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Abstract

The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments col-
lected 107.7 fb~! in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This
paper describes the key features of the PPS alignment and optics calibrations, the pro-
ton reconstruction procedure, as well as the detector efficiency and the performance of
the PPS simulation. The reconstruction and simulation are validated using a sample
of (semi)exclusive dilepton events. The performance of PPS has proven the feasibil-
ity of continuously operating a near-beam proton spectrometer at a high luminosity
hadron collider.
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1 Introduction

The Precision Proton Spectrometer (PPS) detector system has been installed and integrated into
the CMS experiment [1] during Run 2 of the LHC with 13 TeV proton-proton collisions. It is a
joint project of the CMS and TOTEM [2] Collaborations and measures protons scattered at very
small angles at high instantaneous luminosity [3]. The scattered protons that remain inside the
beam pipe, displaced from the central beam orbit, can be measured by detectors placed inside
movable beam pipe insertions, called Roman pots (RP), which approach the beam within a
few mm. The PPS detectors have collected data corresponding to an integrated luminosity of
107.7 b~ ! during the LHC Run 2, which occurred between 2016 and 2018.

The physics motivation behind PPS is the study of central exclusive production (CEP), i.e. the
process pp — p'*) + X + p*) mediated by color-singlet exchanges (e.g. photons, Pomerons,
Z bosons), by detecting at least one of the outgoing protons. In CEP, one or both protons may
dissociate into a low-mass state (p*); dissociated protons do not produce a signal in PPS. The X
system is produced at central rapidities, and its kinematics can be fully reconstructed from the
4-momenta of the protons, thereby giving access to standard model (SM), or beyond SM (BSM)
final states that are otherwise difficult to observe in the CMS central detectors because of the
large pileup (multiple interactions per bunch crossing) at high luminosities. CEP provides
unique sensitivity to SM processes in events with Pomeron and/or photon exchange, and BSM
physics, e.g. via searches for anomalous quartic gauge couplings, axion-like particles, and new
resonances [4-8].

This paper is organized as follows. The CMS detector and PPS are described in Section 2. The
LHC optics and the concept of proton transport is presented in Section 3, followed in Section 4
by a description of the data sets used. Sections 5 and 6 describe the detector alignment proce-
dure and the LHC optics calibration. Section 7 details the proton reconstruction with the PPS
detectors. Sections 8 and 9 document the study of LHC aperture limitations and the simulation
of the proton transport and PPS detectors, and Section 10 describes the uncertainties affecting
the proton reconstruction. A validation of the reconstruction using a (semi)exclusive dimuon
sample is presented in Section 11. The measurement of the proton reconstruction efficiency
is discussed in Section 12. Section 13 describes a study of the performance of the proton ver-
tex matching criteria from time-of-arrival measurements. Finally, a summary is presented in
Section 14.

2 The CMS detector and PPS

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator
hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorime-
ters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons
are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the
solenoid.

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of about 4 s [9]. The second
level, known as the high-level trigger (HLT), consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1 kHz before data storage [10].
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Figure 1: Schematic layout of the beam line between the interaction point and the RP locations
in LHC sector 56, corresponding to the negative z direction in the CMS coordinate system and
the outgoing proton in the clockwise beam direction. The accelerator magnets are indicated in
grey and the collimator system elements in green. The horizontal RPs, which constitute PPS,
are marked in red. The vertical RPs are indicated in dark grey; they are part of the TOTEM ex-
periment. The vertical RPs are not used during high luminosity data taking; nevertheless, they
provide PPS with a reference measurement for the calibration and alignment of the detectors.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, is reported in Ref. [1].

The PPS detectors

Figure 1 shows the layout of the RP system installed at around 200-220 m from the CMS inter-
action point (LHC interaction point 5 (IP5)), along the beam line in the LHC sector between the
interaction points 5 and 6, referred to as sector 56. A symmetric set of detectors is installed in
LHC sector 45. Some RPs approach the beam vertically from the top and bottom, some hori-
zontally. During standard machine operation, scattered protons undergo a large displacement
in the horizontal direction and a small vertical displacement at the RP positions. The horizontal
RPs are hence used. The vertical RPs are used in special configurations of the machine and in
low luminosity proton-proton fills for the calibration and alignment of the detectors.

Each detector arm consists of two RPs instrumented with silicon tracking detectors that measure
the transverse displacement of the protons with respect to the beam, and one RP with timing
detectors to measure their time-of-flight. The tracking RP closer to the IP5 is referred to as
“near”, the other as “far”. Silicon strip sensors with a reduced insensitive region on the edge
facing the beam were initially used [11]. Each RP housed 10 silicon strip sensor planes, half at
a +45° angle and half at a —45° angle with respect to the bottom of the RP. These sensors could
not sustain a large radiation dose and could not identify multiple tracks in the same event.
For this reason they have been gradually replaced by new 3D silicon pixel sensors: one RP
(in each arm) during the 2017 data-taking run and all tracking RPs in 2018 were instrumented
with 3D pixel sensors. Each such RP hosts six 3D pixel sensor planes [3]. A summary of the RP
configurations used in 2016-2018 is provided in Table 1.

The difference between the proton arrival times in the detectors on both sides of the IP5 is
used to reject background events with protons from pileup interactions, or beam-halo particles.
Timing detectors were operational in 2017 and 2018, with four detector planes hosted in a
single RP. They consisted of single- and double-sided single crystal chemical vapor deposition
(scCVD) diamond sensor planes [12]; during 2017 data taking one of the four planes consisted
of ultra-fast silicon sensors [13] instead of diamond ones.



Table 1: RP configurations in different years. The numbers represent the RP distances from the
IP5, the sensor technology is indicated in parentheses. The RP layout was always symmetric
about the IP5. There were always two tracking RPs per arm; the one closer to the IP5 is denoted
as “near”, the other as “far”. In 2016, no timing RPs were used.

Year Near tracking RP  Far tracking RP Timing RP
2016 203.8m (strips) 212.6m (strips) —

2017 212.6m (strips) 219.6 m (pixels) 215.7m
2018 212.6m (pixels) 219.6 m (pixels) 215.7m

3 LHC optics and proton transport

PPS is a proton spectrometer that uses the LHC accelerator magnets between the interaction
point (IP) and the RPs. Scattered protons are detected in the RPs after having traversed a
segment of the LHC lattice containing 29 main and corrector magnets [14].

Since the protons that reach the PPS detectors travel more than 200 m inside the vacuum pipe
of the LHC and very close to the LHC beams, we use the technique normally employed to
model beams inside an accelerator. The trajectory of the protons in the vicinity of the central
orbit [15, 16] can be described as follows. The proton kinematics d at a distance / from the IP
(e.g. at the RPs) is related to the proton kinematics at the IP, d*, via the transport equation:

d(l) =T(1,¢)-d" ey

Superscript * in general is used in the following to denote the value of the given parameter

at the interaction point, z = 0. The proton kinematics is described by d = (x,6,,y, 9y, Q‘)T,

where (x,y) and (6,,0,) indicate the transverse position and angles; ¢ denotes the fractional
momentum loss

¢ = (pnom - p)/pnomr (2)

where p,,, and p are the nominal beam momentum and the scattered proton momentum,
respectively [17, 18].

In exclusive reactions the momentum losses of the two scattered protons, ¢; and ¢,, can be used
to assess the mass of the centrally produced state

mx = Em/ €162, 3)

and its rapidity
L. G
=-InZ, 4)
Y72,
where E_,, stands for the proton-proton centre-of-mass energy (13 TeV in LHC Run 2).
The transport matrix is defined as:
vy Ly myz omy Dy
do, dL, dD,
a @ M s Tqr
T(S, C) = mg Mz Uy Ly Dy , (5)
do, dL, dD,
Mg Mip ~qr @ a
o o0 o0 o0 1

where the most important quantity for the proton spectrometer is D,, the horizontal disper-
sion; the other matrix elements are the so-called optical functions (v,, L,, m; ; and their vertical
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Figure 2: Frequency distributions of 8* vs. crossing angle configurations as extracted from data.
Left: year 2017. Right: year 2018.

counterparts) [19]. The definition of the relevant optical functions and their determination are
described in Section 6. The optical functions depend on LHC parameters like the betatron func-
tion value B* at the IP5 and the crossing angle. Throughout this document, we refer to the half
crossing angle, i.e. half the angle between the beams at their crossing point.

Figure 2 shows the distributions of * vs. crossing angle for different data taking periods as
extracted from data certified for analysis. In 2017, most of the data were recorded at four
discrete values of the crossing angle: 150, 140, 130 and 120 yrad. The highest value was used at
the beginning of the fills, then the crossing angle was reduced as the instantaneous luminosity
dropped. The value of * was set to 0.4m (0.3m) in periods before (after) Technical Stop 2
(TS2). In 2018, the crossing angle was changed continuously from 160 yrad at the beginning
of the fill down to 130 urad. At this point, p* was changed in two discrete steps, from 0.3 to
0.27 and finally to 0.25m. In 2016 (not shown in the figure) * = 0.4m was used together
with the crossing angle values of 185 urad and 140 urad for the pre-TS2 and post-TS2 periods,
respectively.

4 Data sets

Two types of data are used for the calibration and alignment of the PPS detectors: data taken
in high-intensity LHC “physics” fills and data taken in special “alignment” fills. The low beam
intensity is an essential feature of the alighment fills, which provide additional data for align-
ment and optics calibration. The various beam intensities are typically achieved by injecting
various numbers of bunches in the LHC, since the number of protons per bunch is typically
the same, up to 1.2 x 10!, The RP distances from the LHC beams are typically expressed in
multiples of “beam sigmas”, the RMS values of the beam transverse profile. The values of the
beam sigma are the same for the alignment and physics fills: 0j,.5m ~ 0.1 mm horizontally and
Opeam ~ 0.4 mm vertically.

The physics fills are standard LHC fills. There are up to 2500 bunches per beam, yielding
an instantaneous luminosity of about 103 cm~2s~!. The average number of inelastic proton
interactions at the IP (pileup) is typically between 15 and 55. Only horizontal RPs are inserted
in these fills, to a distance of 15 0,4 -
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Figure 3: Illustration of a proton crossing both the vertical (blue) and the horizontal (green) RPs
(overlapping configuration).

The alignment fills use the same LHC optics as the physics fills, but much lower beam intensity—
typically only two bunches are injected per each beam. This gives instantaneous luminosities
of the order of 103 cm 25! and average pileup about 20. The primary purpose of these fills is
to establish the RP position with respect to the LHC collimators using a procedure analogous
to the LHC collimator alignment [20]. This is a precondition for systematic RP insertion close to
the high-intensity LHC beams. Because of the low intensity, the safety rules allow insertion of
both horizontal and vertical RPs very close to the beam: at 6.5 0y,.,, horizontally and at 5 0y,
vertically. At these distances, the horizontal and vertical detectors overlap, as shown in Fig. 3,
which allows the relative alignment of the RPs in each arm. With the use of the vertical RPs, it
is possible to detect elastically scattered protons that are used for horizontal RP alignment with
respect to the beam. The alignment procedure is detailed in Section 5. In the alignment fills the
very small separation of the horizontal RPs from the beam allows the recording of additional
data essential for optics calibration (cf. Section 6). Typically there are two alignment fills per
year of LHC operation.

In Run 2, PPS was operated from 2016 to 2018. The PPS data sets are divided in data-taking pe-
riods. The PPS performance is often sensitive to the LHC settings (optics, collimators, etc.),
which often vary with time; they are changed during LHC technical stops (TSs). For in-
stance, the LHC optics was modified during the second technical stop (TS2) in 2016 and p*
was changed after TS2 in 2017. The technical stops are also opportunities for changing the
position of the detectors in the RPs. For example, in TS1 and TS2 in 2018, the tracking RPs
were shifted vertically to better distribute the radiation dose accumulated by the pixel sensors.
The sensor inefficiency due to radiation damage is discussed in Section 12. Table 2 summarizes
the PPS periods with significantly different LHC/RP settings and the corresponding integrated
luminosities [21-23].

5 Alighment

The alignment of the RPs is a multi-level procedure including aligning the sensor planes within
each RP as well as aligning the RPs with respect to the LHC beam. This is one of the inputs for
the proton reconstruction (discussed in detail in Section 7).

Although conceptually similar, the alignment of RPs is different from that of other CMS sub-
detectors, because the RPs are moveable devices. At the beginning of each LHC fill they are
stored in a safe position away from the beam. Only when the LHC reaches stable conditions are
they moved close to the beam. Since the fill-to-fill beam position reproducibility has a limited
accuracy, it is desirable to determine the alignment parameters for every fill.
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Table 2: List of the PPS periods with distinct LHC and/or RP settings. The third column from
left indicates the time ranges where PPS recorded data. L;, corresponds to the integrated
luminosity recorded during runs certified for use in physics analysis.

