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Abstract—Objective: Volitional control systems for powered
prostheses require the detection of user intent to operate in
real life scenarios. Ambulation mode classification has been
proposed to address this issue. However, these approaches
introduce discrete labels to the otherwise continuous task
that is ambulation. An alternative approach is to provide
users with direct, voluntary control of the powered
prosthesis motion. Surface electromyography (EMG)
sensors have been proposed for this task, but poor signal-
to-noise ratios and crosstalk from neighboring muscles limit
performance. B-mode ultrasound can address some of
these issues at the cost of reduced clinical viability due to
the substantial increase in size, weight, and cost. Thus,
there is an unmet need for a lightweight, portable neural
system that can effectively detect the movement intention of
individuals with lower-limb amputation. Methods: In this
study, we show that a small and lightweight A-mode
ultrasound system can continuously predict prosthesis
joint kinematics in seven individuals with transfemoral
amputation across different ambulation tasks. Features
from the A-mode ultrasound signals were mapped to the
user’s prosthesis kinematics via an artificial neural network.
Results: Predictions on testing ambulation circuit trials
resulted in a mean normalized RMSE across different
ambulation modes of 8.7 * 3.1%, 4.6 * 2.5%, 7.2 £ 1.8%, and
4.6 * 2.4% for knee position, knee velocity, ankle position,
and ankle velocity, respectively. Conclusion and
Significance: This study lays the foundation for future
applications of A-mode ultrasound for volitional control of
powered prostheses during a variety of daily ambulation
tasks.

Index Terms—A-Mode ultrasound, intent recognition, joint
kinematics prediction, lowerlimb prosthesis, transfemoral
amputation

I. INTRODUCTION

OBOTIC prostheses have the potential to overcome the
limitations of passive devices [1][2] by replicating the
kinetic and kinematic motion of the missing biological limb
using their embedded actuators [3][4][5]. In laboratory settings,
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these powered prostheses have shown the ability to improve
ambulation [6][7][8] and to enable activities that are difficult or
impossible with passive devices, such as crossing over obstacles
[9] or ascending stairs with a natural gait pattern [10][11][12].
However, to be viable in real life, powered prostheses must be
able to promptly adapt to a changing environment and the user’s
intent to move.

Researchers have proposed using high-level control strategies
aiming to classify the user’s intended ambulation mode online.
These classifiers are typically based on onboard mechanical
sensors [13][14], such as inertial measurement units (IMU) and
load cells, or a combination of mechanical sensors and
neuromuscular signals, such as electromyography [15][16] and
sonomyography [17][18]. The application of vision and depth
sensing have also resulted in improved environment and
ambulation mode classification [19][20][21]. Although these
studies show high levels of accuracy, classification is not
perfect. A misclassification of the intended ambulation mode
can be dangerous for the user, as even a single misinterpreted
stride could lead to a motion of the prosthesis that is far from the
desired trajectory that would allow the user to safely negotiate
their environment. Therefore, there are still open questions
related to the use of classification-based controllers in real life.

Another open challenge in powered prosthetics is the
adaptation to the environment and the user intent within a
defined ambulation mode. Controllers specific to an ambulation
mode define the desired torque [22][23], impedance [4][12], or
position [9][24] of the powered prosthesis at the joint level by
reacting to the user’s movements. Some of these activity-
specific controllers break down the gait cycle using a discrete
number of phases [4][22][25], others use a continuous phase
evolution [24][26]. A few of these controllers have some
intrinsic adaptation capabilities. For example, researches have
shown continuous adaptation to walking speed/cadence [22]
[24][27], foot clearance [9], incline [12][28], and step height
[10]. Although these methods provide some adaptation to the
environment and the user, there is not yet a direct control system
that works seamlessly across a variety of ambulation modes.
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Researchers have proposed optimization approaches using the
residual limb motion to enable unified controllers [9][10]. Even
if successful, relying on mechanical sensors and residual limb
motion alone will still not provide users with direct volitional
control. This issue can be addressed by adding a sensing
modality that monitors the user’s neuromuscular signals, which
directly tracks the user’s intention to move. Volitional control
using EMG has been demonstrated in non-weightbearing
settings [29][30] and in weightbearing settings within a specific
ambulation mode [31][32]. Moreover, one recent study has
shown that shared EMG control enables seamless, voluntary
transition between different ambulation modes, including
walking, squats, lunges, and sit-to-stand transitions under
various loads and conditions [33]. Despite the promising results
of EMG control for powered prostheses, this approach is limited
by a poor signal-to-noise ratio and a lack of muscle specificity
[34]. A better neuromuscular sensing modality could improve
the performance of volitional controllers for powered
prostheses.

Muscle ultrasound, also known as sonomyography, is an
alternative sensing method that can track neuromuscular signals
while providing better muscle specificity and additional muscle
activation information from deep-seated muscles compared to
using EMG. Comparative studies have demonstrated
improvement in ambulation mode classification [35] and
robustness against muscle fatigue during hand gesture
recognition [36]. Two types of ultrasound modes have been used
in lower-limb studies: B-mode and A-mode ultrasound. B-mode
ultrasound generates a 2D sonomyography image revealing the
underlying muscle bellies. In lower limb studies with able-
bodied subjects, changes in these ultrasound images have been
used for the continuous classification of ambulation modes [35],
and the estimation of lower-limb kinematics [37][38] and
kinetics [39]. B-mode ultrasound-based measurements of
muscle fatigue [40] and muscle force [41] have also been
incorporated into the control of lower-limb hybrid exoskeletons
[42]. Furthermore, 3D imaging techniques utilizing B-mode
ultrasound have proven successful in accurately detecting joint
position[43][44].

