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Abstract
Curvature is a fundamental geometric characteristic of smooth spaces. In recent years
different notions of curvature have been developed for combinatorial discrete objects
such as graphs. However, the connections between such discrete notions of curvature
and their smooth counterparts remain lurking and moot. In particular, it is not rigor-
ously known if any notion of graph curvature converges to any traditional notion of
curvature of smooth space. Here we prove that in proper settings the Ollivier–Ricci
curvature of randomgeometric graphs in Riemannianmanifolds converges to the Ricci
curvature of the manifold. This is the first rigorous result linking curvature of random
graphs to curvature of smooth spaces. Our results hold for different notions of graph
distances, including the rescaled shortest path distance, and for different graph densi-

Editor in Charge: Kenneth Clarkson

Pim van der Hoorn
w.l.f.v.d.hoorn@tue.nl

Gabor Lippner
g.lippner@northeastern.edu

Carlo Trugenberger
ca.trugenberger@bluewin.ch

Dmitri Krioukov
dima@northeastern.edu

1 Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

2 Department of Mathematics, Northeastern University, Boston, MA, USA

3 Department of Physics, Northeastern University, Boston, MA, USA

4 Northeastern University, Network Science Institute, Boston, MA, USA

5 Department of Electrical and Computer Engineering, Northeastern University, Boston, MA,
USA

6 SwissScientific Technologies, Genève, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-023-00507-y&domain=pdf
http://orcid.org/0000-0002-2250-1274


672 Discrete & Computational Geometry (2023) 70:671–712

ties. Here the scaling of the average degree, as a function of the graph size, can range
from nearly logarithmic to nearly linear.

Keywords Graph curvature · Ollivier–Ricci curvature · Random geometric graphs ·
Riemannian manifolds

Mathematics Subject Classification 60D05 · 05C80

1 Introduction

Curvature is a fundamental concept in the study of geometric spaces. It is a local param-
eter whose behavior often controls global phenomena on the manifold. In particular,
bounds on the Ricci curvature are known to imply an array of properties, including
diameter bounds, control of the spectrum, and sub-Gaussian decay of the heat ker-
nel. If the curvature of some space is upper-bounded by a negative value, then such
space has a boundary at infinity and some other universal characteristics of (coarsely)
hyperbolic spaces. Unfortunately, most notions of curvature are applicable only to
smooth continuous spaces, such as Riemannian and pseudo-Riemannian manifolds.
While there exist some combinatorial notions of curvature [6, 11], none has the same
power as their smooth counterparts. We refer to [25] for a general overview of discrete
curvatures. The focus of this paper is graph curvature.

In [27–29], Yann Ollivier introduced a definition of curvature for general metric
spaces as a discretization of the well-known Ricci curvature. Since this definition is
applicable to any metric space, it is applicable to graphs in particular. Even though
relatively recent, it has already proven to be quite influential and fruitful. In analysis
of networks, Ollivier–Ricci curvature has been used, for example, to identify com-
munities [36], analyze cancer cells [33], asses the fragility of financial networks [34]
and robustness of brain networks [10], and to embed networks for machine learning
applications [12]. Ollivier–Ricci curvature has also been analyzed for several types of
(random) graphs including Erdős–Rényi random graphs [23]. Some general bounds
for this curvature have also been established based on different graph properties [4,
16, 23]. These and other applications of Ollivier–Ricci curvature have also stimulated
general interest in graph curvature, leading to the introduction and studies of many
other notions of graph curvature [8, 17, 24, 37].

An interesting aspect of Ollivier–Ricci curvature (or any other notion of discrete
curvature) is that it creates a bridge between geometry and discrete structures. For
example, discrete curvatures play an important role in the field of manifold learning
where the discrete objects are data points lying on some manifold, and the task is to
learn from the data the properties of the manifold [1].

A related task is that of graph embedding: given a graph, find its embedding in a
smooth space such that graph distances between nodes are approximated by distances
in the space. Curvature has proven to be important for finding the right space to embed
the graph into [12].

In addition to these classical applications, geometry has also proven to be an impor-
tant and powerful concept for designing latent-space models of random graphs whose
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properties—such as degree distributions, clustering, distance distributions—closely
resemble those of real-world networks [5, 14, 19, 20]. These relations between geom-
etry and network properties inevitably lead to the question whether characteristics of
latent geometries of networks can be inferred from discrete properties of graphs that
represent these networks. Since curvature is a fundamental characteristic of geometry,
it is a natural first candidate for uncovering latent geometry in networks. Hence, a
proper notion of graph curvature is needed, a notion that would be known to converge
to the true curvature of the geometric space underlying the graph, if it exists.

Quantum gravity is yet another area where convergence of graph curvature is of
interest. Here one wants to find a discrete geometry that converges in the continuum
limit to the geometry of physical spacetime. To this end, Ollivier–Ricci curvature and
its variations have been extensively investigated recently [7, 18, 40].

Despite the interest in Ollivier–Ricci and related curvatures of discrete and combi-
natorial spaces, the fundamental question of convergence remains largely open. That
is, does there exist a discrete notion of curvature that converges in some limit to a
traditional notion of curvature of smooth spaces.

There are some positive results in this direction. One is for the convergence of
an angle-defect-based notion of curvature of smooth triangulations of Riemannian
manifolds [6]. Another one is a manifold learning method designed for consistent
estimation of Ricci curvature of a submanifold in Euclidean space based on a point
cloud sprinkled uniformly onto the submanifold [1]. Perhaps the closest result to ours
is the one in [2, 3] where a discrete version of the d’Alembertian operator is defined for
causal sets in 2- and 4-dimensional Lorentzianmanifolds. This discrete d’Alembertian
is then shown to converge to the traditional d’Alembertian in the continuum limit. To
the best of our knowledge, there currently exist no general convergence results for
truly combinatorial objects in general and random graphs in Riemannian manifolds in
particular.

In this paper we study the question of convergence of Ollivier–Ricci curvature of
graphs. We consider random geometric graphs whose nodes are a Poisson process
in a Riemannian manifold and whose edges are formed only between nodes that lie
within a given distance threshold from each other in the manifold. We show that as the
size of such graphs tends to infinity, their Ollivier–Ricci curvature recovers the Ricci
curvature of the underlying manifold. To the best of our knowledge, this is the first
result that relates a discrete notion of curvature of graphs to the continuum version of
curvature of their underlying geometry.

The remainder of the paper is structured as follows. In the next Sect. 2 we introduce
the basic notations and definitions needed to present our main results.We present these
results in Sect. 3. That section ends with some general comments and outlook. We
then provide a general overview of the proof strategy in the first half of Sect. 4. The
second half of that section contains the proofs of the main results. The final Sect. 5
contains all the remaining details and proofs of intermediate results that are skipped
in Sect. 4.
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2 Notations and Definitions

2.1 Geometric Graphs

Given a metric space (X , d), a countable node set X ⊆ X , and connection radius
ε > 0, we define G(X , ε) as the graph whose nodes are all the elements in X . An edge
between x, y ∈ X exists if and only if d(x, y) ≤ ε. Since the nodes of G are points in
the metric space, we will refer to them using x and y, instead of indices i and j , and
write x ∈ G if x is a node of G.

We will also use Gxy to denote the indicator of an edge between x and y in G and
define Nx to be the neighborhood of node x , i.e.,

Nx = {y ∈ G : Gxy = 1}.

Note thatNx = X ∩ B(x; ε), where B(x; ε) denotes the closed ball around x ∈ X of
radius ε with respect to the distance d, but excluding x .

2.2 RandomGeometric Graphs

In this paper we consider graphs that are constructed by randomly placing points in
the metric space X , according to a Poisson process. In order to analyze a notion of
curvature on these graphs we need to impose some additional structure on X . More
precisely, we will consider Riemannian manifolds as the spaces on which graphs are
constructed. We briefly recall some notions of Riemannian geometry needed for the
setup and refer the reader to [15, 30] for more details on the topic.

Formally, a Riemannian manifold is a pair (M, g) whereM is a smooth manifold
and for each x ∈ M, gx is a smooth inner product on the tangent space TxM at x . This
inner product induces ametric dM, called the Riemannianmetric. Sincewe aremainly
interested in metric spaces, we denote a Riemannian manifold by the pair (M, dM).

Throughout the remainder of this paper we work with Riemannian manifolds that
are smooth, connected, and compact. This allows us to integrate over points in de
manifold and ensures that for any two points x, y ∈ M there exists a shortest path
(geodesic) in M connecting x and y, whose length is dM(x, y). For any U ⊆ M
we will write volM(U ) = ∫U dvolM to denote the volume of U , where volM is the
Riemannian measure onM. With this setup we can define a random geometric graph
on a Riemannian manifold in an analogous way to classic random geometric graph in
Euclidean space.

Definition 2.1 Let (M, dM) be a smooth, connected, and compact N -dimensional
Riemannian manifold. Fix ε > 0 and consider a Poisson process Pn on M with
intensitymeasure (n/volM(M)) dvolM. Thenwe define the random geometric graph
Gn(ε) := G(Pn, ε).

Remark 1 (conditions on the manifold) From a technical perspective, we only need
the manifold to be smooth. This is because we will be working on shrinking neigh-
borhoods of some fixed point x∗ ∈ M. For a sufficiently small neighborhood U , we
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can always construct a volume form that is well defined on U and ensure that every
two points in U are connected by a geodesic path. We could then fix a sufficiently
small and compact neighborhood C of x∗ and then consider a Poisson process on C
with intensity measure (n/volM(C)) dvolM.

The only difference with the global setup is that we would need to frame everything
in terms of sufficiently small neighborhoods and deal with possible boundary issues
in our proofs. In the end, since curvature is a local property, these issues would vanish.
Still, framing all results in this local setting would add additional technical layers to
the proofs. For convenience, we therefore choose to present everything in terms of
global and nice requirements on the manifold.

We shall next introduce a notion of curvature on random geometric graphs. Since
curvature is inherently a local property, it makes sense to define curvature on graphs
as a property of an edge. For our analysis we will take a more general approach and
consider curvature between two fixed nodes in the graph that are connected by a path.
We then analyze its behavior as the size of the graph tends to infinity.

For any x ∈ M, we write Gn(x, ε) := G(Xn, ε), where Xn = {x} ∪ Pn . That is,
Gn(x, ε) is a random geometric graph with x added to the node set. Similarly, for any
pair of points (x, y) ∈ M we writeGn(x, y, ε) := G(X ′

n, ε), with X ′
n = {x, y} ∪Pn .

We refer to both Gn(x, ε) and Gn(x, y, ε) as rooted random graphs.

2.3 Ollivier–Ricci Curvature on Graphs

The definition of Ollivier–Ricci curvature uses the Wasserstein metric (transportation
distance), which we shall introduce next. Recall that a coupling between two proba-
bility measures μ1 and μ2 is a joint probability measure μ whose marginals are μ1
and μ2.

Definition 2.2 Letμ1 andμ2 be probability measures on a metric space (X , d) and let
Γ (μ1, μ2) denote the set of all couplings μ between μ1 andμ2. Then theWasserstein
metric (Kantorovich–Rubinstein distance of order one) is given by

W1(μ1, μ2) = inf
μ∈Γ (μ1,μ2)

∫

X×X
d(x, y) dμ(x, y) (1)

Remark 2 The following property of theWasserstein distance will prove useful for us.
Suppose two probability measures have support on U ⊂ X and there exists a metric d̃
on X that coincides with d on U . Then the Wasserstein metric W̃1(μ1, μ2) associated
with metric d̃ equals the original Wasserstein metric associated with d.

Let G be a graph. The definition of Ollivier–Ricci curvature on graphs relies on two
ingredients, ametric onG and a family of probabilitymeasures, indexedby thevertices.

Definition 2.3 An Ollivier-triple G is a triple (G, dG ,m), where G is a graph, dG a
metric on G and m = {mx }x∈G a family of probability measures on G for each node
x ∈ G.
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Given anOllivier-tripleG = (G, dG ,m), wewrite WG
1 for theWassersteinmetric with

respect to the metric space (G, dG). We then define for any pair of nodes x, y ∈ G
the associated Ollivier curvature as

κ(x, y;G) =

⎧
⎪⎨

⎪⎩

1 − WG
1 (mx , my)

dG(x, y)
if dG(x, y) < ∞,

0 otherwise.
(2)

Remark 3 1. The concept of Ollivier–Ricci curvature is not restricted to graphs and
can be defined on any metric space where we have a sequence of probability
measures. A specific example of these are Riemannian manifolds (M, dM).

2. Note that a sequence {mx }x∈G of probability measures on G gives rise to a random
walk on the graph. The transition probabilities are given by P(xt+1 ∈ A | xt = x)

= mx (A). So an Ollivier-triple consists of a graph, a metric and a random walk on
the graph. However, since we will only use concepts related to the measures mx

we refrain from using any random walk terminology.
3. When dG is the shortest path metric on G and m corresponds to the uniform

probability measures on the neighborhoods Nx , i.e., mx (y) = Gxy/|Nx |, we are
in the classic setting for Ollivier–Ricci curvature on graphs [16, 26, 31]. In this
work, however, we shall use different combinations of metrics on graphs and
probability measures to obtain our results. This is why we define Ollivier–Ricci
curvature on graphs in a more general way.