Year Period LHC fill number (date) range(s) Ly (b 1)
2016 pre-TS2 4974 (31 May) to 5052 (29 Jun), 5261 (29 Aug) to 5288 (9 Sep) 9.8
post-TS2 5393 (9 Oct) to 5451 (26 Oct) 5.0
2017 pre-TS2 5839 (16 Jun) to 6193 (12 Sep) 15.0
post-TS2 6239 (24 Sep) to 6371 (10 Nov) 222
2018 pre-TS1 6615 (26 Apr) to 6778 (12 Jun) 18.5
TS1-TS2 6854 (27 Jun) to 7145 (10 Sep) 26.8
post-TS2 7213 (24 Sep) to 7334 (24 Oct) 10.4
Total 107.7

The alignment procedure involves multiple steps. A special “alignment” calibration fill deter-
mines the absolute position of the RPs with respect to the beam (Section 5.1). This calibration
then serves as a reference for the alignment of every “physics” fill with standard conditions
(Section 5.2). Once the tracking RPs are aligned with respect to the beam, the timing RPs are
aligned with respect to the tracking RPs (Section 5.3).

5.1 Alignment fill

An alignment fill is a special fill, which allows to obtain data essential for calibration, not avail-
able in standard physics fills (more details are given in Section 4).

The relative alignment among the sensor planes in all the RPs and among all the RPs in one
arm is determined by minimizing residuals between hits and fitted tracks [24]. This is an it-
erative procedure, since a priori it is not possible to distinguish between misalignments and
outliers (unrelated hits due to noise, etc.). Therefore, the iteration starts with a large toler-
ance, O(100 ym), that allows for misalignments, and as it proceeds the tolerance is decreased
to O(10 ym) as outliers are discarded. An illustration is shown in Fig. 4, left, emphasizing the
essential role of the overlap of the vertical and horizontal RPs. The typical uncertainty of the
relative RP alignment is few micrometres. By construction, the relative alignment is not sen-
sitive to misalignment modes that do not generate residuals, e.g. a global shift of the full RP
system. These modes are addressed in the next step.

The vertical RPs can detect protons from elastic scattering, i.e. a process with only two protons
in the final state, each having ¢ = 0 as a consequence of momentum conservation. Because the
two protons emerge from the same vertex in opposite directions, elastic events are relatively
easy to tag (cf. Section 5.2.1 in Ref. [25]). Because of the azimuthal symmetry of the elastic scat-
tering at the IP and the properties of the LHC optics, the elastic protons arrive at the RPs with
impact points in the transverse plane elliptically distributed around the beam. Although only
the tails of the elastic hit distributions are within the acceptance (protons with sufficiently large
vertical scattering angle, |0;]), the distributions can be used to extract the beam position with
respect to the RPs. This is illustrated in Fig. 4, right: the profile of the elastic hit distribution
(black) is interpolated between the top and bottom RP (green), which provides information on
the horizontal alignment and potential rotations in the xy plane. This is combined with the in-
formation from a minimum bias sample, in which most protons detected in the horizontal RPs
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Figure 4: Left: relative alignment between vertical and horizontal RPs (April 2018). The plot
shows track impact points in a scoring plane perpendicular to the beam. The points in red
represent tracks only reconstructed from vertical RPs, in blue only from horizontal RPs and
in green from both vertical and horizontal RPs. The size and position of the RP sensors is
schematically indicated by the black (vertical strip RPs) and magenta (horizontal pixel RPs)
contours. Right: determination of the beam position with respect to the RPs (September 2016).
Black: profile (mean x as a function of y) of elastic track impact points observed in vertical
RPs; green: fit and interpolation. Blue: horizontal profile of minimum bias tracks found in the
horizontal RP; red: fit and extrapolation. Magenta cross: the determined beam position. The
error bars represent statistical uncertainties.

are due to pileup. The profile from the minimum bias sample (blue) is extrapolated linearly
(red) to find the intersection (magenta cross) with the green line. The intersection indicates the
beam position with respect to the RPs, with a typical uncertainty of about 10 ym.

5.2 Physics fills

For each high-luminosity LHC fill (“physics” fill), the horizontal RP alignment is obtained by
matching observations from the fill to those from the reference “alignment” fill, cf. Section
5.1. Various matching metrics have been used, and some of the first choices are discussed
in Ref. [26]). Eventually the procedure converged to:

S(x) = slope of profile (yg — yn) VS. Yiests (6)

where yy and yg stand for the vertical track positions in the near and far RP, respectively.
Similarly, v refers to the vertical track position in the RP being aligned. The shape of the
profile is illustrated in Fig. 5, where the value of S corresponds to the slope of the red line.
The x dependence of the S function is generated by the LHC optics, cf. Section 6: y is mostly
given by the vertical effective length, L,({), and ¢ is largely correlated with x because of the
large horizontal dispersion. The optics has been verified to be stable in time and therefore S(x)
is suitable for matching observations between different fills. Furthermore, the function from
Eq. (6) is convenient because of its slope character: vertical misalignments (shifts in y) cause
no bias and unavailable parts of the phase space (e.g. because of localized radiation damage)
do not have any detrimental impact since the slope can still be determined from the available
part. The matching procedure is illustrated in Fig. 6, left: the S(x) curve from the test fill (blue)
is shifted left and right until the best match with the S(x) curve from the reference fill (aligned
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Figure 5: Illustration of yr — vy dependence on y (fill 7139, 2018, near RP in sector 56). The three
plots correspond to three x selections as indicated in the legends. Blue: profile histogram of the
dependence, red: linear fit to the central part. The error bars represent statistical uncertainties.

with the method from Section 5.1) is found. The shift between the blue and red curves is then
used as the alignment correction.

The relative alignment between the RPs within the same arm is then refined with a dedicated
method with a better sensitivity — good calibration of the relative alignment is essential for
some of the proton reconstruction techniques. The relative near-far alignment method is based
on comparing horizontal track positions in the near and far RPs, x and x, respectively. The
procedure is illustrated in Fig. 6, right: the profile xp — xy vs. xy (red) is extrapolated (blue
dashed) to the value of x); corresponding to the beam position (green). The extrapolated value
of xp — xy (magenta dot) then gives the relative-alignment correction. In general, the xg — xy
difference can be generated either by misalignments (independent of the horizontal position)
or by the optics (roughly proportional to horizontal displacement from the beam). The extrap-
olation to the beam position, where the displacement from beam is ~0, thus suppresses the
optics contribution and keeps the misalignment component only.

The vertical alignment is obtained by extrapolating (blue) the observed vertical profile (red)
to the horizontal beam position (green), as shown in Fig. 7 where the alignment correction is
marked with the magenta dot. The extrapolation to the beam position suppresses the optics
contributions and keeps the misalignment component only. The mode (most frequent value) of
y, contrary to the mean of y, is a local estimator not considering the tails of the y distribution,
which can be truncated because of the limited sensor size or other acceptance related effects.
This vertical alignment method is sufficiently sensitive to provide both absolute per-RP and
relative near-far alignment.

Figure 8 shows a summary of per-fill alignment results for one alignment period. It also illus-
trates one of the many systematic validations performed; compatible results are expected from
data sets obtained with different values of the crossing angle, f*, or different central-detector
triggers (the vast majority of the protons reaching the RPs are due to pileup unrelated to the
triggering event).

Figure 8 also confirms the expectation of fill independence of the alignment results. A fit of the
results is used to remove occasional outliers, improve fill-to-fill stability and increase the overall
accuracy of the alignment. In Run 2, there were two alignment periods where significant time
variation was observed for some RPs. A notable example is 2016 pre-TS2 (additional details are
discussed in Section 3.5 of Ref. [26]) where a package of sensors was initially wrongly inserted
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Figure 6: Left: illustration of the absolute horizontal alignment (fill 5424, 2016 post-TS2, far RP
in sector 45). Black: data from the reference alignment fill, blue: data from a physics fill before
the alignment and red: data from the physics fill, aligned to match with the black reference.
The error bars represent the bin sizes (horizontally) and statistical uncertainties (vertically).
Right: illustration of horizontal near-far relative alignment (fill 7052, 2018 and sector 45). Red:
mean value of xp — xy as function of xy. Blue: fit and extrapolation to the horizontal beam
position (vertical green line, e.g. from the left plot). The value of the relative near-far alignment
correction is indicated by the magenta dot. The error bars represent the bin sizes (horizontally)
and statistical uncertainties (vertically).
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Figure 7: Illustration of the vertical alignment (fill 5424, 2016 post-TS2, far RP in sector 45). Red:
mode (most frequent value) of y as a function of x, Blue: fit and extrapolation to the horizontal
beam position (indicated by the vertical green line and extracted from Fig. 6, left). The value of
the vertical alignment correction is indicated by the magenta dot. The error bars represent the
systematic uncertainties.
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into a RP and over time the package slowly drifted to its nominal position due to the spring
included in the RP assembly. Even in these cases, the variation was slow enough that fits could
be applied to suppress the excessive fill-to-fill fluctuations and thus improve the results.

The alignment uncertainties are presented in Table 3. They are estimated from fill-to-fill result
fluctuations in cases where identical results are expected.

Table 3: Summary of per-fill alignment uncertainties.

Projection Absolute Relative (near-far)
Horizontal =~ 150 ym 10 ym
Vertical 100 ym 10 ym

5.3 Timing RPs

The timing RPs consist of four sensor layers, called “planes”, perpendicular to the LHC beam.
As shown in Fig. 9, each plane is composed of four physical pieces of diamond substrate, called
“chips”. Each chip has a structure of readout electrodes in the form of thick vertical strips,
called “pads”. This structure constitutes the horizontal segmentation of the timing detector
and, in general, is different for each plane and chip.

The timing sensors are aligned with respect to the tracking RPs to associate local tracks using
timing and tracking RPs (cf. Fig. 28). Since the timing RPs have only horizontal segmentation,
only x alignment is performed. The alignment is performed individually for each plane and
pad as well as for each LHC fill.

As illustrated in Fig. 10, the alignment method is based on a histogram of horizontal residuals
between the hit position in the timing sensor and the track interpolated from the upstream and
downstream tracking RPs. The histogram of these residuals (red) reveals the “shape” of the
pad, the pad edges (dashed blue) as well as the pad centre (green). The alignment correction
is given by the offset of the green line from zero. Estimated correction uncertainty is 100 ym,
driven by the uncertainties of the extracted pad edge positions.

A typical example of alignment corrections is shown in Fig. 11. As expected, we find compat-
ible results for the pads on the same physical chip, cf. Fig. 9. The average per-chip correction
is indicated by the short horizontal line. The result pattern can be explained by the mechan-
ical process of gluing the chips on the board — the chips cannot mechanically overlap, only
additional gaps can be introduced. This leads to a cumulative misalignment monotonically in-
creasing (in absolute value) with the chip number, as revealed by the results. Chip 3, the most
far from the beam, often gets an insufficient number of tracks (because of the LHC collimators,
cf. Section 8) and the correction from chip 2 is used in this case.
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Figure 8: Example of per-fill alignment results (2017 post-TS2,

56). Horizontal axis contains representative LHC fills where PPS was active. The colors in-

dicate two values of crossing angle, 120 urad (blue) and 150 urad (green). Rows from top to
bottom: absolute horizontal alignment, near-far relative horizontal alignment, absolute vertical

alignment and near-far relative vertical alignment. The error bars (mostly invisible) represent

a combination of statistical and systematic uncertainties.
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Figure 9: Example of timing detector segmentation in one plane (plane 1 in 2018 configuration).
The beam is at x = O0mm. Chip boundaries are drawn as dashed black rectangles. Pads are
visualized as thick vertical strips, their colors indicate the chip relation.
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Figure 10: Illustration of the timing-RP alignment method (fill 7137, 2018, sector 56, plane 1
and pad 9). The red histogram shows the difference between the horizontal track position in
the timing sensor, Xyn,g, and the track interpolated from the tracking RPs, Xy,cier- The vertical
blue dashed lines indicate the identified pad boundaries, the green line the pad center.
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Figure 11: An example of alignment corrections in a single timing RP sensor plane (fill 7137,
2018, plane 1). Two different markers are used: the dots represent per-channel measurements,
while the short horizontal lines represent per-chip averages. The same color is used for chan-
nels/pads placed on the same diamond chip, following the scheme in Fig. 9. For chip 3 (most
far from the beam) sometimes the track statistics is insufficient for alignment determination.
In such cases the magenta thick dot is missing. The error bars represent a combination of sta-
tistical and systematic uncertainties reflecting the sharpness of the pad boundaries shown in

Fig. 10. Left: sector 45, right: sector 56.
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6 Optics model and calibration
6.1 Introduction

In Run 2, the LHC optics settings and conditions were modified every year. The key concepts
and the tools to constrain the main optical functions using collision data for 2016 have been
described in Refs. [17, 18]. During physics runs, the luminosity of the LHC beams decreases
naturally due to bunch intensity decay. Luminosity can be regained for the experiments by
adjusting the crossing angle and betatron amplitude to increase the so-called luminosity geom-
etry factor. To achieve this goal in 2017 the levelling of the crossing angle and of the betatron
amplitude p* was introduced. In 2018 the levelling of both parameters became continuous [27].