A-mode ultrasound returns a 1D array, representative of
echogenicity along depth [45]. It is an appealing solution to
achieve volitional control in powered prostheses due to its
lightweight and compact design. In transradial amputees, A-
mode ultrasound has shown success in gesture recognition and

(@) (b)

wrist rotation estimation [46]. Among transfemoral amputees,
A-mode ultrasound has been used for continuous ambulation
mode classification [17] and for kinematic prediction during
level ground walking [18]. These prior works illustrate the
promise of the A-mode ultrasound sensing modality, but in order
to translate the technology to everyday use applications, it must
also be able to recognize the user’s intent across a range of
activities.

In this study, we assess, for the first time, the capability of A-
mode ultrasound sensing to predict the prosthesis kinematics of
individuals with transfemoral amputation across different
ambulation modes. Specifically, we tested the hypothesis that
the prosthesis joint position and velocity can be continuously
estimated through A-mode ultrasound throughout different
types of activities. This hypothesis was tested by recording
residual limb sonomyography from seven transfemoral amputee
subjects as they completed a circuit that included static tasks,
such as quiet sitting and standing, as well as dynamic tasks, such
as sit-to-stand transitions, level and inclined walking, turning,
and stair climbing. By attempting to predict the prosthesis
kinematics across various ambulation modes and transitions,
this study provides the foundation for future studies using A-
mode ultrasounds for volitional control of powered prostheses
in real life.

II. MATERIALS AND METHODS

A. A-Mode Ultrasound System

A portable A-mode ultrasound system (Fig. 1(a)) with 4
transducers was used for this study [45]. The system recorded
the ultrasound signals at 80 Hz, reading between the 4
transducers sequentially to reduce crosstalk. Each signal
transmitted by the system consists of a set of 997 datapoints
corresponding to tissue echogenicity at varying penetration
depths of the ultrasound. Given a total penetration depth of 3.94
cm, each datapoint corresponds approximately .04 mm of tissue
depth. Due to alternating between the 4 transducers every 12.5
ms, 50 ms are required to update the information from all four
channels. Custom 3D printed thermoplastic polyurethane (TPU)
sensor holders prevented the sensors from tilting and moving,
minimized disruptions to socket stability, and minimized socket
discomfort during use. A 3-cell lithium-ion battery powered the
A-mode ultrasound system. A 3D printed case contained the
electronics and battery and was strapped to the ipsilateral side of

© ()

Fig. 1. A-mode ultrasound system and sensor placement. (a) 4-channel A-mode ultrasound system. (b) Anterior placement. (c) Posterior placement. (d)
Representative subject wearing both the A-mode ultrasound system and Xsens IMU-based motion capture system.
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the subject. The total weight of the system, battery, and case was
440 g.

B. Experimental Setup

Seven transfemoral amputees participated in this study. The
sex, age, and socket type of the subjects are reported in Table 1.
The study was conducted in accordance with the Declaration of
Helsinki and approved by the Institutional Review Board of The
University of Utah (Protocol #00103197, approved 06/16/2021).
Informed consent was obtained from all subjects involved in the
study. Study participants consented in writing to the use of
photos and videos of the experiment.

Table I. Subject Information

Age Weight  Height

Subject (years) (ke) (m) Sex Socket
TFO1 29 65 1.8 Male Suction
TF02 68 70 1.7 Male Suction
TF03 32 59 1.6 Female Lanyard
TF04 32 77 1.8 Male Suction
TFO05 53 100 1.9 Male Suction
TF06 54 78 1.7 Male Suction
TF07 31 59 1.7 Female Lanyard

At the beginning of the experimental session, we placed the
ultrasound transducers on the user's residual limb while they
were seated with their socket and passive prosthesis off. Two
sensors were located on the anterior side of the residual limb to
target the quadriceps and two sensors were placed on the
posterior side of the thigh to target the hamstrings (Fig. 1(b,c)),
resulting in each muscle group being sampled at 40 Hz. We
positioned the transducers near the muscle belly of the target
muscle and then moved the pair of sensors until the peaks of the
1D ultrasound signal were clearly defined and changes in the
signal were observed when the user contracted their muscle. We
applied ultrasound gel to the determined sensor locations.
Kinesiology tape held the sensors and the custom 3D printed
sensor holders in place (Fig. 1(b,c)). Then, subjects donned their
passive prosthesis and walked around the ambulation circuit to
ensure comfort. If the user reported physical discomfort or
issues with socket suction, we repositioned the sensors,
repeating the protocol described above.

After the ultrasound sensor placement was finalized, the
subjects donned an IMU-based motion capture system (Xsens
MVN, Enschede, Netherlands) and performed the calibration
procedure [47]. The motion capture system matched the
ultrasound system’s sampling frequency of 80 Hz. An ethernet
cable, long enough to allow for safe ambulation throughout the
experimental circuit, transferred the recorded A-mode
ultrasound signals to a laptop. A DAQ system (National
Instruments USB-6001) served as an intermediary between the
laptop and the Xsens motion capture system, synchronizing the
ultrasound data and IMU data recording.

