arXiv:2211.16320v3 [hep-ex] 22 Aug 2023

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

2023/08/23

@ CERN-EP-2022-177

s |

L <\
el \\ \\
CMS-SMP-21-014
TOTEM-2022-002

Search for high-mass exclusive vy — WW and vy — ZZ
production in proton-proton collisions at y/s = 13 TeV

The CMS and TOTEM Collaborations®

Abstract

A search is performed for exclusive high-mass vy — WW and vy — ZZ production
in proton-proton collisions using intact forward protons reconstructed in near-beam
detectors, with both weak bosons decaying into boosted and merged jets. The analy-
sis is based on a sample of proton-proton collisions collected by the CMS and TOTEM
experiments at /s = 13 TeV, corresponding to an integrated luminosity of 100 fb™".
No excess above the standard model background prediction is observed, and upper
limits are set on the pp — pWWp and pp — pZZp cross sections in a fiducial region
defined by the diboson invariant mass m(VV) > 1TeV (with V = W, Z) and proton
fractional momentum loss 0.04 < ¢ < 0.20. The results are interpreted as new limits
on dimension-6 and dimension-8 anomalous quartic gauge couplings.
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1 Introduction

A class of proton-proton scattering events at the CERN LHC exists in which the incoming pro-
tons radiate high-energy quasireal photons and remain intact, whereas only the two photons
interact, as shown in Fig. 1. The protons lose a small fraction of their initial 6.5 TeV energy and
are scattered at very small angles. In the CMS experiment, the scattered protons are measured
with the Precision Proton Spectrometer (PPS), a set of near-beam detectors located on both
sides of the central elements of the CMS detector at around 200 m from the interaction point
(IP) [1, 2]. The trajectories of the scattered protons are bent by the LHC magnets between the
interaction point and the PPS detectors, which makes it possible to measure their momenta.
By reconstructing both protons, the center-of-mass energy of the two-photon collision is deter-
mined on an event-by-event basis.

In the present paper, a search is presented for the exclusive production of gauge boson pairs
(WW or ZZ) from 7+ interactions using the PPS. The final state consists solely of the two
bosons and the scattered protons, which are reconstructed using PPS. The fully hadronic decay
modes of the W and Z bosons are studied. When the gauge bosons are produced with a large
boost, as expected in many scenarios beyond the standard model (BSM), decay products of
each of the bosons are merged into a single large-area jet.

The branching fraction of the fully hadronic channel for W and Z bosons is the highest (67—
70%), but this mode is not accessible without the proton detection because of the very large
background from jet production in quantum chromodynamics (QCD) processes. For exclusive
production when the protons are measured, the kinematics of the final-state bosons can be
independently reconstructed both with the central part of the CMS detector and with PPS.
Therefore, for signal events that are correctly identified, the entire 13 TeV collision energy can
be reconstructed in the four-body pWWp or pZZp system.
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Figure 1: Schematic diagrams of exclusive vy — WW production with intact protons accord-
ing to the standard model (SM).



Within the SM, quartic couplings involving two-photon production of charged (W) gauge
bosons are allowed at tree level, as illustrated in Fig. 1. Because of gauge invariance, the
strength of these couplings is related to the triple gauge couplings, which enter through t-
and u-channel vy — WW production, and is fully specified in the SM. The SM cross sections
for the yy — WW and vy — ZZ processes with both protons intact are expected to be around
50 fb and 0.05 fb, respectively, at /s = 13 TeV [3-6], and are concentrated at low values of the
VV invariant mass, m(VV). Any significant signal over the prediction, particularly in the high
m(VV) tails where the expected SM cross section is small, could indicate BSM physics.

BSM effects on vy — V'V processes are predicted in a variety of models, with both resonant and
nonresonant signals [3, 4, 7-13]. A common approach to quantify deviations from the SM with
minimal assumptions involves anomalous quartic gauge couplings (AQGCs). Two formalisms
commonly used in electroweak studies at the LHC exploit dimension-6 nonlinear operators,
and dimension-8 linear operators [14-18], where the terms linear and nonlinear refer to the
realization of the broken electroweak symmetry. In the case of the dimension-6 operators, the
most general formulation, which was used in the analysis of ete™ collisions at LEP [19], has
four independent operators. The agv /A? and a‘év / A? operators, where A is an energy scale
characterizing new physics, will modify the vy — WW process if they have values different
from the SM value of zero. Similarly, nonzero values of the ag /A% and a% /A2 operators will
modify the vy — ZZ process. The detailed definitions of these operators are reported in
Refs. [14, 15].

The vy — WW process without the measurement of the outgoing protons was among several
processes used to place the first LHC bounds on such AQGCs using 7 and 8 TeV data [20-24];
constraints were also obtained from 1.96 TeV data at the Tevatron [25]. The cross section was
also measured at 13 TeV, using the leptonic channel without proton detection [26]. Recently,
strong constraints have been placed on AQGCs using a variety of scattering [23, 24, 27-30]
and triple boson production [31] processes at 13 TeV. The first limits on anomalous couplings
using forward protons measured with PPS were obtained in searches for high-mass yy — 77
scattering [32].

2 Experimental setup

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (1) coverage provided by the barrel and endcap detec-
tors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [33].

