
HammerDodger: A Lightweight Defense
Framework against RowHammer Attack on DNNs

Cheng Gongye, Yukui Luo, Xiaolin Xu, Yunsi Fei
Northeastern University, Boston, MA, US

{gongye.c, luo.yuk, x.xu, y.fei}@northeastern.edu

Abstract—RowHammer attacks have become a serious secu-
rity problem on deep neural networks (DNNs). Some carefully
induced bit-flips degrade the prediction accuracy of DNN models
to random guesses. This work proposes a lightweight defense
framework that detects and mitigates adversarial bit-flip attacks.
We employ a dynamic channel-shuffling obfuscation scheme to
present moving targets to the attack, and develop a logits-based
model integrity monitor with negligible performance loss. The
parameters and architecture of DNN models remain unchanged,
which ensures lightweight deployment and makes the framework
compatible with commodity models. We demonstrate that our
framework can protect various DNN models against RowHam-
mer attacks.

Index Terms—Neural networks, Computer security, Fault pro-
tection

I. INTRODUCTION

As deep neural network (DNN) models are widely deployed
in diverse applications, the attack surface gets expanded from
both the algorithm and implementation perspectives. Protect-
ing DNN models against various powerful and stealthy attack
methods has become an urgent and challenging task. Recently,
bit-flip adversarial weight attacks (BFA) have arisen as a
serious security problem on DNN models, which only require
the adversary to flip as few as two to twenty bits to corrupt the
inference accuracy of a DNN model to the worst-case possible,
i.e., random guesses [1], presenting a devastating threat to the
run-time execution of DNN models. More severely, it has been
revealed that such BFA attacks can be physically launched
utilizing the RowHammer phenomenon of DRAM structures,
which allows the attacker to accurately flip bits stored in the
DRAM from an unprivileged process, as demonstrated in [2].
A recent work [3] discovered that almost all DDR4 DRAMs
are vulnerable to RowHammer attacks, making the BFA attack
a general and common threat to DNN implementations.

These attacks breach the integrity of DNN models and call
for immediate and effective defense solutions, considering the
large amount of commodity DNN models deployed in the field.
Although some defense solutions against such RowHammer-
based BFA attacks have been put forward, their practical
deployment presents several challenges, including requiring
retraining of the DNN models and demanding significant

This work is supported in part by the U.S. National Science Foundation
under grants SaTC-1929300, IUCRC-1916762, CNS-2153690, CNS-2247892,
and DGE-2043183.

parameter and structure changes. To address these drawbacks,
we propose a defense strategy that makes no changes to the
parameters and structure of the original DNN models and does
not require any retraining. Such a lightweight defense method
removes the barrier that hinders practical defenses against BFA
attacks.

This work makes the following contributions.
• We propose a lightweight defense framework, Hammer-

Dodger, against RowHammer BFAs on DNNs. To the best
of our knowledge, this is the first defense solution that
does not require any retraining or significant changes to
the model parameters and hyperparameters. It employs a
novel channel shuffling scheme. It is generally applicable to
any commodity DNN models that have convolution layers,
dense layers, and batch normalization layers.

• We also propose a run-time model integrity monitoring
mechanism. We adopt the distance between the clean logits
and logits of the attacked model as a proxy to the inference
accuracy degradation, which tracks the accuracy loss with
negligible overhead.

• We evaluate the effectiveness of HammerDodger on dif-
ferent datasets including CIFAR-10, CIFAR-100, and Im-
ageNet 2012, as well as across various DNN models. The
experimental results demonstrate that our defense method
can effectively dodge BFA attacks and maintain the accu-
racy of the victim DNN models fairly well.

II. BACKGROUND

A. RowHammer Attack

RowHammer attack has become an emerging threat to
applications deployed on platforms with DRAMs [4]. By
strategically and frequently accessing the DRAM memory
rows around the victim cells, the RowHammer attack can flip
the original bit in the victim cells, i.e., 0-to-1 or vice versa.
Moreover, a recent work [3] reports improved RowHammer
attacks can bypass the Target Row Refresh (TRR) techniques
1 [5], presenting a threat to all the forty DRAM DIMMs from
four major vendors tested. As of now, there is no easy fix
because TRR is built into DRAM DIMMs and cannot be
updated easily, leaving a great number of commodity devices
vulnerable to RowHammer attacks.

