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Abstract—Objective: Volitional control systems for powered 
prostheses require the detection of user intent to operate in 
real life scenarios. Ambulation mode classification has been 
proposed to address this issue. However, these approaches 
introduce discrete labels to the otherwise continuous task 
that is ambulation. An alternative approach is to provide 
users with direct, voluntary control of the powered 
prosthesis motion. Surface electromyography (EMG) 
sensors have been proposed for this task, but poor signal-
to-noise ratios and crosstalk from neighboring muscles limit 
performance. B-mode ultrasound can address some of 
these issues at the cost of reduced clinical viability due to 
the substantial increase in size, weight, and cost. Thus, 
there is an unmet need for a lightweight, portable neural 
system that can effectively detect the movement intention of 
individuals with lower-limb amputation. Methods: In this 
study, we show that a small and lightweight A-mode 
ultrasound system can continuously predict prosthesis 
joint kinematics in seven individuals with transfemoral 
amputation across different ambulation tasks. Features 
from the A-mode ultrasound signals were mapped to the 
user’s prosthesis kinematics via an artificial neural network. 
Results: Predictions on testing ambulation circuit trials 
resulted in a mean normalized RMSE across different 
ambulation modes of 8.7 ± 3.1%, 4.6 ± 2.5%, 7.2 ± 1.8%, and 
4.6 ± 2.4% for knee position, knee velocity, ankle position, 
and ankle velocity, respectively. Conclusion and 
Significance: This study lays the foundation for future 
applications of A-mode ultrasound for volitional control of 
powered prostheses during a variety of daily ambulation 
tasks.  
 

Index Terms—A-Mode ultrasound, intent recognition, joint 
kinematics prediction, lower-limb prosthesis, transfemoral 
amputation 

I. INTRODUCTION 
OBOTIC prostheses have the potential to overcome the 
limitations of passive devices [1][2] by replicating the 

kinetic and kinematic motion of the missing biological limb 
using their embedded actuators [3][4][5]. In laboratory settings, 
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these powered prostheses have shown the ability to improve 
ambulation [6][7][8] and to enable activities that are difficult or 
impossible with passive devices, such as crossing over obstacles 
[9] or ascending stairs with a natural gait pattern [10][11][12]. 
However, to be viable in real life, powered prostheses must be 
able to promptly adapt to a changing environment and the user’s 
intent to move. 

Researchers have proposed using high-level control strategies 
aiming to classify the user’s intended ambulation mode online. 
These classifiers are typically based on onboard mechanical 
sensors [13][14], such as inertial measurement units (IMU) and 
load cells, or a combination of mechanical sensors and 
neuromuscular signals, such as electromyography [15][16] and 
sonomyography [17][18]. The application of vision and depth 
sensing have also resulted in improved environment and 
ambulation mode classification [19][20][21]. Although these 
studies show high levels of accuracy, classification is not 
perfect. A misclassification of the intended ambulation mode 
can be dangerous for the user, as even a single misinterpreted 
stride could lead to a motion of the prosthesis that is far from the 
desired trajectory that would allow the user to safely negotiate 
their environment. Therefore, there are still open questions 
related to the use of classification-based controllers in real life. 

Another open challenge in powered prosthetics is the 
adaptation to the environment and the user intent within a 
defined ambulation mode. Controllers specific to an ambulation 
mode define the desired torque [22][23], impedance [4][12], or 
position [9][24] of the powered prosthesis at the joint level by 
reacting to the user’s movements. Some of these activity-
specific controllers break down the gait cycle using a discrete 
number of phases [4][22][25], others use a continuous phase 
evolution [24][26]. A few of these controllers have some 
intrinsic adaptation capabilities. For example, researches have 
shown continuous adaptation to walking speed/cadence [22] 
[24][27], foot clearance [9], incline [12][28], and step height 
[10]. Although these methods provide some adaptation to the 
environment and the user, there is not yet a direct control system 
that works seamlessly across a variety of ambulation modes.  
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Researchers have proposed optimization approaches using the 
residual limb motion to enable unified controllers [9][10]. Even 
if successful, relying on mechanical sensors and residual limb 
motion alone will still not provide users with direct volitional 
control. This issue can be addressed by adding a sensing 
modality that monitors the user’s neuromuscular signals, which 
directly tracks the user’s intention to move. Volitional control 
using EMG has been demonstrated in non-weightbearing 
settings [29][30] and in weightbearing settings within a specific 
ambulation mode [31][32]. Moreover, one recent study has 
shown that shared EMG control enables seamless, voluntary 
transition between different ambulation modes, including 
walking, squats, lunges, and sit-to-stand transitions under 
various loads and conditions [33]. Despite the promising results 
of EMG control for powered prostheses, this approach is limited 
by a poor signal-to-noise ratio and a lack of muscle specificity 
[34]. A better neuromuscular sensing modality could improve 
the performance of volitional controllers for powered 
prostheses.  

