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Abstract

Curvature is a fundamental geometric characteristic of smooth spaces. In recent years
different notions of curvature have been developed for combinatorial discrete objects
such as graphs. However, the connections between such discrete notions of curvature
and their smooth counterparts remain lurking and moot. In particular, it is not rigor-
ously known if any notion of graph curvature converges to any traditional notion of
curvature of smooth space. Here we prove that in proper settings the Ollivier—Ricci
curvature of random geometric graphs in Riemannian manifolds converges to the Ricci
curvature of the manifold. This is the first rigorous result linking curvature of random
graphs to curvature of smooth spaces. Our results hold for different notions of graph
distances, including the rescaled shortest path distance, and for different graph densi-
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ties. Here the scaling of the average degree, as a function of the graph size, can range
from nearly logarithmic to nearly linear.

Keywords Graph curvature - Ollivier—Ricci curvature - Random geometric graphs -
Riemannian manifolds
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1 Introduction

Curvature is a fundamental concept in the study of geometric spaces. Itis alocal param-
eter whose behavior often controls global phenomena on the manifold. In particular,
bounds on the Ricci curvature are known to imply an array of properties, including
diameter bounds, control of the spectrum, and sub-Gaussian decay of the heat ker-
nel. If the curvature of some space is upper-bounded by a negative value, then such
space has a boundary at infinity and some other universal characteristics of (coarsely)
hyperbolic spaces. Unfortunately, most notions of curvature are applicable only to
smooth continuous spaces, such as Riemannian and pseudo-Riemannian manifolds.
While there exist some combinatorial notions of curvature [6, 11], none has the same
power as their smooth counterparts. We refer to [25] for a general overview of discrete
curvatures. The focus of this paper is graph curvature.

In [27-29], Yann Ollivier introduced a definition of curvature for general metric
spaces as a discretization of the well-known Ricci curvature. Since this definition is
applicable to any metric space, it is applicable to graphs in particular. Even though
relatively recent, it has already proven to be quite influential and fruitful. In analysis
of networks, Ollivier—Ricci curvature has been used, for example, to identify com-
munities [36], analyze cancer cells [33], asses the fragility of financial networks [34]
and robustness of brain networks [10], and to embed networks for machine learning
applications [12]. Ollivier—Ricci curvature has also been analyzed for several types of
(random) graphs including Erd6s—Rényi random graphs [23]. Some general bounds
for this curvature have also been established based on different graph properties [4,
16, 23]. These and other applications of Ollivier—Ricci curvature have also stimulated
general interest in graph curvature, leading to the introduction and studies of many
other notions of graph curvature [8, 17, 24, 37].

An interesting aspect of Ollivier—Ricci curvature (or any other notion of discrete
curvature) is that it creates a bridge between geometry and discrete structures. For
example, discrete curvatures play an important role in the field of manifold learning
where the discrete objects are data points lying on some manifold, and the task is to
learn from the data the properties of the manifold [1].

A related task is that of graph embedding: given a graph, find its embedding in a
smooth space such that graph distances between nodes are approximated by distances
in the space. Curvature has proven to be important for finding the right space to embed
the graph into [12].

In addition to these classical applications, geometry has also proven to be an impor-
tant and powerful concept for designing latent-space models of random graphs whose
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properties—such as degree distributions, clustering, distance distributions—closely
resemble those of real-world networks [5, 14, 19, 20]. These relations between geom-
etry and network properties inevitably lead to the question whether characteristics of
latent geometries of networks can be inferred from discrete properties of graphs that
represent these networks. Since curvature is a fundamental characteristic of geometry,
it is a natural first candidate for uncovering latent geometry in networks. Hence, a
proper notion of graph curvature is needed, a notion that would be known to converge
to the true curvature of the geometric space underlying the graph, if it exists.

Quantum gravity is yet another area where convergence of graph curvature is of
interest. Here one wants to find a discrete geometry that converges in the continuum
limit to the geometry of physical spacetime. To this end, Ollivier—Ricci curvature and
its variations have been extensively investigated recently [7, 18, 40].

Despite the interest in Ollivier—Ricci and related curvatures of discrete and combi-
natorial spaces, the fundamental question of convergence remains largely open. That
is, does there exist a discrete notion of curvature that converges in some limit to a
traditional notion of curvature of smooth spaces.

There are some positive results in this direction. One is for the convergence of
an angle-defect-based notion of curvature of smooth triangulations of Riemannian
manifolds [6]. Another one is a manifold learning method designed for consistent
estimation of Ricci curvature of a submanifold in Euclidean space based on a point
cloud sprinkled uniformly onto the submanifold [1]. Perhaps the closest result to ours
is the one in [2, 3] where a discrete version of the d’ Alembertian operator is defined for
causal sets in 2- and 4-dimensional Lorentzian manifolds. This discrete d’ Alembertian
is then shown to converge to the traditional d’ Alembertian in the continuum limit. To
the best of our knowledge, there currently exist no general convergence results for
truly combinatorial objects in general and random graphs in Riemannian manifolds in
particular.

In this paper we study the question of convergence of Ollivier—Ricci curvature of
graphs. We consider random geometric graphs whose nodes are a Poisson process
in a Riemannian manifold and whose edges are formed only between nodes that lie
within a given distance threshold from each other in the manifold. We show that as the
size of such graphs tends to infinity, their Ollivier—Ricci curvature recovers the Ricci
curvature of the underlying manifold. To the best of our knowledge, this is the first
result that relates a discrete notion of curvature of graphs to the continuum version of
curvature of their underlying geometry.

The remainder of the paper is structured as follows. In the next Sect. 2 we introduce
the basic notations and definitions needed to present our main results. We present these
results in Sect. 3. That section ends with some general comments and outlook. We
then provide a general overview of the proof strategy in the first half of Sect. 4. The
second half of that section contains the proofs of the main results. The final Sect. 5
contains all the remaining details and proofs of intermediate results that are skipped
in Sect. 4.
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2 Notations and Definitions
2.1 Geometric Graphs

Given a metric space (X, d), a countable node set X C X, and connection radius
¢ > 0, we define G(X, ¢) as the graph whose nodes are all the elements in X. An edge
between x, y € X exists if and only if d(x, y) < e. Since the nodes of G are points in
the metric space, we will refer to them using x and y, instead of indices i and j, and
write x € G if x is anode of G.

We will also use G, to denote the indicator of an edge between x and y in G and
define NV, to be the neighborhood of node x, i.e.,

Ny ={yeG:Gy =1}.

Note that A, = X N B(x; ¢), where B(x; ¢) denotes the closed ball around x € X of
radius ¢ with respect to the distance d, but excluding x.

2.2 Random Geometric Graphs

In this paper we consider graphs that are constructed by randomly placing points in
the metric space X, according to a Poisson process. In order to analyze a notion of
curvature on these graphs we need to impose some additional structure on X'. More
precisely, we will consider Riemannian manifolds as the spaces on which graphs are
constructed. We briefly recall some notions of Riemannian geometry needed for the
setup and refer the reader to [15, 30] for more details on the topic.

Formally, a Riemannian manifold is a pair (M, g) where M is a smooth manifold
and for each x € M, g, is a smooth inner product on the tangent space 7, M at x. This
inner product induces a metric d o4, called the Riemannian metric. Since we are mainly
interested in metric spaces, we denote a Riemannian manifold by the pair (M, d ).

Throughout the remainder of this paper we work with Riemannian manifolds that
are smooth, connected, and compact. This allows us to integrate over points in de
manifold and ensures that for any two points x, y € M there exists a shortest path
(geodesic) in M connecting x and y, whose length is dq(x, y). For any U € M
we will write volpq(U) = |, y dvol o to denote the volume of U, where vol o is the
Riemannian measure on M. With this setup we can define a random geometric graph
on a Riemannian manifold in an analogous way to classic random geometric graph in
Euclidean space.

Definition 2.1 Let (M, d4) be a smooth, connected, and compact N-dimensional
Riemannian manifold. Fix ¢ > 0 and consider a Poisson process P, on M with
intensity measure (72/vol p((M)) dvol o. Then we define the random geometric graph
Gu(e) == G(Py, ).

Remark 1 (conditions on the manifold) From a technical perspective, we only need
the manifold to be smooth. This is because we will be working on shrinking neigh-
borhoods of some fixed point x* € M. For a sufficiently small neighborhood U, we
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can always construct a volume form that is well defined on U and ensure that every
two points in U are connected by a geodesic path. We could then fix a sufficiently
small and compact neighborhood C of x* and then consider a Poisson process on C
with intensity measure (n/vol ¢ (C)) dvol a4.

The only difference with the global setup is that we would need to frame everything
in terms of sufficiently small neighborhoods and deal with possible boundary issues
in our proofs. In the end, since curvature is a local property, these issues would vanish.
Still, framing all results in this local setting would add additional technical layers to
the proofs. For convenience, we therefore choose to present everything in terms of
global and nice requirements on the manifold.

We shall next introduce a notion of curvature on random geometric graphs. Since
curvature is inherently a local property, it makes sense to define curvature on graphs
as a property of an edge. For our analysis we will take a more general approach and
consider curvature between two fixed nodes in the graph that are connected by a path.
We then analyze its behavior as the size of the graph tends to infinity.

For any x € M, we write G, (x, ¢) := G(X,, ¢), where X,, = {x} U P,. That is,
Gy, (x, &) is arandom geometric graph with x added to the node set. Similarly, for any
pair of points (x, y) € M we write G, (x, y, ¢) := G(X],, &), with X], = {x, y} U P,.
We refer to both G, (x, ¢) and G, (x, y, €) as rooted random graphs.

2.3 Ollivier-Ricci Curvature on Graphs

The definition of Ollivier—Ricci curvature uses the Wasserstein metric (transportation
distance), which we shall introduce next. Recall that a coupling between two proba-
bility measures p1 and w7 is a joint probability measure . whose marginals are |
and p7.

Definition 2.2 Let 111 and p, be probability measures on a metric space (X, d) and let
I' (i1, n2) denote the set of all couplings u between w1 and . Then the Wasserstein
metric (Kantorovich—Rubinstein distance of order one) is given by

Wi(ur, u2) = inf / d(x,y)du(x,y) (D
nel(ur,pu2) Jxxx

Remark 2 The following property of the Wasserstein distance will prove useful for us.
Suppose two probability measures have support on U C X and there exists a metric d
on X that coincides with d on U. Then the Wasserstein metric W (i1, j42) associated
with metric d equals the original Wasserstein metric associated with d.