The Precision Proton Spectrometer is a system of near-beam tracking and timing detectors,
located in Roman pots (RPs) at about 200 m from the CMS interaction point [1]. The Roman
pots are movable near-beam devices that allow the detectors to be brought very close (within
a few mm) to the beam without affecting the vacuum, beam stability, or other aspects of the
accelerator operation. The PPS makes it possible to measure the 4-momentum of the scattered
protons, along with their time-of-flight from the IP. The proton momenta are measured by
two tracking stations on each arm of the spectrometer. The timing, not used for the present



analysis, can be exploited to suppress background from other collisions in the same bunch
crossing (pileup).

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of about 4 us [34]. The second
level, known as the high-level trigger (HLT), consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1kHz before data storage [35]. The forward proton information from the PPS
detector is available in the HLT, but is not used in the HLT selection.

3 Data samples and simulation

The data used for the present analysis were collected at /s = 13TeV in the years 2016-2018.
The data are required to pass quality criteria for both PPS and other CMS subdetectors. In
the case of PPS, these criteria require the Roman pots to be fully inserted in the data-taking
position. Compared with CMS analyses that do not use forward protons, the requirement of
having the RPs inserted removes a fraction of data at the beginning and end of each LHC fill.
During the first year of operation (2016), a significant amount of time was also devoted to the
commissioning of PPS, so the integrated luminosity available for the analysis for that year is
only 9.9 fb™!. In the 2017 and 2018 samples, the integrated luminosities of the data meeting the
PPS quality criteria are 37.2 fb™ ! and 52.9 fb?, respectively, corresponding to nearly 90% of the
luminosity available for CMS analyses without forward protons. In total, the three years” data
combined correspond to a luminosity of 100 fb ! [36-38].

Signal events are simulated at leading order with the FPMC [5] Monte Carlo (MC) generator, for
both the yy — WW and vy — ZZ channels. The dominant nonexclusive backgrounds from
QCD multijet production are simulated at leading order with the PYTHIA 8.205 [39] MC gener-
ator with the CUETP8M1 [40] tune for the 2016 samples, and PYTHIA 8.230 with the CP5 [41]
tune for the 2017-2018 samples. Backgrounds arising from the production of a W or Z bo-
son in association with jets are simulated at next to leading order (NLO) in QCD with MAD-
GRAPH5_.aMC@NLO [42]. The background from pair production of top quarks is simulated at
NLO in QCD with POWHEG [43-45]. The parton shower and hadronization for the W + jets,
Z + jets, and tt samples are performed with PYTHIA. The SM contribution to the yy — WW
and vy — ZZ processes is expected to be negligible within the kinematic region considered in
this analysis.

All of the generated signal and background samples are passed through a detailed GEANT4 [46]
simulation of the central part of the CMS detector, extending to |#| < 5, and reconstructed in
the same way as the data. For the signal samples, the forward protons are passed through a “di-
rect” simulation [47], which propagates the protons from the IP to the RP positions, simulates
hits in the detector planes, and reconstructs the tracks and proton kinematics in the same way
as done for the data. In the background samples, protons from pileup events are not simulated
and their effect is estimated from the data, as described later. A realistic mix of beam crossing
angles and aperture limitations along the beam line is used when simulating the protons.

4 Event reconstruction

Events are selected online by means of several jet triggers. These are based on either the highest
transverse momentum (pr) jet in the event, or the scalar sum of the py values of all jets, Hr.



In some cases, additional requirements on the “trimmed” mass [48] of the jets are imposed, to
select jet masses above 30 or 50 GeV. The triggers are identical to those used in the analysis of
Ref. [49], where a more detailed description is reported.

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in the
event, evaluated using tracking information alone, as described in Section 9.4.1 of Ref. [50].

The particle-flow algorithm [51] reconstructs and identifies each individual particle in an event,
with an optimized combination of information from the various elements of the CMS detector.
The energy of photons is obtained from the ECAL measurement. The energy of electrons is
determined from a combination of the electron momentum at the primary interaction vertex as
determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum
of all bremsstrahlung photons spatially compatible with originating from the electron track.
The energy of muons is obtained from the curvature of the corresponding track. The energy of
charged hadrons is determined from a combination of their momentum measured in the tracker
and the matching ECAL and HCAL energy deposits, corrected for the response function of the
calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the
corresponding corrected ECAL and HCAL energies.

For each event, hadronic jets are clustered from these reconstructed particles using the infrared
and collinear safe anti-kt algorithm [52], as implemented in the FASTJET package [53], with
a distance parameter of 0.8. Jet momentum is determined as the vectorial sum of all particle
momenta in the jet, and is found from simulation to be, on average, within 5 to 10% of the true
momentum over the whole pr spectrum and detector acceptance. Additional proton-proton
interactions from pileup can contribute with additional tracks and calorimetric energy deposi-
tions to the jet momentum. To mitigate this effect, charged particles identified to be originating
from pileup vertices are discarded and an offset correction is applied to remove any remain-
ing contributions. Jet energy corrections are derived from simulation to bring the measured
response of jets to that of particle-level jets on average. In situ measurements of the momen-
tum balance in dijet, v + jet, Z + jet, and multijet events are used to account for any residual
differences in the jet energy scale between data and simulation [54]. The jet energy resolu-
tion amounts typically to 15-20% at 30 GeV, 10% at 100 GeV, and 5% at 1TeV [54]. Standard
CMS quality criteria are applied to each jet to remove jets potentially dominated by spurious
contributions from various subdetector components or reconstruction failures.