1TRR is an umbrella term referring to the various RowHammer mitigation
implementations by different vendors in DDR4.979-8-3503-2348-1/23/$31.00 ©2023 IEEE

20
23

 6
0t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

67
1

Authorized licensed use limited to: Northeastern University. Downloaded on September 19,2023 at 20:27:11 UTC from IEEE Xplore. Restrictions apply.

B. Adversarial Bit-flip Weight Attack

Aiming at degrading the performance (e.g., inference accu-
racy) of a DNN model, the bit-flip-based adversarial weight
attack (BFA) leverages the RowHammer phenomenon in the
commodity DRAMs. To make BFA attacks effective, the
previous works [1], [2], [6] present methods to identify the
most vulnerable bits, i.e., these stored in the victim cells, with
the largest gradients and lead to the most accuracy loss. BFA
can degrade the accuracy of DNN models to random guesses
with merely two to twenty bit-flips [1], [2], [6], [7].

Floating-point DNN models’ parameters are extremely vul-
nerable to bit-flip attacks, since even one bit-flip, if located in
the exponents, will greatly degrade the accuracy of the DNN
model [6], [8]. Hence, floating-point DNN models are not
suitable for security-sensitive applications, where quantized
models are preferred for their stronger robustness and higher
performance. BFA attacks still present a serious and practical
threat to quantized models.

C. Defense Solutions Against BFA Attacks

Some works attempt to improve the robustness of DNN
models against BFA attacks, e.g., by modifying the model
parameters and structures. He et al. proposed to binarize
the DNN model weights and retrain the victim model to
reduce the effectiveness of BFA attacks [9]. Li et al. added
a weight reconstruction step at each layer of the DNN model,
to mitigate the weight changes caused by bit-flips [10]. Liu
et al. proposed to quantize and retrain the DNN model and
change the bit level representation of the weight parameters,
to reduce the chance that the attack can successfully target the
critical bits [11].

Although effective, deploying these defense solutions is
challenging due to their requirement for re-training. Practically
the dataset is not always available for the DNN model users.
Moreover, training a high-performance DNN model requires
massive computational power and domain expertise, which
present a barrier to normal DNN model consumers. Even
worse, changing the structural and bit-level representation of
the DNN models might make them incompatible with various
accelerators.

III. THREAT MODEL

Without loss of generality, we adopt the same threat model
as the original BFA work [1], [2], [6], which utilizes RowHam-
mer to flip the critical bits of DNN models to degrade their
inference accuracy. Fig. 1 illustrates the steps. The victim
DNN model’s weights are quantized to 8 bits [1], [2]. We
assume the strongest attacker, equipped with a great deal of
domain knowledge and capabilities, detailed as follows.

1) Victim: As shown in Fig. 1, the victim DNN model is
executed in the cloud computing infrastructure with shared
DRAM between the victim user and an attacker. The victim
model will be loaded into the DRAM (4©) for inference (5©)
by a DNN accelerator, e.g., CPU, GPU, or FPGA. The user
can get the inference result from the cloud (6©).

'LVN 3URFHVVRU

'11�0RGHO

9LFWLP�8VHU

$WWDFNHU
'5$0

�
�
�
�

$WWDFNHU�3DJH
9LFWLP�3DJH
9XOQHUDEOH�&HOO
%LW�)OLS

&ORXG�6\VWHP

Fig. 1: Illustration of the threat model.

2) Attacker’s Knowledge: Following [1], we assume the
attacker knows all the parameters and hyperparameters of the
victim DNN model [1], [2], [6]. Through reverse-engineering
and public research, the attacker also knows the physical lay-
out of the DRAM and the virtual-to-physical address mapping
information.

3) Attacker’s Capabilities: As Fig. 1 illustrates, the attacker
can read the memory using unprivileged technologies (2©),
such as KPTI bypassing [12]. She will adjust the “hammering”
behavior towards vulnerable memory cells. Then, the attackers
can profile the victim DNN model and identify the vulnerable
bits. Finally, using the advanced memory massage technique
(3©), the attacker can force the victim page to reside in
exploitable vulnerable regions [2].

IV. HAMMERDODGER: A RETRAINING-FREE DEFENSE

METHODOLOGY

We introduce the design rationals of HammerDodger based
on three key observations, with several preliminary experi-
ments performed on an 8-bit quantized ResNet-20 model with
92.6% prediction accuracy on the CIFAR-10 dataset.