The modelling of this varying optics and its calibration required a generalization of the well-
established 2016 methods; the higher number of events permitted, and also required, a more
careful dispersion calibration. The vertical position of the beams crossing point, y*, also changed
with respect to 2016. In the last two years of Run 2, the optics had a sizable vertical dispersion
D,, which is an important optical function for the reconstruction. An optics uncertainty model
based on collision data is also presented. The optics calibration methods of Run 2 are briefly
discussed from the viewpoint of the HL-LHC in Ref. [5].

6.1.1 Proton transport at the LHC

The transport matrix and the optical functions have already been introduced in Section 3. In
the following, the meaning of the transport matrix elements is explained, with emphasis on
the connection between the g amplitude and the optical functions used in the reconstruction.
Specifically, the horizontal and vertical magnifications

Uy = \/ :Bx,y/:B* cos Ayx,y/ )
L.y = \/BxyB*sinBpy,, (8)

are functions of the betatron amplitudes , , their value * at IP5 and the relative phase ad-

vance RP di
A = / — 9
Vx,y P ﬁ Xy ( )

The beam size can be calculated from the beam emittance ¢ of the LHC and from the betatron
amplitude

and the effective lengths

o(x) = /P&~ 13 um, (10)
using a representative B, = 0.3m value, where ¢ is computed from the normalised emittance
en = (Br 7.)e = 3.75 um rad. Here B; = v/c; v is the velocity of the beam particles, ¢ is the

speed of light and 9 = (1 — ﬁ%)*% is the Lorentz factor. The subscript “L” is used in B; and
71, to avoid confusion. The Liouville theorem dictates that

mo(x)o(x') = me, (11)

where o (x') is the beam divergence, i.e. the angular spreading, of the LHC beams; the symbol

x' stands for dx/d! [16]. Therefore, from Eq. (11) it follows that o'(x') = 1/Bx e ~ 40 urad for
the representative §, = 0.3 m value, which gives the limit on the resolution of the scattering
angle 07, of PPS [14].
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As already mentioned, in 2017, the necessity to improve the lifetime of the beams led to the
change or “levelling” of both the betatron amplitude, *, at IP5 in discrete steps and the hori-
zontal crossing angle. In 2018 both parameters were modified continuously (cf. Table 4). For
comparison at IP1 (ATLAS) the crossing angle bump was in the vertical plane during Run 2 to
avoid long range beam-beam interactions [28]. The levelling is based on the so-called Achro-
matic Telescopic Squeezing (ATS) optics [27]; one of its features is that the optical functions
Eq. (7) and Eq. (8) remain constant despite the change in 8*. Therefore, the p* levelling is a
transparent operation from the viewpoint of the reconstruction. The horizontal dispersion D,
determines the proton trajectory in the horizontal plane and depends on the crossing angle
levelling at IP5; therefore D, is calibrated separately for each reference crossing angle.

Table 4: Summary of main beam parameter values, crossing angle and 8*, during the Run 2
period per year. In 2017 the values changed in discrete steps, whereas in 2018 there was a
continuous change within the interval.

Year Half horizontal crossing angle (urad)  B* (m)

2016 140,185 0.4
2017 120,130,140,150 03,04
2018 [130, 160] [0.25, 0.4]

The transport equation Eq. (1) can be explicitly written at the RPs in the form
x =xg+ Dy €+Lx(€) 9; +Ux(§) X,
y :yO+Dy'C+Ly(C) 0; +vy(§) 'y*/

that describes the connection between the proton kinematics at the IP5 and at the RPs, where x
and y, are the horizontal and vertical beam position, respectively. The horizontal dispersion D,
is a function of ¢, therefore it is useful to define a function that provides the horizontal position
of a proton with momentum loss ¢ directly

xd(g) = Dx(é) -G, (13)
and one can define similarly y4(¢) [2, 29].

(12)

The coupling terms m;; in the transport matrix Eq. (5) connect the horizontal and vertical scat-
tering planes. At the LHC, like for most accelerators, these terms are set to zero nominally
My, ..., My ~ 0 for collision optics. They receive perturbative-level corrections because of
skew quadrupole corrector magnets. The effect of the coupling on the reconstruction of the
proton kinematics was negligible for all years.

The optics calibration assumes the beam-based alignment of the detectors, after which the
beams appear at xy = y, = 0, cf. Eq. (12) [26]. The horizontal position of the protons, x({), is a
nonlinear function of ¢, which can be approximated for low ¢ values

X~ Dx(§)|g:o -G (14)

where the resolution in x is limited by the spreading because of the scattering angle term L, - 6
and by the contribution of the vertex x*, cf. Eq. (12).

6.2 Calibration of the LHC optics

The horizontal dispersion D, is the most important optics quantity, because it allows one to
convert the x-coordinate measurements at the RPs into the fractional proton momentum loss
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¢. The determination of D, from the measured proton tracks is briefly reviewed in the next
section (cf. also Ref. [17]). The 2017 and 2018 optics calibration procedure goes a step further
and also exploits (semi)-exclusive pp production; the exclusivity of the process plays a key role
in the calibration, as illustrated in Section 11.

In the last step of the calibration procedure, the vertical dispersion D, is determined from min-
imum bias RP data. The calibration of the dispersion functions is followed by the calibration
of the remaining optical functions in the transport matrix Eq. (5), namely the horizontal, L, (),
and vertical, L, (¢), effective lengths, and the corresponding magnification functions; other op-
tical functions are less relevant for the proton reconstruction.

The above optics calibration steps rely on the nominal transport model, which is taken from
LHC databases. The transport matrix is defined by the machine settings M, which are obtained
from several data sources. The proper version of the LHC magnet lattice description, known
as “sequence”, is used each year. The nominal magnet strength file for a given beam optics is
always updated using measured data: the currents of the magnets power converters Ipc are
tirst retrieved using TIMBER [30], an application to extract data from heterogeneous databases
containing information about the whole LHC infrastructure. The currents Ip- are converted
to magnet strengths with the LHC software architecture (LSA) [31], which uses the conversion
curves from the field description for the LHC (FIDEL) [32].

6.2.1 The Ly = 0 method

This procedure uses the minimum bias data recorded during the special low-luminosity runs
mentioned in Section 5.1. The method has been applied for each year within Run 2; for 2017 and
2018, a separate calibration was carried out for each crossing angle. The procedure assumes
the calibration of the vertical effective length L, for low-¢ values, below & ~ 4%, using the
elastic candidate events measured in the vertical RPs; this additional step is reported in detail
in Refs. [17, 33].

The LHC optics are calculated with the methodical accelerator design (MAD-X) program, a
general purpose beam optics and lattice software [29]. The vertical effective length L,(¢) is
a function of the proton momentum loss ¢, and can be calculated with MAD-X at each RP
location with good accuracy. The calibration is based on the observation that Ly(é ) is positive
at ¢ = 0, monotonically decreases with increasing ¢ reaching large negative L, values and it
vanishes at about { ~ 4%. According to Eq. (12) at this { value every proton is transported
to the same vertical coordinate y = 0 regardless of the vertical scattering angle 6} (the vertex
contribution is neglected). At the same time these protons appear at the horizontal location
xp ~ D, - Cp. Consequently, the (x,y) distribution of the protons has to exhibit a “pinch”, or
focal point, at this horizontal location xg, cf. Fig. 12.

The LHC optics transport is the same for all protons, thus the focal point can be observed and
measured with the horizontal RP detectors using large statistics minimum bias data, cf. Fig. 13.
The figure shows the (x, y) distribution of the proton impact points in the RP detectors for 2017
for a representative half crossing angle «;, = 120 urad. The plot shows the parabolic fit of the
contour curves around the “pinch” point. The minima of the parabolic curves are fitted with a
linear function and the fits are extrapolated. The intersection of the linear fits is marked with
a red dot, and indicates the estimate of the focal point position xp. The fit of the contour lines
and the extrapolation are used in order to estimate the bias coming from the scattering angle
6, and extrapolate to the point where the bias vanishes. The measurement is repeated with
the distribution obtained after a selection on the scattering angle 6, to reduce the horizontal
spreading around the focal point; in this case the parabolic fits are not needed.
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Figure 12: The (x,y) distribution of simulated proton tracks in the near RP in sector 56 using
MAD-X. It illustrates the “pinch” or focal point at x = xg where the vertical effective length
vanishes: L, (Cp) = 0, given the relation y ~ L, ({) - 0;. The simulation takes into account that
the small vertical dispersion moves particles upward according to Ay = D, ¢ with increasing
x,and ¢.

The dispersion is estimated as

D, (¢) ’g:gF = %}: (15)

The measured D, values are used to calibrate the LHC optics model, as described in the next
sections. The uncertainty of the Ly = 0 method includes the uncertainty of the contour fits,
their minimum and their linear extrapolation; the systematic uncertainty due to remaining
bias is estimated with a Monte Carlo simulation.

6.2.2 Calibration using the (semi)-exclusive uu process

In 2016 PPS collected its first (semi)-exclusive dilepton sample [34], pp — p*)¢ + £p(*), where
a pair of leptons (¢ = e, p) is reconstructed in the central CMS apparatus, one of the protons is
detected in PPS, and the second proton either remains intact or is excited and then dissociates
into a low-mass state, indicated by the symbol p(*), and escapes undetected. Section 11 focuses
on the yp measurement, whereas the implications on the optics calibration are presented here.

The (semi)-exclusivity implies a high-purity data set: in these events, the central yu system
carries the momentum lost by the two forward protons. Therefore, the difference of the frac-
tional momentum loss reconstructed from PPS and from the central CMS detectors can be de-
termined; the correction to D, is computed such that this difference vanishes. The improved
calibration result for D, remains within the uncertainty of the L, = 0 method and the final D,
result is the weighted average of the two measurements. The uncertainty of D, is the combined
uncertainty of the L, = 0 and the (semi)-exclusive py methods. The evolution of the dispersion
D, (&) (or x4(&) cf. Eq. (13)) with ¢ can be also validated using the p results. The D, results are
shown in Table 5 with a conservative 8% uncertainty in D,, which applies to x4 as well.

The dispersion asymmetry between the two arms was observed in 2016 and persisted in 2017
and 2018 as well; it is attributed to crossing angle asymmetry and quadrupole magnet mis-
alignment within their nominal tolerance.
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Figure 13: The (x,y) distribution of the proton impact points in the near RP detector in sector
45 for 2017 using minimum bias data, along with parabolic fits of the contours around the
“pinch”. The minima of the parabolas are fitted with a straight line. The intersection of the two
lines is marked with a red dot, and indicates the estimated focal point coordinate xz. To make
the contour curves and extrapolation symmetric, the mean of the histogram was aligned to 0 to
remove the y offset created by the vertical dispersion Ay = D, ¢. The vertical error bar on the
contour minima, blue points, represents the statistical uncertainty of the fit.

Table 5: Measured horizontal dispersion values D, in the near RP at low ¢ between 2% and
4% (the exact (g value depends on the detector and the year). The resulting D, value is the
weighted average of the L, = 0 and (semi)-exclusive iy results. The quoted 8% uncertainty in
D, applies to the x, function as well.

Year Half crossing angle (urad) Sector 45 (cm) Sector 56 (cm)

2016 185 —97+04 —6.7+£04
2017 120 —-104=£0.8 —79+0.6
2018 120 —-11.3£09 —-87+0.7

6.2.3 Optics matching

The purpose of the optics fitting (or “matching”) is the calibration of the LHC optics model us-
ing the measured dispersion values and other measured constraints. The calibration procedure
consists of a x> minimization with MINUIT, where the initial optics model of the fit is taken
from the LHC databases, as mentioned in Section 6.2 [35].

The first step is to constrain the quadrupole field model using the elastic candidates from the
alignment fills, described in Ref. [17]. In the second step the measured dispersion values from
Table 5 are used as inputs to the x? function, with additional constraints reflecting the LHC
optics uncertainties:

XZ = X%lesign + X%neasured' (16)

The following measurements from both LHC beams contribute to x2 ..., ..s°

e the readings of three beam position monitors (BPMs) (at/ = 22m, 58 m, 199 m), with
an uncertainty 0y psolute ~ 0-43 mm;
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o the beam position at RP 210, near, vertical, with an uncertainty ¢, = 0.5 mm;
o the two measured dispersion values D, (1 per arm) with their measured uncertainty,
cf. Table 5.

To match, or fit, the dispersion values and the LHC optics model, the relevant LHC machine
parameters are varied during the minimization. The matching procedure exploits the fact that a
quadrupole magnet misaligned by a dx offset gives a correction to the dipole field, whereas the
quadrupole fields remain unchanged. The following machine parameters have to be matched
for the two LHC beams separately to obtain the orbit model for the proton reconstruction:

e horizontal (half) crossing angle ay,;
e quadrupole positions (¢, = 0.5 mm, 6 parameters);
e Kkicker strength (0} =~ 3%, 3 parameters).
With this procedure a good confidence level was achieved for the lattice model of the two LHC

beams. The matched MAD-X optics model is used to extend the measured dispersion values
from Table 5 to higher ¢ values. An example of the fitted result is shown in Fig. 14.1
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Figure 14: The momentum loss of the protons ¢ as a function of x in the near RP of sector
45. The dispersion function is ¢ dependent itself and the figure shows directly the nonlinear
x(¢) = D(¢) - ¢ function. The ¢(x) function depends on the crossing angle as well; the figure
shows the dependence for three reference angles, so the function can be interpolated to arbi-
trary intermediate angles.