Hadronic decays of W and Z bosons are identified using the ratio between 2-subjettiness and
1-subjettiness [55], 75y = T,/ 7y, and the jet mass m(j) after applying a “pruning” algorithm to
reduce the contributions of soft gluon radiation and pileup [56, 57]. The pruning algorithm is a
procedure to repeat the initial jet clustering, removing the softest and largest angle components
at each step. For each pair of jet constituents the hardness z is defined as the ratio of the
minimum py of the pair to the py of their combination. The constituent with the lower pr is
removed if the hardness is below the threshold z. = 0.1, and if the angular distance relative
to the axis of the combination of the two constituents is larger than D, = 0.5m/pr (where m
and pr are the mass and transverse momentum of the original jet). If neither constituent is
removed, they are merged into a new constituent. This procedure is repeated iteratively until
all constituents have either been removed or merged. The pruned mass obtained from this final
jet is then used in the remainder of the analysis.

The Ty subjettiness variables are defined by the pt weighted AR distance between each jet con-
stituent particle and the nearest subjet. When all constituent particles are close to a correctly
identified subjet, Ty will have a small value indicating the jet is consistent with containing
<N subjets. The ratio 7,y = 7,/ 7; will then be smaller if the jet is more consistent with con-



taining two subjets, as expected for a W or Z boson, instead of one subjet, as expected for a
quark or gluon jet. Since 7,; may have an undesirable correlation with the jet mass and pr,
a “Designed Decorrelated Taggers” (DDT) approach [49, 58] was developed to reduce this.
Simulated samples are used to extract the slope M of the mean value of 7,; vs. p’, where

o = ln(m]?et /(pt x 1GeV)). The slope M is then used to define the decorrelated subjettiness
variable ThPT = 17, — Mp'.

Forward protons are reconstructed using a “multi-RP” algorithm, which combines tracks re-
constructed in both of the tracking Roman pots in each arm of PPS. The lever arm between the
two RPs allows the reconstruction of the proton scattering angles 6* (where the superscript “*”
indicates an angle defined at the IP) and proton fractional momentum loss ¢:

¢ = (pnom - p)/pnoml 1)

where p,,, and p are the nominal beam momentum and the scattered proton momentum,
respectively. PPS provides a ¢ resolution of <5% over the full acceptance [47]. Additional se-
lections are applied to ensure that the protons are within the acceptance of the sensors, and
within the aperture constraints defined by the LHC collimators. The LHC conditions and the
PPS tracking detector configuration were different for each of the three data-taking years. For
this reason, the 2016, 2017, and 2018 samples are analyzed separately, and the results are com-
bined at the end. Further details of the proton reconstruction, including the determination of
the beam optics and the detector alignment, are presented in [47, 59, 60].

5 Event selection

Events are selected based on the properties of the jets, the protons, and the correlation between
protons and jets.

5.1 Jet selection

The jets are first required to have pr > 200GeV, || < 2.5, and, if more than two pass these
criteria, the two with the highest pr are chosen. In the following, these are labeled j1 and
j2, corresponding to the jet with the highest and second-highest pr, respectively. The pair of
jets is required to have a dijet invariant mass m(jj) > 1126 GeV, where the efficiency of the
trigger is >99% relative to the offline selection [49]. The two jets are further required to have
a pseudorapidity difference of |Ay| < 1.3 to reduce the QCD multijets background. Figure 2
shows the dijet invariant mass distribution in data and simulation for each of the three years of
data taking in the range of interest.

To enhance the exclusive production, the jets are required to be balanced in azimuthal angle
and transverse momentum. This is implemented by requiring the acoplanarity (2 = [1 — [(¢j; —
¢pp)|/7]) is < 0.01, and the ratio (pr(j1)/pr(j2)) is < 1.3. The ¢ resolution for single jets in the
region of interest is approximately 0.004 radians, and the resulting efficiency of the a < 0.01
requirement is 99% for simulated AQGC signal events.

Finally, the jet substructure properties are exploited to enrich the sample with merged jets from
boosted W or Z decays. The pruned mass of the jets is required to be between 60 and 107 GeV,
i.e., compatible with the W or Z mass. The constraint retains almost all signal events. The TBDT
discriminator must be smaller than 0.75, compatible with that expected for two quark jets orig-
inating from one boson decay and merged into a single high-momentum jet. From simulation,
this requirement retains approximately 85% of anomalous yy — WW events passing all other
jet selection criteria, while rejecting ~65% of high mass QCD multijet background events.



5.2 W and Z selection

The reconstructed pruned mass of the jets discriminates between the WW and ZZ final states,
due to the mass difference between the W and Z bosons. To reduce the two-dimensional space
of the pruned jet masses (denoted by m(j1) and m(j2)) into a single variable, a simple discrimi-
nant based on the sum of m(j1) + m(j2) is used. The result is shown for simulated signal events
in Fig. 3, with two distinct distributions visible, corresponding to the WW and ZZ samples.
The resolution of the resulting variable is ~8 GeV for the WW and 10 GeV for the ZZ sample,
correspondingly. The optimal value to separate the two channels is then chosen by first treating
one of the channels as signal and the other as background, and then inverting their roles. A
single constraint is chosen that maximizes the sum (S(WW)+S(ZZ))/(B(WW)+B(ZZ)), where S
indicates that the WW or ZZ candidates are reconstructed in the correct mass region (i.e. the
one containing the peak of the WW or ZZ distribution, respectively), and B indicates that they
are reconstructed outside that region. A value of m(j1) + m(j2) = 166.6 GeV provides the best
separation between WW and ZZ events; this retains more than 80% of signal for each channel,
and corresponds to a signal to background ratio of ~4.8, with no significant dependence on the
anomalous coupling values assumed.