Muscle ultrasound, also known as sonomyography, is an 
alternative sensing method that can track neuromuscular signals 
while providing better muscle specificity and additional muscle 
activation information from deep-seated muscles compared to 
using EMG. Comparative studies have demonstrated 
improvement in ambulation mode classification [35] and 
robustness against muscle fatigue during hand gesture 
recognition [36]. Two types of ultrasound modes have been used 
in lower-limb studies: B-mode and A-mode ultrasound. B-mode 
ultrasound generates a 2D sonomyography image revealing the 
underlying muscle bellies. In lower limb studies with able-
bodied subjects, changes in these ultrasound images have been 
used for the continuous classification of ambulation modes [35], 
and the estimation of lower-limb kinematics [37][38] and 
kinetics [39]. B-mode ultrasound-based measurements of 
muscle fatigue [40] and muscle force [41] have also been 
incorporated into the control of lower-limb hybrid exoskeletons 
[42]. Furthermore, 3D imaging techniques utilizing B-mode 
ultrasound have proven successful in accurately detecting joint 
position[43][44].  

A-mode ultrasound returns a 1D array, representative of 
echogenicity along depth [45]. It is an appealing solution to 
achieve volitional control in powered prostheses due to its 
lightweight and compact design. In transradial amputees, A-
mode ultrasound has shown success in gesture recognition and 

wrist rotation estimation [46]. Among transfemoral amputees, 
A-mode ultrasound has been used for continuous ambulation 
mode classification [17] and for kinematic prediction during 
level ground walking [18]. These prior works illustrate the 
promise of the A-mode ultrasound sensing modality, but in order 
to translate the technology to everyday use applications, it must 
also be able to recognize the user’s intent across a range of 
activities.  

In this study, we assess, for the first time, the capability of A-
mode ultrasound sensing to predict the prosthesis kinematics of 
individuals with transfemoral amputation across different 
ambulation modes. Specifically, we tested the hypothesis that 
the prosthesis joint position and velocity can be continuously 
estimated through A-mode ultrasound throughout different 
types of activities. This hypothesis was tested by recording 
residual limb sonomyography from seven transfemoral amputee 
subjects as they completed a circuit that included static tasks, 
such as quiet sitting and standing, as well as dynamic tasks, such 
as sit-to-stand transitions, level and inclined walking, turning, 
and stair climbing.  By attempting to predict the prosthesis 
kinematics across various ambulation modes and transitions, 
this study provides the foundation for future studies using A-
mode ultrasounds for volitional control of powered prostheses 
in real life. 

II. MATERIALS AND METHODS 

A.  A-Mode Ultrasound System 
A portable A-mode ultrasound system (Fig. 1(a)) with 4 

transducers was used for this study [45]. The system recorded 
the ultrasound signals at 80 Hz, reading between the 4 
transducers sequentially to reduce crosstalk. Each signal 
transmitted by the system consists of a set of 997 datapoints 
corresponding to tissue echogenicity at varying penetration 
depths of the ultrasound. Given a total penetration depth of 3.94 
cm, each datapoint corresponds approximately .04 mm of tissue 
depth. Due to alternating between the 4 transducers every 12.5 
ms, 50 ms are required to update the information from all four 
channels. Custom 3D printed thermoplastic polyurethane (TPU) 
sensor holders prevented the sensors from tilting and moving, 
minimized disruptions to socket stability, and minimized socket 
discomfort during use. A 3-cell lithium-ion battery powered the 
A-mode ultrasound system. A 3D printed case contained the 
electronics and battery and was strapped to the ipsilateral side of 

 
Fig. 1. A-mode ultrasound system and sensor placement. (a) 4-channel A-mode ultrasound system. (b) Anterior placement. (c) Posterior placement. (d) 
Representative subject wearing both the A-mode ultrasound system and Xsens IMU-based motion capture system. 
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the subject. The total weight of the system, battery, and case was 
440 g.  

B.  Experimental Setup  
Seven transfemoral amputees participated in this study. The 

sex, age, and socket type of the subjects are reported in Table I. 
The study was conducted in accordance with the Declaration of 
Helsinki and approved by the Institutional Review Board of The 
University of Utah (Protocol #00103197, approved 06/16/2021). 
Informed consent was obtained from all subjects involved in the 
study. Study participants consented in writing to the use of 
photos and videos of the experiment. 
 

Table I. Subject Information 

Subject Age 
(years) 

Weight 
(kg) 

Height 
(m) Sex Socket 

TF01 29 65 1.8 Male Suction 
TF02 68 70 1.7 Male Suction 
TF03 32 59 1.6 Female Lanyard 
TF04 32 77 1.8 Male Suction 
TF05 53 100 1.9 Male Suction 
TF06 54 78 1.7 Male Suction 
TF07 31 59 1.7 Female Lanyard 

 
At the beginning of the experimental session, we placed the 

ultrasound transducers on the user's residual limb while they 
were seated with their socket and passive prosthesis off.  Two 
sensors were located on the anterior side of the residual limb to 
target the quadriceps and two sensors were placed on the 
posterior side of the thigh to target the hamstrings (Fig. 1(b,c)), 
resulting in each muscle group being sampled at 40 Hz. We 
positioned the transducers near the muscle belly of the target 
muscle and then moved the pair of sensors until the peaks of the 
1D ultrasound signal were clearly defined and changes in the 
signal were observed when the user contracted their muscle. We 
applied ultrasound gel to the determined sensor locations. 
Kinesiology tape held the sensors and the custom 3D printed 
sensor holders in place (Fig. 1(b,c)). Then, subjects donned their 
passive prosthesis and walked around the ambulation circuit to 
ensure comfort. If the user reported physical discomfort or 
issues with socket suction, we repositioned the sensors, 
repeating the protocol described above.   

