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Abstract

Measurements of the inclusive and differential fiducial cross sections for the Higgs
boson production in the H — ZZ — 4¢ ({ = e, u) decay channel are presented.
The results are obtained from the analysis of proton-proton collision data recorded
by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, cor-
responding to an integrated luminosity of 138 fb™ . The measured inclusive fiducial
cross section is 2.73 4= 0.26 fb, in agreement with the standard model expectation of
2.86 + 0.1fb. Differential cross sections are measured as a function of several kine-
matic observables sensitive to the Higgs boson production and decay to four leptons.
A set of double-differential measurements is also performed, yielding a comprehen-
sive characterization of the four leptons final state. Constraints on the Higgs boson
trilinear coupling and on the bottom and charm quark coupling modifiers are derived
from its transverse momentum distribution. All results are consistent with theoretical
predictions from the standard model.
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1 Introduction

The discovery of the Higgs (H) boson in 2012 by the ATLAS and CMS Collaborations [1-3] is
a major confirmation of the correctness of the theoretical approach involving the electroweak
(EW) symmetry breaking mechanism [4-9]. Subsequent measurements of the properties of this
particle [10-13], including its mass, quantum numbers, and couplings, further confirmed the
consistency of these measurements with the standard model (SM) predictions.

The H boson decay into four charged leptons (H — ZZ — 4/, { = e, ), with its fully re-
constructible final state and large signal-to-background ratio, has been one of the pillars for the
characterization of this particle since its discovery. Several properties of the H boson were mea-
sured in this decay channel at the CERN LHC, based on the Run 1 data set at center-of-mass
energies of 7 and 8 TeV and on the Run 2 data set at 13 TeV. These include the determination
of its mass, spin and parity [14-19], width [20-23], inclusive and differential fiducial cross sec-
tions [18, 24-28], and tensor structure for interactions with a pair of gauge bosons [17, 19, 21, 29—
31]. The most precise value of the H boson mass to date, measured by the CMS Collaboration,
is myy = 125.38 +- 0.14 GeV, obtained from the combination of the H — ZZ — 4/ and H — v
decay channels from the analysis of the Run 1 and 2016 Run 2 data sets [32]. From the analysis
of the full Run 2 data set, the CMS Collaboration reported the first evidence for the off-shell H
boson production in events with a final state of two Z bosons decaying into either four charged
leptons, or two charged leptons and two neutrinos, with a measured value of the H boson
width of I'y = 3.2"37MeV [33].

The H boson production is often experimentally characterized via the so called simplified tem-
plate cross section (STXS) framework, which defines mutually exclusive phase space regions
designed to maximize the experimental sensitivity to physics beyond the SM (BSM) effects and
reduce, at the same time, the theoretical model dependence in the measurements [34]. The
ATLAS and CMS Collaborations published results of cross section measurements in the STXS
framework using the full Run 2 data set in the H — ZZ — 4/ [27, 35] and other decay chan-
nels [36—42]. The ATLAS and CMS Collaborations recently published results obtained from the
combination of all the decay channels focusing on measurements of simplified template cross
sections (STXS) [43] and H boson couplings [44], respectively.

Fiducial cross section measurements constitute a complementary approach for the characteri-
zation of the H boson production and decay that provide a set of less model-dependent results
by unfolding detector effects from the data, thus allowing a direct comparison with state-of-
the-art theoretical predictions. The ATLAS and CMS Collaborations published fiducial cross
section measurements in the H — <y [45,46], H — WW [47-49], and H — ZZ — 4/ [28, 35]
decay channels using the full Run 2 data set. The CMS Collaboration also published results
in the H — 77 [50] decay channel, while the ATLAS Collaboration presented results from the
combination of the H — vy and H — ZZ — 4/ decay channels [51].

This paper presents measurements of inclusive and differential cross sections for the H boson
production in the H — ZZ — 4/ decay channel using data from proton-proton (pp) collisions
recorded with the CMS detector at the LHC in 2016-2018 and corresponding to an integrated
luminosity of 138 fb!. To reduce the model dependence, all the measurements are performed
within a fiducial phase space region defined to closely reproduce the experimental acceptance
and reconstruction-level selection criteria.

Differential cross sections are measured for several kinematic observables sensitive to the H
boson production and its decay into four leptons, providing a complete characterization of this
channel and coverage of the entire fiducial phase space. This includes the measurement of six



double-differential cross sections. Fiducial cross sections are also measured in bins of matrix
element kinematic discriminants sensitive to possible anomalous couplings of the H boson to
vector bosons. This provides a valuable test of the SM predictions and may reveal possible
BSM physics.

The analysis builds upon the methods used in previous measurements of H boson properties
in the four-lepton decay channel [25, 35], featuring the latest CMS Run 2 calibrations and a re-
duction by ~ 40% for the leading systematic uncertainty in lepton reconstruction and selection
efficiencies.

The measurement of the fiducial cross section in bins of transverse momentum pr of the H

boson (p?) is also used to set constraints on the H boson trilinear self-coupling and on the cou-
pling modifiers of the H boson to b and ¢ quarks. The CMS Collaboration recently reported
constraints on the H boson self-coupling from the combination of several decay channels using
the full Run 2 data set [44]. These constraints are obtained from the interpretation of the STXS
results, while in this paper an alternative and complementary approach using differential cross
section measurements is explored. The ATLAS Collaboration set limits on the coupling mod-
ifiers of the H to b and ¢ quarks from the combination of the H — ZZ — 4¢ and H — v
decay channels using the 20162018 Run 2 data set [51]. The CMS Collaboration reported simi-
lar results using the 2016 Run 2 data set and combining the H — ZZ — 4/ and H — 7y decay
channels [52]. The constraints derived from the analysis presented in this paper supersede the
ones reported for the H — ZZ — 4/ channel in Ref. [52].

This paper is organized as follows. The CMS detector is briefly described in Section 2. The
data set used is presented in Section 3, along with a description of the simulated signal and
background samples. The event reconstruction techniques and the selection criteria used to
identify H boson candidates are outlined in Section 4. The definition of the restricted phase
space region where the differential cross sections are measured is given in Section 5. A complete
description of all the kinematic observables, with a particular emphasis on matrix element
discriminants, is presented in Section 6. The background modeling is presented in Section 7.
The signal modeling and the statistical procedure adopted in the extraction of the inclusive and
differential cross sections are presented in Section 8. The systematic uncertainties that affect the
measurement are described in Section 9. The results of the analysis and their comparison to the
SM expectations are outlined in Section 10. In Section 11 the measurement of the fiducial cross

section in differential bins of p? are used to set constraints to the trilinear self-coupling of the H
boson and to its couplings with charm and bottom quarks. A summary highlighting the main
findings of the analysis is given in Section 12.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scin-
tillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. For-
ward calorimeters extend the pseudorapidity (17) coverage provided by the barrel and endcap
detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return
yoke outside the solenoid. The electromagnetic calorimeter consists of 75848 lead tungstate
crystals, which provide coverage in pseudorapidity || < 1.48 in a barrel region (EB) and
1.48 < || < 3.0 in two endcap regions (EE). Preshower detectors consisting of two planes of
silicon sensors interleaved with a total of three radiation lengths of lead are located in front of



each EE detector. The hadron forward (HF) calorimeter uses steel as an absorber and quartz
fibers as the sensitive material. The two halves of the HF are located 11.2 m from the interaction
region, one on each end, and together they provide coverage in the range 3.0 < || < 5.2. They
also serve as luminosity monitors.

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of approximately 100 kHz within a fixed latency of 4 us [53]. The second
level, known as the high-level trigger (HLT), consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1 kHz before data storage [54].

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in the
event, evaluated using tracking information alone, as described in Section 9.4.1 of Ref. [55].

The electron momentum is estimated by combining the energy measurement in the ECAL with
the momentum measurement in the tracker. The momentum resolution for electrons with
transverse momentum pt ~ 45GeV from Z — ee decays ranges 1.6-5%. It is generally better
in the EB than in EE, and also depends on the bremsstrahlung energy emitted by the electron
as it traverses the material in front of the ECAL [56, 57].

Muons are reconstructed with detection planes made using three technologies: drift tubes,
cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in
the silicon tracker results in a relative py resolution, for muons with p up to 100 GeV, of 1% in
the barrel and 3% in the endcaps. The pt resolution in the barrel is better than 7% for muons
with pr up to 1 TeV [58].

A more detailed description of the CMS detector, together with the definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [59].

3 Data and simulated samples

This analysis is based on proton-proton collisions recorded by the CMS experiment at the LHC
in 2016, 2017, and 2018, corresponding to integrated luminosities of 36.3, 41.5, and 59.8 b1
respectively [60-62].

Candidate events are selected offline from leptons passing loose identification and isolation re-
quirements [56, 58], following the online selection based on dielectron, dimuon, and electron-
muon HLT algorithms. The various lepton py thresholds used in the online selection for each
data-taking period are reported in Table 1. Additional triggers that require three leptons with
lower pr thresholds and no isolation criteria, as well as single-electron and single-muon trig-
gers, are used to increase the efficiency. Events selected with the single-lepton triggers are used
to measure the trigger efficiency by means of the “tag-and-probe” technique [63], following the
strategy of Ref. [35]. A “tag” lepton is defined as a lepton that matches geometrically a can-
didate from the single-lepton triggers, whereas the other leptons are used as “probes” and are
combined together to form any of the triggers. The overall trigger efficiency measured in data
is larger than 99% and is in agreement with that estimated from simulated samples.

Signal samples are simulated at next-to-leading order (NLO) in perturbative quantum chro-
modynamics (pQCD) using the POWHEG 2.0 [64-66] generator for the five main production
mechanisms of the SM H boson: gluon fusion (ggH) [67], vector boson fusion (VBF) [68], asso-
ciated production with a vector boson (VH, where V = W, Z) [69], and associated production



Table 1: Thresholds applied on the py of the leading/subleading leptons in each data-taking
period for the main dielectron (e/e), dimuon (3 /), and electron-muon (e/y, u/e) HLT algo-
rithms.

e/e(GeV) wu/u(GeV) e/u,u/e(GeV)

2016 17/12 17/8 17/8,8/23
2017 23/12 17/8 23/8,12/23
2018 23/12 17/8 23/8,12/23

with a pair of top quarks (ttH) [70]. Events produced via the ggH mechanism are simulated
at NLO with POWHEG 2.0 and reweighted to match the predictions at next-to-next-to-leading
order in the strong coupling, including matching to a parton shower (NNLOPS) [71] as a func-
tion of the p? and of the number of jets in the event. The gg — ZH contribution to the
ZH production mode is simulated at leading order (LO) using JHUGEN 7.3.0 [72-76]. The
ggH production mechanism is simulated at NLO also with MADGRAPH5_aMC@NLO using the
HC_NLO_X0_-UFO-HEFT model in the 5 flavor scheme [77]. The H boson is produced in asso-
ciation with 0, 1, or 2 jets in the final states, merged with the FxFx scheme. The top quark mass
is set to 173.0 GeV in the simulation, but finite top mass effects in loops are filtered out. The H
boson production in association with b quarks is not considered in this analysis as its impact
on the unfolded distributions is expected to be negligible with respect to all the other produc-
tion modes. The decay of the H boson to four leptons is modeled with JHUGEN 7.0.2. The
simulation of the various production and decay modes is based on the theoretical predictions
from Refs. [78-100], which are summarized in Ref. [34].