5.3 Proton selection

Only protons with a ¢ value greater than 0.05 are retained for the analysis to avoid the region
of large radiation-induced inefficiencies of the PPS detectors near the beam. For signal events,
the ¢ > 0.05 requirement is less restrictive than the m(jj) > 1126 GeV condition imposed on
the jets. For background events, where the protons are uncorrelated with the jets, the { >
0.05 and m(jj) > 1126 GeV requirements are independent. The upper bounds imposed by the
collimators are different for each of the two arms of the spectrometer, each data-taking period,
and each beam crossing angle. The exact upper ¢ requirements therefore vary with the data-
taking period, generally lying within the range 0.12 < ¢ < 0.20. The upper mass limit of
the centrally produced system (dijet in this analyis) correspondingly varies between 1.55 and
2.01 TeV (for a proton scattering angle of 8* = 0).

In the 2016 and 2017 data samples, only one proton per event can be reconstructed in each arm
of the spectrometer. When multiple protons are present, the pattern recognition is unable to
find a unique solution, and no protons are reconstructed in that arm. With improved detectors
in 2018, multiple protons can be reconstructed. This leads to an increase in both the expected
number of observed signal events S, and the expected number of observed background events
B. In terms of the expected significance, estimated as S/ /B, the use of up to three tracks in
each arm leads to ~7% improvement over using only events with one track. No additional
improvement is seen by using events with more than three tracks, where the effect of showers
and noncollision backgrounds becomes significant. Therefore, only events with up to three
protons per arm are used, and the proton with the largest value of ¢ is chosen for the analysis.
This is motivated because the anomalous signal cross section is rising with ¢, whereas the SM
backgrounds are generally decreasing with . When a simulated signal proton is within the
acceptance of the detectors, this choice results in the correct proton being selected 63 to 77%
of the time, depending on the arm of the spectrometer. In simulated signal events where both
protons are within the acceptance, the probability of correctly selecting at least one of the two
is 92%. The use of multiple-proton events leads to both a significantly larger signal efficiency
and a larger combinatorial background in the 2018 data, compared with the 2016 or 2017 data.
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5.4 Proton-jet matching and signal region

The matching between the proton and jet kinematics for exclusive signal is based on the vari-
ables 1 —m(VV)/m(pp) and y(pp) — y(VV). Here m(VV) and y(VV) represent the invariant
mass and rapidity of the WW or ZZ system, as reconstructed from the merged jets. The vari-
ables m(pp) and y(pp) are the expected invariant mass and rapidity of the central system,
calculated from the proton information:

m(pp) = vs,/Gp1lp2,  y(pp) = —%ln (?t) : 2)
P

The resolution of m(pp) is estimated to be 2.3% from simulation. Two signal regions are de-
fined by comparing the invariant mass and rapidity of the WW or ZZ system obtained from
the jets with the same quantities inferred from the two protons. A diamond-shaped area in
the y(pp) — y(VV) vs. 1 —m(VV)/m(pp) plane, centered around zero, contains the bulk of
the signal when both protons are correctly associated to the jets (“region 6”). In case one of
the signal protons is missed and a pileup proton is used instead, the events tend to fall in one
of the two diagonal bands of Fig. 4. A second signal region (“region 0”) is therefore defined
based on these bands. The dimensions of the two regions are optimized to provide the best ex-
pected signal significance, estimated as S/+/B. Of the simulated signal events passing all other
selections, typically between 19 and 25% are contained in region ¢, and a similar fraction in
region 0. The area with |1 — m(VV)/m(pp)| < 1.0 and |y(pp) — y(VV)| < 0.5, encompassing
both signal regions, remained blinded and was not examined until the selection criteria and
background estimation methods were fixed.

6 Background estimation

The background is mainly due to jets produced in one pp collision combined with unrelated
protons from pileup interactions in the same bunch crossing. The largest source of jets is QCD
multijet production, with smaller contributions from W or Z bosons in association with jets,
and tt production. The protons predominantly arise from diffractive pileup interactions, which
are not expected to be well modeled by simulations. For this reason, we rely mainly on data to
estimate the background.

The nominal background estimate is derived by inverting the dijet acoplanarity requirements,
and/or the dijet-proton matching requirements, to define three independent sideband regions.
The first (region B) is defined by acoplanarity a > 0.01, with the signal region selection applied
in [1—m(WW)/m(pp)| and |y(pp) — y(WW)|. The second region (region C) has a < 0.01,
and |1 —m(WW)/m(pp)| > 1.0 or |y(pp) — y(WW)| > 0.5. The third (region D) is defined by
a > 0.01, and |1 — m(WW)/m(pp)| > 1.0 or y(pp) — y(WW) > 0.5. If the numbers of events
in each of these regions are Ng, N, and Np, respectively, the expected number of events in the
signal region is then Ny = (Ng N¢)/Np.

