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Abstract

A search for pair production of the supersymmetric partner of the top quark, the top
squark, in proton-proton collisions at

p
s = 13 TeV is presented in final states contain-

ing at least one hadronically decaying tau lepton and large missing transverse mo-
mentum. This final state is highly sensitive to scenarios of supersymmetry in which
the decay of the top squark to tau leptons is enhanced. The search uses a data sample
corresponding to an integrated luminosity of 138 fb�1, which was recorded with the
CMS detector during 2016–2018. No significant excess is observed with respect to the
standard model predictions. Exclusion limits at 95% confidence level on the masses
of the top squark and the lightest neutralino are presented under the assumptions of
simplified models. The results probe top squark masses up to 1150 GeV for a nearly
massless neutralino. This search covers a relatively less explored parameter space in
the context of supersymmetry, and the exclusion limit is the most stringent to date for
the model considered here.
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1 Introduction
The standard model (SM) of particle physics is the most successful theoretical description of
the fundamental particles of nature and their interactions. However, it has various shortcom-
ings. Several theories have been proposed to address these deficiencies, among which Su-
persymmetry (SUSY) [1–9] is one of the most widely studied. It assumes a new symmetry
between bosons and fermions, thereby introducing a bosonic (fermionic) superpartner for ev-
ery SM fermion (boson). The fermionic superpartners of the SU(2)⇥U(1) gauge fields of the
SM, known as gauginos and higgsinos, are combined resulting in mass eigenstates that are
referred to as charginos and neutralinos, or collectively as electroweakinos. In R-parity con-
serving SUSY models [10], the weakly interacting lightest neutralino ec0

1 can be interpreted as
a dark matter candidate. The superpartners of the left- and right-handed top quarks are the
top squarks, etL and etR, respectively. The combination of these bosonic fields results in mass
eigenstates et1 and et2, where et1 is defined to be the lighter of the two. The top squarks play an
important role in stabilizing the Higgs boson (H) mass calculation by canceling the dominant
top quark loop corrections [11–13]. Depending on the mixing scenario [14, 15], the mass of et1
can be within the reach of the CERN LHC for the top squark to effectively cancel the divergent
contributions of the top quark to the Higgs boson mass. Hence it is important to search for top
squark production at the LHC.

The minimal supersymmetric standard model (MSSM) is the simplest SUSY extension of the
SM, and it incorporates a wide variety of SUSY phenomenologies. Both the gauge and Yukawa
components [9] of the chargino ec±

1 and neutralino are involved in their interaction with fermion-
sfermion pairs. As a result, higgsino-like chargino and neutralino preferentially couple to third-
generation fermion-sfermion pairs through the large Yukawa coupling. Moreover, the Yukawa
coupling to tau lepton-slepton pairs can be large for a high value of tan b even if the higgsino
component is relatively small. Here the quantity tan b is defined as the ratio of the vacuum ex-
pectation values of the two Higgs doublets in the MSSM. For a large value of tan b, the lighter
state of the superpartner et1 of the tau lepton can be significantly less massive than the super-
partners of the first and second generation leptons. Consequently, the chargino decays predom-
inantly as ec±

1 ! et±
1 nt or t±ent , where ent is the superpartner of the tau neutrino. The decay

probabilities of the electron and muon channels are thus greatly reduced [16, 17]. Throughout
this paper, charge conjugation symmetry is assumed and equal branching fractions are consid-
ered for ec+

1 decays to et+
1 nt and t+ent . Since the tau lepton decays to hadrons more often than

to electrons and muons [18], and the hadronic decay mode has lower background contribution
relative to the signal, searches for SUSY signals in electron and muon channels are less sensitive
to higgsino-like and high tan b scenarios. In this search, we focus on the signal of top squark
pair production in a final state with two tau leptons, at least one of them decaying hadroni-
cally, probing part of the MSSM parameter space where the lightest charginos and neutralino
preferentially couple to third-generation fermions.

To address both the gauge hierarchy problem and the possibility of preferential couplings be-
tween electroweakinos and third-generation particles, we focus on the top squark decay chains
et1 ! b ec+

1 ! bet+
1 nt ! bt+ ec0

1nt and et1 ! b ec+
1 ! bt+ent ! bt+ ec0

1nt and their charge
conjugate reactions. We assume R-parity conservation and consider ec0

1 to be the lightest SUSY
particle (LSP). Being neutral and weakly interacting, ec0

1 leaves no recorded signal in the de-
tector. The decay chains are depicted by the four diagrams in Fig. 1 within the framework of
simplified model spectra (SMS) [19, 20], where a branching ratio of 50% is assumed for both
ec+

1 ! et+
1 nt and ec+

1 ! t+ent .

This search is performed using proton-proton (pp) collision events at a center-of-mass energy
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Figure 1: Diagrams of top squark pair production in pp collisions at the LHC, and the decays
that lead to final states with pairs of b quarks and tau leptons accompanied by neutrinos and
LSPs, within the framework of SMS.

of 13 TeV, recorded by the CMS experiment at the LHC. The data sample corresponds to inte-
grated luminosities of 36.3, 41.5, and 59.8 fb�1 collected during the 2016, 2017, and 2018 operat-
ing periods of the LHC, respectively. Signal-like events are characterized by the presence of at
least one hadronically decaying tau lepton th, jets identified as likely to have originated from
the fragmentation of b quarks, i.e., b-tagged jets, and a large missing transverse momentum.
The other tau lepton decays either hadronically or leptonically, t` , to an electron or a muon.
Events with both tau leptons decaying leptonically are not considered as they constitute about
only 13% of the final states. The semileptonic final states are referred to as eth and µth (or
collectively as `th) categories, and the fully hadronic final state as the thth category. Contri-
butions from SM processes are estimated using a combination of Monte Carlo (MC) simulated
samples and control samples in data.

Both the CMS [21–28] and ATLAS [29–33] Collaborations have performed searches for top
squark pair production in leptonic and hadronic final states, establishing limits on top squark
masses in the framework of SMS models. The final state used in this search has also been
studied by the ATLAS Collaboration [34, 35]. However the results are not directly compa-
rable as the ATLAS searches were optimized for a gauge-mediated SUSY-breaking scenario,
where the top squark decays as et1 ! bet+

1 nt , resulting in different kinematics of the final state
particles. A search performed by the CMS Collaboration [36] using 2016 and 2017 data has
studied the same signal model as this study, albeit in the thth final state alone. This study
expands upon the search in Ref. [36] by including the 2018 data and the `th final states, and
employs improved th identification and b tagging algorithms. Since we interpret the results in
the framework of simplified models, previous constraints from direct chargino and tau slepton
production searches by LEP, and LHC experiments have not been imposed in this analysis. The
HEPDATA record for the analysis can be found in Ref. [37].
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2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter that provides a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scin-
tillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. For-
ward calorimeters extend the pseudorapidity (h) coverage provided by the barrel and endcap
detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return
yoke outside the solenoid. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, is reported in
Ref. [38].

Events of interest are selected using a two-tiered trigger system [39]. The first level, composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of less than 4 µs [40]. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and it reduces the event rate
to around 1 kHz before data storage.

3 Event simulation
Simulated samples are used to estimate several SM backgrounds as well as to predict signal
rates. The background and signal samples are generated with representative distributions of
additional pp interactions per bunch crossing, referred to as pileup. These samples are pro-
duced for each year of data taking separately to account for different pileup and detector con-
ditions in the three years. Additionally, the simulated samples for each year are reweighted
such that their pileup profiles match that measured in the data of the corresponding year.

For background processes, the POWHEG v2 [41–45] MC event generator is used for the pair
production of top quarks (tt) and the single top quark t-channel process, whereas POWHEG v1
[46] is used for the tW process. The MADGRAPH5 aMC@NLO (v2.2.2 for 2016, v2.4.2 for 2017
and 2018) [47] event generator is used at leading order (LO) for modeling the Drell–Yan+jets
(DY+jets) and W+jets backgrounds; these two LO MC samples are normalized to cross sections
calculated with the FEWZ v3.1 program [48] at NNLO order in pQCD. The MADGRAPH5 aMC@NLO
event generator is also used to simulate the diboson (VV and VH) and ttV (V = W or Z) pro-
cesses at NLO in pQCD. For the 2016 analysis, the parton showering and hadronization are
simulated with PYTHIA v8.212 [49]. All samples use the CUETP8M1 [50] underlying event
tune, except for tt simulation, which uses the CUETP8M2T4 [51] tune. For the 2017 and 2018
analyses, PYTHIA v8.230 with the CP5 [52] tune is used. The CMS detector response is modeled
using GEANT4 [53], and simulated events are then reconstructed in the same way as collision
data.

The signal is simulated based on simplified SUSY models. The signal process of top squark
production, shown in Fig. 1, is simulated at LO using MADGRAPH5 aMC@NLO followed by
PYTHIA v8.212 with the tune CUETP8M1 for 2016 and tune CP2 [52] for the 2017 and 2018
analyses. The signal cross sections are evaluated using NNLO plus next-to-leading logarithmic
(NLL) calculations in QCD [54–58]. The detector response for the signal sample is simulated us-
ing the fast CMS detector simulation (FASTSIM) [59]. For all simulated signal and background
events, small discrepancies observed between simulation and data are corrected by adding sev-
eral scale factors, as discussed in Section 7. Additional corrections are applied to the signal to
account for differences between FASTSIM and GEANT4 simulations.
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We assume a branching fraction of 50% for each of the two decay modes of the chargino, ec+
1 !

et+
1 nt and ec+

1 ! t+ent . Each of the four diagrams in Fig. 1 therefore contributes to 25% of
the generated signal events. The masses of SUSY particles appearing in the decay chain are
parameterized as

mec�1
� mec0

1
= 0.5 (met1

� mec0
1
),

met1
� mec0

1
= x (mec�1

� mec0
1
),

where x 2 [0.25, 0.5, 0.75],
and ment

= met1
.

(1)

In this parameterization, the chargino mass is fixed to have the mean of the top squark and ec0
1

masses. The masses of the leptonic superpartners are set by the value of x for a given pair of top
squark and ec0

1 masses. A graphical representation of the mass parameterization is presented in
Fig. 2.

Figure 2: A graphical representation of the mass parameterization described in Eq. 1.

Therefore, the kinematic properties of the final state particles in each of the decay chains de-
picted in Fig. 1 depend on the choice of x:

• x = 0.25: The mass of the lepton superpartner is closer to that of the ec0
1 than to

that of the ec±
1 . Hence, the upper left diagram in Fig. 1 produces tau leptons with

lower energy with respect to the ones produced in the upper right. The lower two
diagrams both typically produce two tau leptons with a large difference in energy.

• x = 0.75: The masses of the et±
1 and the ec±

1 are relatively close, so the upper left
diagram in Fig. 1 produces more energetic tau leptons than the upper right. The
lower two diagrams produce the same energy asymmetry as in the case of x = 0.25.

• x = 0.5: The tau leptons in all four diagrams have similar energies.

In fact, when all four diagrams are taken into account, the distributions of the kinematic prop-
erties are found to be very similar for the three different values of x, for a given set of chargino
and LSP masses. It is important to note, however, that parameterizing the chargino mass to a
point other than halfway between theet1 and ec0

1 masses does affect the overall sensitivity of this
search. These cases are not explored in this paper.

4 Event reconstruction
The particle-flow (PF) algorithm [60] reconstructs each individual particle in an event, with
an optimized combination of information from various components of the CMS detector. The
energies of electrons and photons are measured in the ECAL. The momentum of electrons is
determined by a combined measurement of the track momentum in the tracker, the energy
of the matching ECAL supercluster, and the energy of all bremsstrahlung photons consistent
with originating from the track. The momentum of muons is obtained from the bending of
the corresponding tracks in the tracker and the muon spectrometer, which comprises three
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technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The energy of
charged hadrons, which is corrected for zero-suppression effects and for the response function
of the calorimeters to hadronic showers, is determined from a combination of the momentum
measured in the tracker and the energy of the matching ECAL and HCAL clusters. Finally, the
energy of neutral hadrons is obtained from the corrected energies in the corresponding ECAL
and HCAL clusters.

Vertices reconstructed in an event are required to be within 24 cm of the center of the detector
in the z direction (along the beam), and to have a transverse displacement from the beam line of
less than 2 cm. The primary vertex (PV) is taken to be the vertex corresponding to the hardest
scattering in the event, evaluated using tracking information alone, as described in Section 9.4.1
of Ref. [61].

Reconstruction of jets is performed by clustering PF objects using the anti-kT algorithm [62, 63]
with a distance parameter of R = 0.4. Jet momentum is determined as the vector sum of all
particle momenta in the jet, and is typically within 5–10% of the momentum of the particle level
jet over the entire pT spectrum within the detector acceptance. Pileup interactions contribute
to spurious tracks and calorimetric energy deposits, increasing the apparent jet momentum. To
mitigate this effect, tracks identified as originating from pileup vertices are discarded, and an
offset is applied to correct for the remaining contributions [64]. Jets are calibrated using infor-
mation from both simulation and data [64]. Additional selection criteria are applied to remove
jets that are potentially dominated by instrumental effects or reconstruction failures [65]. Only
jets with pT > 20 GeV and |h| < 2.4 are considered in this analysis.