4. The reason why we set κ(x, y;G) = 0 if the nodes are not in the same connected
component is because we work with random graphs and this way we ensure that
κ(x, y;G) is a real-valued random variable.

2.4 Curvature in RiemannianManifolds

Ourmain results relate the standard Ricci curvature of a manifold to the Ollivier–Ricci
curvature of the random geometric graph constructed on this manifold. For this, we
briefly recall the definition of the Ricci curvature, see [15, 30].

In general, the curvature of a geometric space is intended as a local measure for
how “different" a region of the space is from that of the flat Euclidean space. Notions
of curvature in Riemannian geometry are governed by the Riemannian curvature
tensor R. Given an N -dimensional Riemannian Manifold (M, dM), a point x ∈ M
and two vectors v,w ∈ TxM (the tangent space of x), theRiemannian curvature tensor
with respect tov,w is a linearmap R(v,w) : TxM → TxM, written asu �→ R(v,w)u
and defined in terms of the Levi-Civita connection on the tangent bundle. It quantifies
to what extent the manifold M is not isometric to flat Euclidean space.

In this paper we will use the notion of curvature called Ricci curvature. For two
vectors v and w, the Ricci curvature Ric(v,w) is defined, in terms of the Riemannian
tensor, as the trace of the linear map

u �→ R(u, v)w, u ∈ TxM.
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Given a point x ∈ M and a unit vector v ∈ TxM, we often refer to Ric(v, v) as the
Ricci curvature of x with respect to v.

This Ricci curvature is related to another notion of curvature, called sectional cur-
vature, which is defined as

K (v,w) = 〈R(v,w)v,w〉
〈v, v〉〈w,w〉 − 〈v,w〉2 ,

where 〈 ·, · 〉 denotes the inner product on the tangent space. One can show that
Ric(v, v) is obtained by averaging the sectional curvature K (v,w) over all unit vectors
w ∈ TxM.

In the remainder of this paper we will work with the Ricci curvature of a point x ,
with respect to some tangent vector v. We note that it is not needed to understand the
fine details behind curvature of Riemannian manifolds to understand all the details of
the results or proofs.

3 Main Results

Here we state our results regarding the convergence of Ollivier–Ricci curvature of
random geometric graphs on Riemannian manifolds. We note that if the manifold
dimension is N = 1, then there is nothing to prove, so that we always assume that
N ≥ 2.

We mainly consider two different distances on the graphs, leading to two differ-
ent but related results. Although we consider different distances on graphs, we shall
always consider uniform measures on balls of a certain radius. We shall clearly distin-
guish between the connection radius of the graph and the radius used for the uniform
measures: The former is the connectivity distance threshold: if the distance between

connection radius: εn
measure radius: δn

a pair of nodes in the manifold is below this threshold, then these nodes are connected
by an edge in the graph. The latter radius is the radius of the ball (either in the graph
or in the manifold) over which the uniform probability measure is distributed.

Let Gn = Gn(εn) be a random geometric graph on M and dG a distance on Gn .
Then, for a node x ∈ Gn , we define the graph ball of radius λ around x as

BG(x; λ) := {y ∈ Gn \ {x} : dG(x, y) ≤ λ}.

Note that BG(x; λ) depends on the definition of the graph distance dG . For our results
we consider Ollivier-triples Gn = (Gn, dG ,mG), wheremG are the uniformmeasures
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on BG(x; δn), i.e.,

mG
x (y) =

⎧
⎨

⎩

1

|BG(x; δn)| if y ∈ BG(x; δn),

0 else.
(3)

We reiterate that if εn = δn and the graph metric dG is the shortest path distance, then
we are in the classical setting of Ollivier–Ricci curvature on graphs as considered in
the past literature [16, 26, 31].

3.1 Graphs with ManifoldWeighted Distance

Let Gn = Gn(x∗, εn) be a random rooted graph on M. Then we define the manifold
weighted graph distance dw

G as the weighted shortest-path distance on Gn where each
edge (u, v) is assigned weight dM(u, v), corresponding to the distance between the
nodes on the manifold. Similarly toBG(x; λ), we denote byBw

G(x; λ) the graph ball of

radius λwith respect to dw
G and letmG,w = (mG,w

x )x∈G denote the uniformlymeasures
on the balls Bw

G(x; δn). Finally, given a point x ∈ M and a vector v ∈ TxM, we say
that another point y ∈ M is at distance δ in the direction of v, if dM(x, y) = δ and
y lies on the geodesic starting at x in the direction of v.

Our first result shows that for certain combinations of connection radius εn and
measure radius δn , theOllivier–Ricci curvature onGn converges to theRicci curvature.

Theorem 1 Let N ≥ 2, (M, dM) be a smooth, connected, and compact N-di-
mensional Riemannian manifold, x∗ ∈ M, and v a unit tangent vector at x∗. Fur-
thermore, let εn = Θ((log n)an−α), δn = Θ((log n)bn−β) (as n → ∞) where the
constants satisfy

0 < β ≤ α, α + 2β ≤ 1

N
,

and a ≤ b if α = β and min {a, a + 2b} > 2/N if α + 2β = 1/N. Let y∗
n ∈ M be at

distance δn in the direction of v and Gn = Gn(x∗, y∗
n , εn) be rooted random graphs

on M. Then for the Ollivier-triple Gw
n = (Gn, dw

Gn
,mG,w), it holds

lim
n→∞E

[∣∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gw
n )

δ2n
− Ric(v, v)

∣
∣
∣
∣

]

= 0.

Theorem 1 relates two different quantities. The first is the Ollivier–Ricci curvature in
the graph between the node x∗ and another node y∗

n that is at distance δn from x∗ in
the direction of vector v. The second is the Ricci curvature of the manifold at x∗ in
the v-direction. The theorem says that if we properly rescale the former, it converges
in expectation to the latter.
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Remark 4 1. Note that Theorem 1 states that δ−2
n 2(N + 2)κ(x∗, y∗

n ;Gw
n ) converges

in the L1 sense to Ric(v, v). In particular, this implies the concentration result

lim
n→∞P

(∣
∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gw
n )

δ2n
− Ric(v, v)

∣
∣
∣
∣ ≥ η

)

= 0, for all η > 0.

2. Since εn, δn → 0, both the connectivity andmeasure neighborhoods of x∗ become
smaller as n grows. Indeed, curvature is a local property, so that measuring it more
accurately requires smaller regions.

3. While the connectivity neighborhood of x∗ is shrinking, the expected number of
x∗’s neighbors lying in it is growing with n. To see this, note that for large enough
n the volume of the ballBM(x; εn) around x ∈ M can be approximated by that of
the N -dimensional Euclidean ball. Hence, for any x ∈ Gn(x∗, y∗

n , εn), as n → ∞,

E[|Nx |] = n volM(BM(x; εn)) = Θ(nεN
n ) = Θ

(
(log n)aN n1−αN ).

The conditions of the theorem imply that α ≤ α+2β ≤ 1/N , so that 1−αN ≥ 0.
This means that the average degree diverges faster than logarithmically if αN < 1.
More generally, the conditions of Theorem 1 imply that the average degree always
diverges faster than (log n)2.

If we consider the classic setting where the connection and measure radii are the same,
εn = δn , then the following result is a direct consequence of Theorem 1.

Corollary 1 Let N ≥ 2, (M, dM) be a smooth, connected, and compact N-di-
mensional Riemannian manifold, x∗ ∈ M, and v a unit tangent vector at x∗.
Furthermore, let δn = Θ((log n)bn−β), with β ≤ 1/(3N ) and b > 2/N when-
ever β = 1/(3N ). Let y∗

n ∈ M be at distance δn in the direction of v and
Gn = Gn(x∗, y∗

n , δn) be rooted random graphs on M. Then for the Ollivier-triple
Gw

n = (Gn, dw
Gn

,mG,w), it holds

lim
n→∞E

[∣∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gw
n )

δ2n
− Ric(v, v)

∣
∣
∣
∣

]

= 0.

While the conditions in this corollary imply that the averagedegree inGn(x∗, y∗
n , δn)

diverges faster than n2/3, Theorem 1 works for graphs where the average degree can
be almost as small as (log n)2. The crucial component for establishing the curvature
convergence in graphs with so much smaller average degree is to consider different
connection and measure radii and let the connection radius decrease at a faster rate
than the measure radius, i.e., εn � δn .

Remark 5 (extreme cases for convergence of curvature) Corollary 1 covers one set
of extreme cases for the combination a, b, α and β from Theorem 1, were we take
β to be as big as possible. This means that we compute the curvature using uniform
probability measures on a set of nodes that is as small as possible. For the true extreme
case, let η > 0 be arbitrarily small and define β = (1− η)/(3N ) and b = (2+ η)/N .
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Then, to calculate the curvature, we need to compute the Wasserstein metric between
uniform probability measures on neighborhoods that contain

Θ(nεN
n ) = Θ(nδN

n ) = Θ
(
(log n)2+ηn(2+η)/3),

number of nodes. The consequence, however, is that our graphs have average degree
diverging at the same rate: (log n)2+ηn(2+η)/3.

In order to get graphs whose average degree diverges as slow as possible, we need
to consider an other extreme case. Again let η > 0 be arbitrary small. Now we define

a = 2 + η

N
, α = 1 − η

N
, b = a, β = η

2N
.

For these choices we have that α + 2β = 1/N and min {a, a + 2b} = a > 2/N so
that the result from Theorem 1 holds. In this case, the average degree scales as

Θ(nεN
n ) = Θ((log n)Nan1−Nα) = Θ((log n)2+ηnη),

which is almost logarithmic.However, we nowneed to compute theWassersteinmetric
with respect to the uniform measure on a number of nodes that scales as

Θ(nδN
n ) = Θ((log n)2+ηn1−η/2).

That is, in order to compute curvature on graphs with almost logarithmic average
degree, we need to consider the uniform probability measure on almost the entire
graph.

3.2 Graphs with Hop Count Distance

In the previous section we considered Ollivier–Ricci curvature of graphs on Rieman-
nian manifolds, with graph edges weighted by manifold distances. These weights
encode a lot of information about the manifold metric structure, so that one may feel
not terribly surprised that we can recover manifold curvature from graph curvature
using this information. The natural question is then if it is possible to prove conver-
gence of Ollivier–Ricci curvature based on shortest path distances ds

G in unweighted
graphs. It turns out that this can be done under some slightlymore restrictive conditions
on the connection and measure radii.

For this we define, for any random geometric graph Gn = G(εn), the rescaled
shortest path distance d∗

G(x, y) = εnds
G(x, y). Similar to the previous setting we let

B∗
G(x; δn) denote the balls of radius δn around in x ∈ Gn with respect to the metric

d∗
G and define the random walk measures

mG,∗
x (y) =

⎧
⎨

⎩

1

|B∗
G(x; δn)| if y ∈ B∗

G(x; δn),

0 else.
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Theorem 2 Let (M, dM) be a smooth, connected, and compact 2-dimensional
Riemannian manifold, x∗ ∈ M, and v a unit tangent vector at x∗. Furthermore, let
εn = Θ((log n)an−α), δn = Θ((log n)bn−β) where the constants satisfy

0 < β ≤ 1

9
and 3β ≤ α ≤ 1 − 3β

2
,

and a < 3b if α = 3β and 2a +3b > 1 if α = (1−3β)/2. Let y∗
n ∈ M be at distance

δn in the direction of v and Gn = Gn(x∗, y∗
n , εn) be rooted random graphs on M.

Then for the Ollivier-triple G∗
n = (Gn, d∗

Gn
,mG,∗), it holds

lim
n→∞ E

[∣∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;G∗
n )

δ2n
− Ric(v, v)

∣
∣
∣
∣

]

= 0.

Remark 6 1. Note that unlike Theorem 1, here we do not include any information
on the distances between nodes on the manifold. This is because the distance δ∗

Gn
is simply the shortest path distance on the graph Gn rescaled by the connection
radius εn .

2. Observe that the theorem allows to select an α that is arbitrary close to 1/2. In
particular,

E[|Nx |] = Θ(nε2n) = Θ((log n)2an1−2α) ≤ Θ((log n)2an6β).

Hence by selecting a small β we have a discrete notion of curvature that converges
on graphs with almost logarithmic average degree, without using any information
on the manifold.

3. Theorem 2 currently only works in 2-dimensional manifolds. This is because the
proof relies on results for the stretch (the fraction dG/dM) for random geomet-
ric graphs in 2-dimensional Euclidean space [9]. Our proof techniques, however,
immediately allow the results to be extended to higher dimensions, once similar
types of stretch results for these spaces are obtained.