Let G be a graph. The definition of Ollivier—Ricci curvature on graphs relies on two
ingredients, ametric on G and a family of probability measures, indexed by the vertices.

Definition 2.3 An Ollivier-triple G is a triple (G, dg, m), where G is a graph, dg a

metric on G and m = {my}ycc a family of probability measures on G for each node
x €G.
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Given an Ollivier-triple G = (G, dg, m), we write ng for the Wasserstein metric with
respect to the metric space (G, dg). We then define for any pair of nodes x,y € G
the associated Ollivier curvature as

1_m ifdg(x,y) < 00
K(x,y: G) = do(x, y) GLe Y ’ )

0 otherwise.

Remark 3 1. The concept of Ollivier—Ricci curvature is not restricted to graphs and
can be defined on any metric space where we have a sequence of probability
measures. A specific example of these are Riemannian manifolds (M, d ).

2. Note that a sequence {m, } ¢ of probability measures on G gives rise to a random
walk on the graph. The transition probabilities are given by P(x;41 € A | x; = x)
= my(A). So an Ollivier-triple consists of a graph, a metric and a random walk on
the graph. However, since we will only use concepts related to the measures m,
we refrain from using any random walk terminology.

3. When dg is the shortest path metric on G and m corresponds to the uniform
probability measures on the neighborhoods Ny, i.e., my(y) = Gyy/IN|, we are
in the classic setting for Ollivier—Ricci curvature on graphs [16, 26, 31]. In this
work, however, we shall use different combinations of metrics on graphs and
probability measures to obtain our results. This is why we define Ollivier—Ricci
curvature on graphs in a more general way.

4. The reason why we set k (x, y; G) = 0 if the nodes are not in the same connected
component is because we work with random graphs and this way we ensure that
k(x, y; G) is a real-valued random variable.

2.4 Curvature in Riemannian Manifolds

Our main results relate the standard Ricci curvature of a manifold to the Ollivier—Ricci
curvature of the random geometric graph constructed on this manifold. For this, we
briefly recall the definition of the Ricci curvature, see [15, 30].

In general, the curvature of a geometric space is intended as a local measure for
how “different" a region of the space is from that of the flat Euclidean space. Notions
of curvature in Riemannian geometry are governed by the Riemannian curvature
tensor R. Given an N-dimensional Riemannian Manifold (M, da,), a point x € M
and two vectors v, w € T, M (the tangent space of x), the Riemannian curvature tensor
withrespecttov,wisalinearmap R(v, w): T, M — T M, writtenasu — R(V, w)u
and defined in terms of the Levi-Civita connection on the tangent bundle. It quantifies
to what extent the manifold M is not isometric to flat Euclidean space.

In this paper we will use the notion of curvature called Ricci curvature. For two
vectors v and w, the Ricci curvature Ric(v, w) is defined, in terms of the Riemannian
tensor, as the trace of the linear map

u— Ru,v)iw, ueT M.
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Given a point x € M and a unit vector v € T, M, we often refer to Ric(v, v) as the
Ricci curvature of x with respect to v.

This Ricci curvature is related to another notion of curvature, called sectional cur-
vature, which is defined as

K(v.w) = (R(V, W)V, W)

(v, vi{w, w) — (v, w)2’

where (-, -) denotes the inner product on the tangent space. One can show that
Ric(v, v) is obtained by averaging the sectional curvature K (v, w) over all unit vectors
we T M.

In the remainder of this paper we will work with the Ricci curvature of a point x,
with respect to some tangent vector v. We note that it is not needed to understand the
fine details behind curvature of Riemannian manifolds to understand all the details of
the results or proofs.

3 Main Results

Here we state our results regarding the convergence of Ollivier—Ricci curvature of
random geometric graphs on Riemannian manifolds. We note that if the manifold
dimension is N = 1, then there is nothing to prove, so that we always assume that
N >2.

We mainly consider two different distances on the graphs, leading to two differ-
ent but related results. Although we consider different distances on graphs, we shall
always consider uniform measures on balls of a certain radius. We shall clearly distin-
guish between the connection radius of the graph and the radius used for the uniform
measures: The former is the connectivity distance threshold: if the distance between

connection radius: &n
measure radius: Sn

a pair of nodes in the manifold is below this threshold, then these nodes are connected
by an edge in the graph. The latter radius is the radius of the ball (either in the graph
or in the manifold) over which the uniform probability measure is distributed.

Let G, = G,(e,) be a random geometric graph on M and dg a distance on G,,.
Then, for a node x € G,, we define the graph ball of radius A around x as

Bg(x:2) :={y € Gu \ {x} :dg(x,y) = A}.

Note that B (x; 1) depends on the definition of the graph distance d¢. For our results
we consider Ollivier-triples G, = (G,, dg, m©), where m€ are the uniform measures
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on Bg(x; 68,), i.e.,

L ify e B8,
me(y) = | Botei oy 1Y € B 3)

0 else.

We reiterate that if ¢, = §,, and the graph metric dg is the shortest path distance, then
we are in the classical setting of Ollivier—Ricci curvature on graphs as considered in
the past literature [16, 26, 31].

3.1 Graphs with Manifold Weighted Distance

Let G, = G, (x*, &,) be a random rooted graph on M. Then we define the manifold
weighted graph distance d; as the weighted shortest-path distance on G, where each
edge (u, v) is assigned weight d ((u, v), corresponding to the distance between the
nodes on the manifold. Similarly to B¢ (x; A), we denote by B¢ (x; ) the graph ball of

radius A withrespect to dg; and let mv = (mg’w) reG denote the uniformly measures
on the balls B (x; 8,). Finally, given a point x € M and a vector v € T, M, we say
that another point y € M is at distance § in the direction of v, if dyq(x,y) = 8 and
y lies on the geodesic starting at x in the direction of v.

Our first result shows that for certain combinations of connection radius &, and
measure radius §,, the Ollivier—Ricci curvature on G,, converges to the Ricci curvature.

Theorem1 Let N > 2, (M, daq) be a smooth, connected, and compact N-di-
mensional Riemannian manifold, x* € M, and v a unit tangent vector at x*. Fur-
thermore, let ¢, = @ ((logn)*n=%), 8, = @ ((logn)’n=F) (as n — o) where the
constants satisfy

1
0 <a, 2B < —,
<pf<a o+ ﬂ_N

anda < bifa = B andmin{a,a +2b} > 2/N ifa +2p = 1/N. Let y; € M be at
distance 8, in the direction of v and G, = G,(x*, y;;, &,) be rooted random graphs
on M. Then for the Ollivier-triple G} = (G, dg”, m% Y)Y, it holds

|=o

Theorem 1 relates two different quantities. The first is the Ollivier—Ricci curvature in
the graph between the node x* and another node y;' that is at distance §,, from x* in
the direction of vector v. The second is the Ricci curvature of the manifold at x* in
the v-direction. The theorem says that if we properly rescale the former, it converges
in expectation to the latter.

lim

n—0o0

— Ric(v,v)

H2(N+2)K(X*,y;f; gy
E 52
n
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Remark4 1. Note that Theorem 1 states that §,; 22(N 4+ 2)k (x*, yi; GY) converges
in the L' sense to Ric(v, v). In particular, this implies the concentration result

- <’ 2N + D0 WG

2
(Sn

2;7) =0, foralln>0.

n—oo

2. Since g, 8, — 0, both the connectivity and measure neighborhoods of x* become
smaller as n grows. Indeed, curvature is a local property, so that measuring it more
accurately requires smaller regions.

3. While the connectivity neighborhood of x* is shrinking, the expected number of
x*’s neighbors lying in it is growing with 7. To see this, note that for large enough
n the volume of the ball B, (x; &,) around x € M can be approximated by that of
the N-dimensional Euclidean ball. Hence, forany x € G, (x*, y}', ,),asn — oo,

E[IN:[1 = nvolp (Ba(x; &2)) = O(nel ) = ©((logn)*Vn' M),

The conditions of the theorem imply thatoe < w428 < 1/N,sothatl —aN > 0.
This means that the average degree diverges faster than logarithmically ifa N < 1.
More generally, the conditions of Theorem 1 imply that the average degree always
diverges faster than (logn)?.

If we consider the classic setting where the connection and measure radii are the same,
&n = &y, then the following result is a direct consequence of Theorem 1.

Corollary1 Let N > 2, (M,dpq) be a smooth, connected, and compact N-di-
mensional Riemannian manifold, x* € M, and v a unit tangent vector at x*.
Furthermore, let §, = @((logn)hn_ﬂ), with B < 1/(3N) and b > 2/N when-
ever B = 1/(3N). Let yi € M be at distance 8, in the direction of v and
G, = Gu(x*, y¥, 8,) be rooted random graphs on M. Then for the Ollivier-triple
Gy = (Gp,dg ,m%™), it holds

} 0.

While the conditions in this corollary imply that the average degree in G, (x*, y;¥, 8,)
diverges faster than n>/3, Theorem 1 works for graphs where the average degree can
be almost as small as (logn)?. The crucial component for establishing the curvature
convergence in graphs with so much smaller average degree is to consider different
connection and measure radii and let the connection radius decrease at a faster rate
than the measure radius, i.e., &, < ;.

2N 2 * *, w
lim EH (N +2)rclx ’y”’g”)—Ric(v,v)

5

n—o00

Remark 5 (extreme cases for convergence of curvature) Corollary 1 covers one set
of extreme cases for the combination a, b, @ and B from Theorem 1, were we take
B to be as big as possible. This means that we compute the curvature using uniform
probability measures on a set of nodes that is as small as possible. For the true extreme
case, let > 0 be arbitrarily small and define 8 = (1 —#n)/(3N) and b = (2+1n)/N.
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Then, to calculate the curvature, we need to compute the Wasserstein metric between
uniform probability measures on neighborhoods that contain

Omel) = 0nsY) = 0 (logn) > M >+n/3),

number of nodes. The consequence, however, is that our graphs have average degree
diverging at the same rate: (log n)>+n+tn/3,

In order to get graphs whose average degree diverges as slow as possible, we need
to consider an other extreme case. Again let 7 > 0 be arbitrary small. Now we define

n

= — b:’ = —,
“ @ F=3y

For these choices we have that « + 28 = 1/N and min{a,a 4+ 2b} = a > 2/N so
that the result from Theorem 1 holds. In this case, the average degree scales as

O nely = O ((logn)Nn'=N*) = O ((logn)**n"),

which is almost logarithmic. However, we now need to compute the Wasserstein metric
with respect to the uniform measure on a number of nodes that scales as

O (ns)) = O ((logn)*n'~1/2).