Jets originating from the fragmentation of b quarks are identified as b-tagged jets [66] using the
DEEPJET algorithm [67, 68]. The algorithm employs properties of reconstructed secondary ver-
tices and charged and neutral particle constituents of the jet as inputs to a convolutional deep
neural network. The “medium” (“loose”) selection or working point (WP) of this algorithm
corresponds to a signal efficiency of about 80 (90)%, with a mistagging probability of about 1
(10)% for light jets (from gluons and up, down and strange quarks) and about 11 (50)% for jets
originating from charm quarks. The medium DEEPJET WP is used to identify b-tagged jets in
the search regions, whereas the loose WP is used to veto events in control regions (CRs), as
described in Section 6.2.2.

Electrons are identified using the “tight” WP of a boosted decision tree algorithm [69] that
uses inputs based on the spatial distribution of the shower, track–cluster matching criteria, and
consistency between the cluster energy and the track momentum. This WP corresponds to a
signal efficiency of 80%, with a mistagging probability of about 1.0 (1.8)% for hadrons in the
barrel (endcaps). The relative energy resolution ranges 0.8–5.2% for electrons with pT between
10 and 300 GeV; it is generally better in the barrel region than in the endcaps, and also depends
on the bremsstrahlung energy emitted by the electron as it traverses the material in front of
the ECAL [69, 70]. Only electrons with pT > 30(36)GeV and |h| < 2.4 are considered in
this analysis of the 2016 (2017 and 2018) samples. The stricter requirement on the electron pT
in 2017 and 2018 samples is because of increased pileup in those years, which necessitated a
higher single-electron trigger threshold.

Muon reconstruction uses a global fit combining information from the tracker and muon spec-
trometers. Muon candidates are required to pass the “medium” WP of the algorithm that uses
criteria on the geometrical matching between the tracks in the tracker and the muon spectrome-
ters, and on the quality of the global fit. This WP corresponds to a signal efficiency of more than
98%, with a misidentification probability of about 0.15 (0.40)% for pions (kaons) [71]. Muons
with pT between 2 and 100 GeV, matched to the tracks measured in the silicon tracker, results
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in a pT resolution of 1% in the barrel and 3% in the endcaps. The muons are measured with a
pT resolution better than 7% in the barrel with a pT of up to 1 TeV [71].

The present search considers only muons with pT > 28 GeV and |h| < 2.4. The requirement on
the muon pT is determined by the single-muon trigger threshold.

Isolation criteria are imposed on the lepton (electron and muon) candidates to reject leptons
originating from hadronic decays. The isolation variable used for this purpose is defined as
the scalar pT sum of reconstructed charged and neutral particles, excluding the lepton candi-
date, within a cone of radius DR =

p
(Dh)2 + (Df)2 = 0.3 (0.4) around the electron (muon)

candidate track, divided by the pT of the lepton candidate, where f is the azimuthal angle in
radians. Charged particles not originating from the primary vertex are excluded from this sum,
and a correction is applied to account for the neutral components originating from pileup, as
described in Ref. [70]. This relative isolation is required to be less than 15 (20)% for electrons
(muons).

Hadronic tau lepton candidates are reconstructed from one charged hadron and up to two
neutral pions, or three charged hadrons and up to one neutral pion, consistent with originating
from the decay of a tau lepton, using the hadrons-plus-strips algorithm [72]. To distinguish
between jets originating from quarks or gluons and genuine hadronic tau lepton decays, the
discriminant of a deep neural network algorithm called DEEPTAU [73] is used. The th candi-
dates are selected with the “tight” WP of the above discriminant, which has an efficiency of
⇡60% and a misidentification probability of ⇡0.5%. The “loose” (“very loose”) WP, which has
an efficiency of ⇡80 (⇡90)% and a misidentification probability of ⇡1.5 (⇡3.5)% is used for
estimating the background from misidentified th candidates in the thth (`th) category. In this
analysis, only th with pT > 30 (40) GeV and |h| < 2.3 (2.1) are used for the `th (thth) category.
The stricter requirement on the pT and |h| of the th candidate in the thth category is because
of a higher double-th trigger threshold.

The missing transverse momentum vector, ~pmiss
T , is computed as the negative vector ~pT sum of

all the PF objects in an event, and its magnitude is denoted as pmiss
T [74]. The ~pmiss

T is modified
to account for the energy calibration of all the PF candidates in an event, clustered into jets or
not.

5 Event selection
The sources of pmiss

T in the signal events are the neutrinos and the weakly interacting neutrali-
nos, whose kinematic properties are correlated with those of the visible objects (in particular
the th and t` candidates). In contrast, pmiss

T in the SM background processes is primarily due
to neutrinos. This difference can be exploited by first constructing the transverse mass mT,
defined as follows:

m2
T(~pT

vis, ~pT
inv) = m2

vis + m2
inv + 2(Evis

T Einv
T � ~pT

vis · ~pT
inv), (2)

where E2
T = m2 + p2

T for either visible or invisible particles. Here the masses of the visible (vis)
and invisible (inv) particles are denoted by mvis and minv, respectively. The value of mT has a
maximum at the mass of the parent of the visible and the invisible particles when there is only
one source of missing momentum in the system. To account for pair-produced particles where
both have visible and invisible decay products, the “stransverse mass (mT2)” [75, 76] is defined
as:

m2
T2(vis1, vis2, pmiss

T ) = min
~pT

inv1+~pT
inv2=~p miss

T

[max{m2
T(~pT

vis1, ~pT
inv1), m2

T(~pT
vis2, ~pT

inv2)}]. (3)
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Since the momenta of the individual invisible particles in Eq. (3) are unknown, ~pmiss
T is divided

into two components (~pT
inv1 and ~pT

inv2) in such a way that the value of mT2 is minimized. If
mT2 is computed using the two th candidates (or the t` and th candidates for the `th cate-
gory) as the visible objects, “vis1” and “vis2”, then its upper limit in the signal will be at the
chargino mass. This is different from the SM background processes. For example in tt events,
the upper limit is at the W boson mass. In searches where the masses of the invisible particles
are unknown, the calculation of mT2 requires an assumption on their masses. For this analysis,
it was chosen to consider them as massless [77].

The signal and background processes can be further separated by utilizing the total visible
momentum of the system. This is characterized using the quantity HT for the thth category,
defined as the scalar sum of the pT of all jets and the th candidates in the event. Jets lying
within a cone of DR = 0.3 around either of the two selected th candidates are excluded from
this sum to avoid double counting. Since HT is a measure of the visible transverse momentum
of the system, it is sensitive to the mass of the top squark. For the `th category, we construct
an analogous quantity ST, which includes the additional contribution from the lepton pT.

Events in the thth category are selected using thth triggers where both th candidates are
required to have |h| < 2.1, and pT > 35 or 40 GeV depending on the trigger logic. The th
th trigger has an efficiency of ⇡95% for th candidates that pass the offline selection. For the
eth (µth) category, single-electron (single-muon) trigger is used, with the trigger efficiency of
⇠90 (⇠95)% for electron (muon) candidates that pass the offline selection. The single-electron
and single-muon triggers have pT thresholds of 27 (34) GeV and 24 (27) GeV respectively, in
2016 (2017 and 2018). The triggers described above are emulated using simulation, and the
efficiencies measured therein are corrected to match those measured in the data.

For the offline selection, events are required to have pmiss
T > 50 GeV, HT > 100 GeV (for the

thth category only), ST > 100 GeV (for the `th category only), and at least one b-tagged jet
with |h| < 2.4 and pT > 25 (20) GeV for the `th (thth) category. The eth (µth) categories
require exactly one electron (muon) and exactly one th of opposite-sign charge, while the thth
category requires two th of opposite-sign charges. Additionally, events in the thth category
having 40 < m(thth) < 90 GeV are vetoed in order to suppress the contribution from DY+jets
events. Here m(thth) is the invariant mass of the two th candidate system. Events in the
`th category are vetoed if they have any extra e, µ, or th to avoid any overlap between the
eth, µth, and thth categories. This veto also helps to reduce the contribution from rare SM
background processes like VV and ttV. The requirements on pmiss

T and the number of b-tagged
jets (nb) help to reduce the contributions from DY+jets and SM events comprised uniquely of
jets produced through the strong interaction, referred to as multijet events.

Distributions of the variables pmiss
T , mT2, and HT (or ST) after this selection are shown in Figs. 3–

5 for data and the predicted background, along with representative signal distributions. The
SM backgrounds are estimated using the methods described in Section 6.

Signal events with different top squark and LSP masses have decay products with different
kinematics and populate different regions of the phase space. For example, regions with low
pmiss

T , mT2, and HT (or ST) are sensitive to signals with low top squark masses. On the other
hand, events with high pmiss

T , mT2, and HT (or ST) are sensitive to models with high top squark
and low LSP masses. To obtain the highest sensitivity over the entire phase space, the selected
events are categorized in 15 bins as a function of the measured pmiss

T , mT2, and HT (or ST), as
illustrated in Fig. 6.
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Figure 3: Distributions of the search variables pmiss
T , mT2, and HT after event selection described

in Sec. 5 for data and predicted backgrounds, corresponding to the thth category. The his-
tograms for the background processes are stacked, and the signal distributions expected for
a few representative sets of model parameter values are overlaid: x = 0.5 and [met1

, mec0
1
] =

[300, 100], [500, 350], [800, 300], and [1000, 1] GeV. The lower panel indicates the ratio of the
observed number of events to the total predicted number of background events. The shaded
bands indicate the statistical and systematic uncertainties in the predicted backgrounds, added
in quadrature. The last bin includes the overflow.
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Figure 4: Distributions of the search variables pmiss
T , mT2, and ST after event selection described

in Sec. 5 for data and predicted backgrounds, corresponding to the eth category. The his-
tograms for the background processes are stacked, and the signal distributions expected for
a few representative sets of model parameter values are overlaid: x = 0.5 and [met1

, mec0
1
] =

[300, 100], [500, 350], [800, 300], and [1000, 1] GeV. The lower panel indicates the ratio of the
observed number of events to the total predicted number of background events. The shaded
bands indicate the statistical and systematic uncertainties in the predicted backgrounds, added
in quadrature. The last bin includes the overflow.
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Figure 5: Distributions of the search variables pmiss
T , mT2, and ST after event selection described

in Sec. 5 for data and predicted backgrounds, corresponding to the µth category. The his-
tograms for the background processes are stacked, and the signal distributions expected for
a few representative sets of model parameter values are overlaid: x = 0.5 and [met1

, mec0
1
] =

[300, 100], [500, 350], [800, 300], and [1000, 1] GeV. The lower panel indicates the ratio of the
observed number of events to the total predicted number of background events. The shaded
bands indicate the statistical and systematic uncertainties in the predicted backgrounds, added
in quadrature. The last bin includes the overflow.
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Figure 6: The 15 signal regions defined in bins of pmiss
T , mT2, and HT. The bin boundaries for ST

are the same as those for HT.

6 Background estimation
The most significant backgrounds contributing to the SR are single top quark and tt processes
in which the top quark decays to a lepton and a neutrino. With the pmiss

T from the neutrino,
these events have a final state that is very similar to that of the signal model. Events from tt
and single top quark production having two genuine th decays (one lepton and one genuine
th decay) account for about 47 (75–78)% of the total SM background in the thth (`th) category.
The contribution from these processes is estimated from simulation. The predicted yield in
each SR bin is multiplied by a correction factor derived from CRs in data and simulation.

Events with one or two jets that are misidentified as th candidates arise mostly from single
top quark and tt processes. The contribution from multijet events is significantly diminished
because of the requirements pmiss

T > 50 GeV and nb � 1, the latter of which also reduces the
contribution from W+jets events with a misidentified th candidate. The contribution from
processes with one or more jets misidentified as a th candidate, estimated using data CRs, is
about 42 (18)% of the total background in the thth (`th) category.

The background contribution from DY+jets events via Z/g⇤ ! tt decays is typically small
in the most sensitive bins, amounting to about 9% in the thth category and a few percent
in the `th category. This background is estimated using simulation for both the categories.
To account for residual discrepancies between data and the LO DY+jets sample, correction
factors for simulated events are derived as functions of the dimuon invariant mass and pT from
a DY-enriched dimuon CR in data and simulation [78]. Other less significant backgrounds,
such as W+jets, VV, VH, and ttV can also contribute to the SR via vector bosons decaying
to leptons and the Higgs boson decaying to a pair of tau leptons. The total contribution from
these processes, which is estimated from simulation, is below 1%.

6.1 Tau leptons from top quark production

The estimation of the background from tt and single top quark processes (collectively called
top quark events) with two genuine th decays (or one genuine th decay and a lepton) is extrap-
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olated from an eµ CR, based on the method described in Refs. [36, 79]. The single top quark
events contributing to this final state are mostly from the tW process. The contribution from
these processes in the SR is obtained by multiplying the predicted yield in each SR bin from
simulation by correction factor derived from a CR enriched in top quark events.

The CR enriched in top quark events is identified by selecting events with an eµ pair with
opposite-sign charge. These events are selected with eµ triggers, and are required to satisfy the
same requirements on pmiss

T , ST, and nb as those of the SR. The eµ triggers are ⇡95% efficient
for lepton candidates. To reduce possible DY contamination in this CR coming from the tail
of the eµ invariant mass distribution in the process Z/g⇤ ! tt ! eµ, events are vetoed if
the invariant mass of the eµ system is 60 < meµ < 120 GeV. This selection on the dilepton
invariant mass is more useful for reducing the DY contribution in the µµ CR (discussed later),
but is also applied here to be consistent. The purity of top quark events in the CR, i.e., the
fraction of top quark events in most of the bins is &85% in simulation, as shown in Fig. 7, in
the upper panels of each subfigure. The small contamination from other processes is found to
have no significant effect on the results.