Figure 5 illustrates the distribution of data in these regions for the 2018 data with the WW
selection. Data selected with the acoplanarity requirement a > 0.01 (referred to as the anti-
acoplanarity region/method in the following) are compared with the predicted background
from simulation in Fig. 6, for each of the years and in both the WW and ZZ mass regions. In
general, the data are well reproduced by the simulation, apart from a small excess at low masses
in the 2016 WW sample. Since the final background estimate is obtained entirely from the data,
such minor discrepancies do not impact the results. For values of the anomalous couplings near



the expected sensitivity of the analysis, the signal contamination in the sideband regions ranges
from < 0.1 to < 2.7%, where we have conservatively used a 95% CL limit in the various data-
taking periods and regions where zero signal MC events actually pass the sideband constraints.
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Figure 2: Dijet invariant mass spectra in data and simulation, for the years 2016 (upper left),
2017 (upper right), and 2018 (lower). The distributions of number of events show data com-
pared with the stacked background predictions from simulation, with the corresponding ratios
of data to the sum of simulated backgrounds, shown below them. The plots are shown at the
preselection level, with no requirements on the protons, jet substructure, or dijet balance. Ex-
amples of simulated signals are shown for protons generated in the range of 0.01 < ¢ < 0.20.
Only statistical uncertainties (dashed grey bands) are shown.
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Figure 6: Diboson invariant mass distributions in data and simulation in the anti-acoplanarity
region (a > 0.01), with no requirement on the proton matching. The plots from top to bottom
are for the 2016, 2017, and 2018 data, respectively, with the WW region in the left column
and the ZZ region in the right column. Only statistical uncertainties (dashed grey bands) are

shown.
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As an alternative background model, we perform the same procedure, except that the selection
on the pruned masses of both jets is inverted (m(j) < 60GeV or m(j) > 107 GeV), rather than
that on the acoplanarity. This method is used only to derive systematic uncertainties.

Finally, as a cross-check we also estimate the background using an event-mixing approach, in
which the simulated background events for the central detectors are mixed with protons from
real data, randomly drawn from the jet-triggered data sample. This procedure is repeated 1000
times, and the mean and root-mean-square (RMS) of the resulting number of events selected in
these pseudoexperiments are taken as the background estimate and uncertainty. In the 6 region
of the 2016 and 2017 data, the number of expected background events is near zero, and the RMS
uncertainties can extend to cover negative values. In these cases we instead consider only the
mean and upper limit on the background prediction, where the upper limit is determined by
finding the value that contains 95% of the pseudoexperiment results. This procedure has the
drawback of relying on simulation for the central jet samples, and explicitly assumes that the
protons always originate from different interactions than the jets. Thus, it is not used in the
tinal background estimate, but only as an independent cross-check. Additionally, we use the
simulation to perform a closure test of the nominal background estimation method, by using
the yields in regions B, C, and D to predict the background in region A, and comparing that
prediction with the actual number of simulated background events in region A. No statistically
significant differences are observed.

The resulting background estimates and statistical uncertainties, for all years and signal re-
gions, are shown in Tables 1 and 2 for the default method and the alternative method, based
on inversions of the acoplanarity and pruned mass requirements, respectively. In these ap-
proaches, the origin of the statistical uncertainties is mainly the limited number of events failing
the central detector selections but passing the dijet-proton matching (“region B”). The results
of the event mixing method are also shown, with statistical uncertainties dominated by the
limited number of simulated QCD events. When the event mixing method predicts a small
number of background events, only the mean and upper limit are shown.

In general, the estimates obtained from the different methods are compatible, given the statis-
tical uncertainties. In all methods the background is dominated by QCD multijet production,
with other backgrounds contributing <8% of the total, according to the Monte Carlo simula-
tion. The background and expected AQGC signal levels in 2018 are much larger than for the
other years. In addition to the increase in integrated luminosity, this reflects the improvements
in the PPS tracking detectors and ability to reconstruct multiple protons, which significantly
improves the signal efficiency but also increases the number of observed background proton
tracks. For all years and regions the expected SM vy — WW signal is less than 0.07 events (Ta-
ble 1). This is primarily due to the high dijet invariant mass requirement of m(jj) > 1126 GeV
imposed at the preselection level, which reduces the expected signal by more than three or-
ders of magnitude. The less boosted W bosons from the SM signal are also less likely to be
reconstructed as merged jets, which further reduces the acceptance compared with the AQGC
signals. In the case of vy — ZZ, the theoretical SM signal is smaller by an additional three
orders of magnitude.

7 Systematic uncertainties

We estimate systematic uncertainties in the signal prediction due to the jet energy scale, proton
¢ measurement, proton reconstruction efficiency, and integrated luminosity. The effect of the
jet energy scale is evaluated by shifting the energy of both jets in the event up or down by
the uncertainty, and recomputing the expected signal yields. The resulting uncertainties in
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Table 1: Number of background events (N,,; with statistical uncertainties) expected for all
methods in the different WW analysis regions with reconstruction of both signal protons (re-
gion J) or only one signal proton (region 0). The mean value of the expected number of signal
events for one anomalous coupling point (a(\)/v /A% = 5 x 107°GeV~?) and for the SM are also
shown for comparison. In cases where zero simulated SM events pass the final selection, the
value is displayed as a 95% confidence level upper limit.