The main background processes originate from ZZ production from quark-antiquark annihila-
tion and gluon fusion. The former is simulated at NLO in pQCD with POWHEG 2.0 [101], while
the latter is generated at LO with MCFM 7.0.1 [102-105]. The reducible background contribu-
tion arising from the production of Z bosons with associated jets (Z+jets) is estimated with the
data-driven technique already used in Ref. [35] and described in Section 7.2.

An additional sample of Drell-Yan plus jets (DY+jets) events is produced with
MADGRAPH5_aMC@NLO 2.4.2 for validation studies and for the training of the boosted deci-
sion tree (BDT) used for the identification and isolation requirements on electrons, as described
in Section 4. All other simulated samples are used to model the signal shape, estimate back-
grounds, optimize the analysis strategy, and evaluate the systematic uncertainties.

All Monte Carlo (MC) generators are interfaced with PYTHIA to simulate the parton showering
and hadronization effects. Version 8.230 [106] is used for the three data-taking years with the
CUETP8M1 tune [107] for 2016 and the CP5 tune [108] for 2017 and 2018. Parton distribution
functions (PDFs) are taken from the NNPDF3.0 set [109] for the three data taking periods.

The response of the CMS detector is modeled using the GEANT4 [110, 111] package. The sim-
ulated events are reconstructed with the same algorithms used for data and the distribution of
the number of pileup events per bunch crossing is reweighted to match that observed in the
data.

4 Event reconstruction and selection

The particle-flow (PF) algorithm [112] aims to reconstruct and identify each individual particle
in an event, with an optimized combination of information from the various elements of the
CMS detector. The energy of photons is obtained from the ECAL measurement. The energy



of electrons is determined from a combination of the electron momentum at the PV, as deter-
mined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of
all bremsstrahlung photons spatially compatible with originating from the electron track. The
momentum of muons is obtained from the combined information of the tracker and the muon
chambers. The energy of charged hadrons is determined from a combination of their momen-
tum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for
the response of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is
obtained from the corresponding corrected ECAL and HCAL energy deposits.

The information from the ECAL and the tracker is combined to reconstruct electrons [56] with
pT > 7GeV within the geometrical acceptance of the detector, defined by the pseudorapidity
region |7¢| < 2.5. The identification of electrons is performed with a BDT algorithm sensitive to
the presence of bremsstrahlung along the electron trajectory, the geometrical and momentum-
energy matching with the corresponding cluster in the ECAL, the features of the electromag-
netic shower in the ECAL, and observables that discriminate against electrons originating from
photon conversions. The isolation sums for electrons, defined similarly as for muons, are in-
cluded in the BDT discriminant. This choice is proven to enhance the suppression of non-
prompt electrons originating from hadron decays and from overlap of neutral and charged
hadrons within jets [56] and has a better performance than a cutoff-based approach using the
relative isolation. The BDT for the electron identification and isolation is implemented using
the XGBOOST library [113]. The training is performed on a dedicated sample of DY+jets sim-
ulated events. Electron samples are divided into six mutually exclusive categories defined by
two pr ranges (7 < p; < 10GeV and p} > 10GeV) and three 7 selections corresponding to the
central barrel (|n¢| < 0.8), outer barrel (0.8 < |#¢| < 1.479), and endcaps (1.479 < |y¢| < 2.5).
The BDT is trained separately for the three data-taking periods and the selection requirements
are defined to achieve the same signal efficiency for the three data taking periods (97% for
pT > 10GeV; 80% for p < 10GeV in the barrel; 74% for p7 < 10GeV in the endcap).

The information from the silicon tracker and the muon system [58] is combined to reconstruct
muons with pf > 5GeV and |7#| < 2.4. The matching between inner and outer tracks is
performed starting either from the tracks in the silicon trackers or from those reconstructed in
the muon system. Cases where inner tracks are matched to segments in only one or two muon
detector layers are also considered, to cope with very-low-pr muons that do not traverse the
entire detector. Muon objects are selected from the muon track candidates by applying loose
requirements on the track in the muon system and the inner tracker, taking into account also
their compatibility with small energy deposits in the ECAL and HCAL.

A requirement on the relative isolation, Z# < 0.35, is introduced to discriminate between
muons from Z boson decays and those originating from hadron decays within jets, where Z#
is defined as:

TH = < p;harged + max [O,Zp%eutral + Zp’% o PEE’PU} ) /plf”' (1)

and where ) p;harged is the scalar sum of the transverse momenta of charged hadrons origi-

nating from the PV, whereas Y p?°u and Y pI are the scalar sums for neutral hadrons and
photons, respectively. The isolation requirement is defined using a cone of radius AR = 0.3
around the muon direction at the PV, with the angular distance between two particles i and j

defined as AR(i,j) = V (A171-,]-)2 + (Acpil]-)Z. The quantity p#’PU in Eq. (1) is defined from the pr

sum of all the charged hadrons i not originating from the PV as péf’PU =05); p?lp Y, where the




factor of 0.5 corrects for using only the charged particles in the isolation cone [114]. The p#’PU

contribution is subtracted in the definition of Z* to correct for energy deposits arising from
pileup interactions.

Final-state radiation (FSR) photons arising from Z boson decays are recovered as follows. The
PF photon candidates with |17| < 2.4 are considered as FSR objects if they have p] > 2GeV
and a relative isolation Z7 < 1.8, where Z7 is defined similarly as for muons in Eq. (1).
These FSR candidates are associated with the closest lepton in the event and are not retained
if AR(v,¢)/(p¥)? > 0.012GeV % and AR(,¢) > 0.5. For each lepton, the FSR candidate with
the lowest value of AR(+y, )/ (p})?, if any, is selected. The photon candidates identified from
the FSR recovery algorithm are excluded from the computation of the muon isolation.

Nonprompt leptons from decays of hadrons or photon conversions are suppressed based on the
impact parameter significance. This variable is defined as the ratio of the 3-dimensional impact
parameter, computed with respect to the position of the PV, to its uncertainty, and leptons are
rejected if the value of this quantity is greater than 4.

The leptonic decays of known dilepton resonances are used to calibrate the momentum scale
and resolution of electrons and muons in bins of p and 7, as described in Refs. [56, 58]. Ef-
ficiencies for the lepton reconstruction and selection are measured in several bins of p’ and 7*
by means of the tag-and-probe technique using samples of Z boson events both in data and
simulation. Simulated yields are corrected by the measured efficiency ratio between data and
simulation.

For each event, hadronic jets are clustered from reconstructed particles using the infrared- and
collinear-safe anti-k algorithm [115] with a distance parameter of 0.4 [116]. The jet momentum
is computed from the vectorial sum of all particle momenta in the jet, and is found in simulation
to be, on average, within 5 to 10% from the true momentum over the whole pt spectrum and
detector acceptance. Additional pp interactions within the same or nearby bunch crossings can
contribute with additional tracks and calorimetric energy deposits, increasing the apparent jet
momentum. To mitigate this effect, tracks identified as originating from pileup vertices are
discarded and an offset correction is applied to correct for remaining contributions. Jet energy
corrections are derived from simulation studies so that the average measured energy of jets
becomes identical to that of particle-level jets. In situ measurements of the momentum balance
in dijet, photon +jet, Z + jet, and multijet events are used to account for any residual differences
in the jet energy scale between data and simulation [117]. Additional selection criteria are
applied to remove jets potentially dominated by instrumental effects or reconstruction failures.

Only jets with &' > 30GeV, |1j®t| < 4.7, and a distance parameter of AR(£/,jet) > 0.4 from
all selected leptons and FSR photons, are considered. Jets not satisfying the tight identification
criteria and the criteria corresponding to the tight working point of the pileup jet identification
algorithm described in Ref. [114] are also discarded.

The PF objects mentioned above serve as input to the event selection, which targets events con-
taining at least four well-identified and isolated leptons originating from the PV and possibly
accompanied by a FSR photon. The FSR photons are included in the invariant mass computa-
tions. The event selection, which closely follows that employed in Ref. [35], is detailed below.

The Z boson candidates are formed from pairs of same-flavor and opposite-charge leptons
(eTe™, uTu~) with an invariant mass within 12 < my:,- < 120GeV. Two such pairs are
required to create ZZ candidates, where the Z boson candidate with invariant mass closest
to the world-average Z boson mass [118] is referred to as Z,, whereas Z, denotes the other
Z boson candidate. Three mutually exclusive subchannels are defined from the flavors of the



four leptons in the event: 4e, 4y, and 2e2y.

The ZZ candidates must fulfill additional requirements designed to improve the sensitivity
to H boson decays. The Z; candidates are required to have an invariant mass larger than
40GeV. All lepton pairs (¢;, {;) must be separated by an angular distance of AR(¢;, £;) > 0.02.
Events must contain two leptons with pt > 10GeV and at least one with pt > 20GeV. In
the 4e and 4y channels, where the same four leptons can be used to build an alternative Z,Z,
candidate, candidates with mz, < 12GeV are not considered if Z, is closer to the world-average
Z boson mass than Z; and the event is rejected. This suppresses events with an on-shell Z
accompanied by a low-mass dilepton resonance (e.g., J/i or Y). The invariant mass of the four
possible opposite-charge lepton pairs (irrespective of flavor), computed without FSR photons,
must satisfy m+,- > 4GeV in order to further suppress events with leptons originating from
hadron decays in jet fragmentation or from leptonic decays of low-mass resonances. The ZZ
candidates are retained if the invariant mass of the four-lepton system 1, is larger than 70 GeV.

In events where more than one ZZ candidate satisfies the selection requirements above, the
one with the largest scalar sum of transverse momenta of the two leptons defining the Z, is
retained.

Finally, only events with 105 < m,, < 160 GeV are considered for the statistical analysis.

5 Fiducial phase space definition

Cross sections are measured in a fiducial phase space defined to match closely the experimen-
tal acceptance of the reconstruction-level selections. The fiducial phase space is defined at
generator-level, following the strategy adopted in previous H — ZZ — 4/ analyses [18, 35].
It relies on requirements on the lepton kinematics and isolation, and on the event topology, in
order to minimize the model dependence of the results.

The definition of the fiducial phase space is summarized in Table 2. The events are retained if
the leading (subleading) lepton has pr > 20 (10) GeV. Additional electrons (muons) that may
be present in the event are required to have py > 7 (5) GeV and || < 2.5(2.4). Lepton isolation
is ensured by requiring the scalar sum of the pr of all stable particles, i.e., those particles not de-
caying in the detector volume, within a cone of radius AR = 0.3 to be less than 0.35 times the pt
of the lepton. Neutrinos, FSR photons, and leptons (electrons and muons) are not included in
the computation of the isolation sum to enhance the model independence of the measurements,
following the findings of Ref. [25]. Events passing these requirements are retained if they have
at least two same-flavor, opposite-sign lepton pairs. The pair with invariant mass closest to the
world-average Z boson mass [118] is labeled as Z; and it must have 40 < Mz, < 120 GeV. The
second Z boson candidate is referred to as Z, and it must have 12 < m, < 120GeV. Each
lepton pair ¢;, {; must be separated by AR(¢;,£;) > 0.02, while any opposite-sign lepton pair
must satisfy m+ - > 4 GeV, reflecting the selection criteria used at reconstruction level.