Residual differences between data and simulation are quantified by scale factors (SFs). For a
given SR bin (i) we define

SFi =
Neµ CR

i, data

Neµ CR
i, MC

, (4)

where the numerator and the denominator represent the yields in the CR in data and simula-
tion, respectively. The contamination from the signal process in the CR is found to be negligible.
The single top quark and tt backgrounds are treated together when deriving and applying the
SFs since it is difficult to find a CR that is highly pure in single top quark events alone, and
also has sufficient event count to obtain the SFs bin by bin. The ratio of single top quark to tt
yields in the CR bins is very similar to that in the corresponding SR bins, that is, the relative
kinematics of the two processes are similar in the CR and SR. The corrected tt and single top
yield in simulation in each bin of the SR is then obtained as:

NSR
i, corr. top = NSR

i, top MC SFi =
Neµ CR

i, data NSR
i, top MC

Neµ CR
i, MC

, (5)

where NSR
i, top MC is the prediction from simulated tt and single top events in the SR. Only the

contribution from events with two genuine th candidates (or one genuine th candidate and
a lepton) is corrected using the procedure described above. The SFs in different bins, shown
in Fig. 7 (middle row) for 2016, 2017, and 2018 data, are mostly found to be within ⇡10% of
unity. We note that bins 14 and 15 in the CR are merged and a single SF is used for both bins in
subsequent calculations to reduce the statistical uncertainty.

To cross check the validity of this method, the same technique is applied to an independent
top-quark-enriched CR with an oppositely charged µµ pair in the final state. These events are
selected with single-muon triggers that reach ⇡95% efficiency. The event selection for the µµ
CR is the same as that for the eµ CR. This cross check evaluates the effect of possible contam-
ination from DY events, since the branching fraction of Z/g⇤ ! µµ is much higher than that
of Z/g⇤ ! tt ! eµ. It is also useful for checking any dependence of SFs on lepton recon-
struction. The differences between the SFs calculated in the main and cross check CRs, shown
in Fig. 7 (lower row) are small (within ⇡10% in most cases), and are taken as an uncertainty
in SFs. These are added in quadrature to the statistical uncertainty in SFs, and propagated to
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the uncertainty in the final top quark background prediction. The different sources of system-
atic uncertainties in the terms estimated from simulation in the numerator and denominator of
Eq. 5, are included in the final prediction. These uncertainties are described in Sec. 7.
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Figure 7: The purities in top quarks, the scale factors SF from simulation to data, and the
SFeµ � SFµµ differences in the various bins (as defined in Fig. 6) of the top enriched CR, where
the purity is estimated from simulation. The upper left, upper right, and lower subfigures
correspond to 2016, 2017, and 2018 data, respectively. To mitigate the effect of statistical fluctu-
ations, bins 14 and 15 are merged to provide the same SF in both bins for subsequent calcula-
tions.

6.2 Misidentified hadronically decaying tau lepton candidates

A major component of the total background originates from processes with a quark or gluon
jet that is misidentified as a th candidate. The largest sources of such events in the SR are
semileptonic tt and single top quark decays. Events with one genuine electron (muon) and
a jet misidentified as a th candidate contribute to the eth (µth) category whereas those with
one or two misidentified th candidates contribute to the thth category. These background
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contributions are estimated from CRs in data and simulation, which are obtained by requiring
th candidates to pass a looser WP but fail the tight requirements. The yields observed in the
CRs are extrapolated to the SR in a way described next for the thth and `th categories. The
thth category receives contributions from events with one or two misidentified th candidates,
whereas the `th category contains events with only one misidentified th candidate. Hence
different extrapolation methods are used for the two categories.

6.2.1 Estimation for the thth category

The misidentified th background in the thth category is estimated following the strategy de-
scribed in Refs. [36, 80]. For a genuine (misidentified) th passing the loose identification re-
quirements, we define g ( f ) as the probability that it also passes the tight identification require-
ments. The number of thth events where the th candidate with the highest pT is genuine and
that with the second-highest pT is misidentified, is denoted as Ngf. Other terms, Nfg, Ngg, and
Nff are defined similarly. The number of thth events where the candidate with the highest pT
passes the tight identification criteria and that with the second-highest pT fails, but passes the
loose criteria, is denoted as NTL. Other terms, NLT, NLL, and NTT are defined similarly. The
events are required to satisfy the selections described in Sec. 5. If N is the total number of
events, the following set of equations can be established:

N = Ngg + Nfg + Ngf + Nff = NTT + NLT + NTL + NLL,

NLL = (1 � g1)(1 � g2)Ngg + (1 � f1)(1 � g2)Nfg + (1 � g1)(1 � f2)Ngf + (1 � f1)(1 � f2)Nff,

NLT = (1 � g1)g2Ngg + (1 � f1)g2Nfg + (1 � g1) f2Ngf + (1 � f1) f2Nff,

NTL = g1(1 � g2)Ngg + f1(1 � g2)Nfg + g1(1 � f2)Ngf + f1(1 � f2)Nff,

NTT = g1g2Ngg + f1g2Nfg + g1 f2Ngf + f1 f2Nff,

(6)

where the subscripts 1 and 2 on g and f refer to the th candidates with the highest and second-
highest pT, respectively. The above equations can be inverted to give the numbers of genuine
and misidentified thth candidate events in the SR:

NTT = Ngen
TT + Nmisid

TT , (7)

where
Ngen

TT = g1g2Ngg,

Nmisid
TT = f1g2Nfg + g1 f2Ngf + f1 f2Nff.

Here Ngen
TT represents the number of events in the SR with two genuine th candidates in the

final state and Nmisid
TT stands for the number of events in the SR with one or two misidentified

th candidates.

The probability g is evaluated using tt simulation for different decay modes of the recon-
structed th candidate, as a function of its pT. It is observed to be about 80% with a mild
dependence on the pT of the th for the decay modes containing either one charged hadron
and up to two neutral pions, or three charged hadrons and no neutral pions. For the decay
mode with three charged hadrons and one neutral pion, g is found to vary between 50 and 70%
depending on the pT of the th candidate.

The misidentification rate f is estimated from data using a multijet-enriched CR. This CR is
defined by requiring a same-sign th pair (satisfying the th selection criteria used in the SR),
and by requiring pmiss

T < 50 GeV. There can be small correlations between the probabilities
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of the two th candidates to pass the tight criteria. This causes the value of f to differ by a
few percent depending on which of the two th candidates is required to pass the tight criteria.
This difference is included as an uncertainty in f . The misidentification rate is measured as a
function of its pT for different decay modes of the reconstructed th candidate; it varies between
25 and 45%. In simulation studies [80] we find that the misidentification rate also depends
on the flavor of the parton corresponding to the jet that is misidentified as a th candidate.
Since the jet flavor cannot be reliably determined in data, an additional 30% uncertainty in f
is included [81]. This uncertainty is evaluated as the relative difference between the average
and the maximum of the misidentification rates corresponding to the different jet flavors being
up, down, strange, charm, and bottom quarks, and gluons, estimated using simulated W+jets
events.

6.2.2 Estimation for the `th category

The misidentified th background in the `th category is estimated by selecting a sideband re-
gion (SbR) where all the SR selections are applied, except that the th candidate is required
to pass the very loose (VL) WP but fail the tight (T) identification criteria. This identification
requirement is indicated as “VL & !T” in the following discussion. The yields from this SbR
are extrapolated to obtain the contribution from misidentified th candidates to the `th SR. The
extrapolation factor is determined in a CR [78] enriched in W+jets events containing a misiden-
tified th candidate. This CR is obtained from data by requiring exactly one µ, exactly one th,
pmiss

T > 50 GeV and 60 < mT < 130 GeV where mT is the transverse mass computed using ~pmiss
T

and the transverse momentum of the µ. Events with any b-tagged jet passing the loose WP are
vetoed to remove any overlap between this CR and both the SR and SbR. The fraction of W+jets
events in this CR is calculated to be ⇡83% using simulation. The remaining contribution from
non-W+jets events is estimated from simulation and subtracted from the data. The ratio, R, of
the number of misidentified th events in SR to that in SbR is defined in the W+jets CR as:

R =
NCR

data(t
T
h)� NCR

non-W+jets MC(t
T
h)

NCR
data(t

VL & !T
h )� NCR

non-W+jets MC(t
VL & !T
h )

. (8)

Here NCR
data is the number of events in the W+jets CR obtained from data and NCR

MC, non-W+jets is
the number of simulated events except W+jets in the same CR. The value of R is calculated as
a function of the th candidate’s pT and h, and it varies between 15 and 30%. A variation of
50% in the non-W+jets contribution is found to change the value of R by up to 10%, which is
included as an uncertainty in R. Similar to f in Sec. 6.2.1, R is also found to vary by ⇡30% in
simulation depending on the flavor of the parton corresponding to the jet that is misidentified
as a th. Hence an uncertainty of 30% in R is included. The contribution from misidentified th
candidates to each of the `th SR bins is then evaluated as

Nmisid, SR = R Nmisid, SbR = R [NSbR
data � NSbR

MC, genuine th
], (9)

where NSbR
data is the number of events obtained in the sideband region from data, and NSbR

MC, genuine th
represents the contribution to the sideband region from simulated events where the th candi-
date is genuine. The contribution to Nmisid, SbR from events with th candidates in a particular
pT and h range is multiplied by R measured in the same range.

7 Systematic uncertainties
There are several sources of systematic uncertainties that are propagated to the prediction of
the final signal and background yields. For the thth category, the most significant is the un-
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certainty in the modeling of the th trigger (8–12%). The uncertainty due to th identification
and isolation (ID-iso) requirements [72] is 6–8%. In the `th category, the major uncertainty
arises from th ID-iso requirements (3–4%), followed by the uncertainty in the SF for top quark
events (⇡4%). The other sources of uncertainty affecting all processes include the jet energy
scale (JES) and jet energy resolution (JER), the th energy scale, the effect of unclustered compo-
nents in calculating pmiss

T , pileup reweighting, and the b tagging efficiency. The simulation is
reweighted to make its pileup vertex distribution identical to that of the data. The uncertainty
in estimating the number of pileup interactions is estimated by varying the total inelastic cross
section by ±4.6% [82]. This is propagated as an uncertainty in the pileup reweighting factor
applied to the simulation.

Since the tt and single top quark contribution in the SR is obtained by multiplying the simu-
lated yield by SFs (Eq. 5), several MC uncertainties cancel in the ratio. However, some small
residual effects arising from JER, JES, and unclustered energies may remain after the first order
cancellation. This is because the pmiss

T spectrum in eµ and µµ CRs is different from that in thth
SR where extra neutrinos exist. These small uncertainties are also included in the estimation of
the tt and single top quark contributions. As mentioned earlier, the difference between the SFs
obtained in the eµ and µµ CRs, added in quadrature with the statistical uncertainty, is assumed
to be the uncertainty in this method. The flavor dependence of the th misidentification rates f
and R is accounted for by including an uncertainty of 30% in the rates. The th misidentification
rate in the thth category has an additional uncertainty of about 4%, which arises from small
correlations between the probabilities of the two th candidates to pass the tight identification
criteria.

The factorization (µF) and renormalization (µR) scales used in the simulation are varied up and
down by a factor of two to account for missing higher order corrections, while avoiding the
cases in which one is doubled and the other is halved. The SYSCALC package [83] is used for
this purpose. The resulting uncertainty is estimated to be less than 6% for both signal and
background processes estimated from simulation. The uncertainty in the measured integrated
luminosity amounts to 1.2, 2.3, and 2.5% in 2016, 2017, and 2018 [84–86], respectively. The
uncertainty in the Z boson pT correction applied to DY+jets events is assumed to be equal to
the deviation of the correction factor from unity. This correction is derived as a function of the
Z boson pT. A normalization uncertainty of 15% is assigned to the production cross sections of
the background processes that are evaluated directly from simulation [87–92].

Since the simulation of the detector for signal events is performed using FASTSIM, the signal
yields are corrected to account for the differences in the e, µ, and th identification efficiencies
with respect to the GEANT4 simulation used for the backgrounds. The statistical uncertainty
associated with this correction is propagated to the final results as a part of the systematic un-
certainties. The FASTSIM package has a worse pmiss

T resolution than the full GEANT4 simulation
that can potentially result in an artificial enhancement of the signal yields. Therefore the signal
yields are corrected, and the uncertainty in the resulting correction to the yield is estimated to
be less than ⇡8%.

The region with pmiss
T > 400 GeV (mT2 > 110 GeV) in the background MC simulation was not

adequately modeled in 2017 (2018). To account for this, an additional uncertainty of 40 (38)%
is applied to background MC events with pmiss

T > 400 GeV (mT2 > 110 GeV) in 2017 (2018)
samples. These uncertainty values correspond to the sizes of the discrepancies observed in
those regions, in the eµ and µµ CRs.

The uncertainties in the signal and background from all sources are presented in Tables 1, 2
and 3 for the thth, eth and µth categories respectively. Upper and lower numbers corre-



17

spond to the relative uncertainties due to the upward and downward variations of the signal
or background yields due to the variations of the respective source within uncertainties. These
values are the weighted averages of the relative uncertainties in the various search bins with
the weights being the predicted yields in the respective bins. The uncertainty from a given
source is considered to be correlated across the 15 search bins, whereas the different sources
are treated as uncorrelated with each other. In addition, the statistical uncertainties are also
included and are considered to be uncorrelated across the bins.