After completing the experiment preparation, the subjects
performed the data acquisition protocol by walking in an
ambulation circuit (Fig. 2). The ambulation circuit included
level-ground walking, stair ascent, stair descent, ramp ascent,
ramp descent, sitting, standing, sit-to-stand, stand-to-sit, and
turning. Each subject walked in the ambulation circuit 20 times,
following the path shown in Fig. 2. Each trial started with the
subject in a sitting position. Once prompted, subjects would

Fig. 2. Ambulation circuit and subject path through one trial. Subjects started
in a sitting position (red dot). They then stood up and walked through the
ambulation circuit, which included ascending four steps, descending two steps,
and descending a ramp. Subjects then turned around (red x) and proceeded to
go through the ambulation circuit in reverse order to end again in a sitting
position (red dot).
stand up and start walking towards a set of stairs, which they
ascended. Then, they walked towards a second set of steps that
they descended. From the second set of steps, the subjects
walked towards a ramp, which they descended. After the ramp,
subjects walked towards the mid-point of the circuit, where they
turned around and stood until prompted by the experimenter to
continue walking. Once prompted, the subjects went through the
ambulation circuit in reverse order. They walked towards the
ramp and ascended it. Afterwards, they walked towards the
second set of steps to ascend them, turned, and walked towards
the first set of steps to descend them. Subjects then walked
towards the starting point. Once they reached the chair, they
turned around and sat down. Each trial ended when the subject
was seated and resting on the chair. The ramp included in the
ambulation circuit had a rise of 1 inch for every 12 inches in
horizontal distance, which is the steepest slope compatible with
the Americans with Disabilities Act Standards for Accessible
Design [48]. Both sets of steps had a stair height of 7 inches,
although the first set included four steps, while the second set
only included 2 steps. During each trial, an experimenter clicked
a button connected to the DAQ to indicate when the subject
transitioned between different ambulation modes. The Xsens
system has been shown to perform consistently for over 90
minutes, which is much longer than our acquisition sessions
[49]. Moreover, the position and heading were zeroed in
between trials to minimize any potential time-related drift in our
data.

C.Raw Data Processing

We imported the A-mode ultrasound data and the joint
kinematics data into MATLAB (Mathworks, Natick, MA, USA)
and performed feature reduction as described in our previous
lower-limb work [17][18] and previous upper-limb studies [50]
(Fig. 3). First, we rectified the raw ultrasound signal, which the
ultrasound system represents as a set of 997 datapoints
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corresponding to tissue echogenicity at increasing penetration
depths. Then, we used a moving average filter, with a window
size of 77 datapoints and a step-size of 1, to calculate the
envelope of the rectified signal. The envelope of the signal was
reduced to 960 by removing the 37 datapoints pertaining to the
deeper end of the signal. We then segmented the envelope into
48 windows of 20 datapoints each, with no overlap between
neighboring windows. The mean of each window served as a
feature for our machine learning input, leading to 48 features per
channel. With all 4 channels, we have a total of 192 features for
our ultrasound feature set.

The joint kinematics imported from the Xsens motion capture
system also included the thigh kinematics of the residual limb.
The thigh kinematics, along with the ankle and knee kinematics
used as labels, did not go through further processing once they
were imported. This included angular thigh position, velocity,
and acceleration, whose values were used directly as IMU-based
features in comparative models.

D.Machine Learning

We mapped the ultrasound features of each subject to their
passive prosthesis joint kinematics through a regression neural
network. The feature input included a total of 192 features,
which was the combination of the 48 features from 4 A-mode
ultrasound channels. The feature set was updated at 80 Hz, 48
features at a time, resulting in a unique feature set corresponding
to the kinematics of the leg at each timestep. Although
overlapping features within sequential feature sets exist due to
the iterative measurement from the four channels, this overlap is
contained within individual ambulation circuit trials and do not
overlap between training and testing trials. For each subject,
individual models were trained for knee position, knee velocity,
ankle position, and ankle velocity. A regression neural network
made up of three 10-node fully connected layers and three
rectified linear unit (ReLU) activation layers was used for each
model. With the additional output regression layer, this results
in a model with 4290 FLOPs/prediction, which could be
adequate for the translation of this technique online. For each
subject, we used the first 17 repetitions of the ambulation circuit
for training and the last three repetitions for testing. The neural
network was trained using ultrasound and prosthesis kinematics
data from across the entire ambulation circuit. However, we
segmented the data from each lap of the ambulation circuit into
21 sections, with each section corresponding to a different
ambulation mode (Fig. 4). The transitions between ambulation
modes were recorded during the experiment using a clicker. The
ambulation mode labels were not used in our models and were
only used for the purpose of evaluating the accuracy of the
prediction within each ambulation mode. We used the trained
models and the ultrasound features from the testing set to
generate predictions for the kinematics of the user’s prosthesis
(knee position, knee velocity, ankle position, ankle velocity).
Training time on a laptop using an Intel(R) Core (TM) i7-8650U
processor was 464 + 69 s across the 7 subjects. Training data
varied between 81,049 and 120,192 frames between subjects,
likely due to different ambulation speeds. The average
prediction time utilizing the same hardware was 158,312 +
18,015 inferences per second.