Leptons at the fiducial level are considered as dressed, i.e., FSR photons are collected within a
cone of radius 0.3. Jets do not enter in the definition of the fiducial phase space, but they are
used when dealing with jet observables. Jets at the fiducial level are built with the anti-kt clus-
tering algorithm with a distance parameter of 0.4 out of stable particles, excluding neutrinos.

Jets are retained if they satisfy pjTet > 30GeV and |7/°t| < 4.7, similarly to the condition used at
reconstruction level. Only jets with no leptons inside a cone of radius 0.4 are kept.



Table 2: Summary of the requirements used in the definition of the fiducial phase space for the
H — ZZ — 4/ cross section measurements.

Requirements for the H — ZZ — 4/ fiducial phase space
Lepton kinematics and isolation

Leading lepton pr pr > 20GeV
Sub-leading lepton pt pr > 10GeV
Additional electrons (muons) pt pr > 7(5) GeV
Pseudorapidity of electrons (muons) || <2.5(2.4)
Sum of scalar pt of all stable particles within AR < 0.3 from lepton < 0.35pt
Event topology
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above
Inv. mass of the Z; candidate 40 <mz <120GeV
Inv. mass of the Z, candidate 12 <mz, <120GeV
Distance between selected four leptons AR(¢;, ¢;) > 0.02 forany i # j
Inv. mass of any opposite sign lepton pair My+p— > 4GeV
Inv. mass of the selected four leptons 105 < my, < 160 GeV

Figure 1: Schematic representation of the gg/qq —+ H — ZZ — 4/ process. The five angles
depicted in blue are considered in the differential analysis, as detailed in the text.

6 Observables

Fiducial cross sections are measured in bins of several kinematic observables sensitive to the
H boson production and decay pp — H — ZZ — 4/, of which a schematic representation is
given in Fig. 1.

The decay of the H boson to four leptons is fully described by the invariant mass of the two Z
boson candidates, three angles describing the Z boson decays (®, 6;, 6,), and two angles con-
necting production to decay (P4, 6*). The angle 6* is defined in the H rest frame as the angle
between the beam axis and the direction of the Z; candidate. ® and @, are the azimuthal angles
between the three planes constructed from the H decay products and the decay products of the
two Z bosons in the H rest frame. The 6; and 6, angles are defined in the Z, and Z, rest frames,



respectively, as the angles between the Z boson direction in the H boson rest frame and the
direction of the negative decay lepton. The set comprising these seven observables is hereafter
referred to as QOH7ZZ24L(g* 0, 0, ®, Dy, my,, m|my,) and can be used to build matrix ele-
ment discriminants sensitive to the 4/ decay, as detailed in Section 6.1. Fiducial cross sections
are measured in differential bins of these observables, except for the 6 angles for which their

cosine is used. The distributions as a function of p? and pseudorapidity of the reconstructed
H boson are also measured.

Fiducial cross sections are also measured in differential bins of the number of associated jets

(Niets) and pr of the leading (p}) and subleading (p%) jet in the event. For events with two
or more jets the properties of the dijet system constituted by the two leading jets are assessed
by measuring differential cross sections in bins of its invariant mass (11;;), of the difference in
pseudorapidity (Az;;), and of the difference in azimuthal angle (A¢;;) between the two jets. The
angle A¢;; is defined to be invariant under the exchange of the two jets as follow:

2 X ? .z i — s ) 2 1,4 o
Mgy — Urixjr) 2 Gi=j) 2 | o1y @)
|(Jr1 X Jr2) - £ )

~
—
|
—~
N
N~—
N>

where the vectors ]71,2 represent the direction of the leading and subleading jet in the laboratory

frame, and the unit vectors le’z the corresponding transverse component. This definition is
also independent of the choice of the positive z axis direction, 2.

The rapidity-weighted jet vetoes 7" and 7g"** are also studied. These are defined, following
Ref. [119], as:

Ef —p2;
7™ = max / 3)
7=\ 2cosh (yj - yH)
T — max (miTef\yryHl) ) @)

]

where y; and m]T are the rapidity and transverse mass of the jet, defined from its mass m and

momentum p as my = /m?+ p + p}, while yy is the rapidity of the H boson. The value

of each observable is computed for each jet in the event and its maximum value is taken for

each event. Since their resummation structure is different from the canonical p}, they give
complementary information on the properties of jets in an event and can be used as a test of
quantum chromodynamics (QCD) resummation. The O-jet phase space can be redefined us-
ing these observables. The events with no jets are defined as the ones with 77" < 15GeV
and 73" < 30GeV, where the values of these cuts are chosen accordingly to the findings of
Ref. [119]. In the following, these events will be defined as O-jet| 7** and 0-jet| 75", respec-
tively.

The properties of the H+jet(s) system are also studied by measuring differential cross sections
in bins of the transverse momentum and invariant mass of the H plus leading jet system for
events with at least one jet, or of the H plus leading and subleading jet system for events with
at least two jets. The observables characteristic of the H + j(j) system can be defined only in
events with at least one (two) jets. In all other cases, an underflow bin is introduced to consider
all events for which the observable is undefined.
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6.1 Matrix element discriminants

The JHUGEN and MCFM generators are used to compute the matrix element probability P; for
an event to arise from a physical process i, given the value of the reconstructed invariant mass
of the four-lepton system #1,,. These probabilities are defined as a function of QH 224 and
retain the maximal information on the underlying physics content of each event. Hence, the
P, (QH—ZZ =4y probabilities are used to construct likelihood-ratio-like matrix element discrim-
inants sensitive to the difference between two physical processes a and b, when considering two
production mechanisms, or to be used to test a BSM hypothesis against the SM scenario. These
matrix element discriminants have been widely used in the context of H — ZZ — 4/ analyses,
from the measurement of the H boson properties [35] to the constraints on possible anoma-
lous couplings [31]. The general structure of these discriminants is an adaptation of the more
classic likelihood ratio, properly rescaled to ensure that the discriminants are always bounded
between 0 and 1. Two types of kinematic discriminants can be built to test the compatibility
between signal (“sig”) and alternative (“alt”) hypotheses and their interference (“int”):

pa(a) ol ey @)
Pag (@) + P () 2 \/ P (©2) Par (0)
where P, and P, are the probabilities of an event under the two considered hypotheses,

given their kinematic properties ), and P, is the probability for the interference between the
two model contributions (“sig” and “alt”). This definition of D; is bounded between —1 and
1 for any value of D,y;.

A total of six matrix element discriminants sensitive to different values of possible anomalous
couplings of the H boson to vector bosons are considered. The general scattering amplitude
describing the interaction between a spin-zero H boson and two spin-one gauge bosons V, and
V, can be written, following the conventions of Ref. [31], as:

\'a% \A% \'A%
A(HV.V 1w & Ty1+%5 43 K5 (Gyv1+ qv2)? 2w
(HV,V,) =0 ay ( YV 2 - My1€v1€v2
AYY) (A2") ©)
Q

1 v (1) q« 1 v (1) 2
+5a2 fw(/ )f @nv 4 0 fw(/ )f @mv

where v is the vacuum expectation value of the H potential, f()1 = €4y — €vilyir f;g? =

%ey voof ()07, and ey;, gy;, and my; are the polarization vector, four-momentum, and pole mass
of a gauge boson, respectively. The constants A; and A, are the scales of BSM physics. In

the above equation, the only leading tree-level contributions are alzz # 0 and a‘le # 0. The
rest of the ZZ and WW couplings are considered as anomalous contributions, which are either
small contributions arising in the SM due to loop corrections or new BSM contributions. The
SM value of those are not yet distinguishable from zero experimentally with the available data.

The a; and x; terms correspond to the strengths of vector boson couplings, following the nota-
tion adopted in Ref. [31]. In particular, the a3 CP-odd term is expected to be null in the SM and
is sensitive to possible BSM effects that would result in CP violation. The a, term corresponds
to the CP-even contribution to the HVV coupling and is sensitive to possible BSM contributions
from heavy H bosons. The k; ,/(A;)? and 3/ (Ag)? terms are sensitive to possible physics at a
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Table 3: Matrix element kinematic discriminants considered in the analysis. Some discrimi-
nants have a special label to identify the targeted Higgs boson property rather than the name
of the coupling. Dgec is sensitive to a CP-odd Higgs boson, D is the observable sensitive to

the CP-mixing, and DS is sensitive to heavy CP-even Higgs boson.
Dalt Dint
Coupling
z
asz dy Al Al T asz dy
; S dec dec dec Zy,dec dec dec
Discriminant D Dyt DYE Dy Dy Din

Table 4: Bin boundaries for one-dimensional observables targeting the H boson production.
The bin boundaries denoted with co correspond to no upper limit applied on the observable
value.

Observable Definition Bin boundaries

p? Transverse momentum of the 4¢ system [0,10,20,30,45,60,80,120,200,00] GeV
Ve Rapidity of the 4/ system [0,0.15,0.3,0.45,0.6,0.75,0.9,1.2,1.6,2.5]
Njets Number of associated jets in the event =0,=1,=2,=3,>4

p];} Transverse momentum of the leading jet [0-jet,30,55,95,200,00[ GeV

piTz Transverse momentum of the subleading jet [0/1-jet,30,40,65,90,00[ GeV
T Rapidity-weighted jet veto [0-jet| 7&"x,15,20,30,50,80,00] GeV
T Rapidity-weighted jet veto [O-jet|7}5“‘“,30,45,75,150,00[ GeV
iy Invariant mass of the leading and subleading jets system [0/1-jet,0,120,300,c0] GeV

[ A Difference in pseudorapidities of the leading and subleading jets [0/1-jet,0.0,1.6,3.0,10.0]

A Azimuthal angle difference between the leading and subleading jets [0/14et,—mt, —7t/2,0, /2, ]
p?j Transverse momentum of the 4¢ and leading jet system [0-jet,0,30,50,110,00[ GeV

Mgy Invariant mass of the 4¢ and leading jet system [0-jet,110,180,220,300,400,600,00[ GeV
p?jj Transverse momentum of the 4/, leading and subleading jets system [0/1-jet,0,20,60,00[ GeV

new energy scale represented by the denominator. The i3/ (Ag)? coupling allows for scenarios
that violate the gauge symmetries of the SM but is not considered in this analysis. Symmetries
and gauge invariance force k% = x4, leading to the single coupling x#% / (A%%)? to investigate
and denoted A; in what follows. Gauge invariance imposes K127 = 0, making it impossible to

measure the A%7 coupling in any process involving an on-shell photon. However, the H — 4/
channel contains events featuring an off-shell photon, i.e., H — Zy* — 4/, that can be used to
study the A127 coupling. Table 3 details the set of kinematic discriminants considered and the
couplings to which they are sensitive. The index “dec” indicates that only decay information is
used to build these discriminants.

Differential cross sections are measured in bins of these six matrix element discriminants under
the SM hypothesis. The compatibility of the measurements with the SM predictions is assessed
by comparing the results with the discriminants built for alternative BSM scenarios, where
HVV anomalous couplings are introduced by modifying the a; and «; values in Eq. (6) with
respect to their SM values.