A. Key Observations

Observation 1: The possible number of bit-flips, in reality,

is not large.

Although many existing defense works against BFA attacks
assume the existence of hundreds of bit-flips that can be
produced by the RowHammer attack. We argue this is an
impractical assumption since it is challenging to reliably
trigger more than one bit-flip in a physical DRAM page of
4 KB. For a modest 8-bit quantized ResNet20 model, the
maximum bit-flips possible is " 27KB

4KB
= 68. Moreover, to

inject hundreds of bit-flips, the attacker will have to massage
hundreds of aggressor rows, which will take a long time, i.e.,
days or even several weeks [3]. Hence, we argue that it is
sufficient to analyze the defense framework under a dozen of
bit-flips, which is in accordance with the existing work [2]
that assumes an attacker can only flip one bit per page when
performing BFA using the RowHammer attack.

Observation 2: Randomly flipping bits in DNN model

weights barely degrades the model prediction accuracy.

We test the accuracy degradation of a DNN model under
two types of attacks, BFA and the random bit-flip attack.
We repeat each attack type 20 times with different random
seeds. The testing results are presented in Fig. 2, which shows
that the BFA can significantly degrade the model prediction

Authorized licensed use limited to: Northeastern University. Downloaded on September 19,2023 at 20:27:11 UTC from IEEE Xplore. Restrictions apply.

1XPEHU�RI�IOLSSHG�ELWV

$
FF
XU
DF
\�
��

�

%)$�������
5DQGRP�ELW�IOLS

� ��

��

��

��

��

��

Fig. 2: Model prediction accuracy (with a 95% error band) vs.
the number of flipped bits under two attack strategies.

$FWLYDWH�
FKDQQHO�
VKXIIOH

'5$0

�
�
�
�

����

&�𝜔1,4,1,1

3DVVLYH�
FKDQQHO�
VKXIIOH

'5$0

�
�
�

Conv2D𝑖 Conv2D𝑖+1

����

&�

&�

𝜔1,1,1,1

�E��6KXIIOHG�PRGHO�GHIHQVH�WKH�5RZ+DPPHU

&�
�D��5RZ+DPPHU DIIHFW�WKH�FOHDQ PRGHO

$WWDFNHU�
3DJH

Conv2D𝑖 Conv2D𝑖+1

Fig. 3: Channel-wise DNN model shuffling. (a) The clean
model inference process between two convolutional layers.
(b) Apply a synchronized model shuffling sequence along
the output channels of Conv2Di and the input channels of
Conv2Di+1, respectively.

accuracy, i.e., to random guesses (10% in CIFAR-10) with
only 10 flips. On the contrary, the random bit-flip attack
barely affects the prediction accuracy, even with more bit-
flips. These experimental results demonstrate that most DNN
model weights are naturally resilient to such bit-flip attacks, in
terms of model inference accuracy. This observation motivates
the defense strategy: degrading the BFA to a random bit-flip

attack can effectively mitigate the RowHammer-based BFA.

Observation 3: The channels of a DNN model are inde-

pendent, and shuffling along the channel dimension does not

affect the final result.

We illustrate this key observation in Fig. 3 using two
consecutive convolutional layers, Conv2Di and Conv2Di+1,
where Conv2Di has 3 input channels and 4 output channels,
and Conv2Di+1 has 4 input channels and 2 output channels.
Assuming the BFA attack aims to flip a critical bit in the
fourth output channel of Conv2Di (the green C4 channel). To
dodge the attack, an active channel shuffle along the output
channel of Conv2Di can move the critical kernels away,
e.g., Channel 1 (yellow) and Channel 4 (green) are swapped.
Note that since shuffling the output channels of a layer will
also shuffle the output feature maps, the corresponding input
channel kernels in the next adjacent layer, Conv2Di+1, should
also be adjusted to align with the previous layer’s output
channel shuffling, defined as a passive channel shuffling. Due
to the channel independency, such alignment guarantees the
correctness of the output. For a convolutional layer with
n output channels, its shuffling space is n!, which can be
huge especially for larger DNN models with dozens and even
hundreds of channels.

'HSOR\HG�
'11�PRGHO

0RGHO�,QWHJULW\�
0RQLWRU

0RGHO�6KXIIOH�
0DFKLQH

$SSOLFDWLRQ�OHYHO
'5$0

3K\VLFDO�OHYHO $WWDFNHU�3DJH
9LFWLP�3DJH
9XOQHUDEOH�&HOO
%LW�)OLS

5RZ+DPPHU
+DPPHU'RGJHU

�
�
�
�

Fig. 4: HammerDodger Overview.