That is, in order to compute curvature on graphs with almost logarithmic average
degree, we need to consider the uniform probability measure on almost the entire
graph.

3.2 Graphs with Hop Count Distance

In the previous section we considered Ollivier—Ricci curvature of graphs on Rieman-
nian manifolds, with graph edges weighted by manifold distances. These weights
encode a lot of information about the manifold metric structure, so that one may feel
not terribly surprised that we can recover manifold curvature from graph curvature
using this information. The natural question is then if it is possible to prove conver-
gence of Ollivier—Ricci curvature based on shortest path distances d;; in unweighted
graphs. It turns out that this can be done under some slightly more restrictive conditions
on the connection and measure radii.

For this we define, for any random geometric graph G, = G(g,), the rescaled
shortest path distance d(;(x, y) = ,d;(x, y). Similar to the previous setting we let
Bz (x; 8,,) denote the balls of radius §,, around in x € G, with respect to the metric
d{; and define the random walk measures

1
m9*(y) = { IBE(x: 8,)]
0 else.

ifye B*(;(X; dn),
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Theorem 2 Let (M, daq) be a smooth, connected, and compact 2-dimensional
Riemannian manifold, x* € M, and v a unit tangent vector at x*. Furthermore, let
en = O((logn)*n=%), 8, = O ((logn)’n=P) where the constants satisfy

—38

1
and 3B <a < >

0<B<

O | —

anda < 3bifa =3B and2a+3b > lifa = (1-3B)/2. Let y;: € M be at distance
8, in the direction of v and G, = G,(x*, y¥, &,) be rooted random graphs on M.
Then for the Ollivier-triple G = (G, dgn, m©*), it holds

] —o.

Remark 6 1. Note that unlike Theorem 1, here we do not include any information
on the distances between nodes on the manifold. This is because the distance 82“;n
is simply the shortest path distance on the graph G, rescaled by the connection
radius &,.

2. Observe that the theorem allows to select an « that is arbitrary close to 1/2. In
particular,

2(N + 2k (%, yii Gy)
5

lim E H — Ric(v, v)

n—o0

E[|N:[] = O(ne2) = O ((logn)**n'=2*) < O ((logn)**n%#).

Hence by selecting a small 8 we have a discrete notion of curvature that converges
on graphs with almost logarithmic average degree, without using any information
on the manifold.

3. Theorem 2 currently only works in 2-dimensional manifolds. This is because the
proof relies on results for the stretch (the fraction dg/d ) for random geomet-
ric graphs in 2-dimensional Euclidean space [9]. Our proof techniques, however,
immediately allow the results to be extended to higher dimensions, once similar
types of stretch results for these spaces are obtained.

3.3 Summary, Comments, Caveats, and Outlook

In summary, we have proven that upon proper rescaling, the Ollivier—Ricci curvature of
random geometric graphs on a Riemannian manifold converges to the Ricci curvature
of the underlying manifold.

Our first result, Theorem 1, establishes convergence of Ollivier—Ricci curvature for
a wide range of connectivity and measure radii. In particular, it contains as a corollary
the classical setting where both radii are the same, Corollary 1. The theorem does,
however, require knowledge of pairwise distances between connected nodes in the
manifold.

Our second result, Theorem 2, relaxes this requirement and establishes the same
convergence without any knowledge of distances in the manifold. This does come at
the price of slightly more restrictive conditions on the possible connection and measure
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radii. Still, as for the first result, the convergence holds all the way up to graphs whose
average degree grows very slowly (almost logarithmically).

To the best of our knowledge, these are the first rigorous results on the convergence
of a discrete notion of curvature of random combinatorial objects to a traditional
continuum notion of curvature of smooth space.

While the classical setting for Ollivier—Ricci graph curvature uses probability mea-
sures (random walks) on balls of the same radius as the graph connection radius, in
this paper we allow the radii to be different. This is an important generalization. In
particular, we find that in order for the curvature to converge on graphs with almost
logarithmic average degree, we need the probability measure radius to be much larger
than the connection radius. This is intuitively expected because in order to “feel” any
curvature in graphs with such a low density, we really need to consider large “meso-
scopic” neighborhoods in them since otherwise all we could see is local “microscopic”
Euclidean flatness. It would be interesting to see how this more general approach would
generalize known results for the classical setting of Ollivier—Ricci curvature of graph
families that have been investigated in the past, such as trees or Erd6s—Rényi random
graphs [4, 16].

In our recent numeric experiments [13], we have seen that in manifold-distance-
weighted random geometric graphs, the Ollivier—Ricci curvature convergence holds
even for graphs with constant average degree. Unfortunately, the proof techniques
presented in this paper do not allow for a direct generalization to this setting. There-
fore, other techniques are needed to (dis)confirm the convergence of Ollivier—Ricci
curvature of graphs with constant average degree. We note that one definitely cannot
expect Ollivier—Ricci curvature to converge in all possible graph sparsity settings. For
example, we definitely need the giant component to exist to talk about any curvature
convergence.

For the task of learning latent geometry in networks, our results can still be
improved, particularly by removing the requirement to know the connection radius.
When presented just with a truly unweighted realization of a random geometric graph,
this radius needs first to be learnt, estimated. It would thus be interesting to see if con-
vergence would still hold if we replace the true value of the connection radius with its
consistent estimation, e.g. based on the average degree. Here we expect the speed of
curvature convergence (if any) to depend on the speed of estimator convergence in a
possibly nontrivial way.

Finally, now that we have seen that Ollivier—Ricci curvature of random combina-
torial discretizations of smooth spaces converges to their Ricci curvature, it would
be interesting to investigate whether such convergence also holds for other popular
notions of discrete curvature. Forman—Ricci curvature [37] appears to be a good next
candidate for such investigation.

4 Proof Overview
Our main results in Theorems 1 and 2 follow from our more general result on the

Ollivier—Ricci curvature convergence in graphs whose edges are always weighted by
some weights. That is, we assume that all edges in our graphs always have some
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weights, assigned according to some scheme. For our general result it is not important
what these weights or their assignment scheme are. What is important is that the graph
distance dg between node pairs is a good approximation of the manifold distance d a4
between the corresponding pair of points. Here by graph distance we mean any metric
on the vertex set of the graph. To quantify how good this approximation is, we introduce
the following definition.

Definition 4.1 Let (M, dxq) be an N-dimensional Riemannian manifold and G, =
Gy (x*, ey) a rooted random graph on M. A graph distance dg on G, is said to be
a §,-good approximation of dpaq if dpq < dg and the following holds (as n — ©0):
there exists a Q > 3 and &, = 0(8,) such that with probability 1 — 0(63),

ld g (, v) — de (u, v)| < dpg(u, V)E2 + &7, 4)
holds for all u, v € Bap(x*; 08,) N G,,.

Remark 7 (asymptotic expressions) Most of our results will deal with asymptotic
relations, e.g. &, = 0(8,). Unless stated otherwise, these asymptotic relations will
always be understood as n — oo.

There are several examples of shortest weighted path distance that are §,,-good approx-
imation of the manifold distance. In this paper we consider two cases. In one, each
edge (u, v) has weight equal to d o (u, v), while in the other case the weight is simply
the connection radius ¢;,. An explicit example of the latter case is when the manifold
is 2-dimensional and the connection and measure radii are given by &, = n~'/3 and
8n = n~ % logn, respectively. See Propositions 4 and 5 for more details.

Recall that Bg (x; 8) denotes the set of nodes in the graph that are at graph distance
at most § from x,

— if y € Bg(x;8,),
mO(y) = 1 Bo(iay] 0 SO

0 else,
and define
An = (logn)?Np= 1N, &)

This A, will play the role of an additional radius, for extending the graph distance dg
to the manifold. In short, to define a distance between u, v € M, we will connect u
and v to all points of the graph within radius A, and then use the graph distance. The
radius A, has been selected such that the expected number of nodes inside any ball
Baq(x; &) is of the order @ ((log n)?). Hence, the probability of observing no node of
the graph inside any such ball is O (e~(1°2 ”)2) = o(n™"), which is sufficiently small.
More details on the use of A, can be found in Sect. 5.1. Our general result is then as
follows.
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Theorem3 Let N > 2, (M,daq) be a smooth, connected, and compact N-di-
mensional Riemannian manifold, x* € M, and v a unit tangent vector at x*. Further-
more, let &, < 6, = o(1) be such that A,, = o(&,) and \,, = 0(83). Let y € M be at
distance 8, in the direction of v, G, = G, (x*, y}, &,) be rooted random graphs on
M, and dg a §,-good approximation of d xq. Then, if we consider the Ollivier-triple
gn = (G}’ls dG1 mG);

Once we have established this general result, our main results in Theorems 1 and 2
follow if we can show that the considered graph distances are §,,-good approximations.

A key ingredient in the proof of Theorem 3 is the convergence result for Ollivier—
Ricci curvature for uniform measures on Riemannian manifolds, proved in the seminal
paper on the topic [28]. In a high-level overview, our proof approximates Ollivier—
Ricci curvature of probability measures on the graph with those on the manifold.
Having obtained such an approximation with a required accuracy, we then apply the
convergence result from [28].