The optics model MAD-X shows that the different interpretations of the dispersion asymme-
try between sector 45 and 56 (crossing angle rotation, quadrupole misalignment, etc.) lead to
negligible differences in the systematic uncertainty, for example in the evolution of D, with ¢.

6.2.4 Calibration of the vertical dispersion D,

In 2016 the vertical dispersion D, was close to zero, whereas in 2017 and 2018 the optics
changed and a vertical dispersion D, ~ —1cm was applied. Despite its small value, the verti-

I This matching procedure has been reviewed by the beam department (BE) experts of the LHC.
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cal dispersion has a strong effect on the ¢ dependence of the vertical reconstruction of 6 and
y* because of the nonlinearity of the other optical functions.

The vertical dispersion D, is estimated from the (D, /D,) ratio measured on the (x,y) plane;

the value is refined by perturbing it so as to match the measured 6; and y* values as well.
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Figure 15: The vertical scattering angle 6, as a function of ¢ after calibration of the vertical

dispersion D, for sector 45 and fill 6923. The mean of the scattering angle distribution is con-

sistent with 0. The distribution is also affected by the vertical acceptance limitations starting

from about ¢ ~ 5% because of the vertical acceptance limits of the detector cf. Fig. 3.

o

The measured vertical dispersion values are summarized in Table 6. The values are small
enough that the crossing angle dependence can be neglected. The vertical dispersion values
Dy are validated with minimum bias data, cf. Section 7 and also Fig. 15.

Table 6: Final measured vertical dispersion values D, in the near RP per year. The uncertainty
is derived conservatively from the measured (Dy /D,) ratio.

Year Sector 45 (cm) Sector 56 (cm)
2016 0+ 0.02 (stat) 0+ 0.02 (stat)
2017 —1.36 £0.02 (stat) &= 0.1 (syst) —1.99 £ 0.02 (stat) = 0.16 (syst)
2018 —1.36 £0.02 (stat) 0.1 (syst) —1.87 £0.02 (stat) = 0.15 (syst)

6.3 Optics description and uncertainty model

The LHC optics model, calculated with MAD-X, can be described in several efficient ways for
the event reconstruction and physics analysis [29]. In the year 2016, the description of the
proton transport used orthonormal polynomials to fit the (x,y) coordinates of the protons at
the RPs as a function of their input kinematics [36].

Experience with the data and optics modelling showed that the parametrization, or factoriza-
tion, of Eq. (12) is sufficient to describe the proton transport between IP5 and the RPs; therefore,
since 2016 an expansion using only 1-dimensional ¢ dependent optical functions is applied.

As discussed earlier, in 2017 the levelling of the beam crossing angle was introduced. This
is straightforward to take into account using the optical function concept with an additional
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Figure 16: The horizontal and vertical effective lengths L, and L, transport the scattering angle
of the proton at IP5 0 and 0; to the position (x,y) at the RPs. The figure shows the ¢ de-
pendence of the two functions. The horizontal effective length L, (¢) decreases faster than the
vertical function L ; both of them cross zero at low ¢, below ¢ = 5%. The grey dashed lines
show the effective lengths for the TOTEM RPs used for calibration.

extrapolation function among reference crossing angles, as shown in Eq. (17) and Fig. 14:

£(04,§) = 10(@) + oyt [x1a0(8) — (@) 7)

The linear function is motivated by MAD-X and is compatible with the dispersion measure-
ments within uncertainties. The other optical functions remain constant during the levelling
of the crossing angle and, due to the telescopic concept of the ATS optics, they also remain
constant during the levelling of g*. The relevance of the ATS telescopic squeezing from the
viewpoint of uncertainty model is discussed in Section 6.3.1.

6.3.1 Optics uncertainty model

The uncertainties of the horizontal and vertical dispersions D, and Dy, and of the function
x4(¢) have already been discussed in Sections 6.2 and 6.2.4 (cf. also Table 5). The uncertainties
of the remaining relevant optical functions are illustrated in the following.

The levelling of the crossing angle and *, mentioned earlier, is based on the ATS optics, which
has been conceived to cope with requirements expected for HL-LHC [27]. The most important
feature of the ATS optics, from the viewpoint of the forward spectrometers, is that the magnetic
tields around the IP are kept stable during the levelling process. The p* at these IPs is changed
by varying the magnetic fields at IP2 and IP8 [27]. This stability significantly reduces the un-
certainty in the optics model and transport matrix for PPS. It also contributes to the alignment
stability, which uses the distribution of L, /[dL, /dl], cf. Eq. (6) and Eq. (12).

Despite its stability, the LHC [37] is subject to additional imperfections AM, which alter the
transport matrix by AT:

T(; M) =T (I; M+AM) =T (I; M) + AT. (18)
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The principles of the optics uncertainty model are described in Ref. [17]. A more complex
approach is however needed in view of the explicit ¢ dependence of the optical functions.

The transport of protons in the vicinity of the central orbit, or any other reference orbit with
a certain ¢, is mainly determined by the quadrupole fields of the alternating focusing and de-
focusing magnet (FODO) system of the LHC, whereas the position of the central orbit itself is
determined by the distribution of the dipole fields; this includes the dipole fields created by
misaligned quadrupole magnets.
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Figure 17: Fit of o(Ax) as a function of x for the near RP in sector 45. The fit is used to estimate
the uncertainty of the optical function dL, /dl. The vertical error bars represent the statistical
uncertainties.

A typical example is the assessment of the uncertainty of the optical function dL,/dl. The
estimation starts with the uncertainty model at low ¢; the magnet strengths in MAD-X are
perturbed within their nominal uncertainty and the model is refined using the optics con-
straints from elastic candidates. In the next step the ratio of the optical function is estimated
between the low- and high-¢ part using collision data, cf. Fig. 17. The estimation is based on
the relation Ax(x;) = dL,/dl|,_, -0; and exploits the fact that the scattering angle distri-
bution of the proton is almost independent of ¢, so that R(xy,x,) = 0(Ax(xy))/0(Ax(xy)) =~
dL,/dl|,_, /dL,/dl|,_, .

After careful evaluation for this particular function the optics model and the data agree within
~10%, cf. Fig. 17. The R(xy,x,) result is translated to R(&;,§,) using the dispersion and, to-
gether with the low-¢ uncertainty, determines the uncertainty at all . A similar procedure
leads to the uncertainty of L, (¢). The LHC optics give strict correlations between the magnifi-
cations v,, vy and L,, Ly. Therefore, the uncertainty estimation of the effective lengths indirectly
provides uncertainties on the magnifications as well.

6.3.2 Covariances of optical functions

To fully estimate the ¢ dependence of the uncertainty of the optical functions, the calculation
of the covariance matrix between different ¢ values for each function is needed. The magnetic
strength k and other relevant beam parameters are perturbed within their nominal uncertainty
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and the optical functions are calculated for each parameter set. The values of the obtained
optical functions L, and the envelope function thus obtained are shown in Fig. 18. The covari-
ance and correlation matrix for the optical function L, at the fractional proton momentum loss
¢ = 3% and ¢ = 10% are shown in Table 7.
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Figure 18: Left: the distribution of the horizontal effective length L, (&) values as a consequence
of perturbations of the magnetic strength. Right: the correlations of the functions; the red and
blue dashed curves represent the two extreme L, ({)-curves of the Monte Carlo. The upper and
lower envelopes demonstrate that the points of the curve move together at different ¢.

The correlation matrix, shown in Table 7, indicates a close to 100% correlation between the low-
and high-¢ regions, which is included in the uncertainty model, cf. also Fig 18. This means that
the variations of the magnetic strength and other beam parameters act in the same way at
different ¢ values and the uncertainty can be described with one parameter. The covariance
and correlation matrices are available for all optical functions.

Table 7: The correlation matrix for L, between different ¢ values for the detector RP56-220-fr
vertical.
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Figure 19: Left: ¢ dependent uncertainty function of the horizontal effective length L, (¢).

Right: ¢ dependent uncertainty function of the derivative of the horizontal effective length

dL,(¢)/dL.

The optics uncertainty model includes the close to 100% correlation. This means that the optical
function perturbation do can be determined at a given reference ¢, value and can then be
scaled with the factor given in Fig. 19 to obtain the perturbation at a different ¢ value. The
optics uncertainty model is included in the PPS proton simulation described in Section 9.
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6.3.3 Inversion of the proton transport equations

The transport equations Eq. (12) are linear in ¢ and in the horizontal scattering angle 0 with
coefficient functions like L, (), which are nonlinear. The beam size o(x) from Eq. (10) mul-
tiplied by the magnification factor |v,| ~ 4 gives 0(x) v, ~ 60 um in the horizontal plane, a
contribution that is negligible when compared with the other two terms. Therefore, Eq. (12)
can be inverted to yield:

L - X

L

x,far

—L * Xfar 1 dD

(: — near X,near , 9* — <9 _ xg) , (19)
D xnear ~ Lxfar T D x,far Lx,near g de/ d! * dl

where the optical functions, like L, ... (¢), are functions of . The variable ¢ appears on both

sides of the first nonlinear equation, whose solution can be found with any iterative method.

These formulae are equivalent to those developed and used previously by the TOTEM Collab-

oration [25]. Equation (19) indicates the optical functions whose calibration is most relevant for

the reconstruction. The formulae for the vertical reconstruction read:

e Ly far * Yhear — Lyncar * Viar , 6= L <9y _ dvyy*> , (20)
vy,near . Ly,far - Z)y,far ' Ly,near dLy/dl di

where y' = y — D, ¢. The nonlinear Eq. (20) shows that an otherwise constant offset in D, or
in the vertical alignment would lead to a nonlinear distortion of the reconstructed angle.

6.3.4 Summary

In summary, the LHC optics settings and conditions changed every year in Run 2. In this
chapter the main concepts and the data-driven tools to constrain the optical functions for 2016,
2017 and 2018 have been presented. The main challenges of Run 2 are the levelling of the
instantaneous luminosity by changing the crossing angle and B*, which requires the careful
calibration of the horizontal dispersion D, and also its change with the crossing angle. The
vertical dispersion Dy became sizable in 2017 and 2018, and its calibration has been discussed.
An optics uncertainty model based on collision data has been also presented, which includes
the covariance matrix of transport elements.
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7 Proton reconstruction

The proton reconstruction consists in back-propagating the protons from the RPs (where they
are measured) to the IP (where the kinematics is determined). The propagation follows the
LHC optics discussed in Section 6. The input to the propagation consists of the proton tracks
detected by the RPs and aligned with respect to the LHC beam (cf. Section 5). Since the proton
tracks at the RPs are linear (no magnetic field), they can be described by four independent
parameters (slopes and intercepts along x and y). The five proton kinematic variables include:
the transverse position of the proton at z = 0, x* and y*, the horizontal and vertical scattering
angles, 07 and 6y, and the fractional momentum loss, {. Compared to the four parameters
measurable by the RPs, the reconstruction problem is underconstrained and a variable must be
fixed with external information. Two complementary reconstruction strategies are exploited:
“single-RP” and “multi-RP”.

The single-RP reconstruction is a simple approach that uses information from single RPs only.
Because of the reduced input information, only ¢ and 6, can be estimated:

E=x'(x), 6=~ (21)

where the value of ¢ reconstructed from the former equation is inserted into the latter. These
equations reflect only the leading terms from the optics decomposition in Eq. (12). Neglecting
the subleading, but still relevant, terms (e.g. the one proportional to 65) implies a degraded
resolution. On the other hand, a notable advantage of this approach is its applicability even
when the proton track is not available in the other RP of the arm. Furthermore, this approach
has a different (slightly smaller) dependence on the systematic variations with respect to the
multi-RP method, cf. Fig. 38. In this sense the single-RP reconstruction is a very useful check
of the calibration. The variables x*, y* and 65 cannot be reconstructed with this approach and
they are set to zero. For the vertex coordinates this is a reasonable approximation when low p*
optics is used (as detailed below).

The multi-RP reconstruction exploits the full potential of the spectrometer: it searches for pro-
ton kinematics that best match the observations from all RPs and all projections by minimizing
the following function:

i (igy 12
di (Td)q], 22)

1
g

e-r L]
i: RPs q: X,y

where i runs over all the tracking RPs in the arm and g over the two transverse projections.
This expression follows the notation of Eq. (1): the vector d’ represents the (measured) proton
position at the ith RP, the vector d* denotes the proton kinematics at the IP and the matrix T*
stands for the proton transport between the IP and the ith RP. The quantity Ué denotes the po-
sition measurement uncertainty at the i-th RP in projection g. This general formulation allows
for using any optics model, T, and any number of tracking RPs (greater than 1). A similar
approach proved useful already when applied by the TOTEM Collaboration to high * optics
[36]. Since PPS aims primarily at low B* optics, further optimizations are possible. Low p* op-
tics is characterized by narrow distributions of the interaction vertices in the transverse plane,
o(x*) = o(y*) = O(10 um). Consequently, the vertex terms in the optics decomposition of
Eq. (12) give only a small contribution and can be neglected in the reconstruction without any
significant loss of accuracy (cf. Fig. 36, right). This, in turn, can resolve the under-determination
of the reconstruction discussed earlier. Since there are only 4 measurements available (2 pro-
jections times 2 RPs), only 4 proton parameters out of five (x*, y*, 67, 6}, §) can be determined.
Therefore, by default, x* is fixed to 0, which is a reasonable approximation given the LHC
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optics used by PPS (low $*) and the very small x* RMS in these conditions. In this case, the
number of degrees of freedom for the fit is ndf = 4 —4 = 0 and therefore the fit effectively
performs a numerical solution of a set of 4 nonlinear equations. It is equally justified to fix also
y* = 0, which results in an alternative fitting model with one less fitted parameter (since ¢ is
reconstructed from horizontal coordinates) and thus with ndf = 4 —3 = 1. This option has
been tried for validation purposes and yields results compatible with those obtained with the
default choice.