B. HammerDodger: System Overview

From the first two observations, we conclude that if we can
frequently change the physical location of the most vulnerable
model bits in the DRAMs, we can essentially degrade the im-
pact of BFA attacks, i.e., to random bit-flip attacks. Practically,
we do not need to make any fine-grained changes to the DNN
model weights, i.e., at the bit-level, but can achieve this by
shuffling the channels as demonstrated in Observation 3.

To launch this defense strategy, we propose two building
blocks, as shown in Fig. 4. The first one is the model shuffle
engine, which periodically executes the channel-wise model
shuffling (1© → 2©), to move the target of the BFA attacks.
The second building block is a model integrity monitor, which
checks the accuracy degradation (3©) caused by the random
bit-flips at run-time and reloads the model from the disk at
a certain degradation threshold, so as to recover the model
prediction accuracy (4© → 2©). We present details of these
building blocks in the flowing subsections.

C. Model Shuffle Block

The model shuffle block consists of two parts. The first part
is a shuffle-enabled model loader, which aims to avoid the
original model from being loaded into the memory because
the attacker may have RowHammer traps 2 that can quickly
deploy the BFA attack [13]. We implement this part using the
memap function of Numpy [14], which allows us to map the
model file without actually loading it into the memory. Then,
we can load the model weights using the shuffled sequence
from the memory map. The second part is the online model
shuffler, which shuffles the model on demand after the model
is stored in the memory. Both parts use the same shuffling
algorithm, which supports permuting generic DNN layers,
including the convolution layer, batch normalization layer,
dense layer, and residue blocks. Therefore, the model shuffle
block is compatible with any popular DNN architectures like
VGG [15], AlexNet [16], ResNet [17], and MobileNet [18].
Since our framework only introduces channel-wise shuffling
as described in Observation 3, we do not need to tackle
those special layers like activation layers and pooling layers
which do not have parameters to relocate. Cognizant of the
output channels, the input channels of the next layer need to

2Note there is no work that implements this kind of traps for DNN yet.
We consider the worst possible scenario to build strong defense, where the
attacker employs memory exhaustion techniques to force the DNN model to
locate at the vulnerable DRAM region upon initial loading.

Authorized licensed use limited to: Northeastern University. Downloaded on September 19,2023 at 20:27:11 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Algorithm to shuffle the weight of two
consecutive layers

Input: Weights of Layer i and i+1 : wi and wi+1 of
dimension [IC,OC,W,H]

Output: shuffled weights wi
′ and wi+1

′

1 Index = 1
2 for RandIndex in s do
3 wi

′[:, Index, :, :] = wi[:, RandIndex, :, :]
4 wi+1

′[Index, :, :, :] = wi+1[RandIndex, :, :, :]
5 Index = Index+ 1

�D� 5HVLGXDO�EORFN

OD\HU�𝑖 + 1
���

OD\HU�𝑖 + 𝑛

𝑥

𝑥′

%DWFK�1RUP
3DUDPHWHUV�

𝐸 𝑥 , 𝑉𝑎𝑟 𝑥 , 𝛾, 𝛽

𝑥

𝑥′

6HTXHQFH�𝑖

�E� %DWFK�QRUPDOL]DWLRQ�OD\HU

OD\HU�𝑖

6H
TX
HQ
FH
�𝑖

Fig. 5: Shuffle examples. (a) Shuffle sequence distribution with
complex links, such as residual block. (b) The shuffle sequence
should be applied to all channel-wise parameters.

be shuffled accordingly. We demonstrate how to shuffle two
consecutive convolution layers in Alg. 1. Note that the number
of output channels (OC) of layer i is always the same as
the number of the input channels (IC) of layer i + 1, i.e.,
OCi ≡ ICi+1. Therefore, we generate a random channel
sequence s, ranging from one to OCi, and use this sequence
to direct the memory layout of the output channel weights of
layer i and the input channel weights of layer i+ 1.