Since Ollivier—Ricci curvature is defined by the Wasserstein metric on probability
measures, our analysis focuses on approximating the Wasserstein metric of discrete
probability measures on the graph by the Wasserstein metric of uniform probability
measures on the manifold. This is done in three steps: 1) extend the graph distance dg to
adistance d. M on the manifold such that the Wasserstein metric W1 with respect to this
new distance is a good approximation of the Wasserstein metric W; on the manifold,
2) show that the Wasserstein metric between the probability measure mf on the graph
and the discrete probability measure m)/(\/l on the nodes within the ball B (x; 8,)
is sufficiently small, and 3) show that the Wasserstein metric between the uniform

measure on B4 (x; §,) and the discrete probability measure mfcw is sufficiently small.

lim JEHZ(NJFZ)K(X 90 Ric(v, v)

de (x*, yi)?

n—oo

Remark 8 In all cases, sufficiently small means that the error terms are of smaller
order than 8. This is because the Wasserstein metric is first divided by 8, to obtain
the curvature, which is then divided by 8,2, to make it converge to the Ricci curvature.

We proceed with explaining all ingredients and the three steps in more detail. We
reiterate that unless stated otherwise, we will assume that €, < §,, are two sequences
converging to zero such that A, = o(e,,) and 1, = 0(82).

4.1 Ollivier Curvature on Riemannian Manifolds

Let (M, d,) be a smooth, orientable, connected and compact N-dimensional Rie-
mannian manifold. For x € M and § > 0, we write Baq(x; §) € M to denote the
closed ball of radius § around x, i.e., Byq(x;8) = {y € M : dap(x, y) < §}. Recall
that

Vol (Bag(x: 8)) := / dvol(y),
B (x;6)
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denotes the volume of the ball By (x; §). Now fix § > 0 and consider the uniform
measure on balls of radius 4. That is, for x € M we take the probability measure ,ufc
given by

) = 1 Wl Bagrap MY Y EBMEED )

0 else.

We will refer to Mi as the uniform §-measure. The following result from [28] shows that
for a uniform §-measure on a Riemannian manifold, the Ollivier curvature (properly
rescaled) converges to the Ricci curvature as § — 0.

Theorem 4 [28, Exam. 7] Let (M, daq) be a smooth complete N-dimensional Rie-
mannian manifold x € M and v a unit tangent vector at x. Let § > 0 and ys be
the point at distance § in the direction of v. Then if we consider the Ollivier—Ricci
curvature k for the uniform §-measures given by (6),

2(N +2
lim %x(ms) — Ric(v, v).

Remark 9 The result in Theorem 4 clearly exhibits the local nature of curvature as it
holds in the limit where the distance daq(x, y) = & between the two points goes to
Zero.

Taking § = §,, x = x*, and y =y, in the above theorem, we have that the rescaled
Ollivier—Ricci curvature associated to the uniform §,-measures converges to the Ricci
curvature as n — o00. The main strategy for proving Theorem 3 is to compare this
“uniform” version of the curvature « on the manifold to the discrete version on the
graph. More precisely, we need to prove that

G(,,G G S ST — (83
EHWI (mx*’my,f) - Wl(“x*’“y,’{) ] =0(5;)- )
There are two complicating factors here. First, we have to deal with two Wasserstein
metrics defined on two different spaces. Second, we have to compare discrete proba-
bility measures with continuous ones. We deal with the different Wasserstein metrics
in the next section and with comparing the different measures in Sects. 4.3 and 4.4.

4.2 Extending the Graph Distance to the Manifold

In order to compare the two different Wasserstein metrics in (7) we extend the graph
distance dg to a distance d_ M defined on a sufficiently large part of M. In particular, we
will consider the ball Boq(x*; Qdy), with Q > 3 from Definition 4.1. The extension is
such that for any two nodes x, y € G, dg(x,y) = dapq(x, ¥), so that WIG (mG m}G,:)

x*
can be replaced by the Wasserstein metric associated with d M-

Recall the definition of A, from (5), A, = (logn)*"n=/N_ Denote G, =
Gn(x*, yi,8,) and let U C M be a countable set of points. Then we define the
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Fig. 1 Illustration of the extended graph distance d M- Here u is connected to node x1 and v to x¢ and the
shortest geodesic-weighted path between x| and xg goes over five edges

graph G, (U) obtained from G, by adding the points of U to the vertex set and con-
necting each u € U to any other node x € G, \ U for which day((x,u) < A,/2.
After this, we assign to each new edge (i, x) the weight daq(x, u)(1 + E,%) + 53,
with &, from Definition 4.1. We can then extend the graph distance to the manifold by
defining d M (u, v) to be the graph distance dg (u, v) computed in the extended graph
G ({u, v}) with the added weights. That is, dq(u, v) is the shortest weighted path
distance in the extended graph G, ({u, v}), where the weights follow the same scheme
as for the original graph.

Observe that if x,y € G, then EM (x,y) = dg(x,y) so that the distance on
nodes of G,, does not change and hence d M is a true extension of d¢. In addition, by
definition of the graph distance it immediately follows that d »((u, v) = 0 if and only
if u = v. Figure 1 shows an illustration of the extended distance.

It is important to note that this extended distance depends on the random graph G,,.
Therefore, it could happen that two added points «#, v € U are not connected in G, (U),
i.e., there does not exist a path from u to v in the extended graph. This happens if
there are no nodes in Baq(u; A, /2) or in Bag(v; A, /2) or if none of the node pairs
(x,y) € Ba(u; 1y /2) x Bag(v; Ay /2) are connected by a path in G,,. Therefore, to
justify the definition of the extended manifold distance we need to make sure that,
with sufficiently high probability, theses situations do not occur.

Lemmal Let G, = G,(x*, y},8,) and Q > 3 be the constant from Definition 4.1.
Then, there exists an event $2, satisfying P (§2,) > 1 — 0(82) such that on this event
the following holds:

(21) (Bm(x*; Qbn), day) is a metric space and
(£22) dp(u, v) = daq(u, v) + o(8)).
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The first property ensures that our extended distance is an actual distance. Moreover,
by the second property, this extended distance is a good approximation of the true
distance on the manifold. Finally, we also note that the first property makes sure
that dg (x*, y)) = d Mmx*, ¥ < oo, so that the curvature «k between x* and y is
well defined and not forced to be zero. The precise definition of £2,, is not needed to
understand the high level arguments as well as the proof of the main results. For now,
let us refer to §2,, as the good event. Details on this event can be found in Sect. 5.1.

Let W; denote the Wasserstein metric with respect to d 4, which is only well
defined on the good event §2,. Since the distance is determined by the graph
G, = G,(x*, y¥, 8,), the Wasserstein metric is also a random object. The follow-
ing proposition states that, on the event £2,,, the difference between the Wasserstein
metrics W, and W is small. The proof is given in Sect. 5.1.

Proposition 1 Let G,, = G, (x*, &,) and 111, o be two probability measures on M
with support contained in Baq(x*; Q8,,). Then

E[|Wi (1, 12) — Wiie1, 12)1 1 2] = 0(8)).

G

x*

Recall that dpq(x, y) = dg(x,y) if x,y € G,, and therefore WC (m m%) =

Wl (mg*, m)G,*). Hence, since the uniform §,-measures ,ui’i and ,uf;’i are probability
measures on M with support contained in B (x*; Q8,), Proposition 1 implies that
on the good event,

W (m.mG) — Wi (. 2h) +0(5)

holds in expectation. This is helpful because both Wasserstein metrics in the expression
on the right hand side are now defined on the same space. Therefore, since Wj is a
distance, the reverse triangle inequality implies

[ W1 (e, m ) = W ()

X

i~ 3’1 i~ 3’1
< Wi(md, 1) + Wi(m$e, ).
Applying Proposition 1 again we get that

W1 (mem) = Wi (3 ay)

< Wi(m%, ud) + Wi(mS. ) +0(63)

i

holds in expectation, conditioned on the good event. However, the right hand side no
longer involves the extended distance. Hence, it now suffices to show that for any
x € Bapm(x™; 8p),

E[W(mS, u) | 2,] = o(8). (8)

4.3 Approximating Probability Measures on Graph Balls

Recall that B4 (x; §,) denotes the closed ball around x € M with radius §,, according
to the manifold distance d . The first step in establishing (8) is to move from uniform
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measures on the graph balls Bg (x; §,) to uniform measures on the nodes of the graph
that lie in the manifold balls B (x; 8,). The reason for this is that y € Bg(x; 8,)
does not necessarily imply that y € B (x; §,), nor vice versa. This creates difficulties
when comparing the measures mff and ui”.

Let G, = G,(x*, &,) be rooted random graphs on M. Then we define the proba-
bility measures m*! on the nodes of G, as

1
if y € Bog(x; 8,) N Gy,
m)/(\/l(y): |Baq(x; 82) NGyl y M n n ©

0 else.

Although the uniform measures mfc;* andm )/C\,fl are not the necessarily equal, the Wasser-
stein metric between them is sufficiently small.

Proposition 2 Let G, = G, (x*, ) be rooted random graphs on M with graph dis-
tance dg that is a 8,-good approximation of daq. Let x € By (x*; 8,) and denote
by mf the uniform measure on Bg(x;8,) and by mfc\/l the uniform measure on

Ba(x; 8,) N Gy. Then
E[Wi(mC, mM) | 2,] = o(83).

The proof of this result is based on some simple computations regarding Poisson
random variables and can be found in Sect. 5.2. Proposition 2 allows us to replace (8)
with

E[W (m, 12)] = 0(8)). (10)

Note that the only dependence on the graph is now in the amount of nodes placed
inside the ball B, (x; 8,), which is completely determined by the Poisson process.
All dependencies on the actual structure of the graph have been removed. This allows
us to compute the Wasserstein metric between m?*! and ud.

4.4 Coupling Continuous and Discrete Probability Measures on M

Recall that the Wasserstein metric Wy (i1, (2) takes an infimum over all possible joint
distributions (couplings) between the measures (1 and w,. Hence, to show that (10)

holds, we need to design an optimal coupling (transport plan) between m)/CV‘ and ,ui”.

.. . . . . )
The main idea here is to view mfc\/( as a discrete version of u)".

For now, let us assume that we are working in the N-dimensional Euclidean cube
M = [0, 1]1V. Given a realization of the Poisson process, a transport plan between
m)/c‘/[ and /Li" should assign to each measurable set A C B(x; §,) how much of the
associated mass ,ui” (A) is transported to each point of the Poisson process. To make
it optimal, we should distribute the mass over those points that are closest to A. This
problem is actually related to that of finding a minimal matching between points of a
Poisson process and points of a grid on [0, I]N , see [22, 35, 39]. Here, minimal means
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that the largest distance between a point of the Poisson process and its matched grid
point is minimized. The idea for the transport plan is as follows:

— Place a grid on [0, V.