8 Results
We present the observed and expected yields along with their uncertainties in all 15 search
bins in Tables 4, 5, and 6 for the thth, eth, and µth categories, respectively. Figure 8 shows the
observed data in all search bins compared with the signal and background predictions. As ex-
pected, the dominant contributions in the sensitive signal bins are from tt and misidentified th
backgrounds. In cases where the background prediction of a process in a given bin is negligible,
the statistical uncertainty is modeled by a gamma distribution [93] in the likelihood function
used for the statistical interpretation, and the Poissonian upper limit at 68% confidence level
(CL) is shown as a positive uncertainty in the Tables 4, 5 and 6. The number of events observed
in data is found to be consistent with the SM background prediction.

The test statistic used for the interpretation of the result is the profile likelihood ratio qµ =
�2 ln (Lµ/Lmax), where Lµ is the maximum likelihood for a fixed signal strength modifier µ,
and Lmax is the global maximum of the likelihood [93]. The systematic uncertainties discussed
in Section 7 are modeled by log-normal distributions [93] in the likelihood function. We set
upper limits on signal production at 95% CL using a modified frequentist approach with a
CLs criterion [94, 95] that is implemented through an asymptotic approximation of the test
statistic [96]. In this calculation all the background and signal uncertainties are incorporated as
nuisance parameters and profiled in the maximum likelihood fit [93].

Final results are obtained by simultaneously fitting all the SR bins in the thth, eth, and µth
categories from the 2016, 2017, and 2018 data sets. The contributions from tt, single top quark,
DY+jets, and misidentified th candidates are modeled separately in the fit, whereas the rest
of the minor SM backgrounds are treated as a single component. The uncertainty in the inte-
grated luminosity is treated as partially correlated between the three data sets. The system-
atic uncertainties due to JES, factorization and renormalization scales, misidentification rate
measurement, and FASTSIM pmiss

T correction are assumed to be correlated, and the rest of the
uncertainties are treated as uncorrelated among the three data sets. All sources of systematic
uncertainties that are common to the thth and `th categories, are assumed to be correlated
among the categories.

The observed and expected exclusion limits are presented in the plane of the top squark and
LSP masses, in Fig. 9. Top squark masses up to 1150 GeV are excluded for a nearly massless
LSP, and LSP masses up to 450 GeV are excluded for a top squark mass of 900 GeV. The ex-
clusion limits are not very sensitive to the choice of the et 1 mass parameter x because of the
complementary nature of the signal diagrams, as discussed in Section 3.

The final limits are generally driven by the yields in the thth category because of its higher
signal-to-background ratio compared with the `th category. The most sensitive search bin for
the higher top squark masses (⇡TeV) is bin 15, which is the highest pmiss

T , mT2 and HT bin. The
observed thth yield in this bin is greater than the total background prediction, resulting in the
observed limit being lower than the expected one by approximately one standard deviation
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Table 1: Relative systematic uncertainties for the thth category from various sources in signal
and background yields. These values are averages of the relative uncertainties in the different
search regions, weighted by the yields in the respective bins. For the asymmetric uncertainties,
the upper (lower) entry is the uncertainty due to the upward (downward) variation, which can
be in the same direction as a result of taking the weighted average. In the header row, the top
squark and LSP masses in GeV are indicated in parentheses. The uncertainty values shown
here are prior to the maximum likelihood fit described in Sec. 8.

Uncertainty source x = 0.5
et1(300)
ec0

1(100)

x = 0.5
et1(500)
ec0

1(350)

x = 0.5
et1(800)
ec0

1(300)

x = 0.5
et1(1000)
ec0

1(1)

tt + single t DY+jets Other SM Misid. th

Signal cross section ±6.7% ±7.5% ±9.5% ±11% — — — —

FASTSIM pmiss
T resolution ±7.8% ±6% ±4.5% ±2.3% — — — —

th FASTSIM/GEANT4 +4.0%
�3.9%

+3.1%
�3.0%

+6.3%
�6.1%

+15.9%
�14.5%

— — — —

JER <0.1%
<0.1%

�1.1%
+0.8%

<0.1%
+0.11%

+0.23%
<0.1%

+1.3%
�1.3%

+8.4%
�3.6%

+1.7%
�3.0%

—

2018 mT2 uncertainty — — — — <0.1%
< 0.1%

+0.29%
�0.29%

+0.38%
�0.38%

—

Pileup �0.3%
+0.3%

+0.57%
�0.62%

+0.2%
�0.2%

< 0.1%
<0.1%

— +1.7%
�1.8%

�1.8%
+1.9%

—

JES +1.4%
�0.5%

+0.54%
�0.12%

<0.1%
<0.1%

<0.1%
<0.1%

+2.6%
�2.6%

+8.5%
�6.0%

+2.4%
�1.9%

—

th ID-iso +6.5%
�8.1%

+6.4%
�8.1%

+6.6%
�8.1%

+6.6%
�8.2%

+6.6%
�8.1%

+6.5%
�8.1%

+6.8%
�8.1%

—

pmiss
T unclustered energy +0.47%

+0.33%
�0.46%
�0.26%

+0.13%
<0.1%

<0.1%
<0.1%

+1.2%
�1.2%

+4.9%
�4.6%

+1.7%
�0.2%

—

Background normalization — — — — — ±15% ±15% —

th energy scale +2.5%
�2.7%

+2.4%
�3.5%

+1.1%
�1.3%

+1.1%
�1.1%

+1.7%
�1.8%

+3.6%
�3.4%

+1.7%
�4.6%

—

µR and µF scales +0.8%
�0.8%

+1.7%
�1.8%

+0.57%
�0.64%

+0.41%
�0.46%

— +2.1%
�2.9%

+4.1%
�3.4%

—

Luminosity ±2.1% ±2.1% ±2.1% ±2.1% — ±2.1% ±2.1% —

b tagging <0.1%
<0.1%

<0.1%
<0.1%

<0.1%
<0.1%

+0.14%
�0.15%

— +7.7%
�7.8%

+7.9%
�8.0%

—

2017 pmiss
T uncertainty — — — — <0.1%

<0.1%
<0.1%
<0.1%

+1.2%
�1.2%

—

Trigger +7.9%
�7.5%

+7.8%
�7.5%

+8.0%
�7.7%

+8.1%
�7.8%

+11.8%
�11.2%

+11.6%
�10.9%

+11.6%
�10.9%

—

tt + single t SF — — — — ±3.4% — — —

Z pT reweighting — — — — — +2.0%
�2.0%

— —

th misid. rate (parton flavor) — — — — — — — +36.5%
�31.8%

th misid. rate (correlations) — — — — — — — +3.7%
�3.8%
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Table 2: Relative systematic uncertainties for the eth category from various sources in signal
and background yields. These values are averages of the relative uncertainties in the different
search regions, weighted by the yields in the respective bins. For the asymmetric uncertainties,
the upper (lower) entry is the uncertainty due to the upward (downward) variation, which can
be in the same direction as a result of taking the weighted average. In the header row, the top
squark and LSP masses in GeV are indicated in parentheses. The uncertainty values shown
here are prior to the maximum likelihood fit described in Sec. 8.

Uncertainty source x = 0.5
et1(300)
ec0

1(100)

x = 0.5
et1(500)
ec0

1(350)

x = 0.5
et1(800)
ec0

1(300)

x = 0.5
et1(1000)
ec0

1(1)

tt Single t (DY+jets)
+ Other SM

Misid. th

Signal cross-section ±6.9% ±7.5% ±9.5% ±11% — — — —

FASTSIM pmiss
T resolution ±0.6% ±0.5% <0.1% <0.1% — — — —

th FASTSIM/GEANT4 ±0.9% ±0.8% ±1.1% ±1.6% — — — —

e FASTSIM/GEANT4 ±1.7% ±1.4% ±3.1% ±3.1% — — — —

JER +0.1% +0.2% <0.1% +0.1% — — +2.5% +0.1%
�0.4% �1.5% �0.1% +0.1% — — +0.3% �0.4%

2018 mT2 uncertainty — — — — <0.1% <0.1% <0.1% <0.1%

JES +0.2% �0.2% +0.1% +0.1% — — +3.2% +0.4%
�0.2% �0.3% �0.1 �0.1% — — �2.0% �0.4%

µR and µF scale +0.5% +1.02% +0.5% +0.3% — — +3.2% +5.5%
�0.4% �1.1% �0.5% �0.4% — — �4.6% �5.5%

th Id-iso +3.2% +3.2% +3.2% +3.2% +3.1% +3.1% +3.1% +1.7%
�3.9% �4.3% �4.1% �4.1% �3.7% �3.9% �3.7% �1.4%

Pileup +0.3% +1.3% +0.7% +0.7% — — +0.2% +0.5%
�0.3% �1.3% �0.7% �0.7% — — �0.2% �0.5%

pmiss
T unclustered energy +0.6% +0.8% +0.2% <0.1% — — +3.6% +0.2%

�0.4% �0.7% �0.2% �0.1% — — �1.9% �0.4%

Background normalization — — — — — — ±15% —

Luminosity ±2.1% ±2.1% ±2.1% ±2.1% — — ±2.1% —

b tagging ±0.1% <0.1% ±0.2% ±0.5% — — ±4.9% ±0.8%

2017 pmiss
T uncertainty — — — — <0.1% <0.1% <0.1% <0.1%

Trigger <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

th energy scale �0.6% �0.1% �0.1% <0.1% <0.1% +0.1% +1.5% <0.1%
�0.7% �0.4% �0.1% <0.1% <0.1% �0.1% �3.4%

tt + single t SF — — — — ±3.8% ±4.0% — —

th misid. rate (parton flavor) — — — — — — — ± 30%

Non-W+jets background
modeling in R — — — — — — — ±10%
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Table 3: Relative systematic uncertainties for the µth category from various sources in signal
and background yields. These values are averages of the relative uncertainties in the different
search regions, weighted by the yields in the respective bins. For the asymmetric uncertainties,
the upper (lower) entry is the uncertainty due to the upward (downward) variation, which can
be in the same direction as a result of taking the weighted average. In the header row, the top
squark and LSP masses in GeV are indicated in parentheses. The uncertainty values shown
here are prior to the maximum likelihood fit described in Sec. 8.

Uncertainty source x = 0.5
et1(300)
ec0

1(100)

x = 0.5
et1(500)
ec0

1(350)

x = 0.5
et1(800)
ec0

1(300)

x = 0.5
et1(1000)
ec0

1(1)

tt Single t (DY+jets)
+ Other SM

Misid. th

Signal cross-section ±6.9% ±7.5% ±9.5% ±11% — — — —

FASTSIM pmiss
T resolution ±1.6% ±1.6% ±0.3 ±0.1% — — — —

th FASTSIM/GEANT4 ±0.7% ±0.7% ±0.9% ±1.3% — — — —

µ FASTSIM/GEANT4 ±1.7% ±1.4% ±2.9% ±3.1% — — — —

JER +0.6% +0.3% <0.1% +0.1% — — +4.2% +0.1%
-0.1% -0.5% <0.1% <0.1% — — -1.5% -0.4%

2018 mT2 uncertainty — — — — <0.1% <0.1% <0.1% <0.1%

JES +0.1% +0.2% <0.1% +0.1% — — +4.7% +0.4%
-0.3% -0.5% <0.1% -0.1% — — -3.0% -0.4%

µR and µF scales 0.5% +0.8% +0.2% +0.2% — — +4.0% +4.9%
-0.5% -0.8% -0.3% -0.3% — — -5.1% -5.1%

th Id-iso +3.2% +3.2% +3.2% +3.2% +3.1% +3.1% 3.1% +1.6%
-3.9% -3.8% -4.1% -4.1% -3.8% -3.9% -3.6% -1.3%

Pileup +1.1% +0.2% +0.5 +0.7% — — +0.7% +0.3%
-1.1% -0.2% -0.5 -0.7% — — -0.7% -0.3%

pmiss
T unclustered energy <0.1% <0.1% +0.1% <0.1% — — +5.0% 0.2%

<0.1% 0.1% <0.1% -0.1% — — -3.2% -0.3%

Background normalization — — — — — — ±15% —

b tagging <0.1% ±0.1% ±0.14% ±0.4% — — ±5.3% ±0.7%

Luminosity ±2.1% ±2.1% ±2.1% ±2.1% — — ±2.1% —

2017 pmiss
T uncertainty — — — — <0.1% <0.1% <0.1% <0.1%

th energy scale -0.6% -0.05% -0.3% <0.1% +0.1% +0.1% +2.5% +0.1%
-0.1% -0.6% -0.1% <0.1% -0.1% -0.1% -3.8% -0.1%

Trigger <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

tt + single t SF — — — — ±3.8% ±3.9% — —

th misid. rate (parton flavor) — — — — — — — ±30%

Non-W+jets background
modeling in R — — — — — — — ±10%
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in that region of the met1
-mec0

1
plane. The total background predictions in bins 9 and 10 of the

thth category and bin 9 of the eth category are greater than the observed yields by about
1–2 standard deviations. These correspond to the highest pmiss

T and intermediate mT2 bins.
However, these bins are not among the most sensitive ones and hence do not affect the final
limits to any appreciable degree. The limits become weaker with decreasing Dm = met1

� mec0
1
,

corresponding to a parameter space with final-state particles having lower momentum.