Number of events region Ny (2016) Nyt (2017) Nyt (2018)
Anti-acoplanarity sideband 6 04+04 1.6 1.0 11.6+£26

Anti-pruned mass sideband ) 0.5+02 15£03 1134038
Event mixing ) 05(<2.2) 1.8(<4.2) 143+89
Expected signal o 1.7 2.2 16.1
(ag /A2 =5x10"5GeV~2)

Expected signal (SM) ) 0.006 < 0.05 0.03
Anti-acoplanarity sideband 0 14+09 100+32 414+57
Anti-pruned mass sideband 0 25408 71£13 43.0+£30
Event mixing 0 24+19 84163 49 +£13
Expected signal 0 15 1.7 16.8
(ag /A2 =5x10"5GeV?)

Expected signal (SM) 0 0.005 <0.05 <0.07

the signal yield depend on the data-taking period and sample, but typically range from a few
percent up to 10%. Possible discrepancies between data and MC regarding the pruned mass
and the 1,; variable are found to be negligible (below 1%) using a tag and probe method.

The systematic uncertainties related to the proton ¢ reconstruction in the two arms are assumed
to be uncorrelated. There are two reasons for this assumption: (i) the RP alignment relative to
the beam, and the uncertainty in the LHC magnet strengths that determine the optics, are in-
dependent for the two colliding beams; and (ii) a significant part of the uncertainty is related to
the stability over time. In the case of the alignment, this is a fill-by-fill effect, that fluctuates in
both directions around the mean whenever the Roman pots are moved in or out. The optics un-
certainty includes a component related to the LHC crossing angle, which was adjusted several
times per fill (in 2017) or continuously throughout the fill (in 2018). An approximation is made
that the expected signal is less than 1 event per fill (which is the expected case for the present
analysis), and therefore these components of the uncertainty are not correlated event-by-event.

The effect of the proton reconstruction uncertainty is evaluated by shifting the value of ¢ for
each simulated signal proton by an amount drawn from a Gaussian distribution with width
equal to the uncertainty [47], and recomputing the expected signal yield. Because of the tight
matching requirements between protons and jets, this is one of the largest systematic uncertain-
ties in the analysis, with values typically of the order of 30% of the expected signal yield. The
proton reconstruction efficiency uncertainties are based on comparing results obtained with
different control samples and efficiency estimation procedures [47]. The total efficiency uncer-
tainty per arm is 10% in 2016; in 2017 and 2018 the improved detectors and methods led to
uncertainties between 2 and 3% per arm [47]. The efficiency uncertainties for the two arms
are assumed uncorrelated, and are summed in quadrature to obtain the event uncertainty. The
integrated luminosity uncertainties are estimated as 1.2% [36], 2.3% [37], and 2.5% [38] for the
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Table 2: Number of background events (N,,; with statistical uncertainties) expected for all
methods in the different ZZ analysis regions with reconstruction of both signal protons (re-
gion ) or only one signal proton (region 0). The mean value of the expected number of the
expected signal for one anomalous coupling point (aOZ /A? =1 x 107> GeV?) is also shown for
comparison.

Number of events region Ny (2016)  Ngyt (2017) Nyt (2018)
Anti-acoplanarity sideband ) 1.5+11 1.6 08 142+30
Anti-pruned mass sideband o 04+02 09£02 99£09

Event mixing ) 05(<21) 15(<36) 11.6+94
Expected signal o 1.3 1.4 9.0

@ /A2 =1x1075GeV?)

Anti-acoplanarity sideband 1.5+1.1 3715 374+56
Anti-pruned mass sideband 0 21+£038 54+13 41.7+31
Event mixing 0 20+1.8 6.3+51 42 +16
Expected signal 0 1.0 1.6 12.8
@ /A2 =1x1075GeV?)

=}

2016, 2017, and 2018 samples, respectively. The uncertainty includes both a part that is uncor-
related between years, and parts that are correlated between 2016 and 2017, and between 2016,
2017, and 2018. The overall uncertainty for the 20162018 period for data collected with PPS is
1.8%.

The theoretical uncertainty in the signal prediction includes contributions from the simulation
sample size, and from the proton survival probability, i.e., the probability that the colliding
protons do not break up due to soft interactions between their spectator partons. The statistical
uncertainty in the simulation varies with the assumed anomalous coupling value and year sim-
ulated. For the points closest to the expected sensitivity, which determine the numerical value
of the limits, it is typically in the range of 2-10%. For the smallest coupling values simulated,
which are far from the expected sensitivity, it is typically 25% in the 2016 samples where the
integrated luminosity of the data is low. The uncertainty in the proton survival probability is
assumed to be 10% [61].

The systematic uncertainty in the background has two contributions. The first is the statistical
uncertainty in the normalization, based on the nominal acoplanarity sideband method. The
second is the dependence of the background estimate on the choice of the sideband region.
This is estimated as the full difference between the central values of the acoplanarity sideband
method, and the pruned mass sideband method. The first uncertainty, which depends mainly
on the amount of sideband data, ranges from ~15 — 20% in the 2018 data, to >100% in the 2016
data. The second uncertainty also has a significant statistical component, which ranges from a
few percent in the 2018 data, to 80% in the 2016 data.

8 Signal extraction and results

The high-mass exclusive vy — WW and vy — ZZ signals are extracted using a binned
maximume-likelihood fit in a total of twelve bins: one for each of the three years of data tak-
ing, times two for the WW and ZZ regions, times two for the events with either reconstruction
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Table 3: Limits on LEP-like dimension-6 anomalous quartic gauge coupling parameters [19],
with and without unitarization via a clipping [27] procedure.