— Find a minimal matching between the Poisson process and the grid.

— Givena A C B(x; 8,), we take all points of the Poisson process that are matched
to grid points inside A and distribute the mass ,ui” (A) equally over those points.

Using known results for minimal matchings, it can then be shown that, under suitable
conditions, the Wasserstein metric between m?! and i is 0(8)).

Finally, we need to extend these results in flat Euclidean space to the ball
B (x; Q6,) in general M. For this we use that §,, — 0 and that small neighborhoods
of x € M can be mapped diffeomorphically to the flat N-dimensional tangent space
by the exponential map exp, : 7y M — M. We then apply the matching results there
and map back. Here we need to tread carefully, since the exponential map does not
preserve distances. We thus fix a sufficiently small neighborhood U around the origin
of the tangent space at x. Then, for some fixed 0 < & < 1 and large enough n we have

. On -1 . . _On
BN(Q m) Cexp  Ba(x: dn) EBN(O, 1_$>,

where By (0; §) is the Euclidean ball of radius §. This then yields matching upper and
lower bounds on the Wasserstein metric on M in terms of the Wasserstein metric on
the Euclidean space. All details of this approach are provided in Sect. 5.3. In the end
we obtain the following result.

Proposition 3 For any point x € M,
E[Wi(mM, u)] = o).
4.5 Proof of the Main Results

We now have all ingredients to prove the main results. We start with Theorem 3,
where we bound the expression inside the expectation as a sum of several terms and
use the above results and the fact that dg is a §,-good approximation to show that each
individual term goes to zero.

Proof of Theorem 3 First, we bound the term inside the expectation as follows:

’2(N +2DRET 0G0 iy vy

dg(x*, yi)?

2N+ 2™ yiiGn) 2N +2)k (5™, )
dg (x*, yi)? 82

2(N +2)k (x*, y7)
+ 2
8"

<

— Ric(v, v)

@ Springer



690 Discrete & Computational Geometry (2023) 70:671-712

The last term is deterministic and goes to zero by Theorem 4. For the first term we note
that the absolute value of each curvature term can be bounded from above by 2. Now
let C,, denote the event that x* and y; are connected. Since this is implied by good
event £2,,, see Lemma 1, it follows that C; C £2¢, where the superscript ¢ denotes the
complement of the event. Moreover, on the event Cy, « (x*, y;¥, G,) = 0 by definition.
Finally, since dg is a 8,-good approximation it follows that 82 = dq(x*, y¥)? <
dg(x*, y:)z. Therefore, we have
C
dg (x*, y¥)? 82 ‘ C"i|

4(N +2)
< 7

< = — (1 -P(@)

E HZ(N + 2 (x*, v Ga)  2(N +2)k(x*, yy)

and

E HZ(N + K@y Gn) 2N + 2k @,y [cun QC]
dG(x*, y7)2 5 '
8(N +2
- %(1 —P(2,)).

It then follows that

EHZ(NJrZ)K(X*,y;f;Qn) 2(N 4+ 2)k (x*, y5)

}

dg (x*, yi)? 8
kK(x*, ¥ G k(x®, yn B 12(2+ N)
SMN+%E[ddﬁJ@2 7 ‘9}+a P

By construction of the good event we have 1 — P (£2,,) = 0(83 ) and thus, the last term
in the above bound goes to zero. For the other term we recall that

. WG( M s )Cf’;)
de (x*, y;y)

Wi (s, 1)

and k@*,y)=1- 5
n

k(x*, v Gy =1

Then the expression inside the conditional expectation can be bounded as follows:

K@y Gn) k(v
dg (x*, y*)? 582

1 1
K (x*, y,T; gn)(m - 8_2) +

i (x*, yus Gn) — (X7, y)

<

5
G G dn

5108 = do (™, yi)?| Wi (mi,mii) Wi (. )
B 8 82| do(x*. ) 8
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_ 18 —dgr, vl Wi mG )18, — do(x. v
= 54 + 84

4 in( M s y*) Wl(ﬂxivﬂy)
5

(1)

12)

Next, since dg is a §,-good approximation, we can apply (4)
|80 — da (7, yl = ldm (™, yp) — dg (0, y)I < 8ay +6;) = 0(5;).

Since WG (mx*, ;7*) < §, it then follows that the second term in (11) goes to zero.
For the ﬁrst term we have

182 — dg (x*, y)?| < 180 — dg (x*, y)|(8n + dg (x*, ¥1))
< (BuE2 +ED) (S + 8u(1 +EH + £ = o(8h),

which implies that this term also goes to zero. We are thus left with (12), for which
we have to show that

E[[W (mZ.m %)‘Wvdﬂﬁv“%) n] = 0@,

We first replace W (Mi'l, ui’;) with VT/I (,ui’i, Mi’;) by invoking Proposition 1:

E[|Wy (132, %) = Wi (s, 1) || 22] = 0(83).

This then implies

E[[WC (m&mG) — Wi (it nyi) | 20]
8’1

= IE:[|‘;‘71 m)(c;*’mv*) Wl (I’Lx*"uy )

n] +0(8).

To show that the first term in the upper bound is also 0(83) we apply the reverse triangle
inequality twice to obtain

~

W1 (m&eom) = Wi, sy ) | < Wi (m G piit) + Wi (m Gy i),

We proceed to show that W1 (m e ,u n) = 0(83) holds in expectation on the event £2,,.
The proof for W] (m¢ oo /JLy*) is similar. Applying Proposition 1 again we get

2,] <E[W(m mS, 1’y | 2 n] +0(8))
E[Wy (m%, m¥) | 2,] + E[Wi (mX, u)] + 0(53).

IA
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Since both expectations are 0(83) by, respectively, Propositions 2 and 3, we conclude
that

E[[WC (m&mG) = Wi (. w32)| [ 20] = 03,

which finishes the proof. O

Now that we have the general result, Theorems 1 and 2 directly follow from The-
orem 3 if we can show that the graph distances that are considered there are §,-good
approximations.

Throughout the remainder of this section we will assume that
en = O ((logn)'n™®), 8, = O (logn)’n™P),

for some a,b € Rand 0 < «, 8 < 1. We shall also assume that ¢, < &,. The
following results show that for appropriate choices of the constants a, b and «, 8 both
the weighted manifold and the rescaled hopcount distance are §,,-good approximations.
The proofs are given in Sects. 5.4 and 5.5, respectively.

Proposition 4 Suppose the constants in &, and 8, satisfy
0 B < + 2ﬂ < !
< o, o < —
- N

witha <bifa =panda+2b > 2/N ifa+28 =1/N. Let y;; € M be at distance
8y in the direction of v and G, = G,(x*, y;, &,) be rooted random graphs on M.
Then the manifold-weighted graph distance df; on G, is a 8,-good approximation

of dg.

Proposition 5 Suppose the constants in ¢, and 8, satisfy

1-38
2 b

1
O<,6§§ and 3 <a <

anda < 3bifa =3B and2a+3b > lifa = (1-3B)/2. Let y: € M be at distance
8, in the direction of v. Let G, = G, (x*, y}, ;) be rooted random graphs on a
2-dimensional Riemannian manifold M and denote by d; the shortest path distance.
Then the &,,-weighted graph distance df, := e,dg, on G is a 8,-good approximation
of dpm.

Observe that the conditions of the constants in Propositions 4 and 5 are exactly the
same as in Theorems 1 and 2, respectively. Moreover, these conditions imply that
A =o0(gy) and A, = 0(6;”,), with X, as defined in (5), as we will now demonstrate.

In Proposition 4 we have 8 > O and o + 28 < 1/N. It then follows that ¢ < 1/N
which implies A, = o(e;). When the inequality 3 < « + 28 < 1/N is strict we
have that A, = 0(52). When 38 = 1/N it must be that « + 28 = 1/N and hence the
conditions of Proposition 4 imply that 3b > a +2b > 2/N. From this we deduce that
An /83 = O ((logn)>N=a72by = o(1).
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In Proposition 5, since N = 2, the conditions A, = o(g;,) and A,, = 0(52) follow if
o < 1/2 and 38 < 1/2. The first inequality holds since 8 > O and o < (1 — 38)/2,
while the second is due to the fact that 38 < 3/9 = 1/3.

We thus conclude that under the conditions in both propositions, the radii satisfy
the conditions of Theorem 3. Hence, Theorems 1 and 2 follow from it.

5 Proofs

Here we prove all the intermediate results that we used to prove our main results in
the previous section. We start with the proof of Lemma 1 and Proposition 1 in the
next Sect. 5.1. In Sect. 5.2 we provide the details for Proposition 2, while the proof
of Proposition 3 is given in Sect. 5.3. We end with Sects. 5.4 and 5.5 where we prove
Propositions 4 and 5, respectively, leading to the main results of this paper.

Recall that
An = (logn)?Np= /N,
and ¢, < 6§, — 0 are such that .,, = o(g;) and A,, = 0(83).

5.1 Extended Graph Distance

Our first goal is to proof Lemma 1. We start by showing that there exists a radius
r, — 0 such that for any finite set of points u € M, the balls B (u; r,) will still
each contain at least one node from the rooted graphs G, = G, (x*, y}, &,). The
reason why we need r,, to decrease is because the connection radius &, also decreases
and we want the ball B (u; r,;) to be contained inside the connection area of the
point u.

Lemma2 Let U C M be a finite set of points in M such that |U| = O (n°), for some
¢ > 0, and let r, = O(Ay). Then, for G, = G, (&),

P ( 1B r) N Gl = 0}) = 0(5}),

uelU

asn — oQ.

Proof First note that for r,, small enough the ball B (u; r,;) can be mapped diffeo-
morphically onto the tangent space 7, M at u. In particular, for small enough r,, we
have that, as n — oo, volapq (Bag(u; 1)) = @(r,iv) = @(Aflv). Next, since the nodes
in G, are placed according to a Poisson process with intensity n/vol r4 (M) it follows
that

Lt (B (5 An 06
P (|Bpq(u; ) N Gyl = 0) = exp (_nvo MB(u ))) _ 100

vol o (M)
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G 2
— e—()((logn) ).