Tables 4 and 5 summarize the bin boundaries for all the observables considered in this analysis
that target the H boson production and the H — ZZ — 4/ decay, respectively.
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Table 5: Bin boundaries for one-dimensional observables targeting the H — ZZ — 4/ decay.

Observable  Definition Bin boundaries

cos 6* Cosine of the decay angle of the leading lepton pair in the 4¢ rest frame [-1.0,-0.75,-0.50,-0.25,0.0,0.25,0.50,0.75,1.0]

cos 0y, cosf, Cosine of the production angle, [-1.0,-0.75,-0.50,-0.25,0.0,0.25,0.50,0.75,1.0]
relative to the Z vector, of the antileptons from the two Z bosons

D, Dy Azimuthal angles between the decay planes [—m, —3m/4, —m/2, —7/4,0, t/4, T/2,3m/4, ]

Mz, Invariant mass of the two leading leptons [40,65,75,85,92,120] GeV

mz, Invariant mass of the two subleading leptons [12,20,25,28,32,40,50,65] GeV

Dgfc Matrix element discriminant targeting a; coupling [0.0,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

Dgﬁi Matrix element discriminant targeting a, coupling [0.0,0.35,0.4,0.45,0.55,0.65,0.75,1.0]

Dj‘\“lc Matrix element discriminant targeting k; coupling [0.0,0.45,0.5,0.6,0.7,1.0]

D/Z\Y’dec Matrix element discriminant targeting kZZW coupling [0.0,0.35,0.45,0.5,0.55,0.65,1.0]

Dg?f Interference matrix element discriminant targeting a3 coupling [-0.75,-0.25,-0.1,0.0,0.1,0.25,0.75]

Dgﬁc Interference matrix element discriminant targeting a, coupling [0.0,0.7,0.8,0.9,0.95,1.0]

Table 6: Double-differential observables with their corresponding bin boundaries. The bin
boundaries denoted with co correspond to no upper limit applied on the observable value.

Observable Bin1 Bin2 Bin 3 Bin 4 Bin 5 Bin 6 Bin7 Bin 8 Bin 9 Bin 10 Bin1l Bin12
iz, (GeV) [40,85] [40,70] [70,120] [85,120] [85,120] [85,120]
niz, (GeV) [12,35] [35,65] [35,65] [30,35] [24,30] [12,24]

ys] [0,0.5] [0,0.5] [0,0.5] 005 | [051.0] [0510] [051.0]|[1.025 [1025] [10,25]

P (Gev) [0,40] [40,80]  [80,150]  [150,&9] [0,45] [45120] [120,0[ | [045] [45120]  [120,00]

Niets 0 0 0 1 1 1 1 >=2 >=2 >=2 >=2
P (Gev) [0,15] [15,30] [30,00] [0,60] [60,80]  [80,120] [120,e0[ | [0,100] [100,170] [170,250] [250,c0[
p}(GeV) N <2 [30,60]  [60,350]  [60,350]

P (GeV) [30,60] [30,60]  [60,350]

P (GeV) [0,30] [0,45] [30,350]  [45,350]

P(Gev) Jets [085]  [85350]  [085]  [85350]

[1525]  [1525]
[0,120]  [120,00]

TEX(GeV)  04et| T&™  0et| T&™ 04et| T&™  0-jet| T&™  O-jet| T O-jet| T

ph(GeV) [0,15] [15,30] [30,45] [4570]  [70,120]  [120,00] [0120]  [120,c0[ | [0,200] [200,00

[2540]  [2540] | [40,00]  [40,00
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To ensure a complete characterization of the H — ZZ — 4{ decay channel and to maximize
the coverage of different phase space regions, a set of double-differential measurements is also

performed. Cross sections are measured in bins of my vs. my , |yy| vs. py, number of as-
1 2

sociated jets vs. p?, pr of the leading vs. subleading jet, p?f VS. p?, and T vs. p?. The
corresponding bin boundaries are listed in Table 6.

7 Background estimation
7.1 Irreducible backgrounds

Irreducible ZZ background contributions arising from qq annihilation or gluon fusion are es-
timated from simulation. The former is simulated at NLO in pQCD with POWHEG 2.0 and
reweighted to NNLO using a K factor computed as a function of my, exploiting the NNLO
computation of the qq — ZZ fully differential cross section [120]. The K factor ranges 1.0-
1.2 and is 1.1 at my, = 125GeV. The NLO EW corrections are applied as a function of my,
according to the computation presented in Ref. [121].

The soft collinear approximation has been shown to describe accurately the cross section and
the interference term for the gluon fusion ZZ production at NNLO in pQCD [122]. Addi-
tional calculations demonstrate that the K factors are very similar at NLO for signal and back-
ground [123] and at NNLO for the signal and interference terms [124]. Hence, the same K factor
is used for the signal and the background [125]. The HNNLO v2 program [126-128] is used to
obtain the signal NNLO K factor as a function of my; from the ratio of the NNLO and LO
gg — H — 2020’ cross sections for the predicted SM H boson decay width of 4.07 MeV [118].
The NNLO/LO K factor for gg — ZZ varies from ~2.0 to 2.6 and is 2.27 at my; = 125GeV,
and a 10% systematic uncertainty is used when it is applied to the background.

The irreducible background contributions are included as binned templates in the likelihood
function separately for the three considered final states (4e, 4y, and 2e2y). The templates are
normalized to the most accurate theoretical calculations for the qq@ — ZZ — 4/ and gg —
77 — 4/¢ cross sections [120-125]. A second method for the measurement of the inclusive
fiducial cross section is presented in Section 10, where the normalization of these processes is
treated as an unconstrained parameter in the fit to assess the constraint that can be derived
from sidebands in data.

7.2 Reducible background

The reducible background contribution to the H boson signal in the 4¢ channel mainly comes
from the Z+jets, tt+jets, Zy+jets, WW+jets, and WZ+jets production, hereafter collectively
referred to as “Z+X" since the Z+jets contribution is the dominant one.

The contribution from the reducible background is estimated with the technique explained in
Ref. [35]. The method is based on lepton misidentification rates, which are defined as the frac-
tion of non-signal leptons that satisfy the selection criteria, computed in a control region in data
that includes a Z boson and exactly one additional “loose” lepton (Z + /), i.e., leptons with pr,
1, and PV cuts but without identification nor isolation cuts applied. The lepton misidentifica-
tion rates are then applied to another control region, comprised of a Z boson candidate and
two opposite-sign or same-sign “loose” leptons (Z + ¢¢), to reweigh the number of events to
the signal region.

The distributions as functions of my, of the Z+jets reducible background are derived for the
three final states (4, 4e, and 2e2yu) separately and are included as binned templates in the
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likelihood function.

8 Measurement methodology

The pp -+ H — ZZ — 4/ fiducial cross sections are extracted from a maximum likelihood
fit of the signal and background expected distributions to the observed 4/ mass distribution,
Ngps(my,), parametrized for each final state f, in each kinematic bin i of a given observable,
and year of data taking y as:

NI (mag) = NEYY (myg) + NI (myg) + NEGes (mag) + NI (myy)

obs

gean

= L e[V (L4 FLik ) ol £ PR (myy) ?)
+ Nr{gﬁyres Pr{c’)ynres(mélé) + Nlj;klgy P{ﬁgy(mzw)-

The ij;;,y (myy) and Nﬁonﬁ 4(myy) terms represent the distributions of resonant events originat-
ing from within and outside the fiducial volume, respectively. The Nr{gﬁyres (myy) and N]{k . (myy)

terms represent the distributions of nonresonant and background events.

The H resonant signal distribution is parametrized with a double-sided Crystal Ball (DCB)
function [129] around my; = 125GeV. The corresponding probability density function, P (14,),
is scaled by the fiducial cross section, 04, and the integrated luminosity £. The DCB function
parameters are obtained from a simultaneous fit of the m,, distributions corresponding to the
various mass points in the my; range of 105-160 GeV, which allows to express the dependency
of the fitted parameters in myy directly in the fit, following the same strategy of Ref. [35].

A Landau distribution is introduced to empirically model the shape of the nonresonant signal
contribution, Ppgnres (14), for the WH, ZH, and ttH processes where one of the leptons from
the H boson decay is either not selected or falls outside the acceptance. The fraction of such
events in the mass range considered is about 5, 22, and 17% for WH, ZH, and ttH, respectively.
These nonresonant events are treated as a background in the measurements. The reducible and
irreducible backgrounds are included in the fit as normalized binned templates, Py, of the
mass distribution of these processes.

An additional contribution (f,,nfq) is introduced to take into account the presence of events not
originating from the fiducial volume but satisfying the selections and is treated as background
in the measurements. This contribution is referred to as the “nonfiducial signal” and is esti-
mated from simulation for each signal model. The values of f,,.sq are found to be consistent
across the different observables considered, for the same production mechanism. Dedicated
simulations have shown that the m,, distribution of these events is identical to that of the res-
onant fiducial signal. To minimize the model dependence of the measurement, the value of
fronfig 18 fixed to be a fraction of the fiducial signal component. The values of this fraction are
reported in Table 7 and range between 4% for the VBF production mechanism and up to 18%
for the ttH mode. The acceptance of the events originating from VH or ttH is lower than ggH
and VBF events, reflecting the possible presence of leptons in the final states not produced by
the H boson decay and resulting in larger values of f,.sq for these production mechanisms.

Generator-level observables used in the definition of the fiducial phase space are smeared by

f

detector effects at reconstruction level. The €;,; response matrix is obtained from simulation, for
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each final state f, and is used to unfold the number of expected events in bin 7 at the reconstruc-
tion level to the number of expected events of a given observable in bin j at the fiducial level.
For the measurement of the inclusive fiducial cross section, e{ ; corresponds to a single number,
the efficiency, listed in the second column of Table 7 for the various production mechanisms.
The table also shows the acceptance Ay, defined as the fraction of signal events that fall within
the fiducial phase space.

Table 7: Summary of the inputs to the maximum likelihood based unfolding. The fraction of
signal events within the fiducial phase space (acceptance Aygy), the reconstruction efficiency
(€) in the fiducial phase space, and the ratio of the number of reconstructed events outside
the fiducial phase space to that of the ones inside the fiducial phase space (f,,ns4) are quoted
for each production mechanism for my; = 125.38 GeV. The last column shows the value of
(14 faonfia )€, which regulates the signal yield for a given fiducial cross section. All values are
shown with their statistical uncertainty. The values for the ggH production mode are obtained
using the POWHEG generator.