HammerDodger keeps the input channel of the first layer
and the output channel of the last layer unchanged, and shuffles
both the input and output channels of hidden layers. For each
layer i, we generate a random sequence si of length OCi.
Two situations need special attention: residue blocks and batch
normalization layers. We demonstrate how to shuffle a residue
block in Fig. 5(a). A residue block has an extra connection
compared with regular DNN layers. The output x of layer i
not only goes through layer i+ 1 but also adds to the output
of layer i + n to generate x′. Hence, the output channel of
layer i and layer i + n must coordinate to follow the same
shuffle sequence. The batch normalization layer has various
values for its four parameters: running mean (E[x]), running
variance (V ar[x]), weight(γ), and bias(β) in each channel.
As shown in Fig. 5(b), we have to shuffle all four parameters
according to the output sequence i of the previous layer.

In addition to the shuffling mechanism, we should determine
the shuffling frequency based on the capability of the attacker.
Since our defense goal is to degrade the BFA attack to a
random bit-flip attack, we need to shuffle the DNN model
fast enough so that the attacker cannot effectively perform the

Algorithm 2: Model integrity monitoring algorithm.

Input: DNN Model M , input Ii, clean logits
Li = M(Ii), i ∈ (1, n), the reload threshold
thL

1 Di = 0, i ∈ (1, n)
2 i = 1
3 while True do
4 if M inferences one batch of inputs then
5 Li

′ = M(Ii)

6 Di =
‖L′

i
−Li‖1

N

7 if Average(D1...Dn)> thL then
8 ReloadModel
9 Di = 0, i ∈ (1, n)

10 i = i mod n
11 i = i+ 1

surgical BFA attacks.
To determine the shuffling frequency, we assume a strong

attacker, who can locate the target vulnerable bits in the
DRAM instantly, i.e., after shuffling. Then, the attacker needs
to massage the aggressor rows, so they can flip the vulnerable
bits. From the defense perspective, if we shuffle the DNN
model channels before the attacker can finish the massaging,
we can degrade the BFA to random bit-flip attacks. We
consider the state-of-the-art memory massaging technique that
takes dozens of seconds to flip a target row [2]. Hence,
shuffling every second should effectively mitigate the BFA.
We present the accuracy and overhead analysis in Sec. V.

D. Model Integrity Monitor

When a victim model is under a BFA, the accuracy would
degrade drastically as the number of bit-flips increases, as
shown in Fig. 6. Although the average accuracy is still high
when our channel shuffling defense is applied, we observe the
distance between the min and max inference accuracy is large.
This is because as the number of trials increases, there is still
a chance that the random bit-flips fall on the vulnerable bits,
to introduce great performance degradation. To address this
potential issue, we introduce a model integrity monitor block,
which is used to track the accuracy degradation and reload the
model when needed.

The most accurate way to measure the model’s accuracy
degradation is to run the whole validation dataset, which is
however, too costly since the validation dataset typically has
thousands of images. To achieve lightweight validation, i.e.,
model integrity monitoring, we develop a novel proxy that
can reflect the accuracy degradation using only 20 inferences.
Specifically, we use the distance between the logits of the clean
model and the logits of the post-attack model of the same
input image as the metric, to reflect the accuracy degradation.
Generally, the larger the distance, the more bits in the victim
model are flipped, corresponding to a higher accuracy degrada-
tion. During the offline stage, we characterize the relationship

Authorized licensed use limited to: Northeastern University. Downloaded on September 19,2023 at 20:27:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Performance Overhead of HammerDodger

Dataset Network
Number of

classes
Input
size

Number of
training
samples

Number of
validation
samples

Number of
parameters

(M)

Shuffle
time
(ms)

Reload
time
(ms)

Monitor
time
(ms)

Inference throughput (fps)

Original
HammerDodger
w/o reloading

CIFAR-10 ResNet-20 10 32×32 50K 10K 0.27 2.44 25.71 0.42 2370 2351
CIFAR-100 ResNet-32 100 32×32 50K 10K 0.47 4.71 37.3 0.61 1641 1628
ImageNet ResNet-18 1,000 224×224 1.2M 50K 11.69 14.36 209.71 1.63 86.3 85.1

��

��

��

��

1XPEHU�RI�IOLSSHG�ELWV
��� ���

1XPEHU�RI�IOLSSHG�ELWV

/RZ�$FFXUDF\�
5HJLRQ

%DVHOLQH��������6KXIIOH�Z��PRQLWRU

$
FF
XU
DF
\�
��

� �����𝑡ℎ𝐿 ���

%DVHOLQH��������6KXIIOH Z�R PRQLWRU

Fig. 6: Model shuffle performance w/o & w/ model integrity
monitor.

between the accuracy degradation and the logits’ distance, and
build a look-up table for the online inference to check. We
use the average of 20 distances to increase the stability of the
measurement. In Fig. 7, we show an example offline profiling
step using ResNet20 and the CIFAR-10 dataset, from which
we can see that the logits-distance provides a high-fidelity
estimation of the model accuracy.