Therefore, by applying the union bound we get

P ( U {IBm(u; ) NGl = 0}) < |U|minP (|Ba(u; ,) N G| = 0)

uelU
uelU

— o= O(logn)?)+log|U| < o~ ©@((ogm?*)+clogn

To finish the proof we note that e~ O((ogn?*)+clogn 0(\y,) which by assumption is
0(8)). i

With this lemma we obtain the following corollary.

Corollary 2 There exists a collection {By, ..., By} of m = @ (A, V) balls of radius
An /4 that cover M, such that if we denote by cy, . .., ¢y, their centers and define the
event

Cn = ﬂ {IBr(ers 1n/4) N Gyl # O} 13)

t=1
Then P (Cy) = 1 — 0(8)).

Proof The collection is constructed using the standard trick of taking a maximal set
of disjoint balls of radius 1, /8 in M. Denote their centers by ci, ..., cy. Simple
volume comparison, and the compactness of M, gives m = O (A, NY). By construc-
tion, the balls B; = Ba(ci; An/4) then cover M, and hence m = @()\;N ) =
O ((log n)"2n) = O(n). The result then follows from Lemma 2. O

The event C,, will play a crucial part in defining the good event §2,,. Let D,, denote the
event on which (4) holds. Then we define the good event as

2, = Cy N Dy. (14)

On this event, with sufficiently high probability, (B4 (x*; Q6,), ] M) 1S ametric space
for any constant O > 0 and the extended distance d M 1s a good approximation of the
original distance d »(. Note that we do not need to consider the whole manifold since
curvature is a local property.

Lemma 3 Let §2,, be the event defined in (14) and Q > 3 the constant from Defini-
tion 4.1. Then on the event $2,,

— each pair of points u, v € Bag(x™; Q8,) is connected by a path in the extended
graph G, (u, v), and
— (Bm(x*; 98,), day) is a metric space.
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Fig.2 Depiction of the covering of the geodesic between u and v by the balls By,

Proof We first prove the first statement. For this, take any u, v € Bag(x*; Q6,) and
let y (u, v) denote the geodesic between u and v. This geodesic will be covered by a
subsequence By, ..., B;, of the cover of M, which we rank in order of appearance
moving from u to v. Let ¢, ..., ¢, denote the corresponding centers of these balls,
see Fig. 2. On the event C,, each ball contains a vertex x;; € G, and since

An An
dmu, xp), dp (v, xy) < ZI =5
the edges (u, x;,) and (v, xy, ) are present in G, (u, v). Moreover, since dq (Xy,;, X, ;)
is bounded by four times the radius of the balls, it follows that for large enough 7,
dp(xs;, X,,) < An = 0(&y) and thus, for n large enough, {xs, ..., x5} is a path
in G,. We thus conclude that u and v are connected in G, (u, v). Note that because
of this property, on the event §2,,, the extended manifold distance between d A is well
defined on M.

We are left to show that on the event £2,, the extended manifold distance is a
true distance. Note that the only non-trivial part is the triangle inequality. Letu, v, z €
B (x*; Q8,) and consider the graphs GV =G, u,v)and GP® = G, (u, v, 7). Now
observe that the triangle inequality can only be violated if z creates a short-cut, i.e.,
if the shortest weighted path between u and v in G is longer than in G». Suppose
that this is true, and let 71 = {u, ..., y1,2, 2, ..., v} denote this new weighted
shortest path in G®. Since y; and y» are connected to z in G it follows that
dm(z,yi) < A,/2. However, by the triangle inequality for d a4, this implies that
dyp (1, y2) < Ay = o(e,) and hence, for sufficiently large n, the edge (yi1, y2) is
present in G, and thus also in GV and G®.

Let 7 = {y] := x0, X1, ..., Xm—1, Y2 := X} denote the shortest weighted path in
G, between y; and y»,i.e.,dG (yi, y2) = D jo; Wy,_,x,and take o = {u, ..., yi, x1,
ooy Xm—1,Y2,...,0}. Then my is a path between u and v that excludes z. See also

Fig. 3. We will show that the total weight of this path is at most that of ;.
For simplicity lets us denote by ||| the total weight of a path m. Since dg is a
8,-good approximation,

m
171 =Y wy,_yx, =da (1. y2) < dapOn, y)(L+ED) + &)

=1
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-
S < -
~ -

y1 S~ . - y2
o
z

Fig.3 Abstract depiction of the weighted shortest path between u and v created by adding z and the path 3,
given in blue

holds on the event £2,,. Applying the triangle inequality for d( we get

171 < da(n, 2) (1 +ED) 4+ daqg(z, y2) (1 4+ €2) + £
<dpO1, DA+ E2) 4+ dpag(z, y2) (1 +E2) + 283 = wy, ;. + wy,e.

This implies that the total weight of the path 75 is at most that of 7 from which we
conclude that z cannot create a short-cut and hence d \ satisfies the triangle inequality.
]

We are now ready to prove Lemma 1.

Proof of Lemma 1 Note that for any two nodes u, v € G, with u, v € Bag(x™; Q8,),
Lemma 3 implies that # and v are connected by a path in G,,. Hence the only part of
Lemma 1 to prove is property (£21) there.

Take any u, v € Baq(x™; 38,). Then on the event §2,,, by definition of the extended
distance d 4, there exists x,, x, € G, such that da(u, x,) < X,/2, dp(v, xy) <
An/2, and

A, v) = dpg(, x)(1+E2) + dpag (v, ) (1 + E2) + 267 + d (xu, )
< an(1+E2) + 287 + dg (xu, xv). (15)

Moreover, since Q > 3 and A, = 0(8,3!) we can assume that x,, x, € Bag(x™; Q8,),
for sufficiently large n. Since the approximation (4) holds on the event £2,,, we have

ldG (xXu, xy) — dpq(u, V)| < |dG (xu, xv) — dpg Xy, X)) | + |d g Xy, X0) — dpq(u, v)|
< ldg (6w, Xo) — dpg (s Xo)| + dpg G, ) + dpg (xy, v)
< dp (s X0)EE 4 E3 + dpg (s 1) + dpg (xy, 0)
< dp (s X0 EZ + £ + . (16)

Combining (15) and (16) we get
ld g (u, v) — dag(u, V)| < ldag (e, v) — de (o, x0)| + 1dG (e, x0) — dag (u, V)|
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< An(1+ED) + 287 + |dg (xu, xu) — dpg(u, V)|
< M (14 E2) + dag (s X0)EF + 387 + A

Applying the triangle inequality to the last distance,
A (xu, xo) < dpg(u, v) + dpg(u, xu) +da (v, x0) < dpg(u, v) + An,
we get
A, v) = dpg(u, V)] < dm(u, VE + 20 (145D +3E; = 0. O
Finally, we need to prove Proposition 1. Since, on the event £2,,,
A, v) = dpg(u, V)] < 0(3,),

the proof follows immediately from the following elementary result on Wasserstein
metrics.

Lemma4 Let (X, d) and (X, 57) be two metric spaces such that
d(x, y) —d(x, )| < K
holds forall x, y € X and some K > 0. Denote by W\ and W the Wasserstein metric

associated with d and d, respectively. Then for any two probability measures (11 and
2 on X,

IW1 (i1, 2) — Wiur, 1)l < K.
Proof For any coupling u between ) and uo,
/E(x,y)du(x,y) < /(d(x,y) + K) dpuu, v) < fd(x,ymu(x,y) LK

and similarly

fd(x,y>du(x,y> > /E(x,y)du(x,y)u(
Then it follows that

Wi (i1, 112)

=igf/67(x,y) du(x, y) Sigf/d(x,y) du(x,y) + K = Wiy, n2) + K
and similarly
Wi (w1, ma) < Wilpr, p2) + K,
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from which the result follows. O

5.2 Probability Measures on Graphs

In this section we give the proof of Proposition 2. Recall that mY and m)/ch denote
the uniform probability measures on the set of nodes in B¢ (x; §,) and Baq(x; 8,,),
respectively. The goal is then to show that

E[Wim%, m?)] = o(8)).

As we mentioned, these two sets are not necessarily contained in each other. Hence,
to bound the Wasserstein metric we will work with slightly smaller and larger balls
B~ and B such that

BT NG, € Bg(x; ), BM(X; 8) NG, C BTN Gy.

We can then obtain an upper bound by comparing the Wasserstein metric between mf,
m ){Vl , and the uniform probability measure on B1TNG,. This bound can be made 0(62),

by carefully selecting the radii of B~ and B™.

Before we give the details, we need the following general result concerning Poisson
random variables.

Lemma5 Let oy, B, — oo and X, Yy, be two independent Poisson random variables
with means o, and By, respectively. Then

X+Y>1}—O< & )
" "= B an + Bn ’

Proof First, let C > /2 be some large fixed constant. Then we have that (c.f. [32,
Lemma 2.1])

[ n
Xy + Y,

2
P(1X; — anl > Cy/ay logay,) = O(cxnc /2)-
In particular, if we define aff = a, =+ C/a, log oy, then
2
max {P(X, < «,),P(X, > O{,T)} = 0(a;C /2).

Similar results hold for Y,, with 8;- defined similarly. We start by conditioning on X,

k
Xp+Y,>1|= E
conzi] =

n

n
e — Y,>1|-PX,=k
[ o] o=

k
= ZE[k”n

k<a,

Y, > 1} P (X, = k)
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k
oy () @
T §:E[kH/n‘Ynzl].lp(xn_k)._ln + IO,

k>a,

We will bound each term separately.

First we bound the expectation inside each summation by further conditioning
onY,:

k
|
k+ Y,

k -
Yn21]§mp(1§Yn<ﬂH)

k k
+ — P, =y)+ ——P, > B
ﬁ_£ﬁ+k+y ( n y) k-{-ﬂ,—;— ( n ﬂn)

( 1 +P(|Yn—ﬁnI>C\/—ﬁnlogﬁ_n))

<k
k+Br k+1

1-c2py .k
(1+ O(Bn )) = ey (1 +o(1)),

=

k+ By
because C > /2. We can now bound 1,51) as follows:

o, B e e
0 = S p0t, <ap) = 0(5 el ) = 08 ek )

where we used that 8,7 ~ B,,i.e., B8, /B, — 1.For 1,52) we have, using thator,, ~ o,

k E[X,] ay
1? <@ 1 P(X, =k 0<—>=0( >
p S(H())k;‘;—"*ﬂ ( ) < pe—— —

n

and thus the result follows since we are free to select C > +/2 large enough so that
1,51) is of smaller order. O

We are now ready to prove Proposition 2.