Table 4: Predicted background yields along with uncertainties for the thth category in the 15
search bins, as defined in Fig. 6. The number of events observed in data is also shown. The first
uncertainty value listed is statistical and the second is systematic. The uncertainties smaller
than 0.05 are listed as 0.0. The background yields and uncertainties shown here are prior to the
maximum likelihood fit described in Sec. 8.

SR tt + single t DY+jets Other SM Misid. th Total bkg. Data

1 407+9+36
�9�36 120+14+29

�14�30 3.5+1.4+1.0
�1.4�1.1 612+44+154

�44�155 1142+47+164
�47�165 1255

2 568+11+49
�11�51 94+10+24

�10�18 10+3+2
�3�2 239+27+90

�27�92 911+31+111
�31�111 882

3 51+3+4
�3�4 13+3+3

�3�2 2.8+0.6+0.6
�0.6�0.8 28+8+25

�8�13 95+9+26
�9�14 94

4 48+3+4
�3�4 6.8+2.1+2.4

�2.1�2.1 1.4+0.7+0.4
�0.7�0.4 15+6+17

�6�8 71+7+18
�7�9 67

5 23+2+2
�2�2 3.5+5.1+0.9

�1.7�0.7 2.3+1.1+0.5
�1.1�0.5 4.6+4.2+8.3

�4.2�2.6 33+7+9
�5�4 46

6 116+5+12
�5�12 13+3+3

�3�6 1.5+1.2+0.4
�1.2�0.7 194+21+74

�21�69 324+22+75
�22�71 277

7 129+5+13
�5�14 9.7+2.9+5.0

�2.9�5.2 1.5+1.4+0.4
�1.4�0.4 81+15+25

�15�27 221+16+30
�16�31 219

8 7.2+1.2+0.8
�1.2�0.7 0.8+4.1+0.2

�0.4�0.4 0.4+0.1+0.1
�0.1�0.1 14+4+14

�4�7 22+6+14
�4�7 17

9 7.4+1.2+0.7
�1.2�0.7 0.0+3.5+0.0

�0.0�0.0 0.2+0.2+0.1
�0.2�0.1 6.7+2.3+7.3

�2.3�3.4 14+4+7
�3�3 7

10 1.4+0.6+0.1
�0.6�0.4 0.4+6.0+0.1

�0.4�0.1 1.0+0.8+0.5
�0.8�0.4 4.9+1.3+5.3

�1.3�2.6 7.7+6.2+5.4
�1.6�2.7 2

11 8.8+1.4+1.0
�1.4�1.2 0.7+5.4+0.2

�0.7�0.7 0.5+0.3+0.2
�0.3�0.2 17+7+10

�7�6 27+9+10
�7�7 30

12 9.8+1.5+1.7
�1.5�1.2 6.4+2.3+4.8

�2.3�2.0 0.7+0.2+0.2
�0.2�0.2 35+7+22

�7�15 52+7+22
�7�15 37

13 1.3+0.6+0.2
�0.5�0.4 2.1+5.0+1.0

�1.3�0.8 0.3+0.1+0.1
�0.1�0.1 6.7+3.1+5.5

�3.1�3.2 10+6+6
�3�3 14

14 0.5+0.7+0.1
�0.5�0.1 < 3.5 0.2+0.1+0.0

�0.1�0.0 2.4+1.9+3.7
�0.6�1.3 3.1+4.0+3.7

�0.8�1.3 2

15 1.1+0.6+0.2
�0.6�0.2 < 3.5 0.1+0.0+0.0

�0.0�0.0 0.7+2.6+0.6
�0.5�0.4 1.9+4.4+0.7

�0.8�0.4 4

Total 1380+17+123
�17�126 270+23+66

�19�59 26+4+6
�4�6 1261+59+461

�59�403 2937+66+482
�65�427 2953
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Table 5: Predicted background yields along with uncertainties for the eth category in the 15
search bins, as defined in Fig. 6. The number of events observed in data is also shown. The first
uncertainty value listed is statistical and the second is systematic. The uncertainties smaller
than 0.05 are listed as 0.0. The background yields and uncertainties shown here are prior to the
maximum likelihood fit described in Sec. 8.

SR tt Single t (DY+jets) Misid. th Total bkg. Data
+Other SM

1 11574+50+634
�50�651 1210+15+62

�15�66 793+34+74
�34�90 2646+29+849

�29�848 16222+69+1064
�68�1075 15744

2 12239+50+568
�50�630 799+12+50

�12�50 717+26+45
�26�55 2619+30+846

�30�845 16374+65+1021
�65�1057 15605

3 1151+15+57
�15�63 90+4+11

�4�9 84+7+8
�7�6 277+10+91

�10�94 1601+20+108
�20�114 1524

4 779+13+43
�13�46 123+5+10

�5�9 55+6+4
�6�8 92+6+31

�6�32 1048+16+54
�16�57 1039

5 381+8+34
�8�35 65+4+9

�4�7 30+5+4
�5�3 39+5+18

�5�22 514+11+40
�11�43 520

6 6984+40+335
�40�368 774+12+38

�12�43 78+11+35
�11�8 1989+24+635

�24�635 9825+49+720
�49�735 9372

7 4822+32+251
�32�285 290+7+18

�7�19 52+6+19
�6�6 1395+21+447

�21�447 6559+39+513
�38.9�530 6222

8 287+8+23
�8�24 18+2+2

�2�2 9.2+1.9+6.5
�1.9�1.1 104+6+34

�6�34 418+10+41
�10�42 435

9 251+7+17
�7�18 27+2+2

�2�2 3.2+1.3+2.8
�1.3�0.6 62+4+20

�4�20 343+9+26
�9�27 303

10 70+4+8
�4�9 12+1+1

�1�1 1.1+0.3+0.3
�0.3�0.3 17+2.6+5.7

�2.6�6.1 99+4.8+10
�4.8�11 95

11 800+14+41
�14�44 87+4+5

�4�6 5.9+2.1+1.2
�2.1�2.0 257+8+82

�8�83 1150+17+94
�17�94 1131

12 575+11+35
�11�43 37+3+3

�3�3 6.4+2.1+8.1
�2.1�0.8 254+8+81

�8�82 873+14+89
�14�92 921

13 44+3+6
�3�6 5.7+1.1+1.0

�1.1�0.7 6.8+2.8+0.9
�2.8�3.3 40+3+13

�3�13 97+5+14
�5�14 114

14 24+2+4
�2�4 2.6+0.7+0.3

�0.7�0.3 2.7+1.2+0.6
�1.2�0.9 13+2+4.2

�2�4.4 42+3+5.9
�3�6.1 49

15 5.8+0.9+1.8
�0.9�1.7 1.5+0.6+0.2

�0.6�0.2 0.3+0.1+0.1
�0.1�0.1 9.5+1.6+3.4

�1.6�3.3 17+2+3.9
�2�3.7 17

Total 39985+92+2006
�92�2176 3543+26+211

�26�217 1844+46+171
�46�170 9811+56+3152

�56�3154 55183+120+3745
�120�3841 53122



23

Table 6: Predicted background yields along with uncertainties for the µth category in the 15
search bins, as defined in Fig. 6. The number of events observed in data is also shown. The first
uncertainty value listed is statistical and the second is systematic. The uncertainties smaller
than 0.05 are listed as 0.0. The background yields and uncertainties shown here are prior to the
maximum likelihood fit described in Sec. 8.

SR tt Single t (DY+jets) Misid. th Total bkg. Data
+Other SM

1 20947+70+1147
�70�1178 2152+21+109

�21�118 2340+61+338
�61�299 5391+41+1726

�41�1724 30801+104+2102
�104�1212 29475

2 18973+65+876
�65�972 1206+16+75

�16�76 1359+37+92
�37�97 4340+38+1397

�38�1398 25861+85+1654
�85�1707 25055

3 1624+18+80
�18�90 126+5+14

�5�12 151+10+14
�10�14 424+12+139

�12�144 2323+25+162
�25�170 2273

4 1258+17+70
�17�75 182+6+14

�6�13 98+11+8
�11�27 163+8+55

�8�56 1700+23+91
�23�99 1678

5 579+10+52
�10�54 95+4+13

�4�10 45+6+4
�6�5 47+6+24

�6�30 764+14+59
�14�63 800

6 13094+56+633
�56�692 1358+17+68

�17�75 193+13+55
�13�28 4132+34+1317

�34�1317 18752+69+1464
�69�1490 18412

7 7754+42+409
�42�459 453+10+30

�10�32 85+8+29
�8�7 2398+27+768

�27�768 10685+51+871
�51�896 10441

8 444+10+36
�10�37 33.4+3+4

�3�3.2 17+3+8
�3�1.8 172+7+55

�7�56 666+13+66
�13�68 638

9 414+10+29
�10�31 44.5+3.0+3.5

�3.0�3.5 7.0+3.0+1.5
�3.0�2.4 88+6+29

�6�29 554+12+41
�12�43 565

10 107+5+13
�5�13 16+2+2

�2�2 1.9+1.0+2.9
�1.0�0.5 24+3+8

�3�9 149+6+16
�6�16 132

11 1332+18+67
�18�78 153+6+9

�6�10 12+4+6
�4�1 435+11.1+139

�11�140 1931+22+155
�22�161 2027

12 905+15+56
�15�62 59+4+4

�4�5 29+5+8
�5�3 391+10+124

�10�126 1383+19+137
�19�140 1333

13 70+4+9
�4�9 6.7+2.0+0.6

�2.0�3.0 5.9+1.1+0.6
�1.1�0.6 46+4+15

�4�15 128+6+17
�6�18 111

14 39+3+6
�3�6 3.1+0.9+0.2

�0.9�0.2 2.3+0.7+0.2
�0.7�0.3 25+3+8

�3�8 70+4+10
�4�10 69

15 8.1+1.2+2.5
�1.2�2.5 2.7+0.8+0.4

�0.8�0.3 0.8+0.2+0.2
�0.2�0.2 8.3+1.5+2.6

�1.5�2.6 20+2+4
�2�4 18

Total 67548+125+3395
�125�3676 5890+35+350

�35�360 4348+75+510
�75�449 18083+75+5794

�75�5798 95870+167+6743
�167�6889 93072
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SR bin number

1−10

1

10

210
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Figure 8: Event yields in the 15 search bins as defined in Fig. 6, for the thth (upper), eth (lower
left), and µth (lower right) categories . The yields for the background processes are stacked,
and those expected for a few representative sets of model parameter values are overlaid: x =
0.5 and [met1

, mec0
1
] = [300, 100], [500, 350], [800, 300], and [1000, 1] GeV. The pmiss

T and mT2

bin definitions are shown in GeV. The lower panel indicates the ratio of the observed number
of events to the total predicted number of background events in each bin. The shaded bands
indicate the statistical and systematic uncertainties in the background, added in quadrature.
The predicted yields and uncertainties shown here are prior to the maximum likelihood fit
described in Sec. 8.
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Figure 9: Exclusion limits at 95% CL for the pair production of top squarks decaying to t`th
or thth final states, displayed in the met1

-mec0
1

plane for x = 0.25 (upper left), 0.5 (upper right)

and 0.75 (lower), as described in Eq. (1). Branching fractions are denoted by B. The color
axis represents the observed upper limit in the cross section, while the black (red) lines repre-
sent the observed (expected) upper mass limits. The signal cross sections are evaluated using
NNLO+NLL calculations. The solid lines represent the central values. The dashed red lines
indicate the region containing 68% of the distribution of limits expected under the background-
only hypothesis. The dashed black lines show the change in the observed limit due to variation
of the signal cross sections within their theoretical uncertainties.
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9 Summary
Top squark pair production in final states with two tau leptons has been explored in data col-
lected by the CMS detector during 2016, 2017, and 2018, corresponding to an integrated lu-
minosity of 138 fb�1. This search improves upon the previous publication [36] by analyzing
the entirety of the Run 2 data, adding the eth and µth final states, and utilizing improved
algorithms for identifying hadronically decaying tau leptons and b quark jets. The dominant
standard model backgrounds originate from top quark pair and single top quark production
and processes where jets were misidentified as th decays. Control regions in data are used to
estimate these backgrounds, whereas other backgrounds are estimated using simulation. The
simulated objects (leptons, jets, etc.) are corrected using scale factors to account for differences
between their performance in simulation and collision data. No significant excess is observed,
and exclusion limits on the top squark and lightest neutralino masses are set at 95% confidence
level within the framework of simplified models where the top squark decays via a chargino to
final states including tau leptons. A branching fraction of 50% is assumed for each of the two
considered decay modes of the chargino, ec+

1 ! et+
1 nt and ec+

1 ! t+ent . These decay modes
are motivated by high-tan b and higgsino-like scenarios where decays to tau leptons are en-
hanced. In such models, top squark masses are excluded up to about 1150 GeV for a lightest
supersymmetric particle (LSP) of mass 1 GeV, while LSP masses up to 450 GeV are excluded
for a top squark mass of 900 GeV. These are the most stringent exclusion limits to date for the
signal models considered in this study.
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M. Bartók31 , G. Bencze, C. Hajdu , D. Horvath32,33 , F. Sikler , V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni , S. Czellar, J. Karancsi31 , J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, B. Ujvari34 , G. Zilizi

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgo30 , F. Nemes30 , T. Novak

Panjab University, Chandigarh, India
J. Babbar , S. Bansal , S.B. Beri, V. Bhatnagar , G. Chaudhary , S. Chauhan ,
N. Dhingra35 , R. Gupta, A. Kaur , A. Kaur , H. Kaur , M. Kaur , S. Kumar ,
P. Kumari , M. Meena , K. Sandeep , T. Sheokand, J.B. Singh36 , A. Singla ,
A. K. Virdi