3.3 Summary, Comments, Caveats, and Outlook

In summary,we have proven that upon proper rescaling, theOllivier–Ricci curvature of
random geometric graphs on a Riemannian manifold converges to the Ricci curvature
of the underlying manifold.

Our first result, Theorem 1, establishes convergence of Ollivier–Ricci curvature for
a wide range of connectivity and measure radii. In particular, it contains as a corollary
the classical setting where both radii are the same, Corollary 1. The theorem does,
however, require knowledge of pairwise distances between connected nodes in the
manifold.

Our second result, Theorem 2, relaxes this requirement and establishes the same
convergence without any knowledge of distances in the manifold. This does come at
the price of slightlymore restrictive conditions on the possible connection andmeasure
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radii. Still, as for the first result, the convergence holds all the way up to graphs whose
average degree grows very slowly (almost logarithmically).

To the best of our knowledge, these are the first rigorous results on the convergence
of a discrete notion of curvature of random combinatorial objects to a traditional
continuum notion of curvature of smooth space.

While the classical setting for Ollivier–Ricci graph curvature uses probability mea-
sures (random walks) on balls of the same radius as the graph connection radius, in
this paper we allow the radii to be different. This is an important generalization. In
particular, we find that in order for the curvature to converge on graphs with almost
logarithmic average degree, we need the probability measure radius to be much larger
than the connection radius. This is intuitively expected because in order to “feel” any
curvature in graphs with such a low density, we really need to consider large “meso-
scopic” neighborhoods in them since otherwise all we could see is local “microscopic”
Euclideanflatness. Itwould be interesting to see how thismore general approachwould
generalize known results for the classical setting of Ollivier–Ricci curvature of graph
families that have been investigated in the past, such as trees or Erdős–Rényi random
graphs [4, 16].

In our recent numeric experiments [13], we have seen that in manifold-distance-
weighted random geometric graphs, the Ollivier–Ricci curvature convergence holds
even for graphs with constant average degree. Unfortunately, the proof techniques
presented in this paper do not allow for a direct generalization to this setting. There-
fore, other techniques are needed to (dis)confirm the convergence of Ollivier–Ricci
curvature of graphs with constant average degree. We note that one definitely cannot
expect Ollivier–Ricci curvature to converge in all possible graph sparsity settings. For
example, we definitely need the giant component to exist to talk about any curvature
convergence.

For the task of learning latent geometry in networks, our results can still be
improved, particularly by removing the requirement to know the connection radius.
When presented just with a truly unweighted realization of a random geometric graph,
this radius needs first to be learnt, estimated. It would thus be interesting to see if con-
vergence would still hold if we replace the true value of the connection radius with its
consistent estimation, e.g. based on the average degree. Here we expect the speed of
curvature convergence (if any) to depend on the speed of estimator convergence in a
possibly nontrivial way.

Finally, now that we have seen that Ollivier–Ricci curvature of random combina-
torial discretizations of smooth spaces converges to their Ricci curvature, it would
be interesting to investigate whether such convergence also holds for other popular
notions of discrete curvature. Forman–Ricci curvature [37] appears to be a good next
candidate for such investigation.

4 Proof Overview

Our main results in Theorems 1 and 2 follow from our more general result on the
Ollivier–Ricci curvature convergence in graphs whose edges are always weighted by
some weights. That is, we assume that all edges in our graphs always have some
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weights, assigned according to some scheme. For our general result it is not important
what these weights or their assignment scheme are. What is important is that the graph
distance dG between node pairs is a good approximation of the manifold distance dM
between the corresponding pair of points. Here by graph distance we mean any metric
on the vertex set of the graph. To quantify howgood this approximation is,we introduce
the following definition.

Definition 4.1 Let (M, dM) be an N -dimensional Riemannian manifold and Gn =
Gn(x∗, εn) a rooted random graph on M. A graph distance dG on Gn is said to be
a δn-good approximation of dM if dM ≤ dG and the following holds (as n → ∞):
there exists a Q > 3 and ξn = o(δn) such that with probability 1 − o(δ3n),

|dM(u, v) − dG(u, v)| ≤ dM(u, v)ξ2n + ξ3n , (4)

holds for all u, v ∈ BM(x∗; Qδn) ∩ Gn .

Remark 7 (asymptotic expressions) Most of our results will deal with asymptotic
relations, e.g. ξn = o(δn). Unless stated otherwise, these asymptotic relations will
always be understood as n → ∞.

There are several examples of shortest weighted path distance that are δn-good approx-
imation of the manifold distance. In this paper we consider two cases. In one, each
edge (u, v) has weight equal to dM(u, v), while in the other case the weight is simply
the connection radius εn . An explicit example of the latter case is when the manifold
is 2-dimensional and the connection and measure radii are given by εn = n−1/3 and
δn = n−1/9 log n, respectively. See Propositions 4 and 5 for more details.

Recall that BG(x; δ) denotes the set of nodes in the graph that are at graph distance
at most δ from x ,

mG
x (y) =

⎧
⎨

⎩

1

|BG(x; δn)| if y ∈ BG(x; δn),

0 else,

and define

λn = (log n)2/N n−1/N . (5)

This λn will play the role of an additional radius, for extending the graph distance dG

to the manifold. In short, to define a distance between u, v ∈ M, we will connect u
and v to all points of the graph within radius λn and then use the graph distance. The
radius λn has been selected such that the expected number of nodes inside any ball
BM(x; λn) is of the orderΘ((log n)2). Hence, the probability of observing no node of
the graph inside any such ball is O(e−(log n)2) = o(n−1), which is sufficiently small.
More details on the use of λn can be found in Sect. 5.1. Our general result is then as
follows.
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Theorem 3 Let N ≥ 2, (M, dM) be a smooth, connected, and compact N-di-
mensional Riemannian manifold, x∗ ∈ M, and v a unit tangent vector at x∗. Further-
more, let εn ≤ δn = o(1) be such that λn = o(εn) and λn = o(δ3n). Let y∗

n ∈ M be at
distance δn in the direction of v, Gn = Gn(x∗, y∗

n , εn) be rooted random graphs on
M, and dG a δn-good approximation of dM. Then, if we consider the Ollivier-triple
Gn = (Gn, dG ,mG),

lim
n→∞E

[∣
∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− Ric(v, v)

∣
∣
∣
∣

]

= 0.

Once we have established this general result, our main results in Theorems 1 and 2
follow if we can show that the considered graph distances are δn-good approximations.

A key ingredient in the proof of Theorem 3 is the convergence result for Ollivier–
Ricci curvature for uniformmeasures on Riemannianmanifolds, proved in the seminal
paper on the topic [28]. In a high-level overview, our proof approximates Ollivier–
Ricci curvature of probability measures on the graph with those on the manifold.
Having obtained such an approximation with a required accuracy, we then apply the
convergence result from [28].

Since Ollivier–Ricci curvature is defined by the Wasserstein metric on probability
measures, our analysis focuses on approximating the Wasserstein metric of discrete
probability measures on the graph by the Wasserstein metric of uniform probability
measures on themanifold. This is done in three steps: 1) extend the graph distance dG to
a distance d̃M on the manifold such that theWasserstein metric W̃1 with respect to this
new distance is a good approximation of the Wasserstein metric W1 on the manifold,
2) show that the Wasserstein metric between the probability measure mG

x on the graph
and the discrete probability measure mM

x on the nodes within the ball BM(x; δn)

is sufficiently small, and 3) show that the Wasserstein metric between the uniform
measure on BM(x; δn) and the discrete probability measure mM

x is sufficiently small.

Remark 8 In all cases, sufficiently small means that the error terms are of smaller
order than δ3n . This is because the Wasserstein metric is first divided by δn to obtain
the curvature, which is then divided by δ2n to make it converge to the Ricci curvature.

We proceed with explaining all ingredients and the three steps in more detail. We
reiterate that unless stated otherwise, we will assume that εn ≤ δn are two sequences
converging to zero such that λn = o(εn) and λn = o(δ3n).

4.1 Ollivier Curvature on RiemannianManifolds

Let (M, dM) be a smooth, orientable, connected and compact N -dimensional Rie-
mannian manifold. For x ∈ M and δ > 0, we write BM(x; δ) ⊆ M to denote the
closed ball of radius δ around x , i.e., BM(x; δ) = {y ∈ M : dM(x, y) ≤ δ}. Recall
that

volM(BM(x; δ)) :=
∫

BM(x;δ)
dvolM(y),

123



Discrete & Computational Geometry (2023) 70:671–712 685

denotes the volume of the ball BM(x; δ). Now fix δ > 0 and consider the uniform
measure on balls of radius δ. That is, for x ∈ M we take the probability measure μδ

x
given by

dμδ
x (y) =

⎧
⎨

⎩

1

volM(BM(x; δ))
dvolM(y) if y ∈ BM(x; δ),

0 else.
(6)

Wewill refer toμδ
x as the uniform δ-measure. The following result from [28] shows that

for a uniform δ-measure on a Riemannian manifold, the Ollivier curvature (properly
rescaled) converges to the Ricci curvature as δ → 0.

Theorem 4 [28, Exam. 7] Let (M, dM) be a smooth complete N-dimensional Rie-
mannian manifold x ∈ M and v a unit tangent vector at x. Let δ > 0 and yδ be
the point at distance δ in the direction of v. Then if we consider the Ollivier–Ricci
curvature κ for the uniform δ-measures given by (6),

lim
δ→0

2(N + 2)

δ2
κ(x, yδ) = Ric(v, v).

Remark 9 The result in Theorem 4 clearly exhibits the local nature of curvature as it
holds in the limit where the distance dM(x, y) = δ between the two points goes to
zero.

Taking δ = δn , x = x∗, and y = y∗
n in the above theorem, we have that the rescaled

Ollivier–Ricci curvature associated to the uniform δn-measures converges to the Ricci
curvature as n → ∞. The main strategy for proving Theorem 3 is to compare this
“uniform” version of the curvature κ on the manifold to the discrete version on the
graph. More precisely, we need to prove that

E
[∣
∣W G

1

(
mG

x∗ , mG
y∗

n

)− W1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣
∣
] = o(δ3n). (7)

There are two complicating factors here. First, we have to deal with two Wasserstein
metrics defined on two different spaces. Second, we have to compare discrete proba-
bility measures with continuous ones. We deal with the different Wasserstein metrics
in the next section and with comparing the different measures in Sects. 4.3 and 4.4.

4.2 Extending the Graph Distance to theManifold

In order to compare the two different Wasserstein metrics in (7) we extend the graph
distance dG to a distance d̃M defined on a sufficiently large part ofM. In particular, we
will consider the ballBM(x∗; Qδn), with Q > 3 fromDefinition 4.1. The extension is
such that for any two nodes x, y ∈ Gn , dG(x, y) = d̃M(x, y), so that W G

1 (mG
x∗ , mG

y∗
n
)

can be replaced by the Wasserstein metric associated with d̃M.
Recall the definition of λn from (5), λn = (log n)2/N n−1/N . Denote Gn =

Gn(x∗, y∗
n , δn) and let U ⊂ M be a countable set of points. Then we define the
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Fig. 1 Illustration of the extended graph distance d̃M. Here u is connected to node x1 and v to x6 and the
shortest geodesic-weighted path between x1 and x6 goes over five edges

graph Gn(U ) obtained from Gn by adding the points of U to the vertex set and con-
necting each u ∈ U to any other node x ∈ Gn \ U for which dM(x, u) ≤ λn/2.
After this, we assign to each new edge (u, x) the weight dM(x, u)(1 + ξ2n ) + ξ3n ,
with ξn from Definition 4.1. We can then extend the graph distance to the manifold by
defining d̃M(u, v) to be the graph distance dG(u, v) computed in the extended graph
Gn({u, v}) with the added weights. That is, d̃M(u, v) is the shortest weighted path
distance in the extended graph Gn({u, v}), where the weights follow the same scheme
as for the original graph.

Observe that if x, y ∈ Gn then d̃M(x, y) = dG(x, y) so that the distance on
nodes of Gn does not change and hence d̃M is a true extension of dG . In addition, by
definition of the graph distance it immediately follows that d̃M(u, v) = 0 if and only
if u = v. Figure 1 shows an illustration of the extended distance.

It is important to note that this extended distance depends on the random graph Gn .
Therefore, it could happen that two added points u, v ∈ U are not connected inGn(U ),
i.e., there does not exist a path from u to v in the extended graph. This happens if
there are no nodes in BM(u; λn/2) or in BM(v; λn/2) or if none of the node pairs
(x, y) ∈ BM(u; λn/2) × BM(v; λn/2) are connected by a path in Gn . Therefore, to
justify the definition of the extended manifold distance we need to make sure that,
with sufficiently high probability, theses situations do not occur.

Lemma 1 Let Gn = Gn(x∗, y∗
n , δn) and Q > 3 be the constant from Definition 4.1.