We developed two additional machine learning models to
estimate joint variables as a comparison to the ultrasound-based

Ultrasound Signal Moving Average

Features

Rectified Signal @)

Amplitude

Amplitude

Amplitude

Depth (cm)
Fig. 3. Feature Reduction. For each channel, the ultrasound system transmits a
1D signal (blue) comprised of 997 datapoints that correspond to tissue
echogenicity along penetration depth. The signal is first rectified (yellow). A
moving average (green) of the rectified signal is taken. The moving average is
then segmented into 48 windows (bar plot) of 20 data points. The average of
each segment serves as an input feature (purple circle) to our neural network.

model. This included an IMU-based model trained solely on
ipsilateral thigh kinematics, and a combined model utilizing
both the ipsilateral thigh kinematics and the A-mode ultrasound
features. Both models used the same machine learning
framework as the ultrasound-based model, albeit with a different
number of inputs. The inputs to the IMU-based model consisted
of the angular thigh position, thigh velocity, and thigh
acceleration. While the dimensionality of the IMU feature set is
significantly smaller, the IMU-based inputs are heavily
processed and can be related with more certainty to the residual
limb motion. On the other hand, it is not yet clear how the
uncovered ultrasound features relate to the residual limb motion;
therefore, a higher dimensionality is appropriate. The combined
model used both the ultrasound features and the thigh kinematics
values as inputs, resulting in 195 inputs. The predicted variables
for these two models are the same as those for the ultrasound-
based model and were filtered in the same manner as detailed in
the subsequent section. The predictions from these additional
models provided a means in which to evaluate our ultrasound-
based predictions and discern the advantages and limitations of
A-mode ultrasound sensing throughout the different activities.

E. Filtering and Outcome Measures

Before calculating outcome measures, we filtered the
resulting predictions from the three predictive models using a 1*
order Butterworth filter with a cutoff frequency of 6 Hz. While
filtering does introduce a time-delay that affects prediction
accuracy, our previous work utilizing a similar method for
kinematic prediction has demonstrated that the introduced delay
is suitable for intent recognition [18]. After filtering, we
calculated the root mean square error (RMSE) of the four
predicted joint variables for each ambulation mode separately.
We then normalized the RMSE values for each ambulation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3292032

Mendez et al.: Continuous A-Mode Ultrasound-Based Prediction of Transfemoral Amputee Prosthesis Kinematics Across Different Ambulation Tasks 1
sitting walking stair descent turning ramp ascent
[ sit-to-stand stair ascent ramp descent standing [N stand-to-sit

LW SDLW RD LW TR

Sit

S2StLW  SA

Knee Position
(deg)

Anterior 1
Depth (cm)

Anterior 2
Depth (cm)
W =

0
5
.0

Depth (cm)
w = w =
o »n o

Posterior 2  Posterior 1

Depth (cm)

St LW RA LW SA LW SD LW TR St2S Sit

High Echogenicity

Low Echogenicity

Time (s)
Fig. 4. Sample joint kinematics and A-mode ultrasound recordings throughout a single ambulation circuit trial, where different ambulation modes are denoted by
the different colored shaded regions, and transitions are marked by vertical dashed lines.

mode by the range of each joint variable across the entire circuit.
We decided to use the range across the entire ambulation circuit,
because using the ambulation-specific range would have
exaggerated the error of static activities and incorrectly shown a
higher accuracy for the dynamic tasks. Mean ambulation mode-
specific errors presented in the paper were calculated by taking
the average of the normalized RMSE values of the four
predicted variables within the ambulation mode. Mean variable-
specific error values were calculated by taking the mean of the
normalized RMSE values across the 10 ambulation modes, as
opposed to across the frames of the entire ambulation circuit.
We also assessed the relationship between the measured error
and the proportion of frames present for each ambulation mode
to ensure that the disproportionate representation of each
activity throughout our ambulation circuit did not influence our
prediction.

To test for statistically significant differences between tested
conditions, we performed a two-way ANOVA on RMSE values.
Before doing so, we checked the normality of our error values
using the Shapiro-Wilk test and a series of Q-Q plots. The
ANOVA checked for a main effect due to the ambulation mode
(e.g., walking, sitting) and the feature set (e.g., ultrasound-
based, IMU-based, combined), as well as for an interaction
effect between these two effects. When appropriate, t-tests with
Tukey-Kramer corrections were conducted between the RMSE
values of all three models: the ultrasound-based model, the
IMU-based model, and the combined model. RMSE values were
compared instead of the normalized RMSE values to preserve
the independence of observations for the ANOVA.