Proof of Proposition 2 Let S,jf = (6, = é,?)/ 1= S,%) and let D,, be the event on which
approximation (4) of Definition 4.1 holds and recall that £2, C D,,. Therefore, since
P(£2,) — 1,

E[WimS, m) | 2,] < (1 + o) E[Wi(mG, mI) 1(p,)].

and so it suffices to look at E[ W (m¢, mM) 1ip,]-

Note that on the event D,,,
Bat(x:8,) NGy S B (x5 80), B (x: 8,) NGy € Bag(x: 87) N Gy
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Let V,, € M be any neighborhood of x such that vol o4 (B,) = (—D((Sflv ) and
Ba(x: 8,) € By € Baq(x; 8,7) N Gy,

where B, = V,, N G,,. Denote by m,, the uniform probability measure on /3,,. We will
prove that

E[Wi(mu, m)1p,] = 0(8)). (17)
Since
E[Win$, m*)1ip,] < E[Wi(n{, m) Lip, ] +E[Wiom, m5Ln,y],
applying (17) twice, once with B,, = B (x; §,) and once with B,, = Ba(x; 8,) NG,

will yield the required result.

Let us write B,jf = Ba(x; Sni) N G, and denote by mf the uniform probability
measure on B,f. To establish (17) we will show that

+\N _ (5—\N
&)Y —6,) ) (18)

E[Wi(n,, m$)1ip,] = 0( N1
n

Note that by definition of 8 we have (§;)N — (67)N = O(£28Y). Therefore, if (18)
holds,

GHN — )N

E[Wi(mn, m$)1p,] < 0( e
n

) = 0(8,82) = 0(8)),

since &, = 0(8,). To establish (18) we condition on |B;|:

E[Wi(m,, mD)1p,y] =E[Wim,, mI)Lip,y 1B, | =0]-P(B,|=0)
+E[Wi(m,, m)Lp,y 1B, 1= 1]-P(B;| = 1).

For the first term we have

E[Wi(ma, m) 1, |18, | =0]-P(B, | =0) <25 P(B, | =0)

s N 5+ N _ §— N
= 0(8,)e 0T = 0(—( nzaj)N(?) )

where we used that E[|B,|] = nvolp(B,) = n@(((Sn_)N). It now suffices to show
that

19)

SHN — (5N
E[Wl (mu, mD) Lp,y 118, | > 1] = O(M)

(&HN-1
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We will do this by constructing a specific transport plan (coupling) between the mea-
sures m,, and m}. Define the joint probability mass function on B, x B;:

1
ifu=v
+ 9,
m(u,v): |Bn|1
— ifve B\ B,
1Byl - 1By no

and observe that m(u, v) is a coupling between m% and m . Therefore

= £ S5 T i

ueby, UEBVLJr ue, UGB+\B
+|Bn+|—|8,,|<2+|B,T|—|B;|=25+IBJ\B;|
R - R A "B

Now define X, = |B;"\ B, | and Y, = |B;|. Then X,, and Y,, are independent Poisson
random variables satisfying

IBI\B, | Xa
1B X, +Y,

It then follows from Lemma 5 that

+ + +
E[WiGne,m) |18, 1= 1] < o( O ELn] ) - 0(5" ]

E[X,]+ E[Y,] vol vy (Bi)
Equation (19) then follows by noting that voly((B;F \ B,) = O ((8;)HN — (5,)N). O

5.3 Continuous and Discrete Measures on M

5.3.1 Collecting Relevant Known Results

The following is a summary of results on the Wasserstein metric between empirical
and uniform measures on the N-dimensional cube. The case N = 2 was explicitly
stated in [39]. Although the results for N > 3 are known, they are not stated in the

explicit form we need. For completeness we thus include a proof here.

Proposition 6 Ler X1, X2, ... be independent uniformly distributed random variables
on [0, 11V, let m,, denote the empirical measure

1 n
ma(y) =~ D Lixi=y,
i=1
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and w the uniform measure on [0, 11V, Then

logn . _
E[W{ (my, )] = 0<V n ) IN=2

omn=YNy ifN=>3.

Proof The result for N = 2 follows from [39, (1.1)], see also the results in [22, 35].
For N > 3 we let Y7, Y, ... be independent uniformly distributed random variables
on [0, 11V and define

n
My = inf ) [1X;i = Yol
i=1

where the infimum is taken over all permutations o of {1, 2, ..., n}. Then, it follows
from [38, Lemma 1] that

D (X)) — f()

i=1

M, = sup
f€Lip;

’

where Lip; now denotes the set of Lipschitz continuous functions with constant 1,
with respect to the Euclidean distance dy.

Next, we recall the duality formula for the Wasserstein metric on the space X,

Wi(u1, n2) = sup {/X fx)dur(x) — /X f(y)duz(y)}.

feLip
Since
/ f@)du(z) = E[Lf(Y)],
[0, 11
we have

n

1
-y (f(X» - f £ du(z))’
n [0,11¥

i=1

Wllv (ml’la M) = Sup
f€Lip;

1
= — sup

" feLip,
1 n

—E| sup (f(X) — f(Y) ‘X,m,Xn
" [feLim ; ‘ 1 }

_E[Mn|X1,-~-,Xn]
n 9

o (fXi) - E[f(Yi)])’

i=1

IA
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and hence

E[M,]

E[W{ (mx, w)] <
Finally [38, Thm. 1] implies for N > 3,
E[M,] = 0(n'~"/Y),
which then yields

E[W (my, W] = 0™ /N). O

5.3.2 Uniform and Discrete Measures on the Unit Cube

We first extend Proposition 6 to the case where the points correspond to a Poisson
process. We will actually proof a slightly more general version which allows for
intensities (1 + o(1))n.

Lemma 6 Consider the N-dimensional unit cube [0, 1]N, with N > 2, and consider
a Poisson process P with intensity measure (1 + f,)ndvoly on [0, 11V, for some
sequence f, — 0. Let m% denote the empirical random measure with respect to P,
ie.,

1
N
mp(y) = Pl Z Lip=y},
peP

and uN the uniform measure on the square. Then, as n — 0o,
E[W) m%, u™)] = 0N logn).
Proof We shall establish the result by conditioning on the size |P| which has a Poisson

distribution with mean (1 + f;)n. Conditioned on |P| = k, each point is uniformly
distributed and therefore it follows from Proposition 6 that as k, — 0o

of [k iy
E[Wi(n, u¥) | 1P| = k] = K =72 ok N Jioghy).
Ok, ™) ifN >3

(20)

Recall the Chernoff concentration result [32, Lemma 1.2] for a Poisson random vari-
able Po(a) with mean a:

P(|Po(a) — a| > x) < 2~ /2a+0) Q1)
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Fixac > 0. Then by (21) witha = (1 + f,)n and x = ¢\/(1 + f,)nlogn,
P([Po((1 4+ fu)n) — (1 + fu)n| > c/(1 + fu)nlogn)

—c2(1 + fo)nlogn 2 2
2 -0 —(c*logn)/2y _ o(n=¢ /2 )
= 2P+ fon + cnlogn) (€ )=0(7)

Therefore, if we define

ay = (1+ f)n+cy/(1+ fynlogn,

it follows that

PPo((1 + f)n) < ay)
=P((1+ f)n —Po((1 + f)n) > cy/(1 + fy)nlogn)
<P(IPo((1+ f)n) — (1 + fi)n| > /(I + fynlogn) = O(n~<7?),

and similarly
P(Po((1 + fu)n) = a) = O(n~<7?).

We shall use this and the upper bound (20) for E [WlN (m%, u¥y||1P| = kn] to compute

an upper bound for E [WlN (m%, uN )] as follows:

=1

E[W) m}, u™)] = Z E[Wim%, u™) [Pl = k] - P(Po((1 + fu)n) = k)
k=0

a

af
+ Y E[Wimp, u™) [|P] = k] - P(Po((1+ f)n) = k)

k=a,

+ > E[Wim. u™) [|P| = k] - PPo((1+ f)n) = k)
k=a; +1
=L+ L+ 5.

Since any two points in [0, 11V are at most at distance /N, we have for I

a, —1
I < VN Y P(Po((1+ fu)n) = k) = O@Po((1 + fu)n) < a;)) = O(n~7?),

k=0

while for I3 we get, using (20),

I < 0((a;)—1/NIP(Po((1 +fon) > a;),/loga;)
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= 0<(a,f)_1/Nn_"2/2,/loga,T> = O(n_cz/z_l/N logn).

The main contribution comes from I, for which we use that k +— P(Po(Qn) = k) is

concave on [a; , a] and attains is maximum at k = (1 4+ f;,)n to obtain

n-’>=n

L

IA

0 (nN fiogn) B(Po((1 + fiym) = n(1 + fu)(a} — a)

— n n —
O(n ]/N,/logn)z(1 */ )i/_'z(lj_f Jnlogn _ 0 ""Nlogn),
/N

IA

where we used (20) with k,, = (1+ f;,)n for the first line and Stirling’s approximation
for n! for the second line. Since ¢ > 0 was arbitrary we conclude that

E[W) (m, u™)] = 0(n~""N logn). (22)

]

5.3.3 Uniform and Discrete Measures on the Ball B (x; 6p)

The following result follows from Lemma 6 by a simple rescaling argument.

Corollary 3 Let r, — 0 and consider a Poisson process P with intensity n on the
N-dimensional square [0, 2r, V. Let m% denote the empirical measure on the square

[0, 27,1V with respect to P, i.e.,
N 1
mp(y) = P A0, 21 E  Lip=y1 L (yeq0,25,1V)-
> peP

and uN the uniform measure on the square [0, 2r, 1. Then
E[W) (ml, u™)] = 0(n~""Nlogn).