Signal process Afid € f nonfid (1 + f nonﬁd)e
ggH (POWHEG) 0.408 £ 0.001 0.619 £ 0.001 0.053 £ 0.001 0.652 £ 0.001
VBF 0.448 +0.001 0.632 4+ 0.002 0.043 +=0.001 0.659 + 0.002
WH 0.332 +0.001 0.616 +0.002 0.077 +=0.001 0.664 + 0.002
ZH 0.344 + 0.002 0.626 +£0.003 0.083 £+ 0.002 0.678 £ 0.003
ttH 0.320 +£0.002 0.614 +£0.003 0.179 £ 0.003 0.725 4 0.005

Systematic uncertainties are included in the form of nuisance parameters and the fiducial cross
section measurements are obtained using an asymptotic approach [130] with a test statistic
based on the profile likelihood ratio [131]. A maximum likelihood fit is performed simultane-
ously in all final states and bins of each observable, assuming my = 125.38 GeV. The branching
fractions of the H boson to the different final states (4e,4y,2e2u) are unconstrained parame-
ters in the fit to increase the model independence of the measurements, following the strategy
adopted in Ref. [35]. A likelihood-based unfolding is performed to resolve the detector effects
from the observed distributions to the fiducial phase space. This approach is the same as in
Refs. [35, 132] and allows to simultaneously unfold detector effects and perform the fit to ex-
tract the fiducial cross section. The analysis strategy of Ref. [35] is extended by measuring
separately the fiducial cross sections in 4e + 4y and 2e2y final states for observables target-
ing the H — ZZ — 4/{ decay. This choice is driven by the different physics in the final states
containing different- and same-flavor leptons arising from the destructive interference between
the two alternative methods of constructing the H — ZZ — 4/ diagrams in the same-helicity
states in the case of identical leptons.

9 Systematic uncertainties

The integrated luminosities of the 2016, 2017, and 2018 data-taking periods are individually
known with uncertainties in the range 1.2-2.5% [60-62], while the 2016-2018 integrated lumi-
nosity has an uncertainty of 1.6%. The partial correlation scheme considered for this systematic
uncertainty is summarized in Table 8.

Experimental systematic uncertainties in trigger and lepton reconstruction and selection effi-
ciencies are estimated from data for different final states. These uncertainties are derived from
a tag-and-probe technique using J/¢ and Z decays into a pair of leptons and range 4.3-10.9%
in the 4e channel and 0.6-1.9% in the 4y channel, depending on the pt region. In this paper, a
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Table 8: Summary of the input values of the experimental systematic uncertainties.

Common experimental uncertainties

2016 2017 2018
Luminosity uncorrelated 1% 2% 1.5%
Luminosity correlated 20162018 0.6 % 0.9 % 2%
Luminosity correlated 2017-2018 — 0.6 % 0.2 %
Lepton id /reco efficiencies 0.7-10 % 0.6-8.5 % 0.6-9.5 %
Jet energy scale 0.1%-27% 0.1%-33% 0.1%-33%

Background related uncertainties
Reducible background (Z+X) 25-43 % 23-36 % 24-36 %
Signal related uncertainties

Lepton energy scale 0.06% (e)-0.01% (1) 0.06% (e)-0.01% () 0.06% (e)-0.01% (u)
Lepton energy resolution 10% (e)-3% (p) 10% (e)-3% (1) 10% (e)-3% (u)

new way to estimate the systematic uncertainty in the electron efficiency measurements is intro-
duced. Alternative variations in the tag-and-probe fit used to derive the systematic uncertainty
are combined and the RMS of the values is used for the systematic uncertainty evaluation. This
makes the evaluation of the systematic uncertainty for the low-p; bins more solid, and leads
to their reduction of a factor approximately 40% in the electron reconstruction and selection
efficiency with respect to the values reported in Ref. [35].

The systematic uncertainties in the lepton momentum scale and resolution are estimated from
dedicated studies of the Z — ¢ ¢~ mass distribution in data and simulation. The momentum
scale uncertainty is 0.06% in the 4e channel and 0.01% in the 4y channel, while the resolution
uncertainty is 10% in the 4e channel and 3% in the 4u channel. The effect of these uncertainties
is evaluated by allowing the corresponding parameters of the DCB function used to model the
resonant signal to remain unconstrained in the fit.

Jet-related observables are affected by systematic uncertainties in the estimation of the jet en-
ergy scale. These uncertainties affect the normalization of the processes and are modeled with
a set of nuisance parameters representing the various sources and accounting for the partial
correlation among the various final states and years. Their values depend on the kinematic bin
and range 0.1-33%, with an average value of 3%.

Furthermore, experimental systematic uncertainties in the reducible background estimation
are considered. These uncertainties originate from the evaluation of the lepton misidentifica-
tion rates and vary between 23 and 43%, depending on the final state. The impact of these
uncertainties is negligible.

Table 8 summarizes the experimental systematic uncertainties considered in the analysis.

Theoretical uncertainties in the renormalization and factorization scales, and in the choice of
the PDF set affect both the signal and background rates. The scale uncertainty is determined by
varying renormalization and factorization scales between 0.5 and 2 times their nominal value,
while keeping their ratio between 0.5 and 2. The uncertainty in the PDF set is determined fol-
lowing the PDF4LHC recommendations taking the root mean square of the variation of the
results when using different replicas of the default NNPDF set [133]. An additional 10% un-
certainty in the K factor used for the gg — ZZ background prediction is applied. A systematic
uncertainty of 2% [34] in the branching fraction of H — ZZ — 4/ is considered and only affects
the signal yield. The theoretical uncertainties affecting the signal are not included in the fit but
evaluated and indicated in Figs. 4-24.
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10 Results

This section reports the measurements of the fiducial cross sections in differential bins of the
kinematic observables introduced in Section 6. All fiducial cross section measurements are in
agreement with the SM predictions within uncertainties. The compatibility of the results with
the theoretical predictions is quantified by reporting the p-value for each observable, computed
using the negative log-likelihood ratio as test statistic evaluated at the SM point. The p-value
is calculated using a x? probability density function with the number of bins used in the mea-
surements taken as the number of degrees of freedom. The observed p-values range from 0.05
to0 0.99. The inclusive cross section is measured with an overall precision of 10%, with statistical
and systematic contributions of 8% and 6%, respectively. All the differential measurements are

limited by the statistical uncertainty. The differential cross sections as functions of p? and |yy]|
are measured with an average precision of 35%, while the most precise cross sections are mea-
sured with a precision of 20%. The measurements are compared to the theoretical predictions
from various generators. The uncertainties in these predictions come from the uncertainty in
the fiducial acceptance, the H — ZZ — 4/ branching fraction and variations of the PDF repli-
cas, a; value, and renormalization and factorization scales. Figure 2 depicts the distributions of
these two observables comparing data to predictions from simulation. With respect to Ref. [35],
the data set used in this analysis benefits from an improved object calibration. This leads to a
better precision in the final results and permits measurements of jet-related observables in a
phase space region that extends up to || = 4.7. The inclusive fiducial result features a re-
duction of 15% of the uncertainty, particularly evident in the 40% reduction of the systematic
component obtained using a root-mean-square approach to compute the uncertainties in the
electrons selection efficiency [134], which are the leading source of systematic uncertainty on
the measurements performed in this analysis. Tabulated results are provided in the HEPData
record for this analysis [135].

CMS 138 fb~" (13 TeV) 138 fb" (13 TeV)
A F T 7 T R A T . T 1 T s
> 2008 3 H(125) Em Z+X { @ 800f 0 H(125) B Z+X
O 17.5F 00 q@-222yt f Data | g0 0 §-2Z,2zy* t Data ]
$150§ B gg-ZZ,Zy* E w BN g9 - 27, Zy*
c 19.0F -

J Vv 600f

ve

(L 12.5F E 500F

v E 1
10.0F E 400F

7.5f

Data/MC
5

T R N b ]
150 200 Ny 250 030 0.5 1.0 15 2.0 25
pT (GeV) [yHl

Figure 2: Reconstructed transverse momentum (left) and rapidity (right) of the four-lepton
system for events with 105 < my, < 160GeV. Points with error bars represent the data, solid
histograms the predictions from simulation. The y axes of the top panels have been rescaled to
display the number of events per bin, divided by the width of each bin. The lower panels show
the ratio of the measured values to the expectations from the simulation.

The kinematic properties of the four-lepton system are studied by measuring differential cross
sections in bins of angular observables sensitive to the HVV decay. These results are reported
for the inclusive four-lepton final state and for the same-flavor and different-flavor final states
separately to account for interference effects in the case of identical helicity states. In all cases
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the results agree with the distributions predicted by the SM. The largest deviations with respect
to the expected values are observed in the central bins of cos 6, and ® and are compatible with
statistical fluctuations in the observed data. The p-values of these two measurements are found
to be 0.23 and 0.24, respectively, thus corroborating the compatibility with the SM predictions.
For the first time, differential cross sections are measured in bins of kinematic discriminants
sensitive to the presence of possible HVV anomalous couplings. These measurements are com-
pared to the distributions of these discriminants computed under the SM hypothesis and under
various anomalous coupling hypotheses. The former is always favored in the comparison with
data.

A total of six double-differential measurements are also reported.

10.1 Inclusive cross section

The measured inclusive fiducial cross section for the H — ZZ — 4/ process is

ofid = 2.73 4 0.22 (stat) £ 0.15 (syst) fb

8
= 2.73 £0.22 (stat) = 0.12 (electrons) &= 0.05 (lumi) & 0.05 (bkg) + 0.03 (muons) tb ®)

for a H boson mass of my; = 125.38 GeV, in agreement with the SM expectation of O'fsig/[ =
2.86 £ 0.15fb. Figure 3 shows the corresponding log-likelihood scan. The systematic compo-
nent of the uncertainty is dominated by electron-related nuisance parameters (electrons), espe-
cially the electron selection efficiency that is the leading nuisance parameter in the four-lepton
decay channel. The muon-related nuisance parameters (muons) and the uncertainties on the
luminosity measurement (lumi) and on the background predictions (bkg) play a minor role on
the overall systematic uncertainty on ¢fid. The inclusive fiducial cross section measured in the
three final states (4e, 4y, and 2e2yu) is shown in the left panel of Fig. 4, while the right panel
depicts the evolution of the H — ZZ — 4/ fiducial cross section as a function of the center-
of-mass energy. The results are compared with the cross sections predicted by the POWHEG,
MADGRAPH5_aMC@NLO, and NNLOPS generators for the H boson production and parton
showering, while the decay is always modeled by JHUGEN. The measurement of the inclusive
fiducial cross section is repeated treating the normalization of the ZZ irreducible background
processes as an unconstrained parameter in the fit. The results are presented in the left panel
of Fig. 5 for the inclusive H — ZZ — 4/ measurement and the three final states considered.
The correlation coefficient (o) between the inclusive fiducial cross section measurement and the
Z7 normalization in the 4/ final state is found to be p = —0.03, while the correlations between
the ZZ normalization in each final state and the corresponding fiducial cross section measure-
ments are shown in the right panel of Fig. 5. The positive correlations observed between the
727 background normalizations and the cross sections measured in the 4e and 2e2y final states
are driven by the systematic uncertainties on the electrons reconstruction and identification,
which are the leading nuisance parameters in the analysis.

The results are summarized in Table 9. The measured cross sections, obtained with the ZZ
normalization treated as an unconstrained parameter in the fit, are in agreement with the re-
sults obtained when the irreducible background normalization is constrained to the theoretical
expectation. The uncertainty in this parameter when extracted from sidebands in data (7.5%)
is larger than the theoretical uncertainty in its predictions (6.3%). For these reasons, in the
following the ZZ normalization is fixed to the SM prediction.
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Figure 3: Log-likelihood scan for the measured inclusive fiducial cross section. The scan is
shown with (solid line) and without (dashed line) systematic uncertainties profiled in the fit.
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Figure 4: Measured inclusive fiducial cross section for the various final states (left); and as
a function of the center-of-mass energy /s (right). In the left panel the acceptance and the-
oretical uncertainties are calculated using POWHEG (blue), NNLOPS (orange), and MAD-
GRAPH5_aMC@NLO (pink). The subdominant component of the signal (VBF + VH + ttH) is
denoted as XH and is fixed to the SM prediction. In the right panel the acceptance is calculated
using MINLOHJ at /s = 13 TeV and NNLOPS [128, 136] at /s = 7 and 8 TeV.