III. RESULTS

A. Normalized RMSE

The normalized RMSE between the predicted and recorded
joint kinematics provides a term of comparison for the accuracy
of the A-mode ultrasound-based models. Fig. 5a shows the
group mean normalized RMSE and subject-specific mean
normalized RMSE across the different ambulation modes. The
subject-specific values in Fig. 5a are calculated as the average
of the normalized error across the four different joint variable
predictions. The observed normalized RMSE for the different
ambulation modes were as follows: Sitting (5.2 £ 6.0 %), Sit-to-
Stand (5.9 + 3.3 %), Standing (3.0 + 2.0 %), Stand-to-Sit (7.5 £
3.0 %), Level Walking (6.5 + 0.6 %), Stair Ascent (5.9 2.4 %),
Stair Descent (8.5 + 3.1 %), Ramp Ascent (7.7 = 1.0 %), Ramp
Descent (8.2 + 0.8 %), and Turning (4.5 £ 1.7 %). Fig. 5b shows
the overall mean normalized RMSE and subject-specific results
for the different joint variable predictions. In this case, the
subject-specific results in Fig. 5b are calculated as the average
of the normalized error across the 10 different ambulation
modes. The overall normalized RMSE for prosthesis knee
position, knee velocity, ankle position and ankle velocity were
87 £ 3.1 %, 46 £25 %, 72 £ 1.8 %, and 4.6 + 2.4 %,
respectively. Ambulation-specific normalized RMSE values are
reported in Table S1 while the non-normalized RMSE values are
reported in Table S2.
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B. Kinematics

The shape of the predicted joint trajectory provides a
qualitative measure of the proposed prediction method. Fig. 6
showcases one representative test trial that captures the typical
prediction for the four different joint variables. The different
ambulation modes are indicated using shaded regions in Fig. 6.
Because separate models were trained for the four predicted
variables, the kinematic predictions of position and velocity are
independent—i.e., the predicted joint velocities are not the
derivatives of the predicted joint positions. All four joint
variable predictions qualitatively match the shape of the
measured prosthesis kinematics throughout every section of the
ambulation circuit, including transitions. However, some
inconsistencies do appear throughout most trials and subjects.
During the dynamic sections of the ambulation circuit, the
largest source of error comes from the predicted kinematics
failing to reach the maxima and minima of the measured
kinematics. In contrast, two sources of error appear during static
activities and support phases. One is an offset error, where the
static pattern is accurately predicted but offset from the
measured kinematics. An example of this type of error is shown
in Fig. 6 for the ankle position at the initial sitting position, and
for knee position at the final sitting position. The second source
of error is inaccurately predicting changes in the kinematics
when the measured kinematic variables do not change. An
example of this type of error is shown in Fig. 6 for knee position
in the initial sitting position, both cases of stair ascent, turning,
and standing. Knee velocity experiences the same type of error
during stair ascent and turning, while ankle position experiences
it during the stand-to-sit transition. This pattern is common in all
other trials across most subjects. Further examples depicting the
predicted kinematics from other trials and subjects are shown in
Fig. S1. and Fig. S2.
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Fig. 5. A-mode ultrasound-based predictions. (a) Ambulation-specific

normalized RMSE. (b) Joint variable-specific normalized RMSE.

C. Error and Ambulation Mode Frequency

The ambulation circuit used for this study included 10
different ambulation modes. However, certain ambulation
modes were more frequently encountered than others. For
example, there were more instances of level-ground walking
than stair descent. To assess the effect of the disproportionate
number of frames between the different ambulation modes, we
examined the relationship between the error and the proportion
of frames for each ambulation mode. This relationship is
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Fig. 6. Representative test trial demonstrating measured kinematics (black) and predicted kinematics from the ultrasound-based model (blue) for knee position,
knee velocity, ankle position, and ankle velocity. Different ambulation modes are denoted by shaded regions and letter labels at the top of figure.
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depicted in Fig. 7, where the vertical axis corresponds to the
same normalized RMSE values and standard deviations
presented in Fig. 5, and where the horizontal axis corresponds to
the mean proportion of frames for each ambulation mode across
subjects. The average proportion of frames for each ambulation
mode is as follows: Sitting (11.4 £ 1.5 %), Sit-to-Stand (3.1 +
0.5 %), Standing (7.7 + 1.0 %), Stand-to-Sit (3.8 + 0.5 %), Level
Walking (39.3 + 3.8 %), Stair Ascent (8.8 £ 1.9 %), Stair
Descent (7.9 + 1.6 %), Ramp Ascent (4.9 = 0.3 %), Ramp
Descent (5.2 £ 0.3 %), and Turning (7.7 + 0.9 %). While level
walking was encountered most often throughout the circuit,
there is no clear trend between the normalized RMSE values and
ambulation mode frequency. Thus, the differences in prediction
accuracy between ambulation modes is not likely to be an
artifact of the ambulation circuit design.

D. Predictive Model Comparison

We compared the performance of the ultrasound-based
model, IMU-based model, and combined model in predicting
the four joint variables across the different ambulation modes
(Fig. 8). The corresponding RMSE values presented in Fig. 8 are
detailed in Table S2, along with their standard deviations.
Results from the two-way ANOVAs are detailed in Table S3 for
all four joint variables. P-values for all t-tests are detailed in
Table S4, with statistically significant p-values (p<0.05) also
marked in Fig. 8. The two-way ANOVA for the ankle position
and velocity found a main effect of ambulation mode and
predictive model, but no interaction effect. On the other hand,
the ANOVA revealed an interaction effect between predictive
model and ambulation mode for both knee position and knee
velocity. The t-tests performed between the ultrasound-based
model and the IMU-based model showed significant differences
for some ambulation modes in both the knee position (p<0.05)
and the knee velocity (p<0.05) but not for the ankle position or
velocity.