We describe this proxy-enabled model accuracy monitoring
in Alg. 2. The input of the algorithm is the 20 randomly
selected input images and their corresponding clean logits.
The user selects a model-reload threshold based on the offline
profiling result and their desired model accuracy. The accuracy
monitoring program runs inference on one of the 20 images
and calculates the distance between the current logtis and the
clean logits. If the average value of the distance is greater than
the threshold, the monitoring program reloads the model from
the disk to obtain a clean model. Note that if there is no attack
or the accuracy degradation is acceptable, the model will not
be reloaded, minimizing the performance overhead.

V. EVALUATIONS

A. Experimental Setup

Dataset and DNN Architectures: To thoroughly evaluate
the performance of HammerDodger, we adopt three popular
classification datasets that span small, medium, and large
scales: CIFAR-10 [19], CIFAR-100 [19], and ImageNet 2012
[20]. We list the metadata of the dataset in Table I. More-
over, we select the model architectures based on the publicly
available pre-trained models from reputable sources. The pre-
trained parameters of ResNet18 [17] for ImageNet are from the
official PyTorch Model Zoo [21]. The parameters of ResNet20
and ResNet32 are from the public model zoo of Chen et al.
[22], whose training codes and logs are open. Note that we
choose the configurations of ResNet tailored for CIFAR and
ImageNet respectively according to the original ResNet paper
[17]. The ResNet18 is much larger than the ResNet20 and
ResNet32.

/RJLWV�GLVWDQFH�
���

��

��

��

��

��

$
FF
XU
DF
\�
��

�

&XVWRPL]HG
5HORDG�7KUHVKROG��𝑡ℎ𝐿�

0RGHO�UREXVWQHVV�
FXUYH�Z��HUURU�EDQG

������������ ���������

��
��
��
��
��
��
��

Fig. 7: Model robustness curve example, where we apply the
target ResNet18 model w/ reference image set.

BFA Configuration: We apply the same configuration for
vulnerable bits searching as the prior work [1]. Specially, we
relax the restriction that only allows flipping one bit per 4
KB page, to mimic the capabilities of the strongest possible
attacker. For each dataset and network configuration, we gener-
ate 20 sets of bit-flips that can degrade the inference accuracy
of the DNN model to random guesses using different random
seeds, to ensure coverage of the testing. On the defense
evaluation side, we generate 4, 000 shuffling permutations for
each network to produce stable numeric results.

Experiment Platform: We perform the BFA experiment
and accuracy evaluation using NVIDIA TITAN X (Pascal)
GPU with PyTorch 1.12.1 and CUDA toolkit 11.3.1. The
overhead evaluation runs on a workstation with Intel Xeon
CPU E5-2667 v4 @ 3.20 GHz CPU, 4x8 GB Hynix DDR4
memory @ 2400 MHz, and 2 TB Samsung EVO 870 SSD.

B. Performance Evaluation

In this section, we evaluate the overhead of Hammer-
Dodger and analyze the suitable configuration that provides
a good trade-off between performance and defense strength.
We present the overhead of HammerDodger in Table I, where
we show the average time of 1, 000 trials to perform shuffle,
monitor, and reload during one model inference, respectively.
The inference time is the overall run time of one batch (128
images). Since we only need to shuffle the model once a
few seconds, the shuffling overhead is small compared to the
inference time. Therefore, the shuffling will not significantly
affect the throughput of the DNN model. The model reloading,
however, is relatively expensive since it restores all the param-
eters of the DNN model. The performance shown in Table I
Column 11 and 12 are the baselines (without reloading).

In Fig. 8, we show the accuracy and performance trade-off
when reloading the model using different thresholds. First, we
can see that HammerDodger can mitigate RowHammer-based
BFA effectively. When we set the reloading threshold to less

Authorized licensed use limited to: Northeastern University. Downloaded on September 19,2023 at 20:27:11 UTC from IEEE Xplore. Restrictions apply.