10.2 Differential cross sections: production

Fiducial cross sections are measured in differential bins of observables sensitive to the H boson
production. The results for the p? and |yy| are shown in Fig. 6. Figure 7 shows the measure-
ments of the fiducial cross sections in bins of the number of associated jets and of the pt of the
leading and subleading jet in the event. The fiducial cross section is also measured in bins of the
invariant mass and difference in pseudorapidity of the dijet system, as shown in Fig. 8. These
measurements enhance the sensitivity to phase space regions where VBF and ttH production
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Figure 5: Inclusive fiducial cross section measured for the various final states with the irre-
ducible backgrounds normalization ZZ unconstrained in the fit (left) and the corresponding
correlation matrix (right). The acceptance and theoretical uncertainties in the differential bins
are calculated using POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO (pink).
The subdominant component of the signal (VBF + VH + ttH) is denoted as XH and it is fixed
to the SM prediction. The ratio of the measured cross section to the theoretical prediction ob-
tained from each generator is shown in the central panel, while the lower panel shows the ratio
between the values derived from the measured ZZ normalization and the MC prediction.

Table 9: Measured inclusive fiducial cross section and +1 standard deviation uncertainties for
the various final states at my = 125.38 GeV. The upper row summarizes the results obtained
when the irreducible background normalization is constrained to the SM expectation and the-
oretical uncertainty, while the lower section present the results from a fit with the ZZ normal-
ization treated as an unconstrained parameter. The first row presents the fiducial cross section,
the middle row the ZZ background normalization extracted from the fit, and the bottom row
the ZZ estimation from MC. The uncertainties on NZ% are the pre-fit uncertainties summing
the statistical and systematic uncertainty.

de 4p 2e2u Inclusive

Constrained ZZ background

oiq 059708 fb 075700 1.337017 b 2737022 (stat) T)1] (syst) fb

Unconstrained ZZ background
0ha 057105 fb 0757000 1377517 fb  2.74702% (stat)T( 1] (syst) fb

N%Z  92tle 162112 19312 445%% (stat) T35 (syst)
NZZ 7417 152147 188113 414733

mechanisms dominate and where a larger jet multiplicity is expected.

Cross sections in bins of observables of the H + j and H + jj systems are also measured. The
results in differential bins of the invariant mass and pt of the H + j system are presented in
Fig. 9 together with the results in differential bins of the pr of the H + jj system.
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Cross sections are also measured in differential bins of the rapidity-weighted jet vetoes intro-
duced in Section 6, to enhance the sensitivity to phase space regions that probe directly the
departure from LO kinematics and the QCD emission pattern. Figure 10 presents the results
for 77" and Tg"*~.
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Figure 6: Differential cross sections as functions of the transverse momentum of the Higgs bo-
son p? (left) and of the rapidity of the Higgs boson |y| (right). The fiducial cross section in

the last bin (left) is measured for events with p? > 200 GeV and normalized to a bin width of
50GeV. The acceptance and theoretical uncertainties in the differential bins are calculated us-
ing the ggH predictions from three different generators normalized to next-to-next-to-next-to-
leading order (N®LO) [34]. The subdominant component of the signal (VBF + VH + ttH) is de-
noted as XH and is fixed to the SM prediction. The measured cross sections are compared with
the ggH predictions from POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO
(pink). The hatched areas correspond to the systematic uncertainties in the theoretical predic-
tions. Black points represent the measured fiducial cross sections in each bin, black error bars
the total uncertainty in each measurement, red boxes the systematic uncertainties. The lower
panels display the ratios of the measured cross sections and of the predictions from POWHEG
and MADGRAPH5_aMC@NLO to the NNLOPS theoretical predictions.
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Figure 7: Differential cross sections as functions of the number of jets in the event (upper left)
and of the py of the leading (upper right) and subleadmg (lower) jet. Upper right: the fiducial

cross section in the last bin is measured for events with pT > 200 GeV and normahzed to a bin
width of 40 GeV. The first bin comprises all events with less than one jet, for which pT is unde-

tfined. Lower: the fiducial cross section in the last bin is measured for events with pT > 90 GeV
and normalized to a bin width of 150 GeV. The first bin comprises all events with less than two

jet, for which p]TZ is undefined. The acceptance and theoretical uncertainties in the differential
bins are calculated using the ggH predictions from three different generators normalized to
next-to-next-to-next-to-leading order (N°*LO) [34]. The subdominant component of the signal
(VBF + VH + ttH) is denoted as XH and is fixed to the SM prediction. The measured cross
sections are compared with the ggH predictions from POWHEG (blue), NNLOPS (orange), and
MADGRAPH5_aMC@NLO (pink). The hatched areas correspond to the systematic uncertainties
in the theoretical predictions. Black points represent the measured fiducial cross sections in
each bin, black error bars the total uncertainty in each measurement, red boxes the systematic
uncertainties. The lower panels display the ratios of the measured cross sections and of the pre-
dictions from POWHEG and MADGRAPH5_aMC@NLO to the NNLOPS theoretical predictions.
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Figure 8: Differential cross sections as functions of the invariant mass my (upper left), the differ-
ence in azimuthal angle A¢; (upper right) the difference in pseudorapidity [A;| (lower) of the
dijet system. Upper Left: the fiducial cross section in the last bin is measured for events with
my > 300 GeV and normalized to a bin width of 225 GeV. The first bin comprises all events with
less than two jets, for which m; is undefined. Upper right: the first bin comprises all events with
less than two jet, for which |A4J]-j| is undefined. Lower: the first bin comprises all events with
less than two jet, for which [A;] is undefined. The acceptance and theoretical uncertainties in
the differential bins are calculated using the ggH predictions from three different generators
normalized to next-to-next-to-next-to-leading order (N*LO) [34]. The subdominant component
of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the SM prediction. The mea-
sured cross sections are compared with the ggH predictions from POWHEG (blue), NNLOPS
(orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas correspond to the systematic
uncertainties in the theoretical predictions. Black points represent the measured fiducial cross
sections in each bin, black error bars the total uncertainty in each measurement, red boxes the
systematic uncertainties. The lower panels display the ratios of the measured cross sections
and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to the NNLOPS theoreti-
cal predictions.



24

CMS 138 fb™ (13 TeV) CMS 138 fb" (13 TeV)
— 10 DL L B B B —~ 10 BEEENEAR RN R R
% T pvalue(POWHEG): 0.35 ] % E t  Daa(lal®sysume)  pvalue(POWHEG): 007 ]
fe=s ic uncertainty 7 f= 5 ic uncertainty b
(\D 1? SSNSSNS gg—H (amcatnloFXFX + JHUGen + Pythia) + XH ? (\D 1? SIS gg—H (amcatnloFXFX + JHUGen + Pythia) + XH 3
o) £ SSSSSSS gg—H (NNLOPS + JHUGen + Pythia) + XH ] o) F SSNNSSS gg—H (NNLOPS + JHUGen + Pythia) + XH 3
) _1; 44444444 gg—-H (POWHEG + JHUGen + Pythia) + XH ; = r Y44444444%  gg—H (POWHEG + JHUGen + Pythia) + XH q
o 10 E [ ] XH=VBF+VH +ttH (POWHEG + JHUGen + Pythia) 3 T 107" E [T XH=VBF +VH+tiH (POWHEG + JHUGen + Pythia) ~ §
E E (LHCHWG YR4, m =125.38 GeV) 3 E d_ E (LHCHWG YR4, m =125.38 GeV) 3 3
g S 7 L S
102 g 3 RS - z
S §3 0 S 0% t ; b
i) L = ] S E —t R
M- g Iate W T 7 r 1=} 1
O 10% ik 8 -8 N | 8 ]
© E — 10°g ﬂ%EgE*
104 F g = F ; ]
E : 3 -4 L : -
Lonodllonnalonnalononlononlononllonnad 10 fonnnllannnllonnallnnnnllannallnnnnlnonallonns
g 2 !\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\1 E 25p !\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
S - S 2 1
z z E
z z
=} 2
2 H 1 il
g Lovd b b b b Lo g R B DU FURE N FUR TN U P
//0\ 110 220 330 440 550 660 770 880 //0\ 0 25 50 75 100 125 1aQ 175 200
B\ my; (GeV) R\ pTJ (GeV)
CMS 138 fb (13 TeV)
—~ 10 UL L L S S B B B B B
% f ' 4 Data (stat. @ sys. unc.)  p-value(POWHEG): 0.98 f
FE S| e 5ystomatic uncentainty B
(\5 15 SSNSSS gg—H (amcatnloFXFX + JHUGen + Pythia) + XH 3
o) F SN gg—H (NNLOPS + JHUGen + Pythia) + XH B
= [ 44444444 gg—~H (POWHEG + JHUGen + Pythia) + XH ]
= 10 XH = VBF + VH + ttH (POWHEG + JHUGen + Pythia) ]
I Q|__ E (LHCHWG YR4, m =125.38 GeV) 3
R el ]
= E 25 (e > 60 Gev) 3
e} £ | ]
S ol ]
E H t 3
%] 2
o
S 15}
z
z 1
L
S 05f :
©
o 0 | IR RN RATI N E SR R
A 0 25 50 75 100
R il (Gev)

Figure 9: Upper left: differential cross sections as functions of the invariant mass of the H + j
system myy;, where j is the leading jet in the event. The fiducial cross section in the last bin is
measured for events with myy; > 600 GeV and normalized to a bin width of 280 GeV. The first
bin comprises all events with less than one jet, for which my; is undefined. Upper right: dif-

ferential cross sections as functions of the transverse momentum of the H + j system p? I, The

tiducial cross section in the last bin is measured for events with p?j > 110 GeV and normalized
to a bin width of 90 GeV. The first bin comprises all events with less than one jet, for which

p?j is undefined. Lower: differential cross sections as functions of the transverse momentum
of the H + jj system p?ﬂ . The fiducial cross section in the last bin is measured for events with
p?” > 60 GeV and normalized to a bin width of 40 GeV. The first bin comprises all events with

less than two jet, for which p?” is undefined. The acceptance and theoretical uncertainties in
the differential bins are calculated using the ggH predictions from three different generators
normalized to next-to-next-to-next-to-leading order (N°LO) [34]. The subdominant component
of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the SM prediction. The mea-
sured cross sections are compared with the ggH predictions from POWHEG (blue), NNLOPS
(orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas correspond to the systematic
uncertainties in the theoretical predictions. Black points represent the measured fiducial cross
sections in each bin, black error bars the total uncertainty in each measurement, red boxes the
systematic uncertainties. The lower panels display the ratios of the measured cross sections
and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to the NNLOPS theoreti-
cal predictions.
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Figure 10: Left: differential cross sections as functions of the rapidity-weighed jet veto 7.
The fiducial cross section in the last bin is measured for events with 77"® > 80 GeV and nor-
malized to a bin width of 70 GeV. The first bin comprises all events in the 0-jet phase space
region redefined as a function of 77", i.e., events with less than one jet, for which 7 is
undefined, and events with 77" < 15GeV. Right: differential cross sections as functions of
the rapidity-weighed jet veto 75"**. The fiducial cross section in the last bin is measured for
events with 75" > 150 GeV and normalized to a bin width of 150 GeV. The first bin comprises
all events in the 0-jet phase space region redefined as a function of 7;31“‘"‘", i.e., events with less
than one jet, for which 73" is undefined, and events with 73"®* < 30 GeV. The acceptance and
theoretical uncertainties in the differential bins are calculated using the ggH predictions from
three different generators normalized to next-to-next-to-next-to-leading order (N*LO) [34]. The
subdominant component of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the
SM prediction. The measured cross sections are compared with the ggH predictions from
POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas
correspond to the systematic uncertainties in the theoretical predictions. Black points represent
the measured fiducial cross sections in each bin, black error bars the total uncertainty in each
measurement, red boxes the systematic uncertainties. The lower panels display the ratios of the
measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.