Then, there exists an event Ωn satisfying P (Ωn) ≥ 1 − o(δ3n) such that on this event
the following holds:

(Ω1) (BM(x∗; Qδn), d̃M) is a metric space and
(Ω2) d̃M(u, v) = dM(u, v) + o(δ3n).
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The first property ensures that our extended distance is an actual distance. Moreover,
by the second property, this extended distance is a good approximation of the true
distance on the manifold. Finally, we also note that the first property makes sure
that dG(x∗, y∗

n ) = d̃M(x∗, y∗
n ) < ∞, so that the curvature κ between x∗ and y∗

n is
well defined and not forced to be zero. The precise definition of Ωn is not needed to
understand the high level arguments as well as the proof of the main results. For now,
let us refer to Ωn as the good event. Details on this event can be found in Sect. 5.1.

Let W̃1 denote the Wasserstein metric with respect to d̃M, which is only well
defined on the good event Ωn . Since the distance is determined by the graph
Gn = Gn(x∗, y∗

n , δn), the Wasserstein metric is also a random object. The follow-
ing proposition states that, on the event Ωn , the difference between the Wasserstein
metrics W̃1 and W1 is small. The proof is given in Sect. 5.1.

Proposition 1 Let Gn = Gn(x∗, εn) and μ1, μ2 be two probability measures on M
with support contained in BM(x∗; Qδn). Then

E
[|W̃1(μ1, μ2) − W1(μ1, μ2)| | Ωn

] = o(δ3n).

Recall that d̃M(x, y) = dG(x, y) if x, y ∈ Gn , and therefore W G
1 (mG

x∗ , mG
y∗

n
) =

W̃1(mG
x∗ , mG

y∗
n
). Hence, since the uniform δn-measures μ

δn
x∗ and μ

δn
y∗

n
are probability

measures on M with support contained in BM(x∗; Qδn), Proposition 1 implies that
on the good event,

∣
∣W G

1

(
mG

x∗ , mG
y∗

n

)− W1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣ = ∣∣W̃1
(
mG

x∗ , mG
y∗

n

)− W̃1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣+ o(δ3n)

holds in expectation. This is helpful because bothWassersteinmetrics in the expression
on the right hand side are now defined on the same space. Therefore, since W̃1 is a
distance, the reverse triangle inequality implies

∣
∣W̃1
(
mG

x∗ , mG
y∗

n

)− W̃1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣
∣ ≤ W̃1

(
mG

x∗ , μδn
x∗
)+ W̃1

(
mG

y∗
n
, μ

δn
y∗

n

)
.

Applying Proposition 1 again we get that

∣
∣W̃1
(
mG

x∗ , mG
y∗

n

)− W̃1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣ ≤ W1
(
mG

x∗ , μδn
x∗
)+ W1

(
mG

y∗
n
, μ

δn
y∗

n

)+ o(δ3n)

holds in expectation, conditioned on the good event. However, the right hand side no
longer involves the extended distance. Hence, it now suffices to show that for any
x ∈ BM(x∗; δn),

E
[
W1
(
mG

x , μδn
x

) | Ωn
] = o(δ3n). (8)

4.3 Approximating Probability Measures on Graph Balls

Recall thatBM(x; δn) denotes the closed ball around x ∈ Mwith radius δn according
to the manifold distance dM. The first step in establishing (8) is to move from uniform
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measures on the graph balls BG(x; δn) to uniform measures on the nodes of the graph
that lie in the manifold balls BM(x; δn). The reason for this is that y ∈ BG(x; δn)

does not necessarily imply that y ∈ BM(x; δn), nor vice versa. This creates difficulties
when comparing the measures mG

x and μ
δn
x .

Let Gn = Gn(x∗, εn) be rooted random graphs on M. Then we define the proba-
bility measures mM on the nodes of Gn as

mM
x (y) =

⎧
⎨

⎩

1

|BM(x; δn) ∩ Gn| if y ∈ BM(x; δn) ∩ Gn,

0 else.
(9)

Although the uniformmeasuresmG
x∗ andmM

x∗ are not the necessarily equal, theWasser-
stein metric between them is sufficiently small.

Proposition 2 Let Gn = Gn(x∗, εn) be rooted random graphs on M with graph dis-
tance dG that is a δn-good approximation of dM. Let x ∈ BM(x∗; δn) and denote
by mG

x the uniform measure on BG(x; δn) and by mM
x the uniform measure on

BM(x; δn) ∩ Gn. Then

E
[
W1
(
mG

x , mM
x

) | Ωn
] = o(δ3n).

The proof of this result is based on some simple computations regarding Poisson
random variables and can be found in Sect. 5.2. Proposition 2 allows us to replace (8)
with

E
[
W1
(
mM

x , μδn
x

)] = o(δ3n). (10)

Note that the only dependence on the graph is now in the amount of nodes placed
inside the ball BM(x; δn), which is completely determined by the Poisson process.
All dependencies on the actual structure of the graph have been removed. This allows
us to compute the Wasserstein metric between mM

x and μ
δn
x .

4.4 Coupling Continuous and Discrete Probability Measures onM

Recall that theWasserstein metric W1(μ1, μ2) takes an infimum over all possible joint
distributions (couplings) between the measures μ1 and μ2. Hence, to show that (10)
holds, we need to design an optimal coupling (transport plan) between mM

x and μ
δn
x .

The main idea here is to view mM
x as a discrete version of μ

δn
x .

For now, let us assume that we are working in the N -dimensional Euclidean cube
M = [0, 1]N . Given a realization of the Poisson process, a transport plan between
mM

x and μ
δn
x should assign to each measurable set A ⊆ BM(x; δn) how much of the

associated mass μ
δn
x (A) is transported to each point of the Poisson process. To make

it optimal, we should distribute the mass over those points that are closest to A. This
problem is actually related to that of finding a minimal matching between points of a
Poisson process and points of a grid on [0, 1]N , see [22, 35, 39]. Here, minimal means
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that the largest distance between a point of the Poisson process and its matched grid
point is minimized. The idea for the transport plan is as follows:

– Place a grid on [0, 1]N .
– Find a minimal matching between the Poisson process and the grid.
– Given a A ⊆ BM(x; δn), we take all points of the Poisson process that arematched
to grid points inside A and distribute the mass μ

δn
x (A) equally over those points.

Using known results for minimal matchings, it can then be shown that, under suitable
conditions, the Wasserstein metric between mM

x and μ
δn
x is o(δ3n).

Finally, we need to extend these results in flat Euclidean space to the ball
BM(x; Qδn) in generalM. For this we use that δn → 0 and that small neighborhoods
of x ∈ M can be mapped diffeomorphically to the flat N -dimensional tangent space
by the exponential map expx : TxM → M. We then apply the matching results there
and map back. Here we need to tread carefully, since the exponential map does not
preserve distances. We thus fix a sufficiently small neighborhood U around the origin
of the tangent space at x . Then, for some fixed 0 < ξ < 1 and large enough n we have

BN

(

0; δn

1 + ξ

)

⊆ exp−1 BM(x; δn) ⊆ BN

(

0; δn

1 − ξ

)

,

where BN (0; δ) is the Euclidean ball of radius δ. This then yields matching upper and
lower bounds on the Wasserstein metric on M in terms of the Wasserstein metric on
the Euclidean space. All details of this approach are provided in Sect. 5.3. In the end
we obtain the following result.

Proposition 3 For any point x ∈ M,

E
[
W1
(
mM

x , μδn
x

)] = o(δ3n).

4.5 Proof of theMain Results

We now have all ingredients to prove the main results. We start with Theorem 3,
where we bound the expression inside the expectation as a sum of several terms and
use the above results and the fact that dG is a δn-good approximation to show that each
individual term goes to zero.

Proof of Theorem 3 First, we bound the term inside the expectation as follows:

∣
∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− Ric(v, v)

∣
∣
∣
∣

≤
∣
∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− 2(N + 2)κ(x∗, y∗
n )

δ2n

∣
∣
∣
∣

+
∣
∣
∣
∣
2(N + 2)κ(x∗, y∗

n )

δ2n
− Ric(v, v)

∣
∣
∣
∣.
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The last term is deterministic and goes to zero by Theorem 4. For the first termwe note
that the absolute value of each curvature term can be bounded from above by 2. Now
let Cn denote the event that x∗ and y∗

n are connected. Since this is implied by good
event Ωn , see Lemma 1, it follows that Cc

n ⊆ Ωc
n , where the superscript c denotes the

complement of the event. Moreover, on the event Cc
n , κ(x∗, y∗

n ,Gn) = 0 by definition.
Finally, since dG is a δn-good approximation it follows that δ2n = dM(x∗, y∗

n )2 ≤
dG(x∗, y∗

n )2. Therefore, we have

E

[∣∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− 2(N + 2)κ(x∗, y∗
n )

δ2n

∣
∣
∣
∣

∣
∣
∣ Cc

n

]

≤ 4(N + 2)

δ2n
(1 − P (Ωn))

and

E

[∣∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− 2(N + 2)κ(x∗, y∗
n )

δ2n

∣
∣
∣
∣

∣
∣
∣ Cn ∩ Ωc

n

]

≤ 8(N + 2)

δ2n
(1 − P (Ωn)).

It then follows that

E

[∣∣
∣
∣
2(N + 2)κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− 2(N + 2)κ(x∗, y∗
n )

δ2n

∣
∣
∣
∣

]

≤ 2(N + 2)E

[∣∣
∣
∣
κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− κ(x∗, y∗
n )

δ2n

∣
∣
∣
∣

∣
∣
∣ Ωn

]

+ (1 − P (Ωn))
12(2 + N )

δ2n
.

By construction of the good event we have 1−P (Ωn) = o(δ3n) and thus, the last term
in the above bound goes to zero. For the other term we recall that

κ(x∗, y∗
n ;Gn) = 1 −

W G
1

(
mG

x∗ , mG
y∗

n

)

dG(x∗, y∗
n )

and κ(x∗, y∗
n ) = 1 −

W1
(
μ

δn
x∗ , μ

δn
y∗

n

)

δn
.

Then the expression inside the conditional expectation can be bounded as follows:

∣
∣
∣
∣
κ(x∗, y∗

n ;Gn)

dG(x∗, y∗
n )2

− κ(x∗, y∗
n )

δ2n

∣
∣
∣
∣

≤
∣
∣
∣
∣κ(x∗, y∗

n ;Gn)

(
1

dG(x∗, y∗
n )2

− 1

δ2n

)∣
∣
∣
∣+

|κ(x∗, y∗
n ;Gn) − κ(x∗, y∗

n )|
δ2n

≤ 2
|δ2n − dG(x∗, y∗

n )2|
δ4n

+ 1

δ2n

∣
∣
∣
∣
W G

1

(
mG

x∗ , mG
y∗

n

)

dG(x∗, y∗
n )

−
W1
(
μ

δn
x∗ , μ

δn
y∗

n

)

δn

∣
∣
∣
∣
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≤ |δ2n − dG(x∗, y∗
n )2|

δ4n
+

W G
1

(
mG

x∗ , mG
y∗

n

)|δn − dG(x∗, y∗
n )|

δ4n
(11)

+
∣
∣W G

1

(
mG

x∗ , mG
y∗

n

)− W1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣

δ3n
. (12)

Next, since dG is a δn-good approximation, we can apply (4)

|δn − dG(x∗, y∗
n )| = |dM(x∗, y∗

n ) − dG(x∗, y∗
n )| ≤ δnξ

2
n + ξ3n = o(δ3n).

Since W G
1 (mG

x∗ , mG
y∗

n
) ≤ δn it then follows that the second term in (11) goes to zero.

For the first term we have

|δ2n − dG(x∗, y∗
n )2| ≤ |δn − dG(x∗, y∗

n )|(δn + dG(x∗, y∗
n ))

≤ (δnξ2n + ξ3n )(δn + δn(1 + ξ2n ) + ξ3n ) = o(δ4n),

which implies that this term also goes to zero. We are thus left with (12), for which
we have to show that

E
[∣∣W G

1

(
mG

x∗ , mG
y∗

n

)− W1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣
∣
∣Ωn

] = o(δ3n).

We first replace W1(μ
δn
x∗ , μ

δn
y∗

n
) with W̃1(μ

δn
x∗ , μ

δn
y∗

n
) by invoking Proposition 1:

E
[∣∣W̃1

(
μ

δn
x∗ , μ

δn
y∗

n

)− W1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣
∣
∣Ωn

] = o(δ3n).

This then implies

E
[∣∣W G

1

(
mG

x∗ , mG
y∗

n

)− W1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣
∣
∣Ωn

]

≤ E
[∣∣W̃1

(
mG

x∗ , mG
y∗

n

)− W̃1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣
∣
∣Ωn

]+ o(δ3n).

To show that the first term in the upper bound is also o(δ3n)we apply the reverse triangle
inequality twice to obtain

∣
∣W̃1
(
mG

x∗ , mG
y∗

n

)− W̃1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣∣ ≤ W̃1
(
mG

x∗ , μδn
x∗
)+ W̃1

(
mG

y∗
n
, μ

δn
y∗

n

)
.