The general expression in Eq. (22) can be decomposed into a set of simpler equations for the
conditions relevant to PPS. The minimum of x? from Eq. (22) is described by Egs. (19) and (20)
when the following conditions are met: (i) if two tracking RPs are used per arm (Run 2 con-
figuration); (ii) if the proton transport can be approximated by the terms explicitly mentioned
in Eq. (12) (a good approximation for 2017 and 2018); (iii) only x* is assumed to be zero (the
case with ndf = 0). Each of these equations gives an explicit expression to determine one of the
proton kinematic variables. Only the first equation is nonlinear (¢ on both sides of the equa-
tion), whereas the others are linear (¢ is taken from the solution to the first equation). Beyond
the usefulness for optics studies as discussed in Section 6, this decomposition can speed up
the reconstruction software implementation: there is a single nonlinear equation with a single
variable that can be solved in different well established ways, e.g. Newton’s method. Using
this optimisation gives results compatible with the full minimisation according to Eq. (22).

During Run 2, PPS was operated with two tracking RPs per arm (denoted “near” and “far”,
referring to their position with respect to the IP). The input to Eq. (22) therefore consists of one
near and one far RP track, selected such that their combination is consistent with belonging to a
proton originating from the IP. The selection is achieved by considering all near-far track combi-
nations and retaining only those fulfilling the so called “near-far association” constraints. This
selection has a double aim: first, to suppress background, and second, to disentangle multiple
forward protons present in the event. The association constraints reflect the expected proton
kinematics at the IP (e.g. the RMS of the scattering angles) and the patterns imposed by the
LHC optics. For instance, forward protons arrive at the RP detectors at small angles with re-
spect to the LHC beam and therefore Ax and Ay are expected to be small, of the order of 0.1 mm
(A refers to the near-far difference of the track position). Beyond these, selection criteria based
on A¢ and Af); are also used, based on the single-RP reconstruction of Eq. (21). The constraints
have been tuned using both simulation and data, with the aim of optimizing efficiency and
purity. The inefficiency (further discussed in Section 12) can arise either because of overly strict
constraints discarding real protons, or overly loose constraints not able to distinguish between
two (or multiple) protons in the event. The optimisation of the near-far association constraints
is performed for each year. In 2016 and 2017, some of the RPs were equipped with Si strip sen-
sors that reconstruct no more than one track per event. In this case, the association constraints
can only suppress background and can thus be relatively loose: typically only the A¢ criterion
with a threshold of about 0.01 is applied. In 2018, all tracking RPs were equipped with Si pixel
sensors capable of reconstructing multiple tracks. Disentangling individual protons becomes
necessary and tighter constraints are needed: typically A¢ (with a threshold of about 0.008), Ax
and Ay criteria are applied.

The quality of the multi-RP reconstruction can be estimated by propagating the reconstructed
protons to the RPs and comparing the positions of the measured and the propagated track
impact points; the typical difference is smaller than 1 ym (thus at least an order of magnitude
better than the spatial resolution of the RPs).

Figure 20 compares the results of the single-RP reconstruction of  from the near and far RPs.
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Figure 20: Comparison of ¢ reconstructed with the single-RP method from the near and far RP
in each arm, presented as a function of ¢ (fill 5849, 2017). The color code represents per-bin
event counts. Left: sector 45, right: sector 56.
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Figure 21: Mean near-far ¢ difference from single-RP reconstruction (in a safe region far from
acceptance limitations) as a function of fill number (2017, sector 56). The different colors repre-
sent data taken with different values of the crossing angle. The error bars represent the system-
atic uncertainty estimated as a difference of means evaluated at two different values of &, -

The difference between the left and right plot follows mostly from the optics difference between
sectors 45 and 56. The observed part of the phase space (reflected by the discontinuities in the
plots) is limited by the distances of the RPs from the beam at low ¢, (Where “multi” stands
for reconstructed with the multi-RP method). The LHC aperture limitations (at high .,
details given in Section 8) and the A¢ association cut (e.g. vertical constraints at about £0.006 in
the left plot). Beyond these acceptance limitations, the difference is distributed symmetrically
about 0 and is independent of the reconstructed ¢ (multi-RP), as expected if the alignment
and the optics calibration are correct. An example of the mean difference for multiple fills is
presented in Fig. 21. The mean value is stable in time, as expected. The systematic shift between
the blue and red markers (different values of crossing angle) can be attributed to a residual
miscalibration and represents a measure of the systematic uncertainty of the reconstruction.

Figure 22 shows a comparison of ¢ reconstructed with the single-RP and the multi-RP meth-
ods. Within resolution, they are expected to give the same results. As expected, the single-RP
reconstruction has a rather low resolution. Apart from acceptance limitations (cf. Section 8),
the single-multi difference is symmetrically distributed about 0 and has a mean independent
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Figure 22: Comparison of ¢ reconstructed with the single-RP and multi-RP methods, presented
as a function of ¢ (LHC fill 5849, 2017, single-RP reconstruction from the near RPs). The color
code represents per-bin event counts. Left: sector 45, right: sector 56.
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Figure 23: Mean single-RP vs. multi-RP ¢ difference (in a safe region far from acceptance lim-
itations) as a function of fill number (2017, sector 56, single-RP reconstruction from the near
RP). The different colors represent data taken with different values of the crossing angle. The
error bars represent the systematic uncertainty estimated as a difference of means evaluated at
two different values of ¢, -

of ¢, again as expected if the alignment and the optics calibration are correct. A summary of
the mean single-multi ¢ difference for several fills is shown in Fig. 23. The mean value is stable
with time and close to zero (within the estimated uncertainties, Fig. 40). There is a small resid-
ual dependence on the crossing angle (colors), which is caused by residual miscalibration and
represents a contribution to the systematic uncertainties.

Figure 24 shows an example distribution of the horizontal scattering angle, 6}, vs. ¢ as recon-
structed with the multi-RP method. The 65 distribution is expected to be symmetric about
zero. Apart from acceptance limitations (cutoffs at the white-blue boundaries) we observe a re-
sult compatible with this expectation. Specifically, the mean value of 65 does not depend on ¢ —
a requirement for well calibrated conditions. Figure 25 compares mean 65 from many fills. The
mean value is stable over time and close to zero (within approximately +10 yrad). The small
residual dependence on the crossing angle (colors) is again taken as a systematic uncertainty
of the reconstruction.
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Figure 24: Histogram of 8} vs. ¢ as reconstructed with the multi-RP method (fill 5849, 2017).
The color code represents per-bin event counts. Left: sector 45, right: sector 56.

7 (prad)

Mean of 9

20 |

CMS-TOTEM

2017 (13 TeV)

A!_‘!.IH!TS]]III!!IIIII!IIIIIH!”‘

FTTIpSd TTTT II 4 Crossing angle 150

Fill number

Figure 25: Mean value of 65 (in a safe region far from acceptance limitations) as a function of
fill number (2017, sector 56). The markers in several colors represent data taken with different
values of the crossing angle. The error bars represent the systematic uncertainty estimated as a
difference of means evaluated at two different values of ¢, 1-
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Figure 26: Histogram of 6 vs. ¢ as reconstructed with the multi-RP method (fill 5276, 2016).
The color code represents per-bin event counts. Left: sector 45, right: sector 56.
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Figure 27: Mean value of 9; (in a safe region far from acceptance limitations) as a function of
fill number (2016, sector 45). The markers in different colors represent data taken with different
values of the crossing angle. The error bars represent the systematic uncertainty estimated as a
difference of means evaluated at two different values of & -

Figure 26 shows an example distribution of the vertical scattering angle, 6, vs. ¢ as recon-
structed with the multi-RP method. The 6; distribution is expected to be symmetric about
zero. Except the low-¢ region in the left plot (sector 45), which is affected by radiation dam-
age (cf. Section 12), we find this symmetry well maintained. A collection of 8, mean values
extracted from several fills is presented in Fig. 27. The mean is stable over time and close to

zero (within 210 yrad). A single value of the crossing angle was used in the pre-TS2 period in
2016, and a different one in post-TS2 one.

The reconstructed proton objects provided for physics analyses combine:

e proton kinematics at the IP: deduced from tracking RP measurements (as discussed
above) and

e proton timing information: determined from timing RPs.

The timing information can be used to match PPS protons with a vertex in the central detector
and thus for background suppression, cf. Section 13.

Tracks from the tracking and timing RPs are matched using Ax, the difference between the
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Figure 28: Association of local tracks from tracking and timing RPs (fill 7039, 2018). Ax refers
to horizontal distance between the tracks from tracking and timing RPs, o(Ax) stands for the
corresponding uncertainty. The vertical red lines delimit the tolerance window.
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Figure 29: Multiplicity of reconstructed protons per arm and per event (2018 data). The his-
tograms are normalised to unit area. Different colors correspond to different fills as indicated
in the legend. Left: sector 45, right: sector 56.

x coordinate measured in the timing RP and that interpolated from the tracking RPs, cf. Fig.
28. The shape of the histograms effectively reveals the “shape” of the timing pad, somewhat
smeared by the limited resolution of the tracking in the RPs. The tracking and timing tracks
are matched if the ratio Ax/c(Ax) is between —1.5 and +2.0. This ratio range was determined
empirically to provide good efficiency and purity.

Figure 29 shows the multiplicity distributions of protons reconstructed per arm and per event.
As expected, the probability decreases with increasing multiplicity. There are almost no events
with five or more reconstructed protons.

Figure 30 shows the raw ¢ distributions as extracted from data with no selection based on
reconstructed-proton observables. Since most of the protons detected in the RPs are due to
pileup, they are not related to the triggering event in the central CMS, and the correspond-
ing data set has essentially no bias due to the trigger. No corrections (acceptance, efficiency,
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Figure 30: ¢ distributions as extracted from reconstructed protons with no corrections (accep-
tance, efficiency, etc.), 2018 data. The histograms are normalised to unit area. Different colors
correspond to different fills as indicated in the legend. Left: sector 45, right: sector 56.

unfolding or so) were applied to these distributions. The shape of the distributions is largely
influenced by the acceptance, cf. red curves in Fig. 35. The differences between the left and
right plots mostly follow from the difference in the optics between the sectors 45 and 56.

8 Aperture constraints

Forward protons traveling from the IP to RPs may be intercepted by various LHC aperture
limitations (collimators, beam screens, etc.), which result in detection inefficiency. These effects
may be studied either by analyzing the aperture constraints of all LHC elements between the IP
and the RPs or empirically by searching for discontinuities in the reconstructed distributions of
the proton kinematic variables. This section presents a simple study with the latter approach,
performed on zero-bias data (no trigger requirement) with limited statistics.

The study is based on the distributions of the reconstructed scattering angles vs. ¢, cf. Fig. 24
and 26. In both projections the data are limited in the low- and high-¢ region. The limitations
at low ¢ mostly come from the distance of the RP from the beam. This effect can be modelled
by considering the distance and the shape of the sensors, as done in Section 9. The limitations
at high ¢ are especially sharp in the x projection, indicating that the edge arises because of
horizontal constraints — a consequence of the large horizontal dispersion. The slope of the
constraint in the 65 vs. ¢ plane is given by the interplay of the horizontal dispersion and the
effective length optical functions at the limiting LHC element.

Figure 31 shows a typical high-¢ pattern in the 05 vs. ¢ distribution that features a disconti-
nuity (green markers), which is qualitatively similar for all fills in Run 2. The discontinuity
is extracted by slicing the color-coded 2D histogram at constant 5 and, for each slice, finding
the ¢ position of the discontinuity (each green marker corresponds to one slice). In the left plot
(sector 45), the results form a two-segment line indicating possibly the presence of two relevant
aperture-limiting entities. The red line represents a two-segment line fit:

0y = 6o +a (5 — %),

In the right plot (sector 56), this simple parametrisation is compatible with the green points
within the estimated uncertainty.

a = ay for ¢ < ¢y oraq for ¢ > ¢. (23)
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Figure 31: Distribution of 05 vs. ¢ reconstructed with the multi-RP method (fill 6617, 2018),
zoomed at high ¢. The color code represents per-bin event counts. The green markers show
the identified aperture cutoff, the red line the fit according to Eq. (23). The green error bars
vertically represent the bin size, horizontally a combination of statistical and systematic uncer-
tainties. Left: sector 45, right: sector 56.