After the ultrasound sensor placement was finalized, the 
subjects donned an IMU-based motion capture system (Xsens 
MVN, Enschede, Netherlands) and performed the calibration 
procedure [47]. The motion capture system matched the 
ultrasound system’s sampling frequency of 80 Hz. An ethernet 
cable, long enough to allow for safe ambulation throughout the 
experimental circuit, transferred the recorded A-mode 
ultrasound signals to a laptop. A DAQ system (National 
Instruments USB-6001) served as an intermediary between the 
laptop and the Xsens motion capture system, synchronizing the 
ultrasound data and IMU data recording. 

After completing the experiment preparation, the subjects 
performed the data acquisition protocol by walking in an 
ambulation circuit (Fig. 2). The ambulation circuit included 
level-ground walking, stair ascent, stair descent, ramp ascent, 
ramp descent, sitting, standing, sit-to-stand, stand-to-sit, and 
turning. Each subject walked in the ambulation circuit 20 times, 
following the path shown in Fig. 2. Each trial started with the 
subject in a sitting position. Once prompted, subjects would 

stand up and start walking towards a set of stairs, which they 
ascended. Then, they walked towards a second set of steps that 
they descended. From the second set of steps, the subjects 
walked towards a ramp, which they descended. After the ramp, 
subjects walked towards the mid-point of the circuit, where they 
turned around and stood until prompted by the experimenter to 
continue walking. Once prompted, the subjects went through the 
ambulation circuit in reverse order. They walked towards the 
ramp and ascended it. Afterwards, they walked towards the 
second set of steps to ascend them, turned, and walked towards 
the first set of steps to descend them. Subjects then walked 
towards the starting point. Once they reached the chair, they 
turned around and sat down. Each trial ended when the subject 
was seated and resting on the chair. The ramp included in the 
ambulation circuit had a rise of 1 inch for every 12 inches in 
horizontal distance, which is the steepest slope compatible with 
the Americans with Disabilities Act Standards for Accessible 
Design [48]. Both sets of steps had a stair height of 7 inches, 
although the first set included four steps, while the second set 
only included 2 steps. During each trial, an experimenter clicked 
a button connected to the DAQ to indicate when the subject 
transitioned between different ambulation modes. The Xsens 
system has been shown to perform consistently for over 90 
minutes, which is much longer than our acquisition sessions 
[49]. Moreover, the position and heading were zeroed in 
between trials to minimize any potential time-related drift in our 
data. 

C. Raw Data Processing  
We imported the A-mode ultrasound data and the joint 

kinematics data into MATLAB (Mathworks, Natick, MA, USA) 
and performed feature reduction as described in our previous 
lower-limb work [17][18] and previous upper-limb studies [50] 
(Fig. 3). First, we rectified the raw ultrasound signal, which the 
ultrasound system represents as a set of 997 datapoints 

 
Fig. 2. Ambulation circuit and subject path through one trial. Subjects started 
in a sitting position (red dot). They then stood up and walked through the 
ambulation circuit, which included ascending four steps, descending two steps, 
and descending a ramp. Subjects then turned around (red x) and proceeded to 
go through the ambulation circuit in reverse order to end again in a sitting 
position (red dot). 
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corresponding to tissue echogenicity at increasing penetration 
depths. Then, we used a moving average filter, with a window 
size of 77 datapoints and a step-size of 1, to calculate the 
envelope of the rectified signal. The envelope of the signal was 
reduced to 960 by removing the 37 datapoints pertaining to the 
deeper end of the signal. We then segmented the envelope into 
48 windows of 20 datapoints each, with no overlap between 
neighboring windows. The mean of each window served as a 
feature for our machine learning input, leading to 48 features per 
channel. With all 4 channels, we have a total of 192 features for 
our ultrasound feature set.  

The joint kinematics imported from the Xsens motion capture 
system also included the thigh kinematics of the residual limb. 
The thigh kinematics, along with the ankle and knee kinematics 
used as labels, did not go through further processing once they 
were imported. This included angular thigh position, velocity, 
and acceleration, whose values were used directly as IMU-based 
features in comparative models.  

D. Machine Learning  

 We mapped the ultrasound features of each subject to their 
passive prosthesis joint kinematics through a regression neural 
network. The feature input included a total of 192 features, 
which was the combination of the 48 features from 4 A-mode 
ultrasound channels. The feature set was updated at 80 Hz, 48 
features at a time, resulting in a unique feature set corresponding 
to the kinematics of the leg at each timestep. Although 
overlapping features within sequential feature sets exist due to 
the iterative measurement from the four channels, this overlap is 
contained within individual ambulation circuit trials and do not 
overlap between training and testing trials. For each subject, 
individual models were trained for knee position, knee velocity, 
ankle position, and ankle velocity. A regression neural network 
made up of three 10-node fully connected layers and three 
rectified linear unit (ReLU) activation layers was used for each 
model.  With the additional output regression layer, this results 
in a model with 4290 FLOPs/prediction, which could be 
adequate for the translation of this technique online. For each 
subject, we used the first 17 repetitions of the ambulation circuit 
for training and the last three repetitions for testing. The neural 
network was trained using ultrasound and prosthesis kinematics 
data from across the entire ambulation circuit. However, we 
segmented the data from each lap of the ambulation circuit into 
21 sections, with each section corresponding to a different 
ambulation mode (Fig. 4). The transitions between ambulation 
modes were recorded during the experiment using a clicker. The 
ambulation mode labels were not used in our models and were 
only used for the purpose of evaluating the accuracy of the 
prediction within each ambulation mode. We used the trained 
models and the ultrasound features from the testing set to 
generate predictions for the kinematics of the user’s prosthesis 
(knee position, knee velocity, ankle position, ankle velocity). 
Training time on a laptop using an Intel(R) Core (TM) i7-8650U 
processor was 464 ± 69 s across the 7 subjects. Training data 
varied between 81,049 and 120,192 frames between subjects, 
likely due to different ambulation speeds. The average 
prediction time utilizing the same hardware was 158,312 ± 
18,015 inferences per second.  