We proceed to show that W̃1(mG
x∗ , μ

δn
x∗) = o(δ3n) holds in expectation on the eventΩn .

The proof for W̃1(mG
y∗

n
, μ

δn
y∗

n
) is similar. Applying Proposition 1 again we get

E
[
W̃1
(
mG

x∗ , μδn
x∗
) ∣
∣Ωn

] ≤ E
[
W1
(
mG

x∗ , μδn
x∗)
∣
∣Ωn

]+ o(δ3n)

≤ E
[
W1
(
mG

x∗ , mM
x∗
) ∣∣Ωn

]+ E
[
W1
(
mM

x∗ , μ
δn
x∗
)]+ o(δ3n).
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Since both expectations are o(δ3n) by, respectively, Propositions 2 and 3, we conclude
that

E
[∣
∣W G

1

(
mG

x∗ , mG
y∗

n

)− W1
(
μ

δn
x∗ , μ

δn
y∗

n

)∣
∣
∣
∣Ωn

] = o(δ3n),

which finishes the proof. ��
Now that we have the general result, Theorems 1 and 2 directly follow from The-

orem 3 if we can show that the graph distances that are considered there are δn-good
approximations.

Throughout the remainder of this section we will assume that

εn = Θ((log n)an−α), δn = Θ((log n)bn−β),

for some a, b ∈ R and 0 ≤ α, β ≤ 1. We shall also assume that εn ≤ δn . The
following results show that for appropriate choices of the constants a, b and α, β both
theweightedmanifold and the rescaled hopcount distance are δn-good approximations.
The proofs are given in Sects. 5.4 and 5.5, respectively.

Proposition 4 Suppose the constants in εn and δn satisfy

0 < β ≤ α, α + 2β ≤ 1

N

with a ≤ b if α = β and a + 2b > 2/N if α + 2β = 1/N. Let y∗
n ∈ M be at distance

δn in the direction of v and Gn = Gn(x∗, y∗
n , εn) be rooted random graphs on M.

Then the manifold-weighted graph distance dw
G on Gn is a δn-good approximation

of dM.

Proposition 5 Suppose the constants in εn and δn satisfy

0 < β ≤ 1

9
and 3β ≤ α ≤ 1 − 3β

2
,

and a < 3b if α = 3β and 2a +3b > 1 if α = (1−3β)/2. Let y∗
n ∈ M be at distance

δn in the direction of v. Let Gn = Gn(x∗, y∗
n , εn) be rooted random graphs on a

2-dimensional Riemannian manifold M and denote by ds
G the shortest path distance.

Then the εn-weighted graph distance d∗
G := εnds

G on Gn is a δn-good approximation
of dM.

Observe that the conditions of the constants in Propositions 4 and 5 are exactly the
same as in Theorems 1 and 2, respectively. Moreover, these conditions imply that
λn = o(εn) and λn = o(δ3n), with λn as defined in (5), as we will now demonstrate.

In Proposition 4 we have β > 0 and α + 2β ≤ 1/N . It then follows that α < 1/N
which implies λn = o(εn). When the inequality 3β ≤ α + 2β ≤ 1/N is strict we
have that λn = o(δ3n). When 3β = 1/N it must be that α + 2β = 1/N and hence the
conditions of Proposition 4 imply that 3b ≥ a + 2b > 2/N . From this we deduce that
λn/δ

3
n = Θ((log n)2/N−a−2b) = o(1).
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In Proposition 5, since N = 2, the conditions λn = o(εn) and λn = o(δ3n) follow if
α < 1/2 and 3β < 1/2. The first inequality holds since β > 0 and α ≤ (1 − 3β)/2,
while the second is due to the fact that 3β ≤ 3/9 = 1/3.

We thus conclude that under the conditions in both propositions, the radii satisfy
the conditions of Theorem 3. Hence, Theorems 1 and 2 follow from it.

5 Proofs

Here we prove all the intermediate results that we used to prove our main results in
the previous section. We start with the proof of Lemma 1 and Proposition 1 in the
next Sect. 5.1. In Sect. 5.2 we provide the details for Proposition 2, while the proof
of Proposition 3 is given in Sect. 5.3. We end with Sects. 5.4 and 5.5 where we prove
Propositions 4 and 5, respectively, leading to the main results of this paper.

Recall that

λn = (log n)2/N n−1/N ,

and εn ≤ δn → 0 are such that λn = o(εn) and λn = o(δ3n).

5.1 Extended Graph Distance

Our first goal is to proof Lemma 1. We start by showing that there exists a radius
rn → 0 such that for any finite set of points u ∈ M, the balls BM(u; rn) will still
each contain at least one node from the rooted graphs Gn = Gn(x∗, y∗

n , εn). The
reason why we need rn to decrease is because the connection radius εn also decreases
and we want the ball BM(u; rn) to be contained inside the connection area of the
point u.

Lemma 2 Let U ⊂ M be a finite set of points in M such that |U | = O(nc), for some
c > 0, and let rn = Θ(λn). Then, for Gn = Gn(εn),

P

(
⋃

u∈U

{|BM(u; rn) ∩ Gn| = 0}
)

= o(δ3n),

as n → ∞.

Proof First note that for rn small enough the ball BM(u; rn) can be mapped diffeo-
morphically onto the tangent space TuM at u. In particular, for small enough rn we
have that, as n → ∞, volM(BM(u; rn)) = Θ(r N

n ) = Θ(λN
n ). Next, since the nodes

in Gn are placed according to a Poisson process with intensity n/volM(M) it follows
that

P (|BM(u; rn) ∩ Gn| = 0) = exp

(

−nvolM(BM(u; λn))

volM(M)

)

= e−nΘ(λN
n )
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= e−Θ((log n)2).

Therefore, by applying the union bound we get

P

(
⋃

u∈U

{|BM(u; εn) ∩ G| = 0}
)

≤ |U |min
u∈U

P (|BM(u; εn) ∩ G| = 0)

= e−Θ((log n)2)+log |U | ≤ e−Θ((log n)2)+c log n .

To finish the proof we note that e−Θ((log n)2)+c log n = o(λn) which by assumption is
o(δ3n). ��
With this lemma we obtain the following corollary.

Corollary 2 There exists a collection {B1, . . . , Bm} of m = Θ(λ−N
n ) balls of radius

λn/4 that cover M, such that if we denote by c1, . . . , cm their centers and define the
event

Cn =
m⋂

t=1

{|BM(ct ; λn/4) ∩ Gn| �= 0}. (13)

Then P (Cn) = 1 − o(δ3n).

Proof The collection is constructed using the standard trick of taking a maximal set
of disjoint balls of radius λn/8 in M. Denote their centers by c1, . . . , cm . Simple
volume comparison, and the compactness of M, gives m = O(λ−N

n ). By construc-
tion, the balls Bi = BM(ci ; λn/4) then cover M, and hence m = Θ(λ−N

n ) =
Θ((log n)−2n) = O(n). The result then follows from Lemma 2. ��
The event Cn will play a crucial part in defining the good event Ωn . Let Dn denote the
event on which (4) holds. Then we define the good event as

Ωn = Cn ∩ Dn . (14)

On this event, with sufficiently high probability, (BM(x∗; Qδn), d̃M) is ametric space
for any constant Q > 0 and the extended distance d̃M is a good approximation of the
original distance dM. Note that we do not need to consider the whole manifold since
curvature is a local property.

Lemma 3 Let Ωn be the event defined in (14) and Q > 3 the constant from Defini-
tion 4.1. Then on the event Ωn,

– each pair of points u, v ∈ BM(x∗; Qδn) is connected by a path in the extended
graph Gn(u, v), and

– (BM(x∗; Qδn), d̃M) is a metric space.
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Fig. 2 Depiction of the covering of the geodesic between u and v by the balls Bti

Proof We first prove the first statement. For this, take any u, v ∈ BM(x∗; Qδn) and
let γ (u, v) denote the geodesic between u and v. This geodesic will be covered by a
subsequence Bt1, . . . , Btk of the cover of M, which we rank in order of appearance
moving from u to v. Let ct1 , . . . , ctk denote the corresponding centers of these balls,
see Fig. 2. On the event Cn each ball contains a vertex xti ∈ Gn and since

dM(u, xt1), dM(v, xtk ) ≤ 2
λn

4
= λn

2
,

the edges (u, xt1) and (v, xtk ) are present in Gn(u, v). Moreover, since dM(xti , xti+1)

is bounded by four times the radius of the balls, it follows that for large enough n,
dM(xti , xti+1) ≤ λn = o(εn) and thus, for n large enough, {xt1 , . . . , xtk } is a path
in Gn . We thus conclude that u and v are connected in Gn(u, v). Note that because
of this property, on the event Ωn , the extended manifold distance between d̃M is well
defined on M.

We are left to show that on the event Ωn , the extended manifold distance is a
true distance. Note that the only non-trivial part is the triangle inequality. Let u, v, z ∈
BM(x∗; Qδn) and consider the graphs G(1) = Gn(u, v) and G(2) = Gn(u, v, z). Now
observe that the triangle inequality can only be violated if z creates a short-cut, i.e.,
if the shortest weighted path between u and v in G(1) is longer than in G(2). Suppose
that this is true, and let π1 = {u, . . . , y1, z, y2, . . . , v} denote this new weighted
shortest path in G(2). Since y1 and y2 are connected to z in G(2) it follows that
dM(z, yi ) ≤ λn/2. However, by the triangle inequality for dM, this implies that
dM(y1, y2) ≤ λn = o(εn) and hence, for sufficiently large n, the edge (y1, y2) is
present in Gn and thus also in G(1) and G(2).

Let π̂ = {y1 := x0, x1, . . . , xm−1, y2 := xm} denote the shortest weighted path in
Gn between y1 and y2, i.e., dG(y1, y2) =∑m

t=1 wxt−1xt , and takeπ2 = {u, . . . , y1, x1,
. . . , xm−1, y2, . . . , v}. Then π2 is a path between u and v that excludes z. See also
Fig. 3. We will show that the total weight of this path is at most that of π1.

For simplicity lets us denote by ‖π‖ the total weight of a path π . Since dG is a
δn-good approximation,

‖π̂‖ :=
m∑

t=1

wxt−1xt = dG(y1, y2) ≤ dM(y1, y2)(1 + ξ2n ) + ξ3n
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1 2

ˆ

y y

u v

z

π

Fig. 3 Abstract depiction of the weighted shortest path between u and v created by adding z and the path π2,
given in blue

holds on the event Ωn . Applying the triangle inequality for dM we get

‖π̂‖ ≤ dM(y1, z)(1 + ξ2n ) + dM(z, y2)(1 + ξ2n ) + ξ3n

≤ dM(y1, z)(1 + ξ2n ) + dM(z, y2)(1 + ξ2n ) + 2ξ3n = wy1z + wy2z .

This implies that the total weight of the path π2 is at most that of π1 from which we
conclude that z cannot create a short-cut and hence d̃M satisfies the triangle inequality.

��
We are now ready to prove Lemma 1.

Proof of Lemma 1 Note that for any two nodes u, v ∈ Gn with u, v ∈ BM(x∗; Qδn),
Lemma 3 implies that u and v are connected by a path in Gn . Hence the only part of
Lemma 1 to prove is property (Ω1) there.

Take any u, v ∈ BM(x∗; 3δn). Then on the event Ωn , by definition of the extended
distance d̃M, there exists xu, xv ∈ Gn such that dM(u, xu) ≤ λn/2, dM(v, xv) ≤
λn/2, and

d̃M(u, v) = dM(u, xu)(1 + ξ2n ) + dM(v, xv)(1 + ξ2n ) + 2ξ3n + dG(xu, xv)

≤ λn(1 + ξ2n ) + 2ξ3n + dG(xu, xv). (15)

Moreover, since Q > 3 and λn = o(δ3n) we can assume that xu, xv ∈ BM(x∗; Qδn),
for sufficiently large n. Since the approximation (4) holds on the event Ωn , we have

|dG(xu, xv) − dM(u, v)| ≤ |dG(xu, xv) − dM(xu, xv)| + |dM(xu, xv) − dM(u, v)|
≤ |dG(xu, xv) − dM(xu, xv)| + dM(xu, u) + dM(xv, v)

≤ dM(xu, xv)ξ
2
n + ξ3n + dM(xu, u) + dM(xv, v)

≤ dM(xu, xv)ξ
2
n + ξ3n + λn . (16)

Combining (15) and (16) we get

|d̃M(u, v) − dM(u, v)| ≤ |d̃M(u, v) − dG(xu, xv)| + |dG(xu, xv) − dM(u, v)|
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≤ λn(1 + ξ2n ) + 2ξ3n + |dG(xu, xv) − dM(u, v)|
≤ λn(1 + ξ2n ) + dM(xu, xv)ξ

2
n + 3ξ3n + λn .