Figure 31 shows a significant asymmetry between sectors 45 and 56. This follows from the
asymmetry of the optics; since in sector 45 the horizontal dispersion is larger, the aperture
limitation is reached at smaller ¢ values.

The fit according to Eq. (23) has been performed independently on data from different fills,
different crossing angle and p* values — in order to assess a possible dependence on these
parameters. An example of such a study is shown in Fig. 32. Within uncertainties, we observe
almost no fill dependence (time stability) and a linear dependence on the crossing angle, which
is expected from the optics dependence, cf. Eq. (17). Equivalent conclusions have been reached
for other data-taking periods in Run 2.

9 Proton simulation

This section describes a fast simulation of forward protons in PPS. By design, it does not simu-
late details (interaction of protons with matter) but focuses on higher-level observables where
the reproduction of features of the data is important. In particular, the simulation accounts for
the following effects:

e beam smearing at the IP: vertex smearing and angular smearing (i.e. beam diver-
gence);

e proton propagation from the IP to the center of each RP according to the LHC optics,
cf. Section 6;

e simulation of the LHC aperture limitations according to the model from Section 8&;

e proton propagation between sensors in each RP: linear propagation because of the
lack of magnetic field in the RP region;

e sensor efficiencies (optional): using efficiency maps extracted from data, cf. Section
12;

e geometrical acceptance: check if the simulated protons pass through the sensitive
area of each sensor;
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o digitisation: a software “hit” object is created at the nearest strip / pixel — an effective
pitch is used to reproduce the spatial RP resolution extracted from data;

e for timing sensors, simulation of proton arrival time (with timing resolution ex-
tracted from data, cf. Section 13).

The hit objects created in the simulation are then processed with the standard PPS reconstruc-
tion software.

The simulation can take into account realistic distributions of parameters of importance: p*,
crossing angle, optics, RP positions, apertures, resolution and efficiencies. The values of the
crossing angle and * are randomly sampled from the 2D histograms extracted from the data,
cf. Fig. 2. The variations in RP positions reflect the movements performed during the LHC
operation: e.g. vertical RP movements in the technical stops of 2018 to distribute the radiation
damage. For consistency between simulation and data, the simulation conditions are randomly
switched with the frequency extracted from data (following integrated luminosities).

The simulation can be used with any source of simulated forward protons. By default, the
simulation uses a particle gun, which generates protons with a uniform ¢ distribution and
Gaussian 6} and 6 distributions with zero mean and RMS of 60 prad. These settings simulate
minimum bias protons.

The beam divergence, 0,4, used in the simulation was extracted from data using three com-
plementary methods. First, the beam divergence can be estimated from the beam emittance,
€, measured by the LHC: 0,4 = \/€/p* . The second estimate is obtained from the beam spot
size, 0y, measured by the CMS central detector: oi,q = 0i,5v/2/8*. The factor of v/2 stems from
converting the beam spot size (product of two beams) to the single-beam width, cf. Eq. (10).
The third method is the most direct, but can only be applied to data from the special “align-
ment” fills where a sample of elastically scattered protons can be selected. In the final state
of elastic scattering there are two protons, ideally with exactly opposite directions. Since the
direction fluctuations are predominantly caused by the beam divergence, the size of the latter
is determined from the RMS of scattering angle differences between the two elastic protons.
All the methods agree on a beam divergence of about 30 yrad.

Multiple validations were performed to check whether the simulation reproduces observations;
an example is shown in Fig. 33. In the left plot, the simulation describes well the cutoff at low
x (because of the sensor edge) and the smooth cutoff at large x (because of the LHC aperture
limitations). In the right plot, the simulation describes well the cutoff at large y (because of the
sensor edge).

An example of the timing simulation is shown in Fig. 34. Here, a realistic timing resolution is
used for the reconstructed protons (vertical axis), but perfect vertex z (horizontal) reconstruc-
tion is assumed.

Figure 35 shows the effect of the LHC aperture limitations (discussed in Section 8) on PPS
acceptance, which is estimated with the proton simulation. The differences between the left and
right plots stem primarily from the differences in the optics in the LHC sectors 45 and 56. The
differences between the colors (representing different years) are related to the sensor types used
in different years. In 2016, very wide Si strip sensors were used, thus limiting potential loss of
protons because of the vertical displacement from the beam. Consequently, the green curve
presents a plateau close to full acceptance at the central ¢ range. In 2018, vertically narrower
Si pixel sensors were used, thus unable to detect protons with sizable vertical displacement
from the beam. The proton loss rate increases with ¢ due to the optics: in particular due to the



37

2018 (13 TeV) 2018 (13 TeV)
R AR BN RRRRR RV  E T T coms]
3 B : : : | 3 C : ]
3 2 ]
S S -1

2 - : : Simulation 21071 e T =
0.09 = - * .............. | + Data : E
- : : : R 10—2 | — Simulation : =
0.06 = ................. ,,,,,,,,,,,,,,, .............. — + Data ;
N : : : _ 10~3 R ................... =
0‘03 —_—..... \ ................. ................. ............. — E E
L [ I T 104 R U -
0 | | | T - | | I - | 11 E 1 | 1 | 3

0 5 10 15 20 2 4 6
o (mm) y (mm)

Figure 33: Comparison of hit distributions from simulation (red) and LHC data (fill 6738, no
explicit event/track selection, black), for the 2018 pre-TS1 configuration and the near RP in
sector 56. The black error bars represent statistical uncertainties. Left: distribution of horizontal
track positions, right: distribution of vertical track positions (y range limited to the area around

the upper sensor edge).
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Figure 34: Simulated correlation between vertex position along the beam, z*, and the proton
timing difference observed in LHC sectors 56 and 45 (2018 pre-TS1 configuration). The color
code represents per-bin event counts. Reconstruction resolution of z* is not included in this

plot. The red dashed line indicates the ideal correlation.
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Figure 35: Fraction of reconstructed multi-RP protons, as a function of &, ,;, for a proton sam-
ple produced with the PPS direct simulation. Since perfect detector efficiency was assumed in
this simulation, the results reflect mostly the geometrical acceptance of the apparatus.

nonzero value of D, (cf. Section 6.2.4) and L, increasing (in absolute value) with ¢ (cf. Fig. 16).
In 2017, a hybrid configuration with strip (pixel) sensors in the near (far) RP was used (cf. Table
1) and consequently the acceptance shape is in between the two extremes. The acceptance in
sector 56 (right plot) is more sensitive to the reduced size of the pixel sensors because of the
larger (absolute) value of L,in this sector.

10 Uncertainties

Since the simulation described in Section 9 reproduces the data well (cf. e.g. Fig. 33), it can
be used to validate the performance of the proton reconstruction presented in Section 7. The
performance will be characterized in terms of the three quantities below.

e “Bias” = mean of reconstruction - truth. This may occur because of effects neglected
by the reconstruction formula; a notable example is the single-RP reconstruction of
¢, Eq. (21), which is unable to correct for the effect of the horizontal scattering angle
;. The “bias” may be nonzero even with a perfect knowledge of the conditions
(alignment, optics, etc.).

e “Resolution” = RMS of reconstruction - truth. This may occur because of random
event-to-event fluctuations, e.g. from finite sensor resolution or imperfect separation
of kinematics variables in the reconstruction. A notable example of the imperfect
separation could be the single-RP reconstruction of ¢; since this reconstruction is
biased by a term proportional to 07, the event-to-event fluctuations in the scattering
angle effectively lead to a degraded ¢ resolution. The “resolution” may be nonzero
even with a perfect knowledge of the conditions.

e “Systematics” = effect of biased conditions. The “systematics” may be nonzero even
if “bias” and/or “resolution” vanish.

The considered sources of conditions bias include:

e alignment: following the uncertainties from Table 3, variations of the horizontal and
vertical alignment were studied separately. Furthermore, symmetric (same sign in
near and far RP) and anti-symmetric (opposite sign in the two RPs) shifts have been
studied.
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Figure 36: Example of resolution studies for ¢ (2018 pre-TS1, sector 56). On the vertical axes, A
refers to the difference between the reconstructed and simulated ¢. On the horizontal axes, ¢
denotes the simulated value. The different colors refer to different smearing effects considered.
Black: only vertical vertex smearing, red: in addition also horizontal vertex smearing, blue: in
addition also beam divergence, green (the most complete scenario): in addition also detector
spatial resolution. The error bars represent statistical uncertainties. Note that some curves are
superimposed. Left: single-RP, right: multi-RP reconstruction.

e Optics: uncertainties of the horizontal effective length, L,, (cf. Fig. 19, left), its
derivative dL, /ds (cf. Fig. 19, right) and the horizontal dispersion.

The results presented here were obtained with the fast simulation described in Section 9 and
its default settings, which reproduce well the zero bias data. Specifically, the 05 distribution is
given by a convolving of two Gaussian functions, one representing the physics scattering (with
an RMS of 60 pyrad) and one representing the beam divergence (with an RMS of 30 yrad).

The MC-based results from the fast simulation are compared with semianalytic calculations.
These provide a validation (good agreement is found) and a detailed insight in the mechanisms
producing certain trends in results, as discussed later.

Below, we show results for the period 2018 pre-TS1 and for the detector arm in sector 56. These
are typical since the results for other periods and the other arm are qualitatively similar. We
systematically show separately the results for single- and multi-RP reconstruction since rather
different characteristics are expected. For brevity we focus on the results of ¢ reconstruction.
Some results for the reconstructed four-momentum transfer squared, ¢, are shown at the end of
this section.

Figure 36 shows an example of the resolution studies. For single-RP reconstruction (left plot),
the resolution is dominated by the neglected angular term (L, (¢) 65) in the proton propagation.
The RMS grows with ¢ because the horizontal effective length, L,.(¢), grows (in absolute value)
with ¢ (cf. Fig. 16). At very high ¢, the width of the 07 distribution within detector acceptance
is reduced by the LHC collimators (cf. Section 8). Therefore, fluctuations in reconstruction are
reduced, which however leads to a bias (quantified in Fig. 37). For the multi-RP reconstruction
(right plot), the only sizable contribution to the resolution comes from the detector spatial res-
olution. This explicitly justifies the statement that neglecting the horizontal vertex, x*, in the
reconstruction has a negligible effect, cf. Section 7.

Figure 37 shows an illustration of the bias studies. The single-RP reconstruction (left plot) is
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Figure 37: Example of bias studies for ¢ (2018 pre-TS1, sector 56). The different colors refer to
different smearing effects considered (see caption of Fig. 36). The error bars represent statistical
uncertainties. Left: single-RP, right: multi-RP reconstruction.

significantly biased close to the acceptance edges (very low and very high §). At these edges the
accepted 05 range becomes strongly asymmetric and since the 0 term is neglected in single-RP
reconstruction, the bias appears. The bias is negligible for multi-RP reconstruction (right plot).

Figure 38 shows an example of the biased-conditions studies. The individual curves show the
systematic error in the reconstruction of ¢ caused by various conditions biases applied at the
10 level (cf. the list above). For both single-RP (left plot) and multi-RP (right plot), the leading
contribution (magenta) stems from the uncertainty in the horizontal dispersion. The change of
behavior at large ¢ is due to the LHC aperture limitations, which modify/restrict the distribu-
tion of protons within the RP acceptance. The single-RP reconstruction (left plot) has very low
sensitivity to certain scenarios, e.g. the blue and cyan one. The multi-RP reconstruction (right
plot) is more sensitive to systematic errors, especially at very high .

Since the contributions shown in Fig. 38 are statistically independent, they can be combined in
quadrature to obtain the total uncertainty, as shown in Fig. 39. Up to ¢ ~ 0.15, the uncertainties
of the single-RP (red) and the multi-RP (blue) reconstruction are very similar.

A summary of all the studies presented in this section is provided in Fig. 40. The comparison
of the single-RP (left plot) to the multi-RP reconstruction (right plot) shows that the former has
significantly larger bias, significantly worse resolution, and almost comparable systematics; it
is better only in the high-¢ region. This plot justifies the general preference for the multi-RP
reconstruction.

Besides ¢, PPS can also estimate the four-momentum transfer squared, t, of protons reaching
the RP detectors. Formally, this quantity is defined as (P’ — P)?, where the four momenta P
and P’ are those before and after the collision, respectively. It can be related to other kinematic

variables:
2
*2 *
) \/ 03 —}—Oy

t= t0(€> - 4p310m(1 - g) sin 2 ’

(24)

10(0) =2 (1 4 Phom(1 =€) = /02 + PR (12 + Pham(1 = 9) ).
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Figure 38: Example of systematic studies for ¢ (2018 pre-TS1, sector 56). Each curve corre-
sponds to a perturbation at 1 ¢ level. The red and blue curves represent alignment variations:
in the former both the near and far RP are shifted in the same direction, in the latter opposite
directions are considered. The remaining scenarios cover perturbations of the optical functions.
The error bars represent statistical uncertainties. Left: single-RP, right: multi-RP reconstruction.
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Figure 39: Example of combined systematic uncertainties of proton ¢ (2018 pre-TS1, sector
56). The results for the single-RP and multi-RP reconstructions are shown in red and blue,
respectively. The error bars represent statistical uncertainties. Left: absolute, right: relative
uncertainty.
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Figure 40: Comparison of bias, resolution and systematics characteristics (2018 pre-TS1, sec-
tor 56). For the bias and resolution curves, all considered smearing effects are included. The
systematics curves represent the combination of all contributions. The error bars represent
statistical uncertainties.