Coupling  Observed (expected)  Observed (expected)
95% CL upper limit 95% CL upper limit
No clipping Clipping at 1.4 TeV

lag /A2 43(39) x1076GeV 2 52 (5.1) x 1076 GeV 2
o /A2 1.6 (1.4) x 1075GeV ™2 2.0 (2.0) x 1075 GeV 2
a2 /A2 0.9 (1.0) x 1075 GeV 2 —
a%/A2] 4.0 (45) x 1075 GeV 2 —

of both signal protons (region ¢) or only one signal proton (region o). In most cases, system-
atic uncertainties are included as log-normal nuisance parameters [62]. When the estimate of
the systematic uncertainty is based on a sample with less than 10 events, Poisson nuisances
are used instead; this applies to some of the background statistical uncertainties derived from
sideband regions, and some of the simulation statistical errors for very small couplings. The
signal is estimated for each of the anomalous couplings, with all other couplings fixed to zero.

Figure 7 shows the number of observed events compared with the expected background and
a hypothetical signal, in each bin of the analysis. The backgrounds and observed data are
compared with a signal having nonzero WW anomalous couplings, slightly above the expected
sensitivity of the analysis. Small (<10) excesses are seen in “region 0” of the WW for all years,
while small deficits are seen in the ZZ channel. None of these excesses or deficits in the data is
significant.

8.1 AQGC limits

The resulting expected and observed 95% confidence level (CL) upper limits on the AQGC
operators are shown in Fig. 8.

For large values of anomalous couplings, the predicted cross section becomes unphysically
large at high masses of the produced diboson system, and violates partial wave unitarity. We
estimate the sensitivity of the limits to this effect by calculating the energy of -y collisions
at which unitarity is violated for the expected limits [17], and then apply a “clipping” proce-
dure [63] to remove the simulated signal above that value. The background estimate and the
data are left unchanged in this procedure. In Ref. [27] the SM contribution to the signal was
retained above the clipping threshold; in the current analysis the total SM signal is negligible,
and is not included. We then rederive the limits with the clipping applied.

In the WW channel, unitarity violation occurs at a diboson mass of A ~ 1.4TeV. By clipping
the signal model at that value, we obtain new expected limits that are approximately 30 to 40%
higher than the unitarity-violating limits. In the ZZ channel, where the expected limits are
higher, unitarity violation occurs at approximately 1.1 TeV for both aOZ /A?* and aé /A2 In this
case, because of the invariant mass threshold imposed by the jet triggers, there is no value of
clipping for which unitarity is preserved. The full list of 95% CL upper limits with and without
clipping is shown in Table 3.

We also obtain limits in the two-dimensional planes of a‘ON /A% vs. a‘év /A% and aOZ /A% vs. ag /N?
by fitting the limits on the ratio of observed to predicted cross sections to an analytical model
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Figure 7: Observed data and expected number of background events in each signal region.
Hypothetical AQGC signals are also shown. The histogram with solid lines indicates the
number expected for only background, with uncertainties shown by the shaded band. The

dashed-line histogram shows the number for background plus assumed signals with agv N

5x 1076 GeV 2 (upper) or aOZ /A2 =1 x107°GeV 2 (lower). The histograms and uncertainties
are shown prior to the binned maximum-likelihood fit described in the text. The shaded band
indicates the uncertainty in the background estimate, while the vertical bars on the points rep-
resent the statistical uncertainty in the observed data.

for the dependence of the cross section on the AQGC values. The results are shown in Fig. 9.
The aE)N /A% vs. a?] / A% limits are shown with and without clipping the signal model at 1.4 TeV.
Compared with the limits on the |tlgv /A?| and |a‘év / A?| couplings obtained with LHC Run 1
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Figure 8: Expected and observed upper limits on the AQGC operators agv /A? (upper left),
a‘év / A (upper right), ug / A? (lower left), a% / A% (lower right), with no unitarization. The y axis
shows the limit on the ratio of the observed cross section to the cross section predicted for each
anomalous coupling value (05qcc)- The graphs are not fully representative close to the values
of the 95limit due to technical plotting features; the 95% CL upper limits quoted in Table 3

correspond to the exact values.

data [20, 22], where unitarization was imposed via a dipole form factor, the unitarized limits
obtained here represent an improvement by a factor ~15-20.
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8.2 Translation to linear dimension-8 AQGCs

Many recent anomalous coupling searches quote limits on dimension-8 linear operators alone.
These operators are classified in several categories, depending on whether they contain only

covariant derivatives of the Higgs field, only field strength tensors, or both (“mixed” opera-
tors, with couplings denoted f,,) [18]. In the case of processes involving photons, the agvéz

operators can be translated into a linear combination of “mixed” dimension-8 fy,; (i = 0-7)
operators [18]. For the agv coupling, the relationship reads [18]:

m

w w » fmpo 2 fmp

a, = — §& L 200 =+ 8. ¢
0 Ty | A2 “ N2 @

R ©

Here myy is the W boson mass, a,,, is the fine structure constant, and s, and c,, represent the
sine and cosine of the weak mixing angle, respectively. By further assuming that anomalous
contributions to WWZ vanish, an additional constraint of f;, + 2f;, is obtained [14, 64],

allowing aBN to be written in terms of only fy;, and fy;4. In order to compare with other

results, we scan the values of fy; and fj;4 for which the limit on agv is satisfied. We find the
results shown in Table 4, evaluated at the point where the other coupling is zero.