Applying the triangle inequality to the last distance,

dM(xu, xv) ≤ dM(u, v) + dM(u, xu) + dM(v, xv) ≤ dM(u, v) + λn,

we get

|d̃M(u, v) − dM(u, v)| ≤ dM(u, v)ξ2n + 2λn(1 + ξ2n ) + 3ξ3n = o(δ3n). ��

Finally, we need to prove Proposition 1. Since, on the event Ωn ,

|d̃M(u, v) − dM(u, v)| ≤ o(δ3n),

the proof follows immediately from the following elementary result on Wasserstein
metrics.

Lemma 4 Let (X , d) and (X , d̃) be two metric spaces such that

|d(x, y) − d̃(x, y)| ≤ K

holds for all x, y ∈ X and some K > 0. Denote by W1 and W̃1 the Wasserstein metric
associated with d and d̃, respectively. Then for any two probability measures μ1 and
μ2 on X ,

|W̃1(μ1, μ2) − W1(μ1, μ2)| ≤ K .

Proof For any coupling μ between μ1 and μ2,

∫
d̃(x, y) dμ(x, y) ≤

∫
(d(x, y) + K ) dμ(u, v) ≤

∫
d(x, y) dμ(x, y) + K

and similarly

∫
d(x, y) dμ(x, y) ≥

∫
d̃(x, y) dμ(x, y) + K

Then it follows that

W̃1(μ1, μ2)

= inf
μ

∫
d̃(x, y) dμ(x, y) ≤ inf

μ

∫
d(x, y) dμ(x, y) + K = W1(μ1, μ2) + K

and similarly

W1(μ1, μ2) ≤ W̃1(μ1, μ2) + K ,
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from which the result follows. ��

5.2 Probability Measures on Graphs

In this section we give the proof of Proposition 2. Recall that mG
x and mM

x denote
the uniform probability measures on the set of nodes in BG(x; δn) and BM(x; δn),
respectively. The goal is then to show that

E
[
W1(m

G
x , mM

x )
] = o(δ3n).

As we mentioned, these two sets are not necessarily contained in each other. Hence,
to bound the Wasserstein metric we will work with slightly smaller and larger balls
B− and B+ such that

B− ∩ Gn ⊆ BG(x; δn),BM(x; δn) ∩ Gn ⊆ B+ ∩ Gn .

We can then obtain an upper bound by comparing theWasserstein metric betweenmG
x ,

mM
x , and the uniform probabilitymeasure on B+∩Gn . This bound can bemade o(δ3n),

by carefully selecting the radii of B− and B+.
Before we give the details, we need the following general result concerning Poisson

random variables.

Lemma 5 Let αn, βn → ∞ and Xn, Yn be two independent Poisson random variables
with means αn and βn, respectively. Then

E

[
Xn

Xn + Yn

∣
∣
∣ Xn + Yn ≥ 1

]

= O

(
αn

αn + βn

)

.

Proof First, let C >
√
2 be some large fixed constant. Then we have that (c.f. [32,

Lemma 2.1])

P
(|Xn − αn| > C

√
αn logαn

) = O
(
α

−C2/2
n

)
.

In particular, if we define α±
n = αn ± C

√
αn logαn , then

max {P(Xn < α−
n ),P(Xn > α+

n )} = O
(
α

−C2/2
n

)
.

Similar results hold for Yn with β±
n defined similarly. We start by conditioning on Xn :

E

[
Xn

Xn + Yn

∣
∣
∣ Xn + Yn ≥ 1

]

=
∑

k=0

E

[
k

k + Yn

∣
∣
∣ Yn ≥ 1

]

· P (Xn = k)

=
∑

k<α−
n

E

[
k

k + Yn

∣
∣
∣ Yn ≥ 1

]

· P (Xn = k)
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+
∑

k≥α−
n

E

[
k

k + Yn

∣
∣
∣ Yn ≥ 1

]

· P (Xn = k) := I (1)
n + I (2)

n .

We will bound each term separately.

First we bound the expectation inside each summation by further conditioning
on Yn :

E

[
k

k + Yn

∣
∣
∣ Yn ≥ 1

]

≤ k

k + 1
P(1 ≤ Yn < β−

n )

+
∑

β−
n ≤y≤β+

n

k

k + y
P(Yn = y) + k

k + β+
n
P(Yn > β+

n )

≤ k

(
1

k + β−
n

+ P
(|Yn − βn| > C

√
βn logβn

)

k + 1

)

≤ k

k + β−
n

(
1 + O

(
β
1−C2/2
n

)) = k

k + β−
n

(1 + o(1)),

because C >
√
2. We can now bound I (1)

n as follows:

I (1)
n ≤ α−

n

β− P(Xn < α−
n ) = O

(
(β−

n )−1α
1−C2/2
n

) = O
(
β−1

n α
1−C2/2
n

)
,

where we used that β−
n ∼ βn , i.e., β−

n /βn → 1. For I (2)
n we have, using that α−

n ∼ αn ,

I (2)
n ≤ (1 + o(1))

∑

k≥α−
n

k

k + β−
n
P (Xn = k) ≤ O

(
E[Xn]

α−
n + β−

n

)

= O

(
αn

αn + βn

)

,

and thus the result follows since we are free to select C >
√
2 large enough so that

I (1)
n is of smaller order. ��
We are now ready to prove Proposition 2.

Proof of Proposition 2 Let δ±
n = (δn ± ξ3n )/(1∓ ξ2n ) and let Dn be the event on which

approximation (4) of Definition 4.1 holds and recall that Ωn ⊂ Dn . Therefore, since
P (Ωn) → 1,

E
[
W1(m

G
x , mM

x ) | Ωn
] ≤ (1 + o(1))E

[
W1(m

G
x , mM

x )1{Dn}
]
,

and so it suffices to look at E
[
W1(mG

x , mM
x )1{Dn}

]
.

Note that on the event Dn ,

BM(x; δ−
n ) ∩ Gn ⊆ BG(x; δn),BM(x; δn) ∩ Gn ⊆ BM(x; δ+

n ) ∩ Gn .
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Let Vn ⊆ M be any neighborhood of x such that volM(Bn) = Θ(δN
n ) and

BM(x; δ−
n ) ⊆ Bn ⊆ BM(x; δ+

n ) ∩ Gn,

where Bn = Vn ∩ Gn . Denote by mn the uniform probability measure on Bn . We will
prove that

E
[
W1(mn, m+

x )1{Dn}
] = o(δ3n). (17)

Since

E
[
W1(m

G
x , mM

x )1{Dn}
] ≤ E

[
W1(m

G
x , m+

x )1{Dn}
]+ E

[
W1(m

M
x , m+

x )1{Dn}
]
,

applying (17) twice, once withBn = BG(x; δn) and once withBn = BM(x; δn)∩Gn ,
will yield the required result.

Let us write B±
n := BM(x; δ±

n ) ∩ Gn and denote by m±
x the uniform probability

measure on B±
n . To establish (17) we will show that

E
[
W1(mn, m+

x )1{Dn}
] = O

(
(δ+

n )N − (δ−
n )N

(δ+
n )N−1

)

. (18)

Note that by definition of δ±
n we have (δ+

n )N − (δ−
n )N = O(ξ2n δN

n ). Therefore, if (18)
holds,

E
[
W1(mn, m+

x )1{Dn}
] ≤ O

(
(δ+

n )N − (δ−
n )N

δN−1
n

)

= O(δnξ2n ) = o(δ3n),

since ξn = o(δn). To establish (18) we condition on |B−
n |:

E
[
W1(mn, m+

x )1{Dn}
] = E

[
W1(mn, m+

x )1{Dn} | |B−
n | = 0

] · P(|B−
n | = 0)

+ E
[
W1(mn, m+

x )1{Dn} | |B−
n | ≥ 1

] · P(|B−
n | ≥ 1).

For the first term we have

E
[
W1(mn, m+

x )1{Dn} | |B−
n | = 0

] · P(|B−
n | = 0) ≤ 2δ+

n P(|B−
n | = 0)

= O(δ−
n )e−nΘ((δ−

n )N ) = O

(
(δ+

n )N − (δ−
n )N

(δ+
n )N−1

)

,

where we used that E[|B−
n |] = n volM(B−

n ) = nΘ((δ−
n )N ). It now suffices to show

that

E
[
W1(mn, m+

x )1{Dn} | |B−
n | ≥ 1

] = O

(
(δ+

n )N − (δ−
n )N

(δ+
n )N−1

)

. (19)
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We will do this by constructing a specific transport plan (coupling) between the mea-
sures mn and m+

x . Define the joint probability mass function on Bn × B+
n :

m(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

1

|B+
n | if u = v,

1

|Bn| · |B+
n | if v ∈ B+

n \ Bn,

and observe that m(u, v) is a coupling between mG
x and m+

x . Therefore

W1(m
G
x , m+

x ) ≤
∑

u∈Bn

∑

v∈B+
n

dM(u, v)m(u, v) =
∑

u∈Bn

∑

v∈B+
n \Bn

dM(u, v)

|Bn| · |B+
n |

≤ 2δ+
n

|B+
n | − |Bn|
|B+

n | ≤ 2δ+
n

|B+
n | − |B−

n |
|B+

n | = 2δ+
n

|B+
n \ B−

n |
|B+

n | .

Now define Xn = |B+
n \B−

n | and Yn = |B−
n |. Then Xn and Yn are independent Poisson

random variables satisfying

|B+
n \ B−

n |
|B+

n | = Xn

Xn + Yn
.

It then follows from Lemma 5 that

E
[
W1(mx , m+

x ) | |B−
n | ≥ 1

] ≤ O

(
δ+

n E[Xn]
E[Xn] + E[Yn]

)

= O

(
δ+

n volM(B+
n \ Bn)

volM(B+
n )

)

.

Equation (19) then follows by noting that volM(B+
n \ Bn) = Θ((δ+

n )N − (δ−
n )N ). ��

5.3 Continuous and Discrete Measures onM

5.3.1 Collecting Relevant Known Results

The following is a summary of results on the Wasserstein metric between empirical
and uniform measures on the N -dimensional cube. The case N = 2 was explicitly
stated in [39]. Although the results for N ≥ 3 are known, they are not stated in the
explicit form we need. For completeness we thus include a proof here.

Proposition 6 Let X1, X2, . . . be independent uniformly distributed random variables
on [0, 1]N , let mn denote the empirical measure

mn(y) = 1

n

n∑

i=1

1{Xi =y},
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and μ the uniform measure on [0, 1]N . Then

E
[
W N

1 (mn, μ)
] =

⎧
⎪⎨

⎪⎩

O

(√
log n

n

)

if N = 2,

O(n−1/N ) if N ≥ 3.

Proof The result for N = 2 follows from [39, (1.1)], see also the results in [22, 35].
For N ≥ 3 we let Y1, Y2, . . . be independent uniformly distributed random variables
on [0, 1]N and define

Mn := inf
σ

n∑

i=1

‖Xi − Yσ(i)‖,

where the infimum is taken over all permutations σ of {1, 2, . . . , n}. Then, it follows
from [38, Lemma 1] that

Mn = sup
f ∈Lip1

∣
∣
∣
∣
∣

n∑

i=1

( f (Xi ) − f (Yi ))

∣
∣
∣
∣
∣
,

where Lip1 now denotes the set of Lipschitz continuous functions with constant 1,
with respect to the Euclidean distance dN .

Next, we recall the duality formula for the Wasserstein metric on the space X ,

W1(μ1, μ2) = sup
f ∈Lip1

{∫

X
f (x) dμ1(x) −

∫

X
f (y) dμ2(y)

}

.

Since
∫

[0,1]N
f (z) dμ(z) = E[ f (Yi )],

we have

W N
1 (mn, μ) = sup

f ∈Lip1

∣
∣
∣
∣
∣
1

n

n∑

i=1

(

f (Xi ) −
∫

[0,1]N
f (z) dμ(z)

)∣∣
∣
∣
∣

= 1

n
sup

f ∈Lip1

∣
∣
∣
∣
∣

n∑

i=1

( f (Xi ) − E[ f (Yi )])
∣
∣
∣
∣
∣

≤ 1

n
E

[

sup
f ∈Lip1

∣
∣
∣
∣
∣

n∑

i=1

( f (Xi ) − f (Yi ))

∣
∣
∣
∣
∣

∣
∣
∣
∣ X1, . . . , Xn

]

= E[Mn | X1, . . . , Xn]
n

,
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and hence

E
[
W N

1 (m X , μ)
] ≤ E[Mn]

n
.

Finally [38, Thm. 1] implies for N ≥ 3,

E[Mn] = O(n1−1/N ),

which then yields

E
[
W N

1 (mn, μ)
] = O(n−1/N ). ��

5.3.2 Uniform and Discrete Measures on the Unit Cube

We first extend Proposition 6 to the case where the points correspond to a Poisson
process. We will actually proof a slightly more general version which allows for
intensities (1 + o(1))n.