University of Delhi, Delhi, India
A. Ahmed , A. Bhardwaj , A. Chhetri , B.C. Choudhary , A. Kumar , M. Naimud-
din , K. Ranjan , S. Saumya

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
S. Baradia , S. Barman37 , S. Bhattacharya , D. Bhowmik, S. Dutta , S. Dutta,
B. Gomber38 , M. Maity37, P. Palit , G. Saha , B. Sahu , S. Sarkar

Indian Institute of Technology Madras, Madras, India
P.K. Behera , S.C. Behera , S. Chatterjee , P. Kalbhor , J.R. Komaragiri39 ,
D. Kumar39 , A. Muhammad , L. Panwar39 , R. Pradhan , P.R. Pujahari , N.R. Saha ,
A. Sharma , A.K. Sikdar , S. Verma

Bhabha Atomic Research Centre, Mumbai, India
K. Naskar40

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, I. Das , S. Dugad, M. Kumar , G.B. Mohanty , P. Suryadevara

Tata Institute of Fundamental Research-B, Mumbai, India

https://orcid.org/0000-0002-4860-5979
https://orcid.org/0000-0002-0530-1182
https://orcid.org/0000-0002-7992-2686
https://orcid.org/0000-0001-6958-4196
https://orcid.org/0000-0001-8448-883X
https://orcid.org/0000-0003-4958-0408
https://orcid.org/0000-0001-5680-8357
https://orcid.org/0000-0001-5212-4353
https://orcid.org/0000-0003-0287-1937
https://orcid.org/0000-0002-4280-2541
https://orcid.org/0000-0002-6360-0869
https://orcid.org/0000-0002-8440-0487
https://orcid.org/0000-0002-5903-5481
https://orcid.org/0009-0003-7233-0738
https://orcid.org/0009-0009-3752-6253
https://orcid.org/0000-0002-7440-4396
https://orcid.org/0000-0003-3247-8909
https://orcid.org/0000-0002-9937-3063
https://orcid.org/0000-0002-2225-7160
https://orcid.org/0000-0002-3154-6925
https://orcid.org/0000-0003-1740-6974
https://orcid.org/0000-0002-8305-6661
https://orcid.org/0000-0002-4447-4836
https://orcid.org/0000-0002-5476-0414
https://orcid.org/0000-0002-3966-7182
https://orcid.org/0000-0003-0707-9762
https://orcid.org/0000-0001-8810-0388
https://orcid.org/0000-0002-4684-495X
https://orcid.org/0000-0002-5440-4356
https://orcid.org/0000-0002-4440-2701
https://orcid.org/0000-0002-7193-800X
https://orcid.org/0000-0003-0091-477X
https://orcid.org/0000-0001-9608-3901
https://orcid.org/0000-0001-9783-0315
https://orcid.org/0000-0002-3185-7889
https://orcid.org/0000-0003-0802-7665
https://orcid.org/0000-0002-5259-7983
https://orcid.org/0000-0003-0498-4265
https://orcid.org/0000-0002-0480-0000
https://orcid.org/0000-0002-9110-9663
https://orcid.org/0000-0002-1451-6484
https://orcid.org/0000-0001-6253-4356
https://orcid.org/0000-0002-4080-4156
https://orcid.org/0000-0003-1992-0336
https://orcid.org/0000-0002-8392-9610
https://orcid.org/0000-0003-0168-3336
https://orcid.org/0000-0001-6974-4129
https://orcid.org/0000-0002-7200-6204
https://orcid.org/0000-0002-1640-9180
https://orcid.org/0000-0003-3609-4777
https://orcid.org/0000-0002-8659-7092
https://orcid.org/0000-0002-3440-2767
https://orcid.org/0000-0001-9212-9108
https://orcid.org/0000-0002-6623-8586
https://orcid.org/0000-0003-4536-3967
https://orcid.org/0000-0002-3220-3668
https://orcid.org/0000-0001-9029-2462
https://orcid.org/0000-0003-2550-139X
https://orcid.org/0000-0002-0866-8932
https://orcid.org/0000-0002-4500-8853
https://orcid.org/0000-0002-7544-3258
https://orcid.org/0000-0001-7495-1923
https://orcid.org/0000-0001-5029-1887
https://orcid.org/0000-0003-3407-4094
https://orcid.org/0000-0003-4542-386X
https://orcid.org/0000-0002-5540-3750
https://orcid.org/0000-0001-7842-9518
https://orcid.org/0000-0001-9860-7262
https://orcid.org/0000-0001-8891-1674
https://orcid.org/0000-0002-8110-4957
https://orcid.org/0000-0001-9650-8121
https://orcid.org/0000-0002-4446-0258
https://orcid.org/0000-0002-1948-029X
https://orcid.org/0000-0002-6125-1941
https://orcid.org/0000-0002-8073-5140
https://orcid.org/0000-0002-1527-2266
https://orcid.org/0000-0002-0798-2727
https://orcid.org/0000-0003-0185-9872
https://orcid.org/0000-0002-5892-3743
https://orcid.org/0000-0002-9344-6655
https://orcid.org/0000-0002-6636-5331
https://orcid.org/0000-0002-7535-7149
https://orcid.org/0000-0003-2461-4907
https://orcid.org/0000-0001-7000-6510
https://orcid.org/0000-0002-0994-7212
https://orcid.org/0000-0002-7954-7898
https://orcid.org/0000-0002-0688-923X
https://orcid.org/0000-0002-5437-5217
https://orcid.org/0000-0003-1163-6955
https://orcid.org/0000-0003-0638-4378
https://orcid.org/0000-0002-5437-2067
https://orcid.org/0000-0003-0312-057X
https://orcid.org/0000-0001-6850-7666


40

S. Banerjee , M. Guchait , S. Karmakar , S. Kumar , G. Majumder , K. Mazumdar ,
S. Mukherjee , A. Thachayath

National Institute of Science Education and Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Odisha, India
S. Bahinipati41 , A.K. Das, C. Kar , P. Mal , T. Mishra , V.K. Muraleedha-
ran Nair Bindhu42 , A. Nayak42 , P. Saha , S.K. Swain, D. Vats42

Indian Institute of Science Education and Research (IISER), Pune, India
A. Alpana , S. Dube , B. Kansal , A. Laha , S. Pandey , A. Rastogi , S. Sharma

Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi43 , E. Khazaie , M. Zeinali44

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani45 , S.M. Etesami , M. Khakzad , M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Grunewald
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S. Costaa,b ,48 , A. Di Mattiaa , R. Potenzaa,b, A. Tricomia,b ,48 , C. Tuvea,b

INFN Sezione di Firenzea, Università di Firenzeb, Firenze, Italy
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Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologı́as Espaciales de
Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez , J. Cuevas , J. Fernandez Menendez , S. Folgueras , I. Gonza-
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Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
D. Agyel , F. Boran , Z.S. Demiroglu , F. Dolek , I. Dumanoglu66 , E. Eskut ,

https://orcid.org/0000-0002-6366-837X
https://orcid.org/0000-0002-3792-7665
https://orcid.org/0000-0002-4747-9106
https://orcid.org/0000-0001-7760-3537
https://orcid.org/0000-0001-9416-1742
https://orcid.org/0000-0001-8540-1097
https://orcid.org/0000-0001-7077-8262
https://orcid.org/0000-0002-4927-4921
https://orcid.org/0000-0002-7907-1789
https://orcid.org/0000-0001-8822-4727
https://orcid.org/0000-0002-8336-3282
https://orcid.org/0000-0003-1439-7128
https://orcid.org/0000-0002-2988-9830
https://orcid.org/0000-0002-6515-5666
https://orcid.org/0000-0001-5420-586X
https://orcid.org/0000-0002-5642-3040
https://orcid.org/0000-0001-5066-1876
https://orcid.org/0000-0002-2897-5753
https://orcid.org/0000-0002-2264-2229
https://orcid.org/0000-0002-1643-1388
https://orcid.org/0000-0002-0151-4439
https://orcid.org/0000-0002-5754-4303
https://orcid.org/0000-0003-2570-9676
https://orcid.org/0000-0001-5854-7699
https://orcid.org/0000-0002-9228-5271
https://orcid.org/0000-0001-9573-3714
https://orcid.org/0000-0001-5085-7270
https://orcid.org/0009-0007-5021-3230
https://orcid.org/0000-0002-8502-2297
https://orcid.org/0000-0001-6544-3679
https://orcid.org/0000-0002-3302-336X
https://orcid.org/0000-0001-9179-4253
https://orcid.org/0000-0003-0422-6739
https://orcid.org/0000-0001-6717-0803
https://orcid.org/0009-0001-9331-5145
https://orcid.org/0000-0002-4526-2149
https://orcid.org/0000-0002-9547-7471
https://orcid.org/0000-0003-1920-6618
https://orcid.org/0000-0002-9376-9235
https://orcid.org/0000-0002-2938-2263
https://orcid.org/0000-0003-3209-2088
https://orcid.org/0000-0002-3727-0202
https://orcid.org/0000-0001-7339-4272
https://orcid.org/0000-0001-5639-2267
https://orcid.org/0000-0003-1644-7678
https://orcid.org/0000-0001-5297-1878
https://orcid.org/0000-0001-7507-8636
https://orcid.org/0000-0002-3198-0115
https://orcid.org/0000-0003-4838-3306
https://orcid.org/0000-0003-0885-6711
https://orcid.org/0000-0001-5270-7540
https://orcid.org/0000-0002-0113-7389
https://orcid.org/0000-0003-3748-8946
https://orcid.org/0000-0003-2351-0487
https://orcid.org/0000-0002-6530-3657
https://orcid.org/0000-0003-2155-6692
https://orcid.org/0000-0003-4502-6151
https://orcid.org/0000-0001-7199-0046
https://orcid.org/0000-0001-7432-6634
https://orcid.org/0000-0003-3266-4357
https://orcid.org/0000-0002-0416-696X
https://orcid.org/0000-0003-0887-1882
https://orcid.org/0000-0003-0889-4726
https://orcid.org/0000-0001-5328-448X
https://orcid.org/0000-0003-1939-4268
https://orcid.org/0009-0006-6958-3111
https://orcid.org/0000-0003-2461-5985
https://orcid.org/0000-0002-0250-8655
https://orcid.org/0000-0001-9239-0605
https://orcid.org/0000-0001-8048-1622
https://orcid.org/0000-0003-2181-7258
https://orcid.org/0000-0003-3879-5622
https://orcid.org/0009-0006-8689-3576
https://orcid.org/0000-0002-5144-9655
https://orcid.org/0000-0002-9860-1650
https://orcid.org/0000-0002-5725-041X
https://orcid.org/0000-0002-5456-5977
https://orcid.org/0000-0002-5397-252X
https://orcid.org/0000-0003-4244-2061
https://orcid.org/0000-0002-6448-0168
https://orcid.org/0009-0005-5952-9843
https://orcid.org/0000-0003-1899-2266
https://orcid.org/0000-0002-8562-1863
https://orcid.org/0000-0002-4395-1581
https://orcid.org/0000-0001-5677-6033
https://orcid.org/0000-0003-4472-867X
https://orcid.org/0000-0001-9964-249X
https://orcid.org/0000-0002-5594-1321
https://orcid.org/0000-0002-9576-055X
https://orcid.org/0000-0003-1979-7331
https://orcid.org/0000-0001-5333-4918
https://orcid.org/0000-0002-3632-3157
https://orcid.org/0000-0002-1780-1344
https://orcid.org/0000-0001-6125-7203
https://orcid.org/0009-0005-6188-7754
https://orcid.org/0000-0002-7671-243X
https://orcid.org/0000-0003-2694-6542
https://orcid.org/0000-0002-5888-2304
https://orcid.org/0000-0001-7774-0099
https://orcid.org/0000-0002-6674-0015
https://orcid.org/0000-0003-2533-2856
https://orcid.org/0000-0002-4549-2569
https://orcid.org/0000-0001-9830-0412
https://orcid.org/0009-0002-0638-3447
https://orcid.org/0000-0002-9408-4756
https://orcid.org/0009-0006-0914-7684
https://orcid.org/0000-0001-5309-1960
https://orcid.org/0000-0002-9443-7769
https://orcid.org/0000-0002-6182-3380
https://orcid.org/0000-0002-3135-6427
https://orcid.org/0000-0003-4970-2217
https://orcid.org/0009-0004-1393-6577
https://orcid.org/0000-0002-7584-5038
https://orcid.org/0000-0001-6627-8716
https://orcid.org/0000-0003-1581-6152
https://orcid.org/0000-0001-6362-5356
https://orcid.org/0000-0002-4721-7966
https://orcid.org/0000-0002-9514-0799
https://orcid.org/0000-0002-3752-4639
https://orcid.org/0009-0002-8559-0531
https://orcid.org/0000-0002-8046-4344
https://orcid.org/0000-0003-1777-7855
https://orcid.org/0000-0002-6220-5496
https://orcid.org/0000-0001-7080-1119
https://orcid.org/0000-0002-2249-0835
https://orcid.org/0000-0002-8610-1130
https://orcid.org/0000-0002-1466-9077
https://orcid.org/0000-0002-6610-4019
https://orcid.org/0000-0002-3533-6191
https://orcid.org/0000-0003-4420-5510
https://orcid.org/0000-0001-8587-8266
https://orcid.org/0000-0001-8038-1613
https://orcid.org/0000-0002-7695-501X
https://orcid.org/0000-0002-8842-6027
https://orcid.org/0000-0002-8072-795X
https://orcid.org/0000-0001-6361-2117
https://orcid.org/0000-0001-7873-3579
https://orcid.org/0000-0002-5291-1661
https://orcid.org/0000-0002-0538-1469
https://orcid.org/0000-0002-9806-5907
https://orcid.org/0009-0009-8976-7702
https://orcid.org/0000-0002-8992-5426
https://orcid.org/0000-0002-6657-0407
https://orcid.org/0000-0002-7561-6091
https://orcid.org/0000-0002-1192-1628
https://orcid.org/0000-0003-0199-6957
https://orcid.org/0009-0001-9480-4039
https://orcid.org/0000-0002-1579-2421
https://orcid.org/0000-0002-9235-3406
https://orcid.org/0009-0002-6473-1403
https://orcid.org/0000-0002-9438-2059
https://orcid.org/0000-0002-9991-195X
https://orcid.org/0000-0002-5846-3919
https://orcid.org/0000-0002-1992-5711
https://orcid.org/0000-0001-5184-2265
https://orcid.org/0000-0001-8149-6180
https://orcid.org/0000-0002-3667-3843
https://orcid.org/0000-0002-6011-8516
https://orcid.org/0000-0002-5976-318X
https://orcid.org/0000-0003-1304-3782
https://orcid.org/0000-0001-6456-7178
https://orcid.org/0000-0002-4260-5118
https://orcid.org/0000-0002-3285-1497
https://orcid.org/0000-0003-3598-556X
https://orcid.org/0000-0001-6828-1695
https://orcid.org/0000-0002-1950-8993
https://orcid.org/0009-0006-4366-3463
https://orcid.org/0000-0001-5732-7950
https://orcid.org/0000-0003-2234-7219
https://orcid.org/0000-0003-3563-2959
https://orcid.org/0000-0001-8251-5160
https://orcid.org/0000-0002-1797-8844
https://orcid.org/0000-0002-3611-390X
https://orcid.org/0000-0001-7977-7127
https://orcid.org/0000-0001-7092-5517
https://orcid.org/0000-0002-0039-5503
https://orcid.org/0000-0001-8328-3314