Significant differences in knee position accuracy were
observed between ambulation modes and predictive models.
During sitting, sit-to-stand, and stand-to-sit, the ultrasound-
based model resulted in an error that was 7.4 deg, 4.6 deg, and
4.9 deg greater than the error resulting from the IMU-based
model. During stair descent, the knee position prediction from
the ultrasound-based model was 7.5 deg more accurate than the
prediction from the IMU-based model. Moreover, significant
differences in the knee velocity predictions were observed in
walking, stair descent, and ramp descent, where the RMSE for
the ultrasound-based model was 18.7 deg/s, 26.8 deg/s, and 25.3
deg/s less than the one from the IMU-based model. For all other
ambulation modes and joint predictions, no statistical difference
was found.

Comparisons between the combined model and the
ultrasound-based model resulted in significant differences
between knee position during sitting, sit-to-stand, stand-to-sit,
and turning. In these ambulation modes, the combined model
resulted in an RMSE that was 7.5 deg, 5.0 deg, 5.6 deg, and 2.9
deg lower than the ultrasound-based model. In predicting ankle
position, the combined model resulted in a RMSE that was 0.7
deg less during turning. No significant differences were found
in the velocity variables between the ultrasound-based model
and the combined model.

@ Sitting @®  Stair Ascent
® Sit-to-Stand Stair Descent
Stand @® Ramp Ascent
® Stand-to-Sit @® Ramp Descent
@® Level Walking @® Turning
0.12r
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Fig. 7. Ambulation-specific normalized RMSE relative to proportion of training
frames for the ultrasound-based model.

When comparing the combined model to the IMU-based
model, significant differences were observed in the prediction of
knee position during walking, stair descent, and ramp ascent,
where the combined model decreased the RMSE by 3.7 deg,
11.1 deg, and 4.3 deg respectively. Significant differences in
knee velocity predictions during walking, stair descent, and
ramp descent were also observed, where the RMSE from the
combined model was 25.3 deg/s, 38.7 deg/s, and 35.6 deg/s
lower than the IMU-based model. Finally, a significant
difference was found in the ankle position prediction during
ramp descent, where RMSE decreases by 1.1 deg between the
IMU-based model and the combined model. Throughout all
three models, no significant difference was found in ankle
velocity predictions.

IV. DISCUSSION

The goal of this study was to test the hypothesis that A-mode
ultrasound can continuously predict the prosthesis kinematics
across different ambulation modes in individuals with
transfemoral amputations. Results from seven individuals with
a transfemoral amputation who walked in an ambulation circuit
that included sitting, standing, level and inclined walking,
turning, and stairs, show that prosthesis kinematics can be
estimated using only A-mode ultrasound. With the ultrasound-
based model, overall prediction RMSE was between 4.6 and
8.7% (Fig. 5b) and ambulation mode specific RMSE was
between 3.0-8.5% (Fig. 5a). This error approximates the
variability observed in prosthesis kinematics in daily life
[51][52]. Therefore, this study suggests that A-mode ultrasound
could be used to predict prosthesis kinematic for the control a
powered prosthesis across different ambulation modes.

The breakdown of the normalized RMSE by joint variable
(Table S1) shows that across every ambulation mode, the
position error is generally higher than the velocity error.
However, we should not conclude that predicting velocity is
better than predicting position because there is a fundamental
difference in prosthesis behavior between position and velocity
control. Table S1 also suggests that the ultrasound-based model
achieves better accuracy in predicting the ankle kinematics than
the knee kinematics. This result is likely due to the lower ankle
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Fig. 8. Performance of ultrasound-based model (red), IMU-based model (dark grey), and combined model (light grey) in predicting knee position, knee velocity,

ankle position, and ankle velocity throughout 10 different activities.
mobility and range of motion, due to subjects using their passive
prosthesis. As powered ankle prostheses have a wider range of
motion than that observed in this study, this result may not
generalize to powered ankle prostheses. Due to these
differences, the result of this study should not be used as the sole
metric to inform online control of powered prostheses.
Statistical analysis shows that the performance of the joint
variable prediction depends on the ambulation mode (Fig. 8).
For example, the knee velocity error is significantly higher
during stair descent and ramp ascent than walking. We believe
that the higher prediction error observed for some of the
dynamic activities is due to the higher variability in how subjects
performed these activities, which has been demonstrated before
in uncommon non-walking activities among transfemoral
amputees [53]. Not surprisingly, higher variability occurred in
ambulation modes such as stair descent, which subjects do not
encounter often in the real world. Interestingly, the knee position
error is comparable to the errors of other joint variable
predictions during the dynamic activities, but shows
considerably higher error during sitting, sit-to-stand, and stand-
to-sit. This result could be due to the fact that all the velocity
variables reach zero (i.e., the same value) whenever the subject
is at rest. In contrast, the knee position varied greatly during
sitting while the muscle activation did not change, due to both
anthropometry (e.g., subject height) and subjective preference
(e.g., subjects can sit with their prosthesis being flexed slightly
inward or extended outward). The higher variability observed in
sitting resulted in higher variability in the transitions between
sitting and standing and vice versa. Notably, this variability
affected the knee position but not the ankle position, as the
passive carbon fiber foot used by the subjects (Table I) does not
visibly deflect when sitting. Thus, the task variability could
explain why the accuracy of prediction is generally higher for

the knee velocity, ankle position, and ankle velocity than the
knee position during sitting and standing.