We developed two additional machine learning models to 
estimate joint variables as a comparison to the ultrasound-based 

model. This included an IMU-based model trained solely on 
ipsilateral thigh kinematics, and a combined model utilizing 
both the ipsilateral thigh kinematics and the A-mode ultrasound 
features. Both models used the same machine learning 
framework as the ultrasound-based model, albeit with a different 
number of inputs.  The inputs to the IMU-based model consisted 
of the angular thigh position, thigh velocity, and thigh 
acceleration.  While the dimensionality of the IMU feature set is 
significantly smaller, the IMU-based inputs are heavily 
processed and can be related with more certainty to the residual 
limb motion. On the other hand, it is not yet clear how the 
uncovered ultrasound features relate to the residual limb motion; 
therefore, a higher dimensionality is appropriate. The combined 
model used both the ultrasound features and the thigh kinematics 
values as inputs, resulting in 195 inputs. The predicted variables 
for these two models are the same as those for the ultrasound-
based model and were filtered in the same manner as detailed in 
the subsequent section. The predictions from these additional 
models provided a means in which to evaluate our ultrasound-
based predictions and discern the advantages and limitations of 
A-mode ultrasound sensing throughout the different activities. 

E.  Filtering and Outcome Measures 
Before calculating outcome measures, we filtered the 

resulting predictions from the three predictive models using a 1st 
order Butterworth filter with a cutoff frequency of 6 Hz. While 
filtering does introduce a time-delay that affects prediction 
accuracy, our previous work utilizing a similar method for 
kinematic prediction has demonstrated that the introduced delay 
is suitable for intent recognition [18]. After filtering, we 
calculated the root mean square error (RMSE) of the four 
predicted joint variables for each ambulation mode separately. 
We then normalized the RMSE values for each ambulation 

 
Fig. 3. Feature Reduction. For each channel, the ultrasound system transmits a 
1D signal (blue) comprised of 997 datapoints that correspond to tissue 
echogenicity along penetration depth. The signal is first rectified (yellow). A 
moving average (green) of the rectified signal is taken. The moving average is 
then segmented into 48 windows (bar plot) of 20 data points. The average of 
each segment serves as an input feature (purple circle) to our neural network. 
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mode by the range of each joint variable across the entire circuit. 
We decided to use the range across the entire ambulation circuit, 
because using the ambulation-specific range would have 
exaggerated the error of static activities and incorrectly shown a 
higher accuracy for the dynamic tasks.   Mean ambulation mode-
specific errors presented in the paper were calculated by taking 
the average of the normalized RMSE values of the four 
predicted variables within the ambulation mode. Mean variable-
specific error values were calculated by taking the mean of the 
normalized RMSE values across the 10 ambulation modes, as 
opposed to across the frames of the entire ambulation circuit. 
We also assessed the relationship between the measured error 
and the proportion of frames present for each ambulation mode 
to ensure that the disproportionate representation of each 
activity throughout our ambulation circuit did not influence our 
prediction.  

To test for statistically significant differences between tested 
conditions, we performed a two-way ANOVA on RMSE values. 
Before doing so, we checked the normality of our error values 
using the Shapiro-Wilk test and a series of Q-Q plots. The 
ANOVA checked for a main effect due to the ambulation mode 
(e.g., walking, sitting) and the feature set (e.g., ultrasound-
based, IMU-based, combined), as well as for an interaction 
effect between these two effects. When appropriate, t-tests with 
Tukey-Kramer corrections were conducted between the RMSE 
values of all three models: the ultrasound-based model, the 
IMU-based model, and the combined model. RMSE values were 
compared instead of the normalized RMSE values to preserve 
the independence of observations for the ANOVA.   

III. RESULTS 

A. Normalized RMSE 
The normalized RMSE between the predicted and recorded 

joint kinematics provides a term of comparison for the accuracy 
of the A-mode ultrasound-based models. Fig. 5a shows the 
group mean normalized RMSE and subject-specific mean 
normalized RMSE across the different ambulation modes. The 
subject-specific values in Fig. 5a are calculated as the average 
of the normalized error across the four different joint variable 
predictions. The observed normalized RMSE for the different 
ambulation modes were as follows: Sitting (5.2 ± 6.0 %), Sit-to-
Stand (5.9 ± 3.3 %), Standing (3.0 ± 2.0 %), Stand-to-Sit (7.5 ± 
3.0 %), Level Walking (6.5 ± 0.6 %), Stair Ascent (5.9 ± 2.4 %), 
Stair Descent (8.5 ± 3.1 %), Ramp Ascent (7.7 ± 1.0 %), Ramp 
Descent (8.2 ± 0.8 %), and Turning (4.5 ± 1.7 %). Fig. 5b shows 
the overall mean normalized RMSE and subject-specific results 
for the different joint variable predictions. In this case, the 
subject-specific results in Fig. 5b are calculated as the average 
of the normalized error across the 10 different ambulation 
modes. The overall normalized RMSE for prosthesis knee 
position, knee velocity, ankle position and ankle velocity were 
8.7 ± 3.1 %, 4.6 ± 2.5 %, 7.2 ± 1.8 %, and 4.6 ± 2.4 %, 
respectively. Ambulation-specific normalized RMSE values are 
reported in Table S1 while the non-normalized RMSE values are 
reported in Table S2. 