Since t depends strongly on the scattering angles, it only makes sense to estimate it with the
multi-RP reconstruction (with the single-RP approach 67 is not available at all and for 6; only a
crude estimate is made). Typical examples of ¢ reconstruction bias and resolution are shown in
Fig. 41. The smearing effect with the largest impact is the beam divergence (cf. the difference
between the red and blue curves), followed by the spatial resolution of the sensors (cf. the
difference between the blue and green curves).

As shown in Fig. 41, left, there is a nonzero bias in t reconstruction, mostly due to the beam
divergence. Formally, the beam divergence causes a smearing in scattering angles: 67, — 0, +
A% ,, where the standard deviation of A8 | is given by the beam divergence, 0},4. Inserting this
into Eq. (24) one can obtain the beam-divergence effect on |¢| — the difference in |t| with and
without beam divergence in the approximation of small scattering angles:

D A o (1 = €) [20:80; + 20,86, + 205 + A6, (25)

Since A7, are expected to fluctuate symmetrically about zero, the first two terms in the square
brackets yield a strongly suppressed contribution to the mean value of A|t|. Conversely, the
last two terms are always positive and therefore give rise to the reconstruction bias: Alt| ~
2p2om (1 — &)02y. For ¢ = 0, this simple model gives mean Alt| ~ 0.08 GeV?, thus well compa-
rable with results in the figure. The nonflat shape reported in the figure is due to the limited
acceptance of the RP detectors and the near-far association constraints (cf. Section 7) applied in
the proton reconstruction.

Figure 41, right, shows the || resolution, which deteriorates with increasing |f|. This is expected
from Eq. (25), particularly from the first two terms in the square brackets where the beam
divergence fluctuations are scaled with the scattering angles. Neglecting the other terms in the
square brackets, one can derive the functional dependence of the || resolution

RMS OfAM ~ anom \% 1- C \/ ‘t| Obd/ (26)

which is consistent with the plot.
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Figure 41: Example of resolution bias (left) and resolution (right) studies for four-momentum
transfer squared, t, with multi-RP reconstruction (2018 pre-TS1, sector 56). On the vertical axes,
A|t| refers to the difference between the reconstructed and simulated value of |f|. On the hor-
izontal axes, |t| denotes the simulated value. The different colors refer to different smearing
effects considered. Black: only vertical vertex smearing, red: in addition also horizontal vertex
smearing, blue: in addition also beam divergence, green (the most complete scenario): in addi-
tion also detector spatial resolution. In the right plot, the dashed magenta curve represents the
simplified analytic model from Eq. (26). The error bars represent statistical uncertainties.

11 Validation with dimuon sample

As a final check of the proton reconstruction, the calibrations and reconstruction algorithms
described in the previous sections are applied to a control sample of vy — uu~ events with
at least one intact proton (Fig. 42), using the 2017 and 2018 data.

p p p p*
Y I \/ 2t
\’ - Y -
p p

Figure 42: Diagrams for vy — u*pu~ production with intact protons. Left: fully exclusive
production, with both protons remaining intact. Right: Single proton dissociation, with one of
the two protons remaining intact. In the right plot, the three lines labelled p* indicate that the
proton does not remain intact, but dissociates into an undetected low-mass system.

As described in Refs. [34, 38], the value of ¢ in signal events can be inferred from the muon pair
via the expression:

Sutu) = \2 [pr(p e+ pr(u et (27)

with the 7 solutions corresponding to the case where the protons are moving in the £z direc-
tion, respectively.

The offline event selection in the central detectors is identical to that of Ref. [34]. Two oppositely
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charged muons are required with pr > 50GeV that pass standard tight identification criteria.
In order to exclude the region dominated by resonant Z — u*u~ production, an invariant
mass requirement of m (") > 110GeV is also imposed. Finally, in order to enhance the
(semi) exclusive production processes, selections are applied to the track multiplicity at the
dimuon vertex, and to the acoplanarity (¢ = 1 — |A¢(u*p~)|/7) of the muons. The track
multiplicity selection is applied by fitting the two muons to a common vertex, and requiring
that no additional charged tracks are present within 0.5 mm of the vertex position. Back-to-back
muons, characteristic of the signal process, are selected by requiring a < 0.009.

The protons reconstructed with the single-RP and multi-RP algorithms in these events are then
examined, to look for correlations with the muons. In each event, the two solutions, corre-
sponding to the two arms of the spectrometer, are considered separately. In the 2018 data it
is possible to reconstruct more than one proton per arm; for this study, in order to limit the
combinatorial backgrounds, we require no more than one proton is reconstructed in the arm of
interest. Backgrounds are expected to arise from real dimuon production (from Drell-Yan or
vy — pu~ events with double proton dissociation), in combination with unrelated protons
from other collisions in the same bunch crossing (“pileup”).

In Ref. [34], this procedure was applied to the 2016 data, in both the "1~ and e e~ final states.
Although the smaller integrated luminosity did not allow detailed studies, a combined > 5¢
excess of correlated events was observed using the single-RP algorithm, compatible with the
predicted signal. With the 2017 and 2018 data, approximately 10 times more single-RP pu*p~
events are available, permitting more refined studies with this sample.

Figure 43 shows the resulting two-dimensional scatter plots from the 2017 and 2018 data, sep-
arately for the two arms and the two years. The shaded bands indicate the approximate region
that is kinematically inaccessible for signal events, since the protons would be outside the ac-
ceptance. These regions can be populated by background events where a dimuon event is
combined with an unrelated proton from a pileup interaction. In the remaining area of the
plots, a clear clustering of events around the diagonal, where a fully correlated signal would
be expected, is visible for both arms and years. The samples extend to { ~ 0.12; no signifi-
cant deviation from the diagonal is observed in this region. The difference between the two
proton reconstruction algorithms can be seen from the plots. The multi-RP algorithm gives a
narrower distribution around the diagonal and fewer off-diagonal background events, whereas
the single-RP algorithm extends the coverage to lower ¢ values.

In order to compare more quantitatively the data with simulation, a one-dimensional projection
onto the variable 1 — ¢(p)/&(u* ™) is performed, combining both arms and years, for events
with {(pTu~) > 0.04. The expected shape of the residual background is obtained from a
sideband region with the acoplanarity (0.009 < a < 0.1) and extra track multiplicity (6 < N <
10). The expected signal shape is obtained from a simulated sample of vy — uu~ events
with both protons intact. A full simulation of the central CMS detectors is performed, and
the direct simulation described earlier is used for the protons. For the simulation, a mixture
of LHC crossing angles and PPS configurations reflecting the integrated luminosity of each
data taking condition is used. The background shape is normalised to the data in the range
|1—¢(p)/&(utp~)| > 0.5. The signal simulation is then normalised to the difference between
the data and the background in the range |1 — &(p)/&(u+pu~)| < 0.5.

The resulting projections are shown in Fig. 44, with the data first compared with the sum of the
signal and background components, and then to the signal shape after subtracting the back-
ground, in a narrower range. In the background-subtracted plot, the systematic uncertainties
in ¢ are indicated by light shaded bands on the simulation, corresponding to the cases where
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Figure 43: Distribution of ¢(p) vs. &(p"u~) for the z > 0 (LHC sector 45) and z < 0 (LHC
sector 56) directions in the CMS coordinate system. The two styles of points represent the
data collected during 2017 and 2018. The shaded bands represent the region incompatible with
the PPS acceptance for signal events; events in this region are expected to arise from random
combinations of muon pairs with protons from pileup interactions. The upper plots show
the results of the single-RP reconstruction algorithm, and the lower plots show the multi-RP
results. The dotted line illustrates the case of a perfect correlation, where signal events are
expected.

the reconstructed ¢ is shifted up or down by the systematic uncertainty. The width of the signal
peak in the data is well reproduced by the simulation (~ 4.8%, including a subleading contri-
bution of ~ 1.8% from the muon resolution, estimated from simulation), indicating that the ¢
resolution is well described. The peak position is slightly shifted (by ~ 4%), but well within
the error bands, indicating that any residual effect is compatible with the known systematics.

In summary, the PPS multi-RP reconstruction was used to study vy — pu"u~ events with at
least one final-state proton, in the kinematic range m(p"p~) > 110GeV and ¢ > 0.04. A good
correlation between & (1~ ) and the ¢ of the protons is observed in the data up to ¢ ~ 0.12; the
mean and width of the signal distribution are reproduced by the simulation, within the known
systematic uncertainty. This indicates that the optics, alignment, and related systematics of the
proton ¢ reconstruction are well understood for the data collected during 2017 and 2018, in
addition to the previously studied 2016 data [34].
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Figure 44: One-dimensional projections of the correlation between &(p) and (" u ™), for the
full 2017+2018 data sample and both arms combined, using the multi-RP algorithm. A mini-
mum requirement of {(u* ) > 0.04 is applied. The left plot shows the data compared with
the background shape (solid histogram) estimated from sideband regions, and the signal shape
obtained from simulation (open histogram). The right plot shows the data and signal shape in
a narrower region, after subtracting the background component from the data. In the right
plot the dark bands represent the statistical uncertainty due to the number of simulated events,
whereas the two light shaded bands represent the effect of shifting the distribution up or down
by the systematic uncertainty of the proton ¢ reconstruction. The vertical bars on the data
points represent statistical uncertainties.

12 PPS tracking efficiency

The efficiency of the PPS tracking detector needs to be closely monitored, as radiation-induced
effects can degrade the performance during the LHC operation.

Multiple factors need to be taken into account: the efficiency of the detectors, the reconstruction
algorithm efficiency, and the probability that the proton interacts with the material between the
two tracking stations, and cannot be detected.

PPS used multiple detector technologies during data-taking, and the definition of the efficiency
changes accordingly.

In 2016, with only the strip detectors used, allowing only one proton track to be reconstructed
in each station, the reconstruction algorithm efficiency is close to 100%, since loose association
constraints can be used (see Section 7). The dominant role is played by detector effects, such
as radiation damage and multi-tracking inefficiency. A more detailed description is given in
Section 12.1.

In 2017 and 2018, the pixel detectors could resolve multiple tracks in the same station, and a
different approach for the efficiency estimation is used. The reconstruction efficiency for multi-
RP protons was split into two independent multiplicative factors: the efficiency of the “near”
detector and the so-called multi-RP efficiency. The former takes into account only the detector-
related effects for the near RP, whereas the latter accounts for detector-related efficiency in the
far RD, the reconstruction algorithm efficiency, and the proton propagation. The first factor is
derived as described in Sections 12.1 and 12.2, and the second is discussed in Section 12.3.

Efficiency corrections are computed for each RP and data-taking period separately.
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Figure 45: Strip multiple track efficiency component versus pileup in the sector 45 near RP.
The color code represents per-bin counts. Left: data-taking period between the first and the
second 2016 Technical Stops. Right: data-taking period between the second and the third 2017
Technical Stops.

12.1 Silicon strip detector efficiency

Two main sources of inefficiency affect the PPS strip detectors: radiation damage and the pres-
ence of multiple tracks in the same event. These effects were studied separately and are de-
scribed with two efficiency factors.

If more than one particle produces a signal in the strip detectors, track candidates that do
not correspond to a real particle, so-called ghost tracks, will be found. Because of this, strip
detectors can only be used in events where one track is present [39].

In minimum-bias samples, events with one or more protons in the strip detectors are selected.
This is done by requiring either at least one track pattern in both strip orientations, or a num-
ber of detector hits greater than the maximum allowed by the pattern recognition algorithm,
which is tuned to accept a single proton track with some tolerance for detector noise. The se-
lected events are used to compute the efficiency factor, which is the ratio between the number
of reconstructed tracks and the number of selected events. This efficiency factor is inversely
related to the pileup, and ranges between 40 and 80%. Consistent results are observed in both
2016 and 2017, and across different sectors, and illustrated in Fig. 45.

The second factor takes into account time-dependent effects produced by radiation, and it has
been studied with a tag-and-probe method [40]. In order to probe the efficiency of the strip
detectors in one station, minimum-bias events with one reconstructed track in the other RP
(tag) of the same arm, passing loose quality criteria, are selected. Events with more than one
recognized track pattern in the strip detector being probed are excluded, together with events
with multiple tracks in the tag RP, in case of pixel detectors. A matching window of |A¢| < 0.01
is defined, where A¢ represents the difference between the single-RP { measurement associated
with the track in the tag RP, and the measurement in the RP being probed, if a track is detected.