The performance of the ultrasound-based predictions can be
further analyzed by observing the measured and predicted
kinematics (Fig. 6). For all joint variables, there was a mismatch
between the predicted and the measured maxima and minima.
This “clipping” effect could be due to the neural network
optimizing across the entire dataset, which, in turn, may lead to
a reduced performance for the underrepresented points at the
maxima and minima. Wider networks and additional features,
such as the derivative of the ultrasound features were explored
in pilot analyses but were not implemented because no
significant difference in performance was noted.

Visual analysis of the kinematic predictions shows an offset
type error in the knee position predictions for static activities
like quiet sitting and standing. This offset can be explained by
kinematic differences in static poses which do not correlate with
muscle activity, as discussed previously. In contrast, the
predictions of knee velocity and ankle velocity (Fig. 6)
consistently match during rest, as there is little variability in
velocity during these static activities. Further evidence of this
type of prediction error in static tasks is provided in Fig. S1.

Another consistent error that the ultrasound-based model
encountered was predicting a change in the kinematics while the
measured kinematics remained constant. This error is apparent
in Fig. 6 for knee position in the initial sitting position, for both
knee variables during stair ascent, standing, and turning, and for
the ankle variables during the stand-to-sit activity. Further
examples of this type of error can be found in the trials shown
in Fig. S1. and Fig. S2. In all these instances, the measured
prosthesis is relatively still, yet the ultrasound-based models
predict movement. A likely explanation of this result is that for
these movements there is little to no correlation between the
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user’s muscle contractions and the prosthesis kinematics. In
other words, the user could be contracting the residual-limb
muscles without causing a movement of the prosthesis. For
example, as the targeted muscles are also connected to the hip,
any muscle deformation due to the subjects adjusting their
posture could be interpreted as knee or ankle movement. During
stair ascent, users could be activating their residual limb muscles
to pull the relatively motionless passive prosthesis behind them
(Video S1). During standing, variations in the muscle activity
can be due to subjects shifting their weight or balancing, but the
alignment of the knee prosthesis is such that the knee joint would
rest fully extended against the end stop. Overall, the visual
inspection of the kinematics predictions suggests that
ultrasound-based models may be better suited for the prediction
of velocity than position, mostly due to the offset-type error in
static tasks. Therefore, exploring velocity control techniques
might hold more promise for future online studies.

Comparisons of the A-mode ultrasound-based predictions
against the IMU-based predictions and the predictions from the
combined model show the benefits and limitations of these
approaches. The ultrasound-based model performs significantly
better than the IMU-based model in predicting knee position
during stair descent, and in predicting knee velocity during
walking, stair descent, and ramp descent (Fig. 8). The only
ambulation tasks in which the ultrasound-based model
underperforms compared to the IMU-based model is in the
prediction of knee position during sitting, sit-to-stand and stand-
to-sit. We believe that the ultrasound-based model could be
underperforming in these tasks because the muscle activity does
not correlate with the movement of the prosthesis. For example,
subjects can contract their muscles without affecting the knee
position when sitting, and can rest their prosthesis at different
positions while seated. Thus, our results suggest that the
ultrasound-based model may be better suited for dynamic
activities that demand coordination between the residual limb
and prosthesis kinematics, leading to a closer correlation
between the ultrasound features and intended prosthesis
movement.

The combination of ultrasound and IMU sensing appears to
improve the prediction performance. Not surprisingly, for the
tasks in which the ultrasound-based model underperformed the
IMU-based model, the combined model was able to match the
accuracy of the IMU-based model. This result suggests that the
added ultrasound features did not hinder the prediction accuracy
in these settings. Moreover, the addition of ultrasound visibly
improves the performance of the IMU-based model in predicting
knee kinematics during walking, stair descent, ramp ascent and
ramp ascent when compared to the IMU-based model (Fig. 8).
The combined model outperformed the IMU-based model in
predicting ankle position during ramp descent, but there are no
significant differences in ankle velocity between the three
models. The superior performance of the combined model
suggests that the ultrasound data contains pertinent information
to the user’s movement that cannot be provided by the user’s
residual limb kinematics as measured by the IMU. Notably,
when comparing the ultrasound-based model and the combined
model, there are improvements only in the knee position and
ankle position predictions, but there is no significant difference
in the knee and ankle velocity predictions. This result suggests
that A-mode ultrasound alone could predict the user’s desired

joint velocity with sufficient accuracy, making it a viable
technology for intent recognition across multiple ambulation
modes.

Despite substantial differences in frequency of occurrence
between different ambulation modes, the performance of the
predictive models does not differ between ambulation modes.
For example, the error for level walking falls near the middle of
the other ambulation-specific errors (Fig. 7). Moreover, there is
no trend in the remaining cluster of ambulation modes, which
suggests that the proportion of training frames does not
influence the error. Observing the trends in the ambulation-
specific error for the four joint variables in Fig. 8 further
corroborates that the frequency of occurrence of the ambulation
mode does not affect prediction accuracy of our models.