10.3 Differential cross sections: decay

In this section the measurements of fiducial cross sections in differential bins of observables
sensitive to the H — ZZ — 4/ decay are presented. Since the final state is sensitive to interfer-
ence effects in the case of identical particles, the results for decay observables are also presented
separately for same- and different-flavor final states. This ensures a complete coverage of the
whole phase space and a more model-independent set of results.

The cross sections measured in bins of the invariant mass of the two Z boson candidates are
shown in Figs. 11 and 12. The additional degrees of freedom that characterize the H — ZZ —
4/ decay are the five angles introduced in Section 6. The cross sections in differential bins of
the cosine of the 6 angles are presented in Figs. 13, 14, and 15, respectively. Figures 16 and 17
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show the results for the measurements in bins of the ® and ®; angles.
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Figure 11: Differential cross sections as functions of the invariant mass of the leading dilep-
ton pair my_ in the 4/ (upper) and in the same-flavor (lower left) and different-flavor (lower
right) final states. The acceptance and theoretical uncertainties in the differential bins are
calculated using the ggH predictions from three different generators normalized to next-
to-next-to-next-to-leading order (N°LO) [34]. The subdominant component of the signal
(VBF + VH + ttH) is denoted as XH and is fixed to the SM prediction. The measured cross
sections are compared with the ggH predictions from POWHEG (blue), NNLOPS (orange), and
MADGRAPH5_aMC@NLO (pink). The hatched areas correspond to the systematic uncertainties
in the theoretical predictions. Black points represent the measured fiducial cross sections in
each bin, black error bars the total uncertainty in each measurement, red boxes the systematic
uncertainties. The lower panels display the ratios of the measured cross sections and of the pre-
dictions from POWHEG and MADGRAPH5_aMC@NLO to the NNLOPS theoretical predictions.
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Figure 12: Differential cross sections as functions of the invariant mass of the subleading
dilepton pair my, in the 4¢ (upper) and in the same-flavor (lower left) and different-flavor

(lower right) final states.

The acceptance and theoretical uncertainties in the differential

bins are calculated using the ggH predictions from three different generators normalized to
next-to-next-to-next-to-leading order (N°LO) [34]. The subdominant component of the signal
(VBF + VH + ttH) is denoted as XH and is fixed to the SM prediction. The measured cross
sections are compared with the ggH predictions from POWHEG (blue), NNLOPS (orange), and
MADGRAPH5_aMC@NLO (pink). The hatched areas correspond to the systematic uncertainties
in the theoretical predictions. Black points represent the measured fiducial cross sections in
each bin, black error bars the total uncertainty in each measurement, red boxes the systematic
uncertainties. The lower panels display the ratios of the measured cross sections and of the pre-
dictions from POWHEG and MADGRAPH5_aMC@NLO to the NNLOPS theoretical predictions.
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Figure 13: Differential cross sections as functions of cos8* in the 4/ (upper) and in the same-
flavor (lower left) and different-flavor (lower right) final states. The acceptance and theoret-
ical uncertainties in the differential bins are calculated using the ggH predictions from three
different generators normalized to next-to-next-to-next-to-leading order (N°>LO) [34]. The sub-
dominant component of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the
SM prediction. The measured cross sections are compared with the ggH predictions from
POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas
correspond to the systematic uncertainties in the theoretical predictions. Black points represent
the measured fiducial cross sections in each bin, black error bars the total uncertainty in each
measurement, red boxes the systematic uncertainties. The lower panels display the ratios of the
measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.
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Figure 14: Differential cross sections as functions of cos 8; in the 4/ (upper) and in the same-
flavor (lower left) and different-flavor (lower right) final states. The acceptance and theoret-
ical uncertainties in the differential bins are calculated using the ggH predictions from three
different generators normalized to next-to-next-to-next-to-leading order (N°>LO) [34]. The sub-
dominant component of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the
SM prediction. The measured cross sections are compared with the ggH predictions from
POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas
correspond to the systematic uncertainties in the theoretical predictions. Black points represent
the measured fiducial cross sections in each bin, black error bars the total uncertainty in each
measurement, red boxes the systematic uncertainties. The lower panels display the ratios of the

measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.
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Figure 15: Differential cross sections as functions of cos 8, in the 4/ (upper) and in the same-
flavor (lower left) and different-flavor (lower right) final states. The acceptance and theoret-
ical uncertainties in the differential bins are calculated using the ggH predictions from three
different generators normalized to next-to-next-to-next-to-leading order (N°>LO) [34]. The sub-
dominant component of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the
SM prediction. The measured cross sections are compared with the ggH predictions from
POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas
correspond to the systematic uncertainties in the theoretical predictions. Black points represent
the measured fiducial cross sections in each bin, black error bars the total uncertainty in each
measurement, red boxes the systematic uncertainties. The lower panels display the ratios of the

measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.
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Figure 16: Differential cross sections as functions of the ® angle in the 4¢ (upper) and in the
same-flavor (lower left) and different-flavor (lower right) final states. The acceptance and theo-
retical uncertainties in the differential bins are calculated using the ggH predictions from three
different generators normalized to next-to-next-to-next-to-leading order (N°>LO) [34]. The sub-
dominant component of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the
SM prediction. The measured cross sections are compared with the ggH predictions from
POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas
correspond to the systematic uncertainties in the theoretical predictions. Black points represent
the measured fiducial cross sections in each bin, black error bars the total uncertainty in each
measurement, red boxes the systematic uncertainties. The lower panels display the ratios of the

measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.
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Figure 17: Differential cross sections as functions of the ®; angle in the 4¢ (upper) and in
the same-flavor (lower left) and different-flavor (lower right) final states. The acceptance and
theoretical uncertainties in the differential bins are calculated using the ggH predictions from
three different generators normalized to next-to-next-to-next-to-leading order (N*LO) [34]. The
subdominant component of the signal (VBF + VH + ttH) is denoted as XH and is fixed to the
SM prediction. The measured cross sections are compared with the ggH predictions from
POWHEG (blue), NNLOPS (orange), and MADGRAPH5_aMC@NLO (pink). The hatched areas
correspond to the systematic uncertainties in the theoretical predictions. Black points represent
the measured fiducial cross sections in each bin, black error bars the total uncertainty in each
measurement, red boxes the systematic uncertainties. The lower panels display the ratios of the
measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.

These observables can be used to compute matrix element discriminants sensitive to the pres-
ence of possible BSM physics effects as described in Section 6.1 and Ref. [31].
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Cross sections are measured in differential bins of six kinematic discriminants sensitive to vari-
ous HVV anomalous couplings and the interference between two model contributions (SM and

a BSM scenario): Dg_ec, Dgﬁi, Dg'ff, Dgftc, Df\ef, and Dﬁ’dec. The results of these measurements,
shown in Figs. 18-23, are compared to distributions for the matrix element discriminants cor-
responding to various anomalous coupling hypotheses. Following the conventions adopted
in Ref. [31], rather than using the value of the coupling to identify the type of the anomalous

coupling sample, the cross sections fractions f,; are used:
2
a;|co; . a;
fum D (0, .

where 0; is the cross section for the process corresponding to a; = 1,4;,; = 0in Eq. (6). The term
for A; is 51/ (A;)* instead of |a;|?0;, where &, is the effective cross section for the process
corresponding to A; = 1TeV, given in units of fb-TeV*. To study the a, and a5 couplings,
discriminants of the form D,y and D, are built. The former are compared to the distributions
obtained for pure anomalous coupling scenarios corresponding to f,3 = 1 and f,, = 1, while
the latter are compared to the interference scenario where f,; = 0.5 and f,, = 0.5. A value of
fai = 0.5 corresponds to a maximal mixing between the SM and the BSM scenarios. To inspect
the couplings x; and K?, the interference discriminant is not built since it does not provide
additional information and the corresponding D,}; can also be used to study the interference.

For this reason, the measurements of D¢ and Dﬁ’dec are compared to the pure anomalous
couplings scenario fy; = 1 and ff{’ = 1, as well as to the interference hypotheses f,; = 0.5

and f/ZJ = 0.5. These values of f,, ffiy , and fxq correspond to illustrative extreme scenarios
chosen for a qualitative representation of the corresponding kinematic discriminants. The best
constraints on these parameters are much stricter, as reported in Ref. [31]
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Figure 18: Differential cross sections as functions of the matrix element kinematic discriminant
Dg_ec in the 4¢ (upper) and in the same-flavor (lower left) and different-flavor (lower right) final
states. The brown histograms show the distribution of the matrix element discriminant for the
HVYV anomalous coupling scenario corresponding to f,; = 1. The subdominant component
of the signal (VBF + VH + ttH) is fixed to the SM prediction. The hatched areas correspond
to the systematic uncertainties in the theoretical predictions. Black points represent the mea-
sured fiducial cross sections in each bin, black error bars the total uncertainty in each mea-
surement, red boxes the systematic uncertainties. The lower panels display the ratios of the
measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.
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Figure 19: Differential cross sections as functions of the matrix element kinematic discriminant
Dgﬁi in the 4/ (upper) and in the same-flavor (lower left) and different-flavor (lower right) final
states. The brown histograms show the distribution of the matrix element discriminant for the
HVYV anomalous coupling scenario corresponding to f,, = 1. The subdominant component
of the signal (VBF + VH + ttH) is fixed to the SM prediction. The hatched areas correspond
to the systematic uncertainties in the theoretical predictions. Black points represent the mea-
sured fiducial cross sections in each bin, black error bars the total uncertainty in each mea-
surement, red boxes the systematic uncertainties. The lower panels display the ratios of the
measured cross sections and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
the NNLOPS theoretical predictions.
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Figure 20: Differential cross sections as functions of the matrix element kinematic discriminant
D‘é%c in the 4¢ (upper) and in the same-flavor (lower left) and different-flavor (lower right) final
states. The green histogram shows the distribution of the discriminant for the HVV anoma-
lous coupling scenario corresponding to f,;3 = 0.5. The subdominant component of the signal
(VBF + VH + ttH) is fixed to the SM prediction. The hatched areas correspond to the system-
atic uncertainties in the theoretical predictions. Black points represent the measured fiducial
cross sections in each bin, black error bars the total uncertainty in each measurement, red boxes
the systematic uncertainties. The lower panels display the ratios of the measured cross sections
and of the predictions from POWHEG and MADGRAPH5_-aMC@NLO to the NNLOPS theoretical
predictions.
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Figure 21: Differential cross sections as functions of the matrix element kinematic discriminant
Dgﬁc in the 4¢ (upper) and in the same-flavor (lower left) and different-flavor (lower right) final
states. The green histogram shows the distribution of the discriminant for the HVV anoma-
lous coupling scenario corresponding to f,, = 0.5. The subdominant component of the signal
(VBF + VH + ttH) is fixed to the SM prediction. The hatched areas correspond to the system-
atic uncertainties in the theoretical predictions. Black points represent the measured fiducial
cross sections in each bin, black error bars the total uncertainty in each measurement, red boxes
the systematic uncertainties. The lower panels display the ratios of the measured cross sections
and of the predictions from POWHEG and MADGRAPH5_-aMC@NLO to the NNLOPS theoretical
predictions.
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Figure 22: Differential cross sections as functions of the matrix element kinematic discriminant
D‘/i\elc in the 4/ (upper) and in the same-flavor (lower left) and different-flavor (lower right)
final states. The brown and green histograms show the distributions of the discriminant for the
HVYV anomalous coupling scenarios corresponding to fo; = 1 and f,; = 0.5. The subdominant
component of the signal (VBF + VH + ttH) is fixed to the SM prediction. The hatched areas
correspond to the systematic uncertainties in the theoretical predictions. Black points represent
the measured fiducial cross sections in each bin, black error bars the total uncertainty in each
measurement, red boxes the systematic uncertainties. The lower panels display the ratio of the
measured cross section and of the predictions from POWHEG and MADGRAPH5_aMC@NLO to
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the NNLOPS theoretical expectation.
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Figure 23: Differential cross sections as functions of the matrix element kinematic discrimi-