Lemma 6 Consider the N-dimensional unit cube [0, 1]N , with N ≥ 2, and consider
a Poisson process P with intensity measure (1 + fn)n dvolN on [0, 1]N , for some
sequence fn → 0. Let m N

P denote the empirical random measure with respect to P ,
i.e.,

m N
P (y) = 1

|P|
∑

p∈P
1{p=y},

and μN the uniform measure on the square. Then, as n → ∞,

E
[
W N

1 (m N
P , μN )

] = O(n−1/N log n).

Proof We shall establish the result by conditioning on the size |P|which has a Poisson
distribution with mean (1 + fn)n. Conditioned on |P| = k, each point is uniformly
distributed and therefore it follows from Proposition 6 that as kn → ∞

E
[
W1(m

N
P , μN ) | |P| = kn

] =

⎧
⎪⎨

⎪⎩

O

(√
log kn

kn

)

if N = 2

O
(
k−1/N

n
)

if N ≥ 3

= O
(
k−1/N

n

√
log kn

)
.

(20)

Recall the Chernoff concentration result [32, Lemma 1.2] for a Poisson random vari-
able Po(a) with mean a:

P(|Po(a) − a| > x) ≤ 2e−x2/(2(a+x)). (21)
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Fix a c > 0. Then by (21) with a = (1 + fn)n and x = c
√

(1 + fn)n log n,

P
(|Po((1 + fn)n) − (1 + fn)n| > c

√
(1 + fn)n log n

)

≤ 2 exp
−c2(1 + fn)n log n

2
(
(1 + fn)n + c

√
n log n

) = O
(
e−(c2 log n)/2) = O

(
n−c2/2).

Therefore, if we define

a±
n = (1 + fn)n ± c

√
(1 + fn)n log n,

it follows that

P(Po((1 + fn)n) < a−
n )

= P
(
(1 + fn)n − Po((1 + fn)n) > c

√
(1 + fn)n log n

)

≤ P
(|Po((1 + fn)n) − (1 + fn)n| > c

√
(1 + fn)n log n

) = O
(
n−c2/2),

and similarly

P(Po((1 + fn)n) ≥ a+
n ) = O

(
n−c2/2).

Weshall use this and the upper bound (20) forE
[
W N

1 (m N
P , μN ) | |P| = kn

]
to compute

an upper bound for E
[
W N

1 (m N
P , μN )

]
as follows:

E
[
W N

1 (m N
P , μN )

] =
a−

n −1∑

k=0

E
[
W1(m

N
P , μN ) | |P| = k

] · P(Po((1 + fn)n) = k)

+
a+

n∑

k=a−
n

E
[
W1(m

N
P , μN ) | |P| = k

] · P(Po((1 + fn)n) = k)

+
∞∑

k=a+
n +1

E
[
W1(m

N
P , μN ) | |P| = k

] · P(Po((1 + fn)n) = k)

:= I1 + I2 + I3.

Since any two points in [0, 1]N are at most at distance
√

N , we have for I1

I1 ≤ √
N

a−
n −1∑

k=0

P(Po((1 + fn)n) = k) = O(P(Po((1 + fn)n) < a−
n )) = O

(
n−c2/2),

while for I3 we get, using (20),

I3 ≤ O
(
(a+

n )−1/N
P(Po((1 + fn)n) > a+

n )

√
log a+

n

)
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= O
(
(a+

n )−1/N n−c2/2
√
log a+

n

)
= O

(
n−c2/2−1/N

√
log n

)
.

The main contribution comes from I2 for which we use that k �→ P(Po(Qn) = k) is
concave on [a−

n , a+
n ] and attains is maximum at k = (1 + fn)n to obtain

I2 ≤ O
(
n−1/N

√
log n

)
P(Po((1 + fn)n)) = n(1 + fn)(a+

n − a−
n )

≤ O
(
n−1/N

√
log n

) 2(1 + fn)c
√

(1 + fn)n log n√
2π

√
n

= O(n−1/N log n),

where we used (20) with kn = (1+ fn)n for the first line and Stirling’s approximation
for n! for the second line. Since c > 0 was arbitrary we conclude that

E
[
W N

1 (m N
P , μN )

] = O(n−1/N log n). (22)

��

5.3.3 Uniform and Discrete Measures on the BallBM(x;ın)

The following result follows from Lemma 6 by a simple rescaling argument.

Corollary 3 Let rn → 0 and consider a Poisson process P with intensity n on the
N-dimensional square [0, 2rn]N . Let m N

P denote the empirical measure on the square
[0, 2rn]N with respect to P , i.e.,

m N
P (y) = 1

|P ∩ [0, 2rn]N |
∑

p∈P
1{p=y}1{y∈[0,2δn ]N },

and μN the uniform measure on the square [0, 2rn]N . Then

E
[
W N

1 (m N
P , μN )

] = O(n−1/N log n).

Proof Consider the map φ : [0, 2rn]N → [0, 1]N defined by φ(x) = r−1
n x/2. Then

φ(P) is a Poisson Point Process on [0, 1]N with intensity measure 2N r N
n n. Now let

m̂ N
P = m N

P ◦ φ−1 and μ̂N = μN ◦ φ−1 denote, respectively, the empirical measure
with respect to φ(P) and the uniform measure on [0, 1]N . It follows from Lemma 6
that

E
[
W N

1 (m̂ N
P , μ̂N )

] = O
(
rnn−1/N log(nr N

n )
) = O

(
n−1/N rn(log n + N log rn)

)
.

Since for any x, y ∈ [0, 2rn]N we have dN (φ(x), φ(y)) = 2−1r−1
n dN (x, y) it follows

that

E
[
W1(m

N
P , μN )

] = 2−1r−1
n E

[
W1(m̂

N
P , μ̂N )

]
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= O
(
n−1/N (log n + N log rn)

) = O(n−1/N log n),

because rn → 0. ��
For our analysis we first extend Corollary 3 to N -dimensional balls. For this we note
that if m N

x andμN
x denote, respectively, the empirical and uniformmeasure on the ball

BN (x; δn) ⊆ R
N , then

W N
1 (m N

x , μN
x ) ≤ W N

1 (m N , μN ),

where m N and μN are, respectively, the empirical and uniform measure on a cube
[0, 2δn]N . It then follows from Corollary 3 that

E
[
W1(m

N
x , μN

x )
] = O(n−1/N log n) = o(λn) = o(δ3n).

We thus have the following result:

Proposition 7 Let fn → 0, x ∈ R
N , and consider a Poisson process P with intensity

measure (1 + fn)n dvolN on the N-dimensional ball BN (x; δn). Let m N
x denote the

empirical measure with respect to P , i.e.,

m N
x (y) = 1

|P|
∑

p∈P
1{p=y},

and μN
x the uniform measure on BN (x; δn). Then

E
[
W N

1 (m N
x , μN

x )
] = o(δ3n).

5.3.4 From the Manifold to the Tangent Space and Back

To prove Proposition 3 we have to extend Proposition 7 to the setting of Riemannian
manifolds. For this we use that for n large enough, the ball BM(x; δn) can be mapped
diffeomorphically by the exponential map to a slightly larger ball in the tangent space
of x . Since the tangent space is diffeomorphic to R

N we can use Proposition 7 to
obtain the result. However, we have to be careful since the exponential map does not
preserve the metric.

Proof of Proposition 3 We shall denote byBN (x; δ) the ball of radius δ around x ∈ R
N ,

according to the Euclidean metric. Fix a 0 < ξ < 1 and pick a small enough, but fixed,
neighborhood U of the origin in TxM such that: 1) the exponential map restricted to
U is a diffeomorphism, 2) there exists a constant C > 1 such that U ⊆ BN (0; Cδn),
and 3) for any two points y, z ∈ exp(U ),

(1 − ξ)dN
(
exp−1

x y, exp−1
x z
) ≤ dM(y, z) ≤ (1 + ξ)dN

(
exp−1

x y, exp−1
x z
)
.

123



Discrete & Computational Geometry (2023) 70:671–712 707

In particular, this implies that for n large enough,

BN

(

0; δn

1 + ξ

)

⊆ exp−1{BM(x; δn)} ⊆ BN

(

0; δn

1 − ξ

)

⊂ U .

Next we note that the probability measures mM
x and μ

δn
x on BM(x; δn) only depend

on the restriction of the Poisson process to this ball. In particular it only depends
on the restriction PU of the process to the fixed neighborhood U , which is again a
Poisson processwith intensity n dvolM/volM(M). SinceU ⊆ BN (0; Cδn) it follows
that on U , volM ◦ expx = (1+ O(δ2n)) volN . Therefore, it follows from the Mapping
Theorem for Poisson processes [21] that exp−1

x (PU ) is a Poisson process on exp−1
x (U )

with intensity function (1 + O(δ2n))n dvolN /volM(M).
Slightly abusing notation, let m N

x and μN
x denote respectively the empirical and

uniform measure on BN (0; δn/(1 − ξ)) with respect to the Poisson Point Process
exp−1

x (PU ). Then, since δn/(1 − ξ) = Θ(δn), Proposition 7 implies that

E
[
W N

1 (m N
x , μN

x )
] = o(δ3n).

On the other hand we have, since expx is a diffeomorphism on U , that

E
[
W1(m

M
x , μδn

x )
] ≤ (1 + ξ)E

[
W N

1 (m N
x , μN

x )
]
,

and hence we conclude that

E
[
W1(m

M
x , μδn

x )
] = o(δ3n),

which proves Proposition 3. ��

5.4 Weighted Graph Distances

Recall that λn = n−1/N (log n)2/N . To prove Proposition 4we first show the following.

Lemma 7 Let Q > 3, U = BM(x∗; Qδn), and define the event

An :=
⋃

u,v∈U∩Gn

{

|dw
G (u, v) − dM(u, v)| > dM(u, v)

3λn

εn
+ 2λn

}

.

Then P (An) = o(δ3n), as n → ∞.

Proof The proof closely follows the strategy of the proof of Lemma 3. Let Cn denote
the event in Corollary 2. We will show that on this event,

|dw
G (u, v) − dM(u, v)| ≤ 3dM(u, v)λn

εn
+ 2λn
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u1

2

−1

1

2

−1

. . . . . .

u u

u

v
x

x

x

k

k

Fig. 4 Depiction of the splitting of the geodesic between u and v in k equal segments

for all u, v ∈ U ∩ Gn . This then implies that P(An ∩ Cn) = 0 from which the results
follows, since by Corollary 2

P(An) ≤ P(An ∩ Cn) + (1 − P(Cn)) = o(δ3n).

Take any two u, v ∈ U ∩ Gn and let γ (u, v) denote the geodesic between u and v.
We then partition this geodesic into

k =
⌈
3dM(u, v)

εn

⌉

≤ 3dM(u, v)

εn
+ 1.

pieces of equal length and let u := u0, u1, . . . , uk−1, uk := v denote the k + 1 end-
points of the intervals, see Fig. 4. On the event Cn , each ut belongs to some ball Bt of
radius λn/4 which contains a vertex xt ∈ G, where we can take x0 = u and xk = v.
In particular, since dM(ut , xt ) ≤ λn/2, dM(ut−1, ut ) ≤ εn/3 and λn = o(εn), it
follows that for large enough n,

dM(xt , xt+1) ≤ dM(ut , xt ) + dM(ut+1, xt+1) + dM(ut , ut+1) ≤ λn + εn

3
≤ εn,

so that {u, x1, . . . , xk, v} is a path in Gn (see Fig. 4). Moreover, dw
G (xt , xt+1) ≤

dM(ut , ut+1) + λn by the triangle inequality. Therefore,

dw
G (u, v) ≤

k−1∑

t=0

dw
G (xt , xt+1) ≤

k−1∑

t=0

(dM(ut , ut+1) + λn)

≤ dM(u, v) + kλn ≤ dM(u, v)

(

1 + 3λn

εn

)

+ λn .

To finish the proof we note that by definition dw
G (u, v) ≥ dM(u, v) and hence

|dw
G (u, v) − dM(u, v)| = dw

G (u, v) − dM(u, v) ≤ 3dM(u, v)λn

εn
+ 2λn .

��
Proof of Proposition 4 Due to Lemma 7 it suffices to show that the conditions on εn

and δn imply λn/εn = o(δ2n). We compute that

λn

εnδ2n
= Θ

(
nα+2β−1/N (log n)2/N−a−2b).
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The latter is o(1) precisely when either α + 2β < 1/N or α + 2β = 1/N and
a + 2b > 2/N , which are the conditions of Proposition 4. Thus, under the conditions
of Proposition 4 it holds that the manifold-weighted graph distance dw

G is a δn-good

approximation with ξn = max
{√

λn/εn, λ
1/3
n
}
. ��

5.5 Rescaled Graph Distances

Consider the 2-dimensional Euclidean space equipped with the Euclidean distance d2.
Let C = [0, 1]2 and take Gn = Gn(ε) to be the random geometric graph on C with
connection radius ε. The main result in [9] relates the shortest-path distance ds

Gn
and

the Euclidean distance d2. We state a version of this result here, which includes the
error bounds that follow from [9, Propositions 2.2 and 2.4].