$
FF
XU
DF
\�
��

�

��

��

��

��

��

�D��&,)$5��� �E��&,)$5���� �F��,PDJH1HW

7K
UR
XJ
KS
XW
��I
SV
�

7K
UR
XJ
KS
XW
��I
SV
�

7K
UR
XJ
KS
XW
��I
SV
�

Fig. 8: Trade-off analysis between model throughput and accuracy.

than 6, all three models can maintain the original accuracy with
trivial to no loss. Second, the medium and large size CIFAR-
100 and ImageNet models are more sensitive to faults, i.e.,
the probability of reloading quickly becomes high, and the
throughput plateaus when there are merely one to three bit-
flips. The good news is that the throughput degradation is less
than 10% for ImageNet, since for large models, the reloading
time is short in relevance to the inference time. Hence, for
large datasets and models, in practice, we can select a small
reload threshold to effectively protect the DNN model at a
reasonable throughput degradation. For smaller dataset and
models like CIFAR-10, CIFAR-100 the performance penalty
is higher because the reload time occupies a more significant
portion than the other two cases. The user can decide the
trade-off between accuracy and performance. For example, a
user can choose a higher reloading threshold at the expense
of slightly worse accuracy to improve the throughput.

VI. DISCUSSION AND CONCLUSION

This paper presents a lightweight defense framework, Ham-
merDodger, against the powerful and stealthy bit-flip attacks
using RowHammer on DRAMs. HammerDodger can protect
DNN models with nearly no accuracy loss, using dynamic
model shuffling to degrade the BFA attacks to random bit-
flip attacks. HammerDodger also monitors the accuracy of the
DNN model using a novel logits-based distance measurement
and restores the model when necessary. We present detailed
performance overhead analysis on various datasets and net-
work structures. In terms of defense effectiveness, Hammer-
Dodger is as effective as the strongest previous solution [9].
The largest advantage of HammerDodger lies in the removal
of DNN model re-training, i.e., both parameters and structure,
presenting a user-friendly and efficient defense technique.
Built on PyTorch, HammerDodger can be applied for protect-
ing any commodity DNN models that have convolution layers,
dense layers, and batch normalization layers, and is compatible
with most DNN accelerators.

REFERENCES

[1] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network
with progressive bit search,” in ICCV, 2019.

[2] F. Yao, A. S. Rakin, and D. Fan, “{DeepHammer}: Depleting the
intelligence of deep neural networks through targeted chain of bit-flips,”
in USENIX Security, 2020.

[3] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Black-
smith: Scalable rowhammering in the frequency domain,” in S&P, 2022.

[4] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, 2014.

[5] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of
target row refresh,” in S&P. IEEE, 2020.

[6] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Terminal
brain damage: Exposing the graceless degradation in deep neural net-
works under hardware fault attacks,” in USENIX Security, 2019.

[7] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-dup: An adversarial
weight duplication attack framework to crush deep neural network in
multi-tenant fpga,” in USENIX Security, 2021.

[8] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “Deepstrike: Remotely-guided
fault injection attacks on dnn accelerator in cloud-fpga,” in DAC. IEEE,
2021.

[9] Z. He, A. S. Rakin, J. Li, C. Chakrabarti, and D. Fan, “Defending and
harnessing the bit-flip based adversarial weight attack,” in CVPR, 2020.

[10] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and
C. Chakrabarti, “Defending bit-flip attack through dnn weight recon-
struction,” in DAC. IEEE, 2020.

[11] L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating robust
dnn with resistance to bit-flip based adversarial weight attack,” IEEE
Transactions on Computers, 2022.

[12] A. Lut,as, and D. Lut,as, , “Bypassing kpti using the speculative behavior
of the swapgs instruction,” in BlackHat, 2019.

[13] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in S&P. IEEE, 2018.

[14] “numpy.memmap NumPy v1.23 Manual.” [Online]. Available:
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
2017.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv:1704.04861, 2017.

[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Challenge,” IJCV, 2015.

[21] “Models and pre-trained weights Torchvision 0.14 documentation,” Nov.
2022. [Online]. Available: https://pytorch.org/vision/stable/models.html

[22] chenyaofo, “pytorch-cifar-models,” Nov. 2022. [Online]. Available:
https://github.com/chenyaofo/pytorch-cifar-models

Authorized licensed use limited to: Northeastern University. Downloaded on September 19,2023 at 20:27:11 UTC from IEEE Xplore. Restrictions apply.