 
Fig. 4. Sample joint kinematics and A-mode ultrasound recordings throughout a single ambulation circuit trial, where different ambulation modes are denoted by 
the different colored shaded regions, and transitions are marked by vertical dashed lines. 
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B. Kinematics 
The shape of the predicted joint trajectory provides a 

qualitative measure of the proposed prediction method. Fig. 6 
showcases one representative test trial that captures the typical 
prediction for the four different joint variables. The different 
ambulation modes are indicated using shaded regions in Fig. 6. 
Because separate models were trained for the four predicted 
variables, the kinematic predictions of position and velocity are 
independent—i.e., the predicted joint velocities are not the 
derivatives of the predicted joint positions. All four joint 
variable predictions qualitatively match the shape of the 
measured prosthesis kinematics throughout every section of the 
ambulation circuit, including transitions. However, some 
inconsistencies do appear throughout most trials and subjects. 
During the dynamic sections of the ambulation circuit, the 
largest source of error comes from the predicted kinematics 
failing to reach the maxima and minima of the measured 
kinematics. In contrast, two sources of error appear during static 
activities and support phases. One is an offset error, where the 
static pattern is accurately predicted but offset from the 
measured kinematics. An example of this type of error is shown 
in Fig. 6 for the ankle position at the initial sitting position, and 
for knee position at the final sitting position. The second source 
of error is inaccurately predicting changes in the kinematics 
when the measured kinematic variables do not change. An 
example of this type of error is shown in Fig. 6 for knee position 
in the initial sitting position, both cases of stair ascent, turning, 
and standing. Knee velocity experiences the same type of error 
during stair ascent and turning, while ankle position experiences 
it during the stand-to-sit transition. This pattern is common in all 
other trials across most subjects. Further examples depicting the 
predicted kinematics from other trials and subjects are shown in 
Fig. S1.   and Fig. S2.   

C.  Error and Ambulation Mode Frequency 
The ambulation circuit used for this study included 10 

different ambulation modes. However, certain ambulation 
modes were more frequently encountered than others. For 
example, there were more instances of level-ground walking 
than stair descent. To assess the effect of the disproportionate 
number of frames between the different ambulation modes, we 
examined the relationship between the error and the proportion 
of frames for each ambulation mode. This relationship is 

 
Fig. 5.  A-mode ultrasound-based predictions. (a) Ambulation-specific 
normalized RMSE. (b) Joint variable-specific normalized RMSE. 

 
Fig. 6. Representative test trial demonstrating measured kinematics (black) and predicted kinematics from the ultrasound-based model (blue) for knee position, 
knee velocity, ankle position, and ankle velocity. Different ambulation modes are denoted by shaded regions and letter labels at the top of figure.  
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depicted in Fig. 7, where the vertical axis corresponds to the 
same normalized RMSE values and standard deviations 
presented in Fig. 5, and where the horizontal axis corresponds to 
the mean proportion of frames for each ambulation mode across 
subjects. The average proportion of frames for each ambulation 
mode is as follows: Sitting (11.4 ± 1.5 %), Sit-to-Stand (3.1 ± 
0.5 %), Standing (7.7 ± 1.0 %), Stand-to-Sit (3.8 ± 0.5 %), Level 
Walking (39.3 ± 3.8 %), Stair Ascent (8.8 ± 1.9 %), Stair 
Descent (7.9 ± 1.6 %), Ramp Ascent (4.9 ± 0.3 %), Ramp 
Descent (5.2 ± 0.3 %), and Turning (7.7 ± 0.9 %). While level 
walking was encountered most often throughout the circuit, 
there is no clear trend between the normalized RMSE values and 
ambulation mode frequency. Thus, the differences in prediction 
accuracy between ambulation modes is not likely to be an 
artifact of the ambulation circuit design. 

D.  Predictive Model Comparison 
We compared the performance of the ultrasound-based 

model, IMU-based model, and combined model in predicting 
the four joint variables across the different ambulation modes 
(Fig. 8). The corresponding RMSE values presented in Fig. 8 are 
detailed in Table S2, along with their standard deviations. 
Results from the two-way ANOVAs are detailed in Table S3 for 
all four joint variables. P-values for all t-tests are detailed in 
Table S4, with statistically significant p-values (p<0.05) also 
marked in Fig. 8. The two-way ANOVA for the ankle position 
and velocity found a main effect of ambulation mode and 
predictive model, but no interaction effect. On the other hand, 
the ANOVA revealed an interaction effect between predictive 
model and ambulation mode for both knee position and knee 
velocity. The t-tests performed between the ultrasound-based 
model and the IMU-based model showed significant differences 
for some ambulation modes in both the knee position (p<0.05) 
and the knee velocity (p<0.05) but not for the ankle position or 
velocity.  