Theorem 5 [9, Thm. 1.1]Consider the random geometric graph Gn on the unit square
[0, 1]2 with connection radius εn = o(1). Then for any pair of vertices x, y ∈ Gn with
d2(x, y) > εn, the following holds:

– If d2(x, y) ≥ max {12(log n)3/2/(nεn), 21εn log n}, then

P

(

ds
G(x, y) ≥

⌊
d2(x, y)

εn

(

1 + 1

2(nεnd2(x, y))2/3

)⌋)

≥ 1 − o(n−5/2).

– If εn ≥ 224
√

(log n)/n then

P

(

ds
G(x, y) ≤

⌈
d2(x, y)

εn
(1 + γn)

⌉)

≥ 1 − o(n−5/2)

with

γn := max

{

1358

(
3 log n

nε2n + nεnd2(x, y)

)2/3
,
4 · 106(log n)2

n2ε4n
,

(
30000

nε2n

)2/3}

.

From this we obtain the following result, which gives bounds on the graph distance
εnds

G in terms of the manifold distance, between two nodes of the graph Gn that are
within manifold distance O(δn).

Lemma 8 Let εn ≥ 244
√

(log n)/n, Q > 3, U = BM(x∗; Qδn), and define the event

An :=
⋃

u,v∈U∩Gn

{|εnds
G(u, v) − dM(u, v)| > dM(u, v)γn + εn}.

Then P(An) = o(δ3n), as n → ∞.

Proof Note that since the the neighborhood U is shrinking as n increases we can map
it to R

2 diffeomorphically for sufficiently large n. This affects the distances at most
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by a constant factor and hence it suffices to prove the statement for M = R
2. By the

second statement of Theorem 5 we have that for any two u, v ∈ U ∩ Gn ,

P(|εnds
G(u, v) − dM(u, v)| > dM(u, v)γn + εn) = o(n−5/2).

By conditioning on the number of nodes in U (|U ∩ Gn|) and applying the union
bound we get

P(An | |U ∩ Gn|) ≤ |U ∩ Gn|o(n−5/2).

Now E[|U ∩ Gn|] = Θ(nδ2n) and therefore

P(An) = E[P(An | |U ∩ Gn|)] ≤ O(n−3/2δ2n) = o(δ3n),

where we used that n−3/2 = o(δn) for all δn = Θ(n−β(log n)b) and β ≤ 1. ��

We can now prove Proposition 5.

Proof of Proposition 5 First observe that εnds
G(u, v) ≥ dM(u, v) for all u, v ∈

BM(x∗; Qδn). Moreover, the conditions of the proposition imply that (log n)1/2n−1/2

= o(εn). Therefore, by Lemma 8 we have that with probability 1 − o(δ3n),

|εnds
G(u, v) − dM(u, v)| ≤ dM(u, v)γn + εn

for all u, v ∈ BM(x∗; Qδn)∩Gn . Moreover, since by assumption α ≥ 3β and a < 3b
if α = 3β it follows that εn = o(δ3n). Thus, to prove Proposition 5 it remains to show
that γn = o(δ2n). Since γn is the maximum of three terms

1358

(
3 log n

nε2n + nεnd2(x, y)

)2/3
,

4 · 106(log n)2

n2ε4n
,

(
30000

nε2n

)2/3
.

We will show that each of them is o(δ2n). For the first term it suffices to show that
n−1ε−2

n log n = o(δ3n). This follows since

n−1ε−2
n δ−3

n log n = O
(
n−(1−2α−3β)(log n)1−2a−3b),

which is o(1) by the assumption that 2α + 3β ≤ 1 and 2a + 3b > 1 if 2α + 3β = 1.
We now immediately have that (n−1ε−2

n log n)2 = o(δ6n), which proves that the
second term is o(δ2n). Finally, the result for the third term follows from n−1ε−2

n =
o(n−1ε−2

n log n) = o(δ3n). ��
Acknowledgements We thank Jürgen Jost and Renate Loll for useful discussions, suggestions, and com-
ments. This work was supported by ARO Grant Nos. W911NF-16-1-0391 and W911NF-17-1-0491, and
by NSF Grant Nos. IIS-1741355 and DMS-1800738.

123



Discrete & Computational Geometry (2023) 70:671–712 711

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ache, A.G., Warren, M.W.: Ricci curvature and the manifold learning problem. Adv.Math. 342, 14–66
(2019)

2. Belenchia, A., Benincasa, D.M.T., Dowker, F.: The continuum limit of a 4-dimensional causal set
scalar d’Alembertian. Class. Quantum Gravity 33(24), # 245018 (2016)

3. Benincasa, D.M.T., Dowker, F.: Scalar curvature of a causal set. Phys. Rev. Lett. 104(18), # 181301
(2010)

4. Bhattacharya, B.B., Mukherjee, S.: Exact and asymptotic results on coarse Ricci curvature of graphs.
Discrete Math. 338(1), 23–42 (2015)

5. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs. Theor. Comput.
Sci. 760, 35–54 (2019)

6. Cheeger, J., Müller, W., Schrader, R.: On the curvature of piecewise flat spaces. Commun. Math. Phys.
92(3), 405–454 (1984)

7. Cunningham, W.J., Surya, S.: Dimensionally restricted causal set quantum gravity: examples in two
and three dimensions. Class. Quantum Gravity 37(5), # 054002 (2020)

8. Cushing, D., Kamtue, S.: Long-scale Ollivier Ricci curvature of graphs. Anal. Geom. Metr. Spaces
7(1), 22–44 (2019)

9. Díaz, J., Mitsche, D., Perarnau, G., Pérez-Giménez, X.: On the relation between graph distance and
Euclidean distance in random geometric graphs. Adv. Appl. Probab. 48(3), 848–864 (2016)

10. Farooq, H., Chen, Y., Georgiou, T.T., Tannenbaum, A., Lenglet, Ch.: Network curvature as a hallmark
of brain structural connectivity. Nat. Commun. 10, # 4937 (2019)

11. Forman, R.: Bochner’smethod for cell complexes and combinatorial Ricci curvature. Discrete Comput.
Geom. 29(3), 323–374 (2003)

12. Gu, A., Sala, F., Gunel, B., Ré, Ch.: Learning mixed-curvature representations in products of
model spaces. In: International Conference on Learning Representations (New Orleans 2019).
https://openreview.net/pdf?id=HJxeWnCcF7

13. van der Hoorn, P., Cunningham, W.J., Lippner, G., Trugenberger, C., Krioukov, D.: Ollivier–Ricci
curvature convergence in random geometric graphs (2020). arXiv:2008.01209

14. Jacob, E.,Mörters, P.: Spatial preferential attachment networks: power laws and clustering coefficients.
Ann. Appl. Probab. 25(2), 632–662 (2015)

15. Jost, J.: Geometry and Physics. Springer, Berlin (2009)
16. Jost, J., Liu, Sh.: Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities on

graphs. Discrete Comput. Geom. 51(2), 300–322 (2014)
17. Kempton,M., Lippner, G., Münch, F.: Large scale Ricci curvature on graphs (2019). arXiv:1906.06222
18. Klitgaard, N., Loll, R.: Introducing quantum Ricci curvature. Phys. Rev. D 97(4), # 046008 (2018)
19. Krioukov, D.: Clustering implies geometry in networks. Phys. Rev. Lett. 116(20), # 208302 (2016)
20. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex

networks. Phys. Rev. E 82(3), # 036106 (2010)
21. Last, G., Penrose, M.: Lectures on the Poisson Process. Institute of Mathematical Statistics Textbooks,

vol. 7. Cambridge University Press, Cambridge (2018)
22. Leighton, T., Shor, P.: Tight bounds for minimax grid matching, with applications to the average case

analysis of algorithms. In: 18th Annual ACM Symposium on Theory of Computing (Berkeley 1986),
pp. 91–103. ACM, New York (1986)

23. Lin, Y., Lu, L., Yau, Sh.-T.: Ricci curvature of graphs. Tohoku Math. J. 63(4), 605–627 (2011)

123

http://creativecommons.org/licenses/by/4.0/
https://openreview.net/pdf?id=HJxeWnCcF7
http://arxiv.org/abs/2008.01209
http://arxiv.org/abs/1906.06222


712 Discrete & Computational Geometry (2023) 70:671–712

24. Liu, Sh., Münch, F., Peyerimhoff, N.: Bakry–Émery curvature and diameter bounds on graphs. Calc.
Var. Partial Differ. Equ. 57(2), # 67 (2018)

25. Najman, L., Romon, P. (eds.): Modern Approaches to Discrete Curvature. Lecture Notes in Mathe-
matics, vol. 2184. Springer, Cham (2017)

26. Ni, Ch.-Ch., Lin, Y.-Y., Gao, J., Gu, X.D., Saucan, E.: Ricci curvature of the Internet topology. In: 2015
IEEE Conference on Computer Communications (INFOCOM) (Hong Kong 2015), pp. 2758–2766.
IEEE (2015)

27. Ollivier, Y.: Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris 345(11), 643–646 (2007)
28. Ollivier, Y.: Ricci curvature ofMarkov chains onmetric spaces. J. Funct. Anal. 256(3), 810–864 (2009)
29. Ollivier,Y.:A surveyofRicci curvature formetric spaces andMarkovchains. In: ProbabilisticApproach

toGeometry (Kyoto 2008).Adv. Stud. PureMath., vol. 57, pp. 343–381.Mathematical Society of Japan,
Tokyo (2010)

30. O’Neill, B.: Semi-Riemannian Geometry. Pure and Applied Mathematics, vol. 103. Academic Press,
New York (1983)

31. Paeng, S.-H.: Volume and diameter of a graph and Ollivier’s Ricci curvature. Eur. J. Combin. 33(8),
1808–1819 (2012)

32. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability, vol. 5. Oxford University
Press, Oxford (2003)

33. Sandhu, R., Georgiou, T., Reznik, E., Zhu, L., Kolesov, I., Senbabaoglu, Y., Tannenbaum, A.: Graph
curvature for differentiating cancer networks. Sci. Rep. 5, # 12323 (2015)

34. Sandhu, R.S., Georgiou, T.T., Tannenbaum, A.R.: Ricci curvature: an economic indicator for market
fragility and systemic risk. Sci. Adv. 2(5), # e1501495 (2016)

35. Shor, P.W., Yukich, J.E.: Minimax grid matching and empirical measures. Ann. Probab. 19(3), 1338–
1348 (1991)

36. Sia, J., Jonckheere, E., Bogdan, P.: Ollivier–Ricci curvature-based method to community detection in
complex networks. Sci. Rep. 9,(2019)

37. Sreejith, R.P., Mohanraj, K., Jost, J., Saucan, E., Samal, A.: Forman curvature for complex networks.
J. Stat. Mech. Theory Exp. 2016(6), # 063206 (2016)

38. Talagrand, M.: Matching random samples in many dimensions. Ann. Appl. Probab. 2(4), 846–856
(1992)

39. Talagrand,M.:Matching theorems and empirical discrepancy computations usingmajorizingmeasures.
J. Am. Math. Soc. 7(2), 455–537 (1994)

40. Trugenberger, C.A.: Combinatorial quantum gravity: geometry from random bits. J. High Energy Phys.
2017(9), # 045 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Ollivier Curvature of Random Geometric Graphs Converges to Ricci Curvature of Their Riemannian Manifolds
	Abstract
	1 Introduction
	2 Notations and Definitions
	2.1 Geometric Graphs
	2.2 Random Geometric Graphs
	2.3 Ollivier–Ricci Curvature on Graphs
	2.4 Curvature in Riemannian Manifolds

	3 Main Results
	3.1 Graphs with Manifold Weighted Distance
	3.2 Graphs with Hop Count Distance
	3.3 Summary, Comments, Caveats, and Outlook

	4 Proof Overview
	4.1 Ollivier Curvature on Riemannian Manifolds
	4.2 Extending the Graph Distance to the Manifold
	4.3 Approximating Probability Measures on Graph Balls
	4.4 Coupling Continuous and Discrete Probability Measures on mathcalM
	4.5 Proof of the Main Results

	5 Proofs
	5.1 Extended Graph Distance
	5.2 Probability Measures on Graphs
	5.3 Continuous and Discrete Measures on mathcalM
	5.3.1 Collecting Relevant Known Results
	5.3.2 Uniform and Discrete Measures on the Unit Cube
	5.3.3 Uniform and Discrete Measures on the Ball mathcalBmathcalM(x;δn)
	5.3.4 From the Manifold to the Tangent Space and Back

	5.4 Weighted Graph Distances
	5.5 Rescaled Graph Distances

	Acknowledgements
	References