Table 4: Conversion of limits on agv to dimension-8 f),; operators, using the assumption of
vanishing WWZ+ couplings to eliminate some parameters. When quoting limits on one of the
operators, the other is fixed to zero. The results for |fy;o/A*| and |fy;,/A*| are shown with
and without clipping of the signal model at 1.4 TeV, when the other parameter is fixed to the
SM value of zero.

Coupling Observed (expected) Observed (expected)
95% CL upper limit ~ 95% CL upper limit

No clipping Clipping at 1.4 TeV
faro/ A% 162 (14.7) TeV—* 19.5 (19.2) TeV 4
[fia/AY 909 (82.6) TeV ™ 110 (108) TeV—*

The results are compared with other vector boson scattering studies at 13 TeV that are sensitive
to the same operators [28]. When the conversion is performed assuming vanishing WWZ-y
couplings, the unitarity-violating limits on |fy;/A®*| and |fy;4/A*| are several times looser
than those quoted in other measurements. After the clipping, the results for |fy;o/A*| are
similar to the best limits obtained from vector boson scattering in the same sign W*W* and
WZ final states in CMS [27]. The milder effect of the unitarization in this analysis is due to
the upper mass limit of ~2 TeV for reconstructing the protons, imposed by the LHC collimator
apertures. This already suppresses most of the unphysical high-mass part of the signal model,
before applying any unitarization procedure.

Alternatively, all dimension-8 f,;; except one are set equal to zero. In this case, the results of
the conversion are shown in Table 5. When the conversion is performed by setting all other
couplings to zero, the limits on |fy;o/A*| are significantly looser, the limits on |fy,/A*| are
somewhat more restrictive, and tight constraints are obtained on |fy;,/ A4
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Table 5: Conversion of limits on u(‘)N and u‘év to dimension-8 f), ; operators, using the assumption
that all f);; except one are equal to zero. The results are shown with and without clipping of
the signal model at 1.4 TeV.

Coupling Observed (expected) Observed (expected)
95% CL upper limit ~ 95% CL upper limit
No clipping Clipping at 1.4 TeV

[faro/ A% 66.0 (60.0) TeV—* 79.8 (78.2) TeV 4

[far1/ A% 2455 (214.8) TeV*  306.8 (306.8) TeV*
| fana/ A% 9.8 (9.0) TeV* 11.9 (11.8) TeV*
faa/A% 730 (64.6) TeV—* 91.3 (92.3) TeV*
\fma/AY 360 (32.9) TeV* 43.5 (42.9) TeV
\fas/A% 67.0 (58.9) TeV—* 83.7 (84.1) TeV*
[farz/ A% 4909 (429.6) TeV™*  613.7 (613.7) TeV ™ *

8.3 Fiducial cross sections

In addition to the limits on different anomalous coupling parameters, we derive upper limits
on the cross section for an AQGC-like signal in the pp = pWWp and pp — pZZp channels.
The limits are obtained for a fiducial region of 0.04 < ¢ < 0.20 and diboson invariant mass
m(VV) > 1TeV, and correspond to the diboson production cross section before decays into
hadrons. The signal simulation is used to extrapolate from the measurement region to the
tiducial region. As with the AQGC limits, the cross section limits are obtained for each channel
separately, assuming zero signal in the other channel. After verifying that the signal efficiency
and acceptance do not depend strongly on the exact value of the AQGCs, for 0.04 < ¢ < 0.20
and m(VV) > 1000 GeV we measure the following upper exclusion limits at 95% CL: o(pp —
pWWp) < 67(53735) fb and o(pp — pZZp) < 43(62133) fb, where the expected limit and
its one standard deviation uncertainty are shown in parentheses. Since the simulation is used
to extrapolate the results from the measurement region to the fiducial region, the cross section
limits given are valid for signals with an AQGC-like ¢ and mass dependence. The limits cannot
therefore be applied to models with a very different mass and ¢ behaviour.

9 Summary

A first search for exclusive high-mass yy — WW and vy — ZZ production with reconstructed
forward protons has been performed, in final states with hadronically decaying W or Z bosons,
using 100fb~! of data collected in 13 TeV proton-proton collisions. No significant excess is
found over the standard model background prediction. The resulting limits are interpreted
in terms of nonlinear dimension-6 and linear dimension-8 anomalous quartic gauge couplings

(AQGC).

The unitarized dimension-6 yyWW AQGC limits are approximately 15-20 times more strin-
gent than those obtained from the yy — WW process without proton detection using the LHC
Run 1 data [20, 22]. In the analyses without proton detection [20, 22, 26], larger SM signals
were measured at lower invariant WW masses. However, since enhancements due to AQGCs
come mainly from the high energy region of 7y interactions, the analysis described here is
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more sensitive than the limits obtained in those publications. In addition, the use of proton
detectors results in a theoretically cleaner result, by reducing the dependency on the unitariza-
tion scheme, and reducing the contribution of signal events where the protons dissociate. The
derived dimension-8 limits are close to those obtained from same-sign WW and WZ scattering
at 13 TeV after unitarization, for the case when the WWZ+ coupling is suppressed. The limits
on yyZZ anomalous couplings are the first obtained from the exclusive vy — ZZ channel.
New limits are placed on the cross section in a fiducial region of 0.04 < ¢ < 0.20 and diboson
invariant mass m(VV) > 1TeV of vy — WW and vy — ZZ production with intact forward
protons.

Tabulated results are provided in HEPData [65].
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