ng = 96 + 34304 = 34400.

A 10-cycle in the Tanner graph can only project onto a TBC walk of length 10 with permutation
shift 0. There are 9142 of these TBC walks, so the total number of 10-cycles in the Tanner graph
is Mo = 9142 - 64/1 = 585088. O

VII. CONCLUDING REMARKS

This paper discusses an efficient strategy to count cycles in the Tanner graph of arbitrary QC-
LDPC codes. We use some results on graph covers involving the images of cycles in the Tanner
graph and the preimages of tailless backtrackless closed walks in the protograph to provide closed
formulas for the number of k-cycles, N}, by just taking into account repetitions in some msets
constructed from the matrices B,,(H). Our strategy has been shown to reduce the complexity of
determining N}, giving our approach a significant advantage over previous works on the cycle

distribution of QC-LDPC codes.
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APPENDIX

Algorithm 1 shows how we use Theorem 21 to count 6-cycles in the Tanner graph of QC-
LDPC codes based on the 3 x n, fully-connected protograph. Let V'[k] denote the kth element

in the list, set or tuple V. Indexing starts with O.

Algorithm 1 Counting 6-cycles
Input: Exponents in polynomial parity-check matrix (10), n,, V.

Initialize W5, = 0.
for m=0ton, —1do
Ay —{(Lh =i+ i) | L € [ny], 1 #£m}
Ag i =l he = i+ Jm) | L € [ny], 1l #£m}
fora =0ton,—1do
for 6=0ton,—1do
if « # 5 and Ay ,,[a][1] == A2, [F][1] then
We 1+ =1
else
continue

return We ;- N

This algorithm can be easily adapted to count longer cycles using the results of this paper.

We do not include them for space constraints.
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