 Significant differences in knee position accuracy were 
observed between ambulation modes and predictive models. 
During sitting, sit-to-stand, and stand-to-sit, the ultrasound-
based model resulted in an error that was 7.4 deg, 4.6 deg, and 
4.9 deg greater than the error resulting from the IMU-based 
model. During stair descent, the knee position prediction from 
the ultrasound-based model was 7.5 deg more accurate than the 
prediction from the IMU-based model. Moreover, significant 
differences in the knee velocity predictions were observed in 
walking, stair descent, and ramp descent, where the RMSE for 
the ultrasound-based model was 18.7 deg/s, 26.8 deg/s, and 25.3 
deg/s less than the one from the IMU-based model. For all other 
ambulation modes and joint predictions, no statistical difference 
was found. 

Comparisons between the combined model and the 
ultrasound-based model resulted in significant differences 
between knee position during sitting, sit-to-stand, stand-to-sit, 
and turning. In these ambulation modes, the combined model 
resulted in an RMSE that was 7.5 deg, 5.0 deg, 5.6 deg, and 2.9 
deg lower than the ultrasound-based model. In predicting ankle 
position, the combined model resulted in a RMSE that was 0.7 
deg less during turning. No significant differences were found 
in the velocity variables between the ultrasound-based model 
and the combined model.  

When comparing the combined model to the IMU-based 
model, significant differences were observed in the prediction of 
knee position during walking, stair descent, and ramp ascent, 
where the combined model decreased the RMSE by 3.7 deg, 
11.1 deg, and 4.3 deg respectively. Significant differences in 
knee velocity predictions during walking, stair descent, and 
ramp descent were also observed, where the RMSE from the 
combined model was 25.3 deg/s, 38.7 deg/s, and 35.6 deg/s 
lower than the IMU-based model. Finally, a significant 
difference was found in the ankle position prediction during 
ramp descent, where RMSE decreases by 1.1 deg between the 
IMU-based model and the combined model. Throughout all 
three models, no significant difference was found in ankle 
velocity predictions.  

IV. DISCUSSION 
The goal of this study was to test the hypothesis that A-mode 

ultrasound can continuously predict the prosthesis kinematics 
across different ambulation modes in individuals with 
transfemoral amputations. Results from seven individuals with 
a transfemoral amputation who walked in an ambulation circuit 
that included sitting, standing, level and inclined walking, 
turning, and stairs, show that prosthesis kinematics can be 
estimated using only A-mode ultrasound. With the ultrasound-
based model, overall prediction RMSE was between 4.6 and 
8.7% (Fig. 5b) and ambulation mode specific RMSE was 
between 3.0-8.5% (Fig. 5a). This error approximates the 
variability observed in prosthesis kinematics in daily life 
[51][52]. Therefore, this study suggests that A-mode ultrasound 
could be used to predict prosthesis kinematic for the control a 
powered prosthesis across different ambulation modes. 

The breakdown of the normalized RMSE by joint variable 
(Table S1) shows that across every ambulation mode, the 
position error is generally higher than the velocity error. 
However, we should not conclude that predicting velocity is 
better than predicting position because there is a fundamental 
difference in prosthesis behavior between position and velocity 
control. Table S1 also suggests that the ultrasound-based model 
achieves better accuracy in predicting the ankle kinematics than 
the knee kinematics. This result is likely due to the lower ankle 

 
Fig. 7. Ambulation-specific normalized RMSE relative to proportion of training 
frames for the ultrasound-based model. 
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mobility and range of motion, due to subjects using their passive 
prosthesis. As powered ankle prostheses have a wider range of 
motion than that observed in this study, this result may not 
generalize to powered ankle prostheses. Due to these 
differences, the result of this study should not be used as the sole 
metric to inform online control of powered prostheses. 

Statistical analysis shows that the performance of the joint 
variable prediction depends on the ambulation mode (Fig. 8). 
For example, the knee velocity error is significantly higher 
during stair descent and ramp ascent than walking. We believe 
that the higher prediction error observed for some of the 
dynamic activities is due to the higher variability in how subjects 
performed these activities, which has been demonstrated before 
in uncommon non-walking activities among transfemoral 
amputees [53]. Not surprisingly, higher variability occurred in 
ambulation modes such as stair descent, which subjects do not 
encounter often in the real world. Interestingly, the knee position 
error is comparable to the errors of other joint variable 
predictions during the dynamic activities, but shows 
considerably higher error during sitting, sit-to-stand, and stand-
to-sit. This result could be due to the fact that all the velocity 
variables reach zero (i.e., the same value) whenever the subject 
is at rest. In contrast, the knee position varied greatly during 
sitting while the muscle activation did not change, due to both 
anthropometry (e.g., subject height) and subjective preference 
(e.g., subjects can sit with their prosthesis being flexed slightly 
inward or extended outward). The higher variability observed in 
sitting resulted in higher variability in the transitions between 
sitting and standing and vice versa. Notably, this variability 
affected the knee position but not the ankle position, as the 
passive carbon fiber foot used by the subjects (Table I) does not 
visibly deflect when sitting. Thus, the task variability could 
explain why the accuracy of prediction is generally higher for 

the knee velocity, ankle position, and ankle velocity than the 
knee position during sitting and standing.  