45

Y. Guler67 , E. Gurpinar Guler67 , C. Isik , O. Kara, A. Kayis Topaksu , U. Kiminsu ,
G. Onengut , K. Ozdemir68 , A. Polatoz , A.E. Simsek , B. Tali69 , U.G. Tok ,
S. Turkcapar , E. Uslan , I.S. Zorbakir

Middle East Technical University, Physics Department, Ankara, Turkey
G. Karapinar70, K. Ocalan71 , M. Yalvac72

Bogazici University, Istanbul, Turkey
B. Akgun , I.O. Atakisi , E. Gülmez , M. Kaya73 , O. Kaya74 , S. Tekten75

Istanbul Technical University, Istanbul, Turkey
A. Cakir , K. Cankocak66 , Y. Komurcu , S. Sen76

Istanbul University, Istanbul, Turkey
O. Aydilek , S. Cerci69 , B. Hacisahinoglu , I. Hos77 , B. Isildak78 , B. Kaynak ,
S. Ozkorucuklu , C. Simsek , D. Sunar Cerci69

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkiv,
Ukraine
B. Grynyov

National Science Centre, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
D. Anthony , J.J. Brooke , A. Bundock , E. Clement , D. Cussans , H. Flacher ,
M. Glowacki, J. Goldstein , H.F. Heath , L. Kreczko , B. Krikler , S. Paramesvaran ,
S. Seif El Nasr-Storey, V.J. Smith , N. Stylianou79 , K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
A.H. Ball, K.W. Bell , A. Belyaev80 , C. Brew , R.M. Brown , D.J.A. Cockerill ,
C. Cooke , K.V. Ellis, K. Harder , S. Harper , M.-L. Holmberg81 , Sh. Jain , J. Linacre ,
K. Manolopoulos, D.M. Newbold , E. Olaiya, D. Petyt , T. Reis , G. Salvi , T. Schuh,
C.H. Shepherd-Themistocleous , I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge , P. Bloch , S. Bonomally, J. Borg , C.E. Brown , O. Buchmuller,
V. Cacchio, C.A. Carrillo Montoya , V. Cepaitis , G.S. Chahal82 , D. Colling , J.S. Dancu,
P. Dauncey , G. Davies , J. Davies, M. Della Negra , S. Fayer, G. Fedi , G. Hall ,
M.H. Hassanshahi , A. Howard, G. Iles , J. Langford , L. Lyons , A.-M. Magnan ,
S. Malik, A. Martelli , M. Mieskolainen , D.G. Monk , J. Nash83 , M. Pesaresi,
B.C. Radburn-Smith , D.M. Raymond, A. Richards, A. Rose , E. Scott , C. Seez ,
R. Shukla , A. Tapper , K. Uchida , G.P. Uttley , L.H. Vage, T. Virdee27 , M. Vojinovic ,
N. Wardle , S.N. Webb , D. Winterbottom

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole , A. Khan, P. Kyberd , I.D. Reid

Baylor University, Waco, Texas, USA
S. Abdullin , A. Brinkerhoff , B. Caraway , J. Dittmann , K. Hatakeyama , A.R. Kanu-
ganti , B. McMaster , M. Saunders , S. Sawant , C. Sutantawibul , M. Toms ,
J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek , A. Dominguez , C. Huerta Escamilla, R. Uniyal , A.M. Vargas Hernandez

https://orcid.org/0000-0001-7598-5252
https://orcid.org/0000-0002-6172-0285
https://orcid.org/0000-0002-7977-0811
https://orcid.org/0000-0002-3169-4573
https://orcid.org/0000-0001-6940-7800
https://orcid.org/0000-0002-6274-4254
https://orcid.org/0000-0002-0103-1488
https://orcid.org/0000-0001-9516-0821
https://orcid.org/0000-0002-9074-2256
https://orcid.org/0000-0002-7447-5602
https://orcid.org/0000-0002-3039-021X
https://orcid.org/0000-0003-2608-0494
https://orcid.org/0000-0002-2472-0526
https://orcid.org/0000-0002-5962-2221
https://orcid.org/0000-0002-8419-1400
https://orcid.org/0000-0003-4915-9162
https://orcid.org/0000-0001-8888-3562
https://orcid.org/0000-0002-9231-7464
https://orcid.org/0000-0002-6353-518X
https://orcid.org/0000-0003-2890-4493
https://orcid.org/0000-0002-8485-3822
https://orcid.org/0000-0002-9624-5525
https://orcid.org/0000-0002-8627-7689
https://orcid.org/0000-0002-3829-3481
https://orcid.org/0000-0002-7084-030X
https://orcid.org/0000-0001-7325-1087
https://orcid.org/0000-0002-2567-6766
https://orcid.org/0000-0002-8702-6152
https://orcid.org/0000-0002-2646-1230
https://orcid.org/0000-0002-7678-1101
https://orcid.org/0000-0002-0283-5234
https://orcid.org/0000-0003-3857-2496
https://orcid.org/0000-0001-5153-9266
https://orcid.org/0000-0002-7359-8635
https://orcid.org/0000-0002-5412-4688
https://orcid.org/0000-0002-3299-9985
https://orcid.org/0000-0001-5889-7410
https://orcid.org/0000-0002-5016-8886
https://orcid.org/0000-0003-2529-0684
https://orcid.org/0000-0002-2916-6456
https://orcid.org/0000-0003-3412-4004
https://orcid.org/0000-0001-8192-0826
https://orcid.org/0000-0002-5371-941X
https://orcid.org/0000-0003-1591-6014
https://orcid.org/0000-0001-6576-9740
https://orcid.org/0000-0003-2341-8330
https://orcid.org/0000-0001-9712-0030
https://orcid.org/0000-0003-4748-8296
https://orcid.org/0000-0003-4543-2547
https://orcid.org/0000-0002-0113-6829
https://orcid.org/0000-0001-5793-526X
https://orcid.org/0000-0002-2294-5860
https://orcid.org/0000-0002-1733-4408
https://orcid.org/0000-0001-6595-8365
https://orcid.org/0000-0002-6728-0153
https://orcid.org/0000-0003-2427-5765
https://orcid.org/0000-0003-3730-4895
https://orcid.org/0000-0002-2965-6973
https://orcid.org/0000-0001-5637-2653
https://orcid.org/0000-0002-9473-5985
https://orcid.org/0000-0003-1770-5309
https://orcid.org/0000-0001-7555-652X
https://orcid.org/0000-0002-9015-9634
https://orcid.org/0000-0002-2369-4469
https://orcid.org/0000-0003-3703-6624
https://orcid.org/0000-0002-2787-1063
https://orcid.org/0000-0003-0551-6949
https://orcid.org/0000-0002-8724-4678
https://orcid.org/0000-0001-9157-4832
https://orcid.org/0000-0001-6716-979X
https://orcid.org/0000-0002-7716-7621
https://orcid.org/0000-0002-7766-6615
https://orcid.org/0000-0002-6245-6535
https://orcid.org/0000-0002-4809-4056
https://orcid.org/0000-0003-0320-4407
https://orcid.org/0000-0001-9959-4977
https://orcid.org/0000-0001-6839-9466
https://orcid.org/0000-0001-8668-5001
https://orcid.org/0000-0001-6497-8081
https://orcid.org/0000-0001-9101-2573
https://orcid.org/0000-0002-6299-8385
https://orcid.org/0000-0001-6634-4517
https://orcid.org/0000-0002-1219-5859
https://orcid.org/0000-0002-3931-4379
https://orcid.org/0000-0001-7945-9188
https://orcid.org/0000-0002-4266-1646
https://orcid.org/0000-0003-3530-2255
https://orcid.org/0000-0001-8893-7401
https://orcid.org/0000-0002-8377-1999
https://orcid.org/0000-0003-0607-6519
https://orcid.org/0000-0003-1488-9675
https://orcid.org/0000-0002-9773-550X
https://orcid.org/0000-0003-0352-6836
https://orcid.org/0000-0002-1637-5494
https://orcid.org/0000-0001-5670-5497
https://orcid.org/0000-0003-4543-864X
https://orcid.org/0000-0003-0742-2276
https://orcid.org/0009-0002-6248-6467
https://orcid.org/0000-0001-7429-2198
https://orcid.org/0000-0001-8665-2808
https://orcid.org/0000-0003-1344-3356
https://orcid.org/0000-0003-4749-8814
https://orcid.org/0000-0001-5638-7599
https://orcid.org/0000-0002-7353-7090
https://orcid.org/0000-0002-9235-779X
https://orcid.org/0000-0003-4885-6935
https://orcid.org/0000-0002-4819-7995
https://orcid.org/0000-0002-6088-2020
https://orcid.org/0000-0002-1911-3158
https://orcid.org/0000-0002-6012-2451
https://orcid.org/0000-0002-0789-1200
https://orcid.org/0000-0002-4494-0446
https://orcid.org/0000-0003-1572-9075
https://orcid.org/0000-0002-1981-7753
https://orcid.org/0000-0003-0600-0151
https://orcid.org/0000-0002-7703-3973
https://orcid.org/0000-0002-5672-7394
https://orcid.org/0000-0002-1686-2882
https://orcid.org/0000-0002-7420-5493
https://orcid.org/0000-0001-7345-6293
https://orcid.org/0000-0002-8911-7197


46

The University of Alabama, Tuscaloosa, Alabama, USA
R. Chudasama , S.I. Cooper , D. Di Croce , S.V. Gleyzer , C. Henderson , C.U. Perez ,
P. Rumerio84 , C. West

Boston University, Boston, Massachusetts, USA
A. Akpinar , A. Albert , D. Arcaro , C. Cosby , Z. Demiragli , C. Erice ,
E. Fontanesi , D. Gastler , S. May , J. Rohlf , K. Salyer , D. Sperka , D. Spitzbart ,
I. Suarez , A. Tsatsos , S. Yuan

Brown University, Providence, Rhode Island, USA
G. Benelli , X. Coubez22, D. Cutts , M. Hadley , U. Heintz , J.M. Hogan85 , T. Kwon ,
G. Landsberg , K.T. Lau , D. Li , J. Luo , M. Narain , N. Pervan , S. Sagir86 ,
F. Simpson , E. Usai , W.Y. Wong, X. Yan , D. Yu , W. Zhang

University of California, Davis, Davis, California, USA
S. Abbott , J. Bonilla , C. Brainerd , R. Breedon , M. Calderon De La Barca Sanchez ,
M. Chertok , J. Conway , P.T. Cox , R. Erbacher , G. Haza , F. Jensen , O. Kukral ,
G. Mocellin , M. Mulhearn , D. Pellett , B. Regnery , Y. Yao , F. Zhang

University of California, Los Angeles, California, USA
M. Bachtis , R. Cousins , A. Datta , J. Hauser , M. Ignatenko , M.A. Iqbal , T. Lam ,
E. Manca , W.A. Nash , D. Saltzberg , B. Stone , V. Valuev

University of California, Riverside, Riverside, California, USA
R. Clare , J.W. Gary , M. Gordon, G. Hanson , O.R. Long , N. Manganelli , W. Si ,
S. Wimpenny