The performance of the ultrasound-based models could have
also been affected by muscle fatigue, as our models were tested
against the last three trials throughout all subjects. Although
fatigue was not measured in this study, it is possible that subjects
not accustomed to continuous movement or to performing
certain activities present in our ambulation circuit grew tired by
the end of the data acquisition. Whether this led to muscle
fatigue or the adoption of energy conserving ambulation
strategies, it is possible that the muscle deformation patterns
changed during the latter part of the acquisition, affecting the
ultrasound features used for our predictions. The results of this
study suggest that the ultrasound-based prediction strategy is
robust against different ambulation modes. However, future
studies should focus on measuring its robustness against
prolonged use or multi-day use cases.

Both EMG and B-mode ultrasound have been used in able-
bodied subjects to predict lower-limb kinematics across various
ambulation modes. In level-ground walking, ramp ascent, ramp
descent, stair ascent, stair descent, EMG has been used to predict
knee position with a normalized RMSE of 11.7%, 13.0%,
11.2%, 19.8%, and 17.0%, respectively, and similarly to predict
knee velocity with a normalized RMSE of 15.6%, 14.4%,
12.4%, 19.0%, 18.9%, and 16.1% [37]. Across those same
activities, B-mode ultrasound has been used to predict knee
position with a normalized RMSE of 7.6%, 3.9%, 7.6%, 12.7%,
and 9.9% respectively, and to predict knee velocity with a
normalized RMSE of 11.3% 9.6%, 10.7%, 13.0%, and 12.3%
[37]. In comparison, this study (Table S1) showed a knee
position normalized RMSE of 7.3%, 7.3%, 9.4%, 5.0%, and
12.3% for walking, ramp ascent, ramp descent, stair ascent, and
stair descent, respectively, as well as an knee velocity
normalized RMSE of 6.4%, 7.2%, 8.0%, 3.2%, and 7.2%.
Interestingly, our kinematic predictions during walking
improved from our previous experimental setup, which had
resulted in a mean normalized RMSE 0f 9.0 + 3.1 %, 7.3+ 1.6
%, 8.3 £2.3 %, and 10.0 £ 2.5 % for the knee position, knee
velocity, ankle position, and ankle, respectively [18]. While the
same machine learning structure was used in the two studies, the
amount of training data greatly increased for this study, possibly
resulting in the improved predictions for walking. Furthermore,
this improvement could imply that ambulation-specific
performance, in this case walking, is not necessarily sacrificed
with the inclusion of data from additional ambulation modes.
Comparing these results to that of prior studies is quite
challenging because of the lack of studies with individuals with
amputations. Transfemoral amputees using passive prostheses
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use a different gait pattern in stairs, resulting in substantially
different joint trajectories compared to healthy biological legs.
Walking and ramps provide a better comparison, as they are
performed using the same gait pattern. These ambulation modes
show that A-mode ultrasound achieves comparable results in
knee position and better tracking of knee velocity than EMG and
B-mode ultrasound in healthy subjects. However, further studies
are necessary to avoid confounding factors and properly
quantify the differences between different sensing modalities.

In summary, incorporating A-mode ultrasound sensing in the
residual limb of transfemoral amputees allowed for the accurate
prediction of their lower-limb prosthesis kinematics across a
variety of ambulation modes. The performance of this
technology suggests that the sensing modality could be widely
translated online for different activities. However, further online
experiments are necessary to confirm this indication. Moreover,
it is possible that some of the limitations of A-mode ultrasound
sensing could be addressed by creating a shared online controller
that considers the type of ambulation task (e.g., dynamic vs.
static) to prevent the errors encountered in this offline study.
Furthermore, an online experiment is necessary to measure if the
current machine learning model with a prediction frequency of
80 Hz is adequate for recognizing user intent online. Finally,
while this study tackled the regression problem of predicting the
kinematics across different ambulation modes offline, future
studies could explore other means to interpret and utilize the A-
mode ultrasound sensing, such as recognizing joint torque
through musculoskeletal models or other feature extraction
techniques.

V. CONCLUSION

Seamless and accurate detection of user movement intention
across different ambulation tasks is necessary for powered
prostheses to work in real life. Volitional control of powered
prosthesis movements could lead to fine adaptation of the
prosthesis function to different environments and user
intentions. This study lays the foundation for ultrasound-based
volitional powered prosthesis controllers by demonstrating that
A-mode ultrasound can be integrated with the sockets of
transfemoral amputees to continuously predict the prosthesis
knee and ankle kinematics across different ambulation modes.
This study further suggests that classifying the ambulation mode
intended by the user may not be necessary. Future studies will
focus on translating our A-mode machine learning system for
online control of powered prostheses.

APPENDIX

Table S1. Ambulation-Specific normalized RMSE across
Prediction Models

Table S2. Ambulation-Specific RMSE across Prediction
Models

Table S3. Two-way ANOVA of RMSE values across
predictive models and ambulation modes

Table S4. p-Values between RMSE values from different
predictive models (t-tests with Tukey-Kramer corrections)

Fig. S1. Additional representative testing trial showcasing
predicted kinematics.

Fig. S2. Second additional representative testing trial

showcasing predicted kinematics.
Video S1. Video of one subject performing one trial of the
ambulation circuit
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