The performance of the ultrasound-based predictions can be 
further analyzed by observing the measured and predicted 
kinematics (Fig. 6). For all joint variables, there was a mismatch 
between the predicted and the measured maxima and minima.  
This “clipping” effect could be due to the neural network 
optimizing across the entire dataset, which, in turn, may lead to 
a reduced performance for the underrepresented points at the 
maxima and minima. Wider networks and additional features, 
such as the derivative of the ultrasound features were explored 
in pilot analyses but were not implemented because no 
significant difference in performance was noted.  

Visual analysis of the kinematic predictions shows an offset 
type error in the knee position predictions for static activities 
like quiet sitting and standing. This offset can be explained by 
kinematic differences in static poses which do not correlate with 
muscle activity, as discussed previously. In contrast, the 
predictions of knee velocity and ankle velocity (Fig. 6)  
consistently match during rest, as there is little variability in 
velocity during these static activities.  Further evidence of this 
type of prediction error in static tasks is provided in Fig. S1.   

Another consistent error that the ultrasound-based model 
encountered was predicting a change in the kinematics while the 
measured kinematics remained constant. This error is apparent 
in Fig. 6 for knee position in the initial sitting position, for both 
knee variables during stair ascent, standing, and turning, and for 
the ankle variables during the stand-to-sit activity. Further 
examples of this type of error can be found in the trials shown 
in Fig. S1. and Fig. S2. In all these instances, the measured 
prosthesis is relatively still, yet the ultrasound-based models 
predict movement. A likely explanation of this result is that for 
these movements there is little to no correlation between the 

 
Fig. 8. Performance of ultrasound-based model (red), IMU-based model (dark grey), and combined model (light grey) in predicting knee position, knee velocity, 
ankle position, and ankle velocity throughout 10 different activities. 
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user’s muscle contractions and the prosthesis kinematics. In 
other words, the user could be contracting the residual-limb 
muscles without causing a movement of the prosthesis. For 
example, as the targeted muscles are also connected to the hip, 
any muscle deformation due to the subjects adjusting their 
posture could be interpreted as knee or ankle movement. During 
stair ascent, users could be activating their residual limb muscles 
to pull the relatively motionless passive prosthesis behind them 
(Video S1). During standing, variations in the muscle activity 
can be due to subjects shifting their weight or balancing, but the 
alignment of the knee prosthesis is such that the knee joint would 
rest fully extended against the end stop. Overall, the visual 
inspection of the kinematics predictions suggests that 
ultrasound-based models may be better suited for the prediction 
of velocity than position, mostly due to the offset-type error in 
static tasks. Therefore, exploring velocity control techniques 
might hold more promise for future online studies.  

Comparisons of the A-mode ultrasound-based predictions 
against the IMU-based predictions and the predictions from the 
combined model show the benefits and limitations of these 
approaches. The ultrasound-based model performs significantly 
better than the IMU-based model in predicting knee position 
during stair descent, and in predicting knee velocity during 
walking, stair descent, and ramp descent (Fig. 8). The only 
ambulation tasks in which the ultrasound-based model 
underperforms compared to the IMU-based model is in the 
prediction of knee position during sitting, sit-to-stand and stand-
to-sit. We believe that the ultrasound-based model could be 
underperforming in these tasks because the muscle activity does 
not correlate with the movement of the prosthesis. For example, 
subjects can contract their muscles without affecting the knee 
position when sitting, and can rest their prosthesis at different 
positions while seated. Thus, our results suggest that the 
ultrasound-based model may be better suited for dynamic 
activities that demand coordination between the residual limb 
and prosthesis kinematics, leading to a closer correlation 
between the ultrasound features and intended prosthesis 
movement.  

The combination of ultrasound and IMU sensing appears to 
improve the prediction performance. Not surprisingly, for the 
tasks in which the ultrasound-based model underperformed the 
IMU-based model, the combined model was able to match the 
accuracy of the IMU-based model. This result suggests that the 
added ultrasound features did not hinder the prediction accuracy 
in these settings. Moreover, the addition of ultrasound visibly 
improves the performance of the IMU-based model in predicting 
knee kinematics during walking, stair descent, ramp ascent and 
ramp ascent when compared to the IMU-based model (Fig. 8). 
The combined model outperformed the IMU-based model in 
predicting ankle position during ramp descent, but there are no 
significant differences in ankle velocity between the three 
models. The superior performance of the combined model 
suggests that the ultrasound data contains pertinent information 
to the user’s movement that cannot be provided by the user’s 
residual limb kinematics as measured by the IMU. Notably, 
when comparing the ultrasound-based model and the combined 
model, there are improvements only in the knee position and 
ankle position predictions, but there is no significant difference 
in the knee and ankle velocity predictions. This result suggests 
that A-mode ultrasound alone could predict the user’s desired 

joint velocity with sufficient accuracy, making it a viable 
technology for intent recognition across multiple ambulation 
modes.  

Despite substantial differences in frequency of occurrence 
between different ambulation modes, the performance of the 
predictive models does not differ between ambulation modes. 
For example, the error for level walking falls near the middle of 
the other ambulation-specific errors (Fig. 7). Moreover, there is 
no trend in the remaining cluster of ambulation modes, which 
suggests that the proportion of training frames does not 
influence the error. Observing the trends in the ambulation-
specific error for the four joint variables in Fig. 8 further 
corroborates that the frequency of occurrence of the ambulation 
mode does not affect prediction accuracy of our models.  