University of California, San Diego, La Jolla, California, USA
J.G. Branson, S. Cittolin, S. Cooperstein , D. Diaz , J. Duarte , R. Gerosa , L. Giannini ,
J. Guiang , R. Kansal , V. Krutelyov , R. Lee , J. Letts , M. Masciovecchio ,
F. Mokhtar , M. Pieri , M. Quinnan , B.V. Sathia Narayanan , V. Sharma , M. Tadel ,
E. Vourliotis , F. Würthwein , Y. Xiang , A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, California,
USA
N. Amin, C. Campagnari , M. Citron , G. Collura , A. Dorsett , J. Incandela ,
M. Kilpatrick , J. Kim , A.J. Li , P. Masterson , H. Mei , M. Oshiro , J. Richman ,
U. Sarica , R. Schmitz , F. Setti , J. Sheplock , P. Siddireddy, D. Stuart , S. Wang

California Institute of Technology, Pasadena, California, USA
A. Bornheim , O. Cerri, I. Dutta , A. Latorre, J.M. Lawhorn , J. Mao , H.B. Newman ,
T. Q. Nguyen , M. Spiropulu , J.R. Vlimant , C. Wang , S. Xie , R.Y. Zhu

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
J. Alison , S. An , M.B. Andrews , P. Bryant , V. Dutta , T. Ferguson , A. Harilal ,
C. Liu , T. Mudholkar , S. Murthy , M. Paulini , A. Roberts , A. Sanchez , W. Terrill

University of Colorado Boulder, Boulder, Colorado, USA
J.P. Cumalat , W.T. Ford , A. Hassani , G. Karathanasis , E. MacDonald, F. Marini ,
A. Perloff , C. Savard , N. Schonbeck , K. Stenson , K.A. Ulmer , S.R. Wagner ,
N. Zipper

Cornell University, Ithaca, New York, USA
J. Alexander , S. Bright-Thonney , X. Chen , D.J. Cranshaw , J. Fan , X. Fan ,
D. Gadkari , S. Hogan , J. Monroy , J.R. Patterson , J. Reichert , M. Reid , A. Ryd ,

https://orcid.org/0009-0007-8848-6146
https://orcid.org/0000-0002-4618-0313
https://orcid.org/0000-0002-1122-7919
https://orcid.org/0000-0002-6222-8102
https://orcid.org/0000-0002-6986-9404
https://orcid.org/0000-0002-6861-2674
https://orcid.org/0000-0002-1702-5541
https://orcid.org/0000-0003-4460-2241
https://orcid.org/0000-0001-7510-6617
https://orcid.org/0000-0003-2369-9507
https://orcid.org/0000-0001-9457-8302
https://orcid.org/0000-0003-0352-6561
https://orcid.org/0000-0001-8521-737X
https://orcid.org/0000-0002-6469-3200
https://orcid.org/0000-0002-0662-5904
https://orcid.org/0009-0000-7307-6311
https://orcid.org/0000-0002-6351-6122
https://orcid.org/0000-0001-6423-9799
https://orcid.org/0000-0002-6957-1077
https://orcid.org/0000-0002-4624-2019
https://orcid.org/0000-0003-2025-2742
https://orcid.org/0000-0002-5374-6995
https://orcid.org/0000-0001-8310-8911
https://orcid.org/0000-0002-2029-024X
https://orcid.org/0000-0003-4461-8905
https://orcid.org/0000-0003-1041-7099
https://orcid.org/0000-0002-7068-4327
https://orcid.org/0000-0002-7590-3058
https://orcid.org/0000-0002-8604-3452
https://orcid.org/0000-0001-9594-6277
https://orcid.org/0000-0002-4184-9380
https://orcid.org/0000-0003-1371-8575
https://orcid.org/0000-0003-0890-8948
https://orcid.org/0000-0002-4108-8681
https://orcid.org/0000-0002-7857-7403
https://orcid.org/0000-0002-8153-8464
https://orcid.org/0000-0002-2614-5860
https://orcid.org/0000-0001-8944-9629
https://orcid.org/0000-0001-9323-2107
https://orcid.org/0000-0002-6426-0560
https://orcid.org/0000-0001-5921-5231
https://orcid.org/0000-0002-7791-894X
https://orcid.org/0000-0002-6982-6121
https://orcid.org/0000-0002-9552-1006
https://orcid.org/0000-0001-5314-7581
https://orcid.org/0000-0001-9835-4349
https://orcid.org/0000-0002-2729-6273
https://orcid.org/0000-0003-2719-5779
https://orcid.org/0000-0003-1218-2828
https://orcid.org/0000-0001-7170-8944
https://orcid.org/0009-0001-1326-3956
https://orcid.org/0000-0003-3769-9081
https://orcid.org/0009-0007-3858-6659
https://orcid.org/0000-0002-1531-3478
https://orcid.org/0000-0003-1145-6436
https://orcid.org/0009-0000-0389-8571
https://orcid.org/0000-0003-1539-923X
https://orcid.org/0000-0002-5990-4245
https://orcid.org/0000-0002-6158-2468
https://orcid.org/0000-0003-3110-0701
https://orcid.org/0000-0002-5963-0467
https://orcid.org/0000-0003-2695-7719
https://orcid.org/0000-0002-9781-4873
https://orcid.org/0000-0001-8258-5863
https://orcid.org/0000-0001-8664-1949
https://orcid.org/0000-0002-0862-7348
https://orcid.org/0000-0001-8946-655X
https://orcid.org/0009-0004-3633-8967
https://orcid.org/0000-0003-0658-9146
https://orcid.org/0000-0002-9397-5231
https://orcid.org/0000-0002-0783-6703
https://orcid.org/0000-0003-3293-5305
https://orcid.org/0000-0003-0175-5731
https://orcid.org/0000-0002-7273-4009
https://orcid.org/0000-0002-2180-7634
https://orcid.org/0000-0002-3398-4531
https://orcid.org/0000-0002-5879-6326
https://orcid.org/0000-0003-0505-4908
https://orcid.org/0000-0003-0262-3132
https://orcid.org/0000-0001-6834-1176
https://orcid.org/0000-0002-5076-7096
https://orcid.org/0000-0001-8359-3734
https://orcid.org/0000-0002-5621-7706
https://orcid.org/0000-0002-2155-8260
https://orcid.org/0000-0003-2445-1060
https://orcid.org/0000-0002-1386-0232
https://orcid.org/0009-0000-4634-0797
https://orcid.org/0000-0002-0156-1251
https://orcid.org/0000-0002-8200-9425
https://orcid.org/0000-0003-2533-3402
https://orcid.org/0000-0003-3303-6301
https://orcid.org/0000-0003-2902-5597
https://orcid.org/0000-0003-2076-5126
https://orcid.org/0000-0003-1736-8795
https://orcid.org/0000-0001-8800-0045
https://orcid.org/0000-0002-2270-0492
https://orcid.org/0000-0001-5912-6124
https://orcid.org/0000-0003-4112-7457
https://orcid.org/0000-0002-6108-4004
https://orcid.org/0000-0002-8978-8177
https://orcid.org/0000-0001-6250-8465
https://orcid.org/0000-0002-4160-1844
https://orcid.org/0000-0001-5349-3011
https://orcid.org/0000-0001-9850-2030
https://orcid.org/0000-0002-2602-0566
https://orcid.org/0000-0002-2072-6082
https://orcid.org/0000-0002-3895-717X
https://orcid.org/0000-0002-6890-7624
https://orcid.org/0000-0002-9838-8327
https://orcid.org/0000-0002-2200-7516
https://orcid.org/0000-0002-5189-146X
https://orcid.org/0000-0002-1557-4424
https://orcid.org/0000-0003-2328-677X
https://orcid.org/0000-0001-9800-7822
https://orcid.org/0000-0002-8752-1946
https://orcid.org/0000-0002-4965-0747
https://orcid.org/0000-0001-7887-1728
https://orcid.org/0000-0002-0128-0871
https://orcid.org/0000-0003-0953-4503
https://orcid.org/0000-0002-8597-9259
https://orcid.org/0009-0002-8988-9987
https://orcid.org/0000-0003-0964-1480
https://orcid.org/0000-0003-3954-5131
https://orcid.org/0000-0001-8172-7081
https://orcid.org/0000-0002-9705-101X
https://orcid.org/0000-0002-0117-7196
https://orcid.org/0000-0003-2509-5731
https://orcid.org/0000-0003-3091-7461
https://orcid.org/0000-0003-0843-1641
https://orcid.org/0000-0002-9740-1622
https://orcid.org/0000-0001-5537-4518
https://orcid.org/0000-0001-8145-6322
https://orcid.org/0000-0001-5958-829X
https://orcid.org/0000-0001-5822-3731
https://orcid.org/0000-0001-9625-1987
https://orcid.org/0000-0002-3100-7294
https://orcid.org/0000-0002-9352-8140
https://orcid.org/0000-0002-1277-9168
https://orcid.org/0000-0002-6714-5787
https://orcid.org/0000-0002-5139-0550
https://orcid.org/0000-0002-5431-6989
https://orcid.org/0000-0002-2078-8419
https://orcid.org/0000-0002-6032-5857
https://orcid.org/0000-0001-8703-6943
https://orcid.org/0009-0008-4322-7682
https://orcid.org/0000-0001-5115-5828
https://orcid.org/0000-0002-2374-6433
https://orcid.org/0000-0001-5230-0396
https://orcid.org/0009-0000-7507-0570
https://orcid.org/0009-0008-3430-7269
https://orcid.org/0000-0003-4888-205X
https://orcid.org/0000-0001-6875-9177
https://orcid.org/0000-0002-9269-5772
https://orcid.org/0000-0002-4805-8020
https://orcid.org/0000-0002-2046-342X
https://orcid.org/0000-0003-1889-7824
https://orcid.org/0000-0002-8157-1328
https://orcid.org/0000-0002-7498-2129
https://orcid.org/0009-0003-3728-9960
https://orcid.org/0000-0003-2067-0127
https://orcid.org/0000-0002-6625-8085
https://orcid.org/0000-0003-3657-2281
https://orcid.org/0000-0002-7394-4710
https://orcid.org/0000-0002-3815-3649
https://orcid.org/0000-0003-2110-8021
https://orcid.org/0000-0001-7706-1416
https://orcid.org/0000-0001-5849-1912


47

J. Thom , P. Wittich , R. Zou

Fermi National Accelerator Laboratory, Batavia, Illinois, USA
M. Albrow , M. Alyari , G. Apollinari , A. Apresyan , L.A.T. Bauerdick , D. Berry ,
J. Berryhill , P.C. Bhat , K. Burkett , J.N. Butler , A. Canepa , G.B. Cerati ,
H.W.K. Cheung , F. Chlebana , K.F. Di Petrillo , J. Dickinson , V.D. Elvira , Y. Feng ,
J. Freeman , A. Gandrakota , Z. Gecse , L. Gray , D. Green, S. Grünendahl ,
D. Guerrero , O. Gutsche , R.M. Harris , R. Heller , T.C. Herwig , J. Hirschauer ,
L. Horyn , B. Jayatilaka , S. Jindariani , M. Johnson , U. Joshi , T. Klijnsma ,
B. Klima , K.H.M. Kwok , S. Lammel , D. Lincoln , R. Lipton , T. Liu , C. Madrid ,
K. Maeshima , C. Mantilla , D. Mason , P. McBride , P. Merkel , S. Mrenna ,
S. Nahn , J. Ngadiuba , D. Noonan , S. Norberg, V. Papadimitriou , N. Pastika ,
K. Pedro , C. Pena87 , F. Ravera , A. Reinsvold Hall88 , L. Ristori , E. Sexton-
Kennedy , N. Smith , A. Soha , L. Spiegel , J. Strait , L. Taylor , S. Tkaczyk ,
N.V. Tran , L. Uplegger , E.W. Vaandering , I. Zoi

University of Florida, Gainesville, Florida, USA
P. Avery , D. Bourilkov , L. Cadamuro , P. Chang , V. Cherepanov , R.D. Field,
E. Koenig , M. Kolosova , J. Konigsberg , A. Korytov , E. Kuznetsova89 , K.H. Lo,
K. Matchev , N. Menendez , G. Mitselmakher , A. Muthirakalayil Madhu , N. Rawal ,
D. Rosenzweig , S. Rosenzweig , K. Shi , J. Wang , Z. Wu

Florida State University, Tallahassee, Florida, USA
T. Adams , A. Askew , N. Bower , R. Habibullah , V. Hagopian , T. Kolberg ,
G. Martinez, H. Prosper , O. Viazlo , M. Wulansatiti , R. Yohay , J. Zhang

Florida Institute of Technology, Melbourne, Florida, USA
M.M. Baarmand , S. Butalla , T. Elkafrawy52 , M. Hohlmann , R. Kumar Verma ,
M. Rahmani, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, Illinois, USA
M.R. Adams , R. Cavanaugh , S. Dittmer , O. Evdokimov , C.E. Gerber , D.J. Hof-
man , D. S. Lemos , A.H. Merrit , C. Mills , G. Oh , T. Roy , S. Rudrabhatla ,
M.B. Tonjes , N. Varelas , X. Wang , Z. Ye , J. Yoo

The University of Iowa, Iowa City, Iowa, USA
M. Alhusseini , K. Dilsiz90 , L. Emediato , G. Karaman , O.K. Köseyan , J.-P. Merlo,
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61Also at National and Kapodistrian University of Athens, Athens, Greece
62Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
63Also at Universität Zürich, Zurich, Switzerland
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