Proof Consider the map ¢ : [0, 2r, 1V — [0, 11V defined by ¢ (x) = rn_lx/2. Then
#(P) is a Poisson Point Process on [0, 1]V with intensity measure 2V 7Y n. Now let

nﬁ% = m% o¢~ ! and /fN = uN o ¢! denote, respectively, the empirical measure
with respect to ¢ (P) and the uniform measure on [0, 11V It follows from Lemma 6
that

E[W i, aM)] = O (ran= "N log(nr))) = 0 (n" /N r,(logn + N logry)).

Since for any x, y € [0, 2r,]¥ we have dy (¢ (x), ¢ () = 27 1r, Ldy (x, y) it follows
that

E[Wy(m¥, u™)] = 27 B[ Wy s, 16V)]
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=0(n""N(ogn + Nlogr,)) = O(n "V logn),
because r,, — 0. ]

For our analysis we first extend Corollary 3 to N-dimensional balls. For this we note
that if m )]CV and ,ufcv denote, respectively, the empirical and uniform measure on the ball
By (x:8,) € RV, then

WYY, 1Ny < wNm", 1),

where m" and ! are, respectively, the empirical and uniform measure on a cube
[0, 28,1V It then follows from Corollary 3 that

E[WimY, u})] = 0(n="Nlogn) = o(r,) = 0(8}).

We thus have the following result:

Proposition 7 Let f, — 0, x € RY, and consider a Poisson process P with intensity
measure (1 + f,)ndvoly on the N-dimensional ball By (x; 8,). Let mfcv denote the
empirical measure with respect to P, i.e.,

1
my (y) = Pl Z Lip=yy.
peP

and poCV the uniform measure on By (x; 8,). Then
E[W) m¥, ul)] = 0(5).

5.3.4 From the Manifold to the Tangent Space and Back

To prove Proposition 3 we have to extend Proposition 7 to the setting of Riemannian
manifolds. For this we use that for n large enough, the ball B (x; §,) can be mapped
diffeomorphically by the exponential map to a slightly larger ball in the tangent space
of x. Since the tangent space is diffeomorphic to RY we can use Proposition 7 to
obtain the result. However, we have to be careful since the exponential map does not
preserve the metric.

Proof of Proposition 3 We shall denote by By (x; 8) the ball of radius § around x € RV,
according to the Euclidean metric. Fix a0 < £ < 1 and pick a small enough, but fixed,
neighborhood U of the origin in 7y M such that: 1) the exponential map restricted to
U is a diffeomorphism, 2) there exists a constant C > 1 such that U € By (0; C3,),
and 3) for any two points y, z € exp(U),

(1 —&)dy(expy ' y,expy ' 2) <dm(y,2) < (1+E)dy(expy ' v, expy ' 2).
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In particular, this implies that for n large enough,

. Sn -1 . . Sn
BN<O, m) Cexp {Ba(x; )} C BN<O, T—¢ —S) cUu.

Next we note that the probability measures m and pLx on B(x; 8,) only depend
on the restriction of the Poisson process to thls ball. In particular it only depends
on the restriction Py of the process to the fixed neighborhood U, which is again a
Poisson process with intensity n dvol o /vol o (M). Since U € By (0; C8,) itfollows
thaton U, volpq oexp, = (1 + 0(8,%)) voly . Therefore, it follows from the Mapping
Theorem for Poisson processes [21] that exp;1 (Py) is a Poisson process on exp;1 )
with intensity function (1 + O (83))n dvoly /vol g (M).

Slightly abusing notation, let m® and u denote respectively the empirical and
uniform measure on By (0; 8, /(1 — &)) with respect to the Poisson Point Process
exp;1 (Pyu). Then, since 6, /(1 — &) = @ (6,), Proposition 7 implies that

E[W{ (my, u)] = o(6)).
On the other hand we have, since exp, is a diffeomorphism on U, that

E[Wm, 1d)] < 4+ HE[WN ml, 1)),

and hence we conclude that

E[Wi(mM, 1d)] = o(5d),

which proves Proposition 3. O

5.4 Weighted Graph Distances

Recall that &, = n~ /N (logn)>/N . To prove Proposition 4 we first show the following.

Lemma7 Let Q > 3, U = Baq(x™; Q8,), and define the event

3An
A= {Idé;”(u, v) = dp(u, v)| > dp(u, v)

+ 2/\;1}.
u,veUNG, n

Then P (A,) = 0(83), asn — oo.

Proof The proof closely follows the strategy of the proof of Lemma 3. Let C,, denote
the event in Corollary 2. We will show that on this event,

3d g, V)2
|dé](u,v)—dM(u,v)|§M+2)\n

n
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Xr—1

Fig.4 Depiction of the splitting of the geodesic between « and v in k equal segments

for all u, v € U N G,,. This then implies that P(A, N C,) = 0 from which the results
follows, since by Corollary 2

P(An) < P(A, N Cp) + (1 = P(Cp)) = 0(5;).

Take any two u, v € U N G, and let y (u, v) denote the geodesic between u and v.
We then partition this geodesic into

L [3dM(u, v)—‘ - 3da(u, v) 41
&n &n
pieces of equal length and let u := uq, uy, ..., ux—1, ux := v denote the k + 1 end-

points of the intervals, see Fig. 4. On the event C,,, each u,; belongs to some ball B; of
radius X, /4 which contains a vertex x; € G, where we can take xo = u and x; = v.
In particular, since daq(us, xt) < An/2, dpg(ur—1,ur) < &,/3 and A, = o(gy), it
follows that for large enough n,

e
dp(xr, xe01) < dpg e, x0) +dpg (e, Xe1) +dag g, uppr) < Ap + ?n < én,

so that {u, x1, ..., xx, v} is a path in G, (see Fig. 4). Moreover, dg(x,,x,H) <
daq(uy, ug+1) + Ay by the triangle inequality. Therefore,

k—1 k—1
dg(u,v) <Y dE i xig1) < (A, 1) + An)
t=0 t=0

3A
<dmu,v) +kr, < dp(u, v)<1 + ") + Ay

n

To finish the proof we note that by definition dg‘;’ (u,v) > dpq(u, v) and hence

3dpa ()

ldG (u, v) —dp(u, v)| = dgu,v) — dp(u, v) <
&n

2hp.

]

Proof of Proposition 4 Due to Lemma 7 it suffices to show that the conditions on ¢,
and §, imply A, /&, = 0(8,2,). We compute that

An
€nd2

o) (nOH_Zﬁ_l/N(lOg n)Z/N—a—2b)_
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The latter is o(1) precisely when either ¢« + 28 < 1/N or ¢ + 28 = 1/N and
a+2b > 2/N, which are the conditions of Proposition 4. Thus, under the conditions
of Proposition 4 it holds that the manifold-weighted graph distance d; is a §,-good

approximation with &, = max { N/ )Jl/ 3}. .
5.5 Rescaled Graph Distances

Consider the 2-dimensional Euclidean space equipped with the Euclidean distance d>.
Let C = [0, 1]? and take G,, = G, (¢) to be the random geometric graph on C with
connection radius ¢. The main result in [9] relates the shortest-path distance dén and
the Euclidean distance d,. We state a version of this result here, which includes the
error bounds that follow from [9, Propositions 2.2 and 2.4].

Theorem 5 [9, Thm. 1.1] Consider the random geometric graph G,, on the unit square
[0, 1% with connection radius &, = o(1). Then for any pair of vertices x, y € G, with
dy(x,y) > ep, the following holds:

— Ifdy(x, y) = max {12(logn)*>?/(ne,), 21&, log n}, then

s dr(x,y) 1 _ -5/2
P@“’”% o <1+2(nsndz(x,y)>2/3>J)Zl o

— If e, = 224,/(logn)/n then

P (dé‘;(x, y) < [@(1 + yn)D >1—o(n™/?

n

with

3logn )2/3 4.10%(log n)> (30000)2/3}

= 1358
Va = max { (ns,% + nepda(x, y) nZel

ne?
From this we obtain the following result, which gives bounds on the graph distance
endg; in terms of the manifold distance, between two nodes of the graph G, that are

within manifold distance O (§,).

Lemma8 Lete, > 244,/(logn)/n, Q > 3, U = By (x™*; Q6,), and define the event

A= | llead§ @, v) — dpg(u, v)| > dpg(u, v) v + 64}
u,velUNGy,

Then P(A,) = 0(8}), as n — oo.

Proof Note that since the the neighborhood U is shrinking as n increases we can map
it to R? diffeomorphically for sufficiently large . This affects the distances at most
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by a constant factor and hence it suffices to prove the statement for M = R>. By the
second statement of Theorem 5 we have that for any two u, v € U N G,

P(lend$s (u, v) — daq(u, v)| > dag(u, v) yn + 2) = 0o(n /).

By conditioning on the number of nodes in U (|U N G,|) and applying the union
bound we get

P(Ay [1UNGul) < U N Gylo(n™).
Now E[|[U N G,|] = @(n8,2l) and therefore
P(An) = E[P(4, | [UN G, = 00 250) = o(5)).,
where we used that n—3/2 = 0(8,) for all §,, = @(n’ﬁ(log n)?)yand g < 1. O
We can now prove Proposition 5.

Proof of Proposition 5 First observe that &,dj;(u,v) > daq(u,v) for all u,v €
B (x*; 08,). Moreover, the conditions of the proposition imply that (log n)'/?n~1/2
= o(g,). Therefore, by Lemma 8 we have that with probability 1 — 0(82 ),

lendg; (u, v) — dpg(u, V)| < dpg(u, V)yn + &n

forallu, v € Bp(x*; 08,) NG,,. Moreover, since by assumption« > 38 anda < 3b
if « = 3 it follows that ¢, = 0(82 ). Thus, to prove Proposition 5 it remains to show
that y,, = 0(8,2,). Since y, is the maximum of three terms

1358 3logn 253 4.10°ogn)? 30000\
neZ + nepda(x, y) n’el ne2 '

We will show that each of them is 0(6,2,). For the first term it suffices to show that
n~le2logn = 0(83). This follows since

n_18;28n_3 logn = O (n—(l—Za—3,6) (logn)l—Za—’jh)’

which is o(1) by the assumption that 2o + 38 < 1 and 2a + 3b > 1 if 2o + 38 = 1.

We now immediately have that (n_lsrj 2 log n)? = 0(62), which proves that the
second term is 0(82). Finally, the result for the third term follows from n~'e -2 =
o(n_lsn_zlogn) 20(83). O
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