The performance of the ultrasound-based models could have 
also been affected by muscle fatigue, as our models were tested 
against the last three trials throughout all subjects. Although 
fatigue was not measured in this study, it is possible that subjects 
not accustomed to continuous movement or to performing 
certain activities present in our ambulation circuit grew tired by 
the end of the data acquisition. Whether this led to muscle 
fatigue or the adoption of energy conserving ambulation 
strategies, it is possible that the muscle deformation patterns 
changed during the latter part of the acquisition, affecting the 
ultrasound features used for our predictions. The results of this 
study suggest that the ultrasound-based prediction strategy is 
robust against different ambulation modes. However, future 
studies should focus on measuring its robustness against 
prolonged use or multi-day use cases. 

Both EMG and B-mode ultrasound have been used in able-
bodied subjects to predict lower-limb kinematics across various 
ambulation modes. In level-ground walking, ramp ascent, ramp 
descent, stair ascent, stair descent, EMG has been used to predict 
knee position with a normalized RMSE of 11.7%, 13.0%, 
11.2%, 19.8%, and 17.0%, respectively, and similarly to predict 
knee velocity with a normalized RMSE of 15.6%, 14.4%, 
12.4%, 19.0%, 18.9%, and 16.1% [37]. Across those same 
activities, B-mode ultrasound has been used to predict knee 
position with a normalized RMSE of 7.6%, 3.9%, 7.6%, 12.7%, 
and 9.9% respectively, and to predict knee velocity with a 
normalized RMSE of 11.3% 9.6%, 10.7%, 13.0%, and 12.3% 
[37]. In comparison, this study (Table S1) showed a knee 
position normalized RMSE of 7.3%, 7.3%, 9.4%, 5.0%, and 
12.3% for walking, ramp ascent, ramp descent, stair ascent, and 
stair descent, respectively, as well as an knee velocity 
normalized RMSE of 6.4%, 7.2%, 8.0%, 3.2%, and 7.2%. 
Interestingly, our kinematic predictions during walking 
improved from our previous experimental setup, which had 
resulted in a mean normalized RMSE of 9.0 ± 3.1 %, 7.3 ± 1.6 
%, 8.3 ± 2.3 %, and 10.0 ± 2.5 % for the knee position, knee 
velocity, ankle position, and ankle, respectively [18]. While the 
same machine learning structure was used in the two studies, the 
amount of training data greatly increased for this study, possibly 
resulting in the improved predictions for walking. Furthermore, 
this improvement could imply that ambulation-specific 
performance, in this case walking, is not necessarily sacrificed 
with the inclusion of data from additional ambulation modes. 
Comparing these results to that of prior studies is quite 
challenging because of the lack of studies with individuals with 
amputations. Transfemoral amputees using passive prostheses 
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use a different gait pattern in stairs, resulting in substantially 
different joint trajectories compared to healthy biological legs. 
Walking and ramps provide a better comparison, as they are 
performed using the same gait pattern. These ambulation modes 
show that A-mode ultrasound achieves comparable results in 
knee position and better tracking of knee velocity than EMG and 
B-mode ultrasound in healthy subjects. However, further studies 
are necessary to avoid confounding factors and properly 
quantify the differences between different sensing modalities.  

In summary, incorporating A-mode ultrasound sensing in the 
residual limb of transfemoral amputees allowed for the accurate 
prediction of their lower-limb prosthesis kinematics across a 
variety of ambulation modes. The performance of this 
technology suggests that the sensing modality could be widely 
translated online for different activities. However, further online 
experiments are necessary to confirm this indication. Moreover, 
it is possible that some of the limitations of A-mode ultrasound 
sensing could be addressed by creating a shared online controller 
that considers the type of ambulation task (e.g., dynamic vs. 
static) to prevent the errors encountered in this offline study. 
Furthermore, an online experiment is necessary to measure if the 
current machine learning model with a prediction frequency of 
80 Hz is adequate for recognizing user intent online. Finally, 
while this study tackled the regression problem of predicting the 
kinematics across different ambulation modes offline, future 
studies could explore other means to interpret and utilize the A-
mode ultrasound sensing, such as recognizing joint torque 
through musculoskeletal models or other feature extraction 
techniques. 

V.  CONCLUSION 
Seamless and accurate detection of user movement intention 

across different ambulation tasks is necessary for powered 
prostheses to work in real life. Volitional control of powered 
prosthesis movements could lead to fine adaptation of the 
prosthesis function to different environments and user 
intentions. This study lays the foundation for ultrasound-based 
volitional powered prosthesis controllers by demonstrating that 
A-mode ultrasound can be integrated with the sockets of 
transfemoral amputees to continuously predict the prosthesis 
knee and ankle kinematics across different ambulation modes. 
This study further suggests that classifying the ambulation mode 
intended by the user may not be necessary.  Future studies will 
focus on translating our A-mode machine learning system for 
online control of powered prostheses.  

APPENDIX 
Table S1. Ambulation-Specific normalized RMSE across 

Prediction Models 
Table S2. Ambulation-Specific RMSE across Prediction 

Models 
Table S3. Two-way ANOVA of RMSE values across 

predictive models and ambulation modes 
Table S4. p-Values between RMSE values from different 

predictive models (t-tests with Tukey-Kramer corrections) 
Fig. S1. Additional representative testing trial showcasing 

predicted kinematics. 
Fig. S2. Second additional representative testing trial 

showcasing predicted kinematics. 
Video S1. Video of one subject performing one trial of the 

ambulation circuit 
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