nant Di’{’dec in the 4¢ (upper) and in the same-flavor (lower left) and different-flavor (lower

right) final states. The brown and green histograms show the distributions of the discriminant

for the HVV anomalous coupling scenarios corresponding to ff;’ = 1and ffY = 0.5. The
subdominant component of the signal (VBF 4+ VH + ttH) is fixed to the SM prediction. The
hatched areas correspond to the systematic uncertainties in the theoretical predictions. Black
points represent the measured fiducial cross sections in each bin, black error bars the total
uncertainty in each measurement, red boxes the systematic uncertainties. The lower panels
display the ratios of the measured cross sections and of the predictions from POWHEG and
MADGRAPH5_aMC@NLO to the NNLOPS theoretical predictions.

10.4 Double-differential cross sections

The differential cross section measurements presented so far ensure a good coverage of the
production and decay phase spaces in the H — ZZ — 4/ channel, together with a separation
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of possible interference effects present in the same- and different-flavor final states. To improve
the characterization of this decay channel and to maximize the coverage and separation of the
different phase space regions, a set of double-differential measurements is also performed. The

results are shown in Fig. 24 for |yy]| vs. p? (upper left), the number of associated jets vs. p?

(upper right), and 7% vs. p? (lower) and in Fig. 25 for p?j Vs. p? (upper left), , mz vs. mz,
(upper right), and pr of the leading vs. subleading jet (lower). The results are consistent with

the SM expectations, with the largest difference observed in the p? bins in the Nje;, = 1 phase
space region. The deficit in the low-p¥ bins for Niots = 1 is explained by large correlations with

the high—p? bin of Njets = 1 and the first p? bin in the Nje,s > 1 phase space regions, where the
tit to the data shows an excess with respect to the SM prediction.
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Figure 24: Double differential cross sections in bins of |yy]| Vvs. p? (upper left), number of

associated jets vs. p? (upper right), and 7% vs. p? (lower). The binnings of the various
measurements are reported in Table 6. The content of each plot is described in the caption of
Fig. 6.
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Figure 25: Double differential cross sections in bins of p?j Vs. p? (upper left), my vs. mz,
(upper right), and py of the leading vs. subleading jet (lower). The binnings of the various
measurements are reported in Table 6. The content of each plot is described in the caption of
Fig. 6.

11 Interpretations
11.1 Constraints on the H boson self-coupling

The differential cross section for the H boson production as a function of p? can be used to
extract limits on the H boson self-coupling, following the approach described in Refs. [137-
139]. At NLO in pQCD the H boson production includes processes sensitive to the trilinear
self-coupling (A3). The production modes ttH and VH introduce sizeable contributions to the



42

H boson self-coupling due to the large vector boson and the top quark masses, whereas ggH
and VBF production lead to much smaller contributions to the loop correction and are therefore
less sensitive to possible modifications of Aj;.

The cross sections for the various production mechanisms of the H boson are parametrized as
functions of a coupling modifier x, = A3/A3M in order to account for NLO terms arising from
the H boson trilinear self-coupling. The signal model defined in Section 8 is modified by fixing
the cross sections and branching fractions to their SM expectation values and by introducing
scaling functions y; ;(k, ) in each bin i of p?, for each production mechanism j. The dominant
production mechanism is ggH, for which a differential parametrization of the cross section as
a function of x, is not available yet, as discussed in Refs. [137-139]. The inclusive value is used
for the parametrization of the H boson cross section for this production mechanism, taking into
account an inclusive O(A3) correction factor.

In order to compute the scaling functions yi,]-(x 1) for the other production modes, LO parton-
level events are generated using MADGRAPH5_aMC@NLO 2.5.5 and are reweighted on an event-
by-event basis using a dedicated EW reweighting tool, which computes the corresponding
NLO Aj-corrections (O(A3)). The ratio of the O(A3) to the LO distributions in bins of p? is
used to derive the scaling functions y; ;(k, ) as detailed in Ref. [138].

Constraints on k, are extracted from the maximum likelihood scan in the range —10 < x, < 20,
outside which the model is no longer valid as NLO effects start to dominate, while the other
H couplings are fixed to their SM value. The likelihood scan as a function of «, is shown in
Fig. 26.

,CMS 138 fb™ (13 TeV)
- C
p F Exp. k, =1.07;2° (stat)" 32 (syst) —— Expected
C - —22 Y E tat
- 7= xpected - stat-only
< C _p 461 +2.0 —— Observed
Q [ Obs. x, =4.Tgs (stat) |, (syst) . Observed - stat-only

50 L
4= \\

68% CL

!

Figure 26: Likelihood scan as a function of x,. The scan is shown with (solid line) and without
(dashed line) systematic uncertainties profiled in the fit.
The minimum of the negative log-likelihood ratio corresponds to a measured value of:

Ky = 41788 = 41781 (stat) ") (syst) (10)

for an expected value of:

Ky = 1.07126 = 1.07120 (stat) 135 (syst). (11)
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The corresponding observed (expected) excluded x, range at the 95% confidence level (CL) is:
—54(-7.6) <k, < 149(17.7).

The current best available constraints on «, are obtained from the combination of measure-
ments of H boson pair production performed with the Run 2 data-set. The limits set by the
ATLAS and CMS Collaborations correspond to observed limits at the 95 % CL of —0.6 < k, <
6.6 [140] and —1.24 < k, < 6.49 [44], respectively.

11.2 Constraints on the charm and bottom quark couplings

The p? differential cross section of the ggH production mechanism is used to set constraints on
the H boson coupling modifiers to b and ¢ quarks in the context of the x-framework [141]. In
fact, because of the presence of b and ¢ quarks in the ggH loop [142], anomalous values of these
couplings can result in modifications of the ggH cross section. The other production mecha-
nisms are set to their SM expectation and no dependence from these couplings is assumed.
The H boson coupling to the top quark is fixed to the SM value. The effects of the associated
production with b quarks, whose contribution increases with increasing values of the coupling
of the H boson to the b quark, are taken into account in the theoretical inputs to compute the
parametrization.

The results are extracted from a maximum likelihood fit where the approach described in Sec-
tion 8 is modified by separating the ggH production from the other mechanisms, which are
considered as background and constrained to the SM predictions with their respective uncer-
tainties. The combined effect of the H boson couplings to b (x;,) and ¢ quarks (x.) is modeled

independently in each bin of the p? spectrum by means of a quadratic polynomial, following
the strategy of Ref. [52].

Figure 27 (left) shows the 2D likelihood scan of x;, and x. under the assumption that the H —
Z7Z branching fraction is dependent on the H boson couplings B = B(x,, k.. ), with all the other
couplings fixed to their SM value, and assuming no beyond-the-SM contributions. As expected,
the result is constrained by the saturation of the total width.

A simultaneous constraint on x, and . is also derived by treating the H — ZZ branching
fraction as an unconstrained parameter in the fit. The constraint from the total width and
the overall normalization is removed in this way, and what remains is purely the constraint

obtained from the shape of the pIT_I spectrum. The result is shown in Fig. 27 (right).

Confidence intervals on x;, and «, are obtained from a maximum likelihood fit leaving one of
the two parameters unconstrained in the fit and scanning the other. The observed (expected)
exclusion limits at the 95% CL are:

—11(-13) <x, < 1.1(12)

12
—53(-5.7) <x. < 5.2(5.7), (12)
assuming a dependence of the branching fraction on x;, and ., and:
—5.6(—55) <x, < 89(74
(-55) < < 89(74) )

—20(—19) <k, < 23(20),

treating the branching fraction as an unconstrained parameter in the fit.
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Figure 27: Simultaneous fit of x,, and x., assuming a coupling dependence of the branching
fraction (left) and treating it as an unconstrained parameter in the fit (right).

12 Summary

This paper presents a comprehensive characterization of the H — ZZ — 4/ decay channel
via the measurement of fiducial differential cross sections as functions of several kinematic
observables. The H boson production is characterized via measurements of differential cross
sections in bins of p? and |yg|, the pr of the leading and subleading jets and observables of
the dijet system, when associated with jets. Fiducial cross sections are measured in bins of
the seven kinematic observables that completely define the four-lepton decay: the invariant
mass of the two Z bosons and the five angles that describe the fermions kinematical prop-
erties and the production and decay planes. Differential cross sections are also measured in
bins of six matrix element kinematic discriminants sensitive to various anomalous couplings
of the H boson to vector bosons. The dynamical evolution of the renormalization and fac-
torization scales, and resummation effects are probed by measuring cross sections in bins
of rapidity-weighted jet vetoes, and in bins of observables of the H plus jets system. An
extensive set of double-differential measurements is presented, providing a complete cover-
age of the phase space under study. The H — ZZ — 4/ inclusive fiducial cross section is
g = 2.73 £0.26fb = 2.73 £ 0.22 (stat) £ 0.15 (syst) fb, in agreement with the SM expectation
of 2.86 £ 0.15 fb. The measurement of the fiducial cross section in differential bins of p? is used
to set constraints on the trilinear self-coupling of the H boson, with an observed (expected)
limit of —5.4 (—7.6) < x, < 14.9 (17.7) at the 95% CL. Finally, constraints on the modifiers of
H boson couplings to b and c quarks (x, and «,) are also determined with an observed (ex-
pected) limit of —1.1(—1.3) < x, < 1.1(1.2) and —5.3(—5.7) < k. < 5.2(5.7) at the 95% CL,
obtained assuming a dependence of the branching fraction on x;, and x.. All results are consis-
tent with the SM predictions for the H — ZZ — 4/ decay channel in the considered fiducial
phase space.
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