The efficiency correction factor is defined as the ratio between the number of events in which a
strips track satisfies this matching criterion, and the total number of events selected. Statistical
uncertainties are negligible, and two sources of systematic uncertainty were evaluated. A 1%
uncertainty is associated to the choice of the minimum-bias sample used for the estimation;
an uncertainty of the same size is associated to the variation of the quality criteria applied
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Figure 46: Strip detector tracking efficiency component (in color code) related to radiation ef-
fects, computed with data collected in 2017, over different consecutive data-taking periods.
The figure shows the results for the sector 56 near station in 2017, as a function of the x-y co-
ordinates of the track measured in the tagging far station, for different periods. Each period is
defined as an interval in integrated luminosity computed since the detector installation. Upper
left: Ly, = 0-9fb~!. Upper right: L;,, = 9-10.7. Lower left: L;,, = 10.7-18.5fb™'. Lower right:

1

Ly = 18.5-22.2 b~ 1.

to the tagging track. A larger (10%) conservative systematic uncertainty is applied to 2016
efficiency factors because a different method is used. Efficiencies are derived by comparing ¢
distributions in data with respect to the ones observed in the alignment fill, when the detectors
had not suffered any radiation damage yet. The uncertainty is estimated by comparing with
results obtained with the tag-and-probe method.

Figure 46 shows the results as a function of the x-y coordinates of the track measured in the
tagging RP, for the region covered by the detector acceptance and below the collimator aperture
limits. The area damaged by radiation is clearly visible and its size and inefficiency grows with
the integrated luminosity. However, efficiency measurements show average values higher than
95% in the rest of the detector area. Similar results are observed in the 2016 data, although
the lower collected integrated luminosity reduced the radiation effects. Data-taking periods in
which strips detectors were not inserted or operational are excluded from the presented results.
They mainly affect the last period of 2017 (lower right plot of Fig. 46), where they account for
~10% efficiency loss.

In 2016, the near-far RPs correlation between inefficiency factors due to multiple tracks in strip
detectors has been measured between 50% and 80%. The complete tracking inefficiency can
therefore be computed as the product of the following factors: the multiple-track inefficiencies
(taking into account their correlation), the radiation damage inefficiency for both the near and
far stations, and the proton interaction probability. The latter has been measured by the TOTEM
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Figure 47: Pixel detector efficiency map, computed on the first data collected in 2017 for sector
45 (left) and 56 (right), and shown as a function of the x-y coordinates. The color code represents
the efficiency value. The slightly lower efficiency on the bottom-right corner of the sector 45 far
station is due to suboptimal detector configuration.

experiment to be approximately 2% (see Section 7.5.1 in Ref. [36]).

12.2 Pixel detector efficiency

The main contribution to the pixel detector inefficiency comes from radiation effects. The
method used to derive the efficiency is described in detail in Ref. [41] and is based on the
measurement of the efficiency of each detector plane during data taking. A minimum bias
sample collected at the beginning of the detector operation is used to model the track distribu-
tion; the track efficiency is quantified as the probability of having at least three efficient detector
planes out of six.

The results are represented as a function of the x-y coordinates on a scoring plane perpendicular
to the beam, as in Fig. 47. Statistical uncertainties are estimated to be negligible using Monte
Carlo simulations, and a 1% systematic uncertainty linked to the minimum bias sample choice
is assigned.

In 2017 and 2018 the efficiency x-y maps exhibit a small damaged region where the sensors are
most irradiated, as shown in Fig. 48. This inefficiency is actually due to the radiation damage
of the electronics and not of the sensor itself. This region expands progressively with inte-
grated luminosity. Outside the damaged region, the efficiency reaches a plateau higher than
98%. During each technical stop the RPs were shifted vertically by 0.5 mm, so as to spread the
radiation damage over a wider region, and thus mitigate its effects.

Another effect can cause inefficiency in pixel detectors. If one of the protons coming from the
interaction point interacts upstream of the near RPs, it can generate a shower of secondary
particles. If the number of tracks exceeds the reconstruction capabilities of the pixels in the
near RPs, a shower may cause the detectors to become inefficient.

This inefficiency factor has been quantified by studying the number of hits measured in pixel
detectors. The track reconstruction algorithm is tuned to reconstruct a maximum of ten track
candidates, in order to save computation time and storage. When this threshold is exceeded,
no track is reconstructed. Shower events are thus identified as events with no tracks where the
number of detected hits is significantly higher than that expected from detector noise.

The fraction of events identified as showers scales linearly with pileup, and is highly correlated,
as expected, between the near and far detectors in the same sector. A conservative inefficiency
upper limit of 1.5(1.7)% for sector 45 (56) was measured with a 0.1% systematic uncertainty,
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Figure 48: Evolution of the pixel detector package efficiency (in color code) in the detector re-
gion closest to the beam for the sector 45 far station, computed with data collected in 2018.
During each TS, detectors in both sectors were vertically shifted by 0.5 mm downwards. From
left to right: efficiency computed after the detector collected L;,; =, 21.0, 50.3, 57.8 fb_l, respec-
tively. Each efficiency map is produced using a small data sample of ~ 0.5fb ™"

which accounts for the dependence on pileup.

12.3 Multi-RP efficiency factor

The multi-RP efficiency factor is evaluated in the same way in 2017 and 2018, and includes
the efficiency of the detectors installed in the far RPs, the efficiency of the multi-RP recon-
struction algorithm, and the probability that a proton propagates from the near RPs to the far
without interacting. These multiple components are evaluated together using a tag-and-probe
method. For each data-taking period, minimum-bias samples are selected for this purpose.
Each single-RP proton reconstructed with the near RPs is used as tag, provided that its track
angle measured with that tracking station is lower than 20 mrad. This selection excludes very
inclined background tracks that do not originate from the interaction point.

The efficiency is evaluated as the ratio between the number of times in which a multi-RP proton
is reconstructed using the single-RP tag proton, and the number of tag protons. The systematic
uncertainties related to the sample choice for the efficiency estimation are ~1%. Asymmetric
statistical uncertainties are evaluated with the Clopper—Pearson frequentist approach [42].

The efficiency is plotted in Fig. 49 as a function of the x-y coordinates of the near RP scoring
plane. The overlap between the acceptances of the RPs in the same sector, combined with the
collimator aperture limits, defines the shape of the efficiency map.

This efficiency has generally a plateau value higher than 90% in 2017, and slightly lower in
2018. These high values reflect the good performance of the detectors and of the reconstruction
algorithm. Lower performance can be observed in the most irradiated region because of radia-
tion damage and multiple tracks. The latter takes place when more than one track in the far RPs
satisfies the association requirements with the near RPs track. Under these circumstances the
multi-RP reconstruction cannot choose among the far RP tracks, and fails, causing inefficiency.

Consistent results are observed in 2017 and 2018 when restricting the analysis to events with a
single track in the near RP. A small loss in the 2018 multi-RP reconstruction algorithm perfor-
mance is observed when including events with multiple tracks in the near station, because of
the higher multiple-match probability, as mentioned above.

Figure 50 shows the fraction of reconstructed multi-RP protons predicted by the fast simulation,
which includes both efficiency and acceptance effects. The difference in the shape of the plots
for the three years is mainly due to the different acceptances (cf. Fig. 35). The higher value of
the fraction in 2018 reflects the presence of the pixel detectors (as opposed to the strip ones) in
both RP stations.
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Figure 49: Multi-RP efficiency factor as a function of the x-y coordinates that includes the ef-
ficiency of the detectors installed in the far RPs, the efficiency of the multi-RP reconstruction
algorithm, and the probability that a proton propagates from the near RPs to the far ones with-
out interacting. The color code represents the efficiency value. Top: multi-RP efficiency in
sector 45 (left) and 56 (right) at the beginning of the 2017 data-taking. Bottom: multi-RP effi-
ciency in sector 45 (left) and 56 (right) at the beginning of the 2018 data-taking.
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Figure 50: Fraction of reconstructed multi-RP protons, as a function of &, ;, for a proton sam-
ple produced with the PPS direct simulation. Acceptance and efficiency effects are taken into
account. The left and right plots show results for sector 45 and 56, respectively. The efficiency
systematic uncertainties, computed by combining in quadrature the systematic uncertainties
estimated for each efficiency factor, are 10, 2.7, and 2.1% for 2016, 2017, and 2018, respectively.

The difference between the 2016 and 2017 performance is caused by multiple factors: the aver-
age pileup in 2017 was significantly higher than in 2016, producing a higher strip multi-tracking
inefficiency (Fig. 45). The integrated luminosity accumulated in 2016 was about one fourth that
in 2017, resulting in less severe radiation damage. Furthermore, the sector 45 near RP was
not available for a significant portion of 2017 (~24% of the whole data-taking), thus effectively
lowering the overall efficiency, since downtime is included as an inefficiency component.

13 Timing

In order to study the performance of the proton vertex matching provided by the PPS timing
detectors, a special data set collected with low instantaneous luminosity is used, where the
mean number of inelastic interactions per bunch crossing was y ~ 1. In this data set, a sample
of events is studied with exactly one reconstructed vertex built from a maximum of 10 tracks in
the central CMS tracker and exactly one multi-RP proton in each arm of the PPS detectors. This
provides a control sample enriched in central diffraction (or double-Pomeron exchange) [43]
events.

In signal events, the z position of the vertex as determined with the central CMS tracker and
the time-of-flight difference between the two protons (Atppg) are linearly correlated with a slope
of c¢/2 (where c is the speed of light). In practice, even in low-pileup data, there is a nonzero
probability of combining unrelated pileup protons with the central vertex. Since the pileup
protons are uncorrelated with the central vertex, this background may be modeled using event-
mixing techniques, where either one or both protons are chosen from different events than
those of the central vertex.

The correlation is quantified using a one-dimensional projection of Zpps timing — Zvertex, Where
Zpps, timing — Ofpps 5, AN Zyerex 1S the position measured by the central tracker. To estimate the
resolution for the signal events, a fit is performed to the sum of signal plus background, using
two Gaussian shapes. For the signal component, the mean and width of the Gaussian are left
as free parameters. The resolution of z ., in the central tracker is estimated to be 50-150 ym
for the selection applied here [44], and thus can be neglected.
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Figure 51: Correlation between the z vertex position measured in the central CMS tracker, and
the time difference of the protons measured in the PPS detectors. Left: low-pileup data with
protons on both arms. Right: mixed background sample, with both protons chosen from a
different event than that of the central vertex. The red dashed line indicates the ideal slope of
c/2, which would be expected with zero background. The blue points with error bars show the
profile of the data, with the mean and RMS of the time difference in each bin of the position z.

To test the sensitivity to the background shape, three different approaches are tried. First, the
background mean and width are treated as free parameters in the fit. Second, the mean and
width are constrained from a fit to an event mixing sample, where both protons are chosen from
different events than that of the central vertex. Third, the mean and width are constrained from
a fit to an event-mixing sample, where one proton is chosen from the same event as the central
vertex, and the second proton is chosen from a different event.

The correlation between the vertex position and the proton time difference is shown in Fig. 51.
The sample is further subdivided into a “high-resolution” selection, with <100 ps timing res-
olution predicted on both arms (corresponding to the case with timing measurements on all 4
planes of each arm), and a “high-efficiency” selection, with no requirement on the predicted
timing resolution of each arm. The spatial resolutions obtained from the fits (Fig. 52) for the
two categories are 1.87 £ 0.21 (1.87 — 1.93) cm and 2.77 £ 0.17 (2.45 — 2.86) cm, where the first
value and uncertainty correspond to the central value and statistical uncertainty obtained us-
ing a Gaussian background shape with free parameters, and the numbers in brackets represent
the range of central values obtained under the three different background approaches. The
complete list of values obtained is shown in Table 8.

The resolutions obtained are consistent with the quadrature sum of single-arm timing resolu-
tions, estimated independently [45]. This indicates that the overall vertex matching resolution
is dominated by the single-arm detector and electronics performance, without large contribu-
tions correlated between the two arms. In the high resolution category, a time resolution below
100 ps per arm is confirmed, with the full PPS timing system in LHC collisions. The results
further indicate that the single-arm resolutions may be used to predict the overall resolution in
high-pileup data, where the two-arm technique described here cannot be used.
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Figure 52: Vertex resolution obtained from the difference of proton arrival times, using data
collected during low-pileup runs. Left: resolution for two-arm multi-RP events, using the
subset of events with a predicted resolution <100 ps for both arms. Right: resolution for two-
arm events using all events with exactly one multi-RP proton in each arm. The fitted signal
(red dashed line) and background (blue dashed line) are shown separately, with the means and
widths of both components treated as free parameters. The bars on the data points indicate the
statistical uncertainties.

Selection Background Resolution + stat. [cm]
High resolution Free 1.87 £0.21
High resolution Both arms mixed 1.93 £0.18
High resolution One arm mixed 1.92 £0.18
High efficiency = Free 277 £0.17
High efficiency = Both arms mixed 2.86 +0.10
High efficiency = One arm mixed 2.454+0.13

Table 8: Vertex position resolutions obtained from the proton times measured in the PPS timing
detectors, using different selection criteria and background shape assumptions. The sample of
events in the high resolution and high efficiency categories is always the same, therefore the
statistical uncertainties are highly correlated.

14 Summary

The procedures developed to reconstruct the proton tracks from the signals detected in the
CMS-TOTEM Precision Proton Spectrometer have been described. The performance of the
reconstruction is studied with data from the LHC Run 2 of proton-proton collisions at 13 TeV
energy, corresponding to an integrated luminosity of 107.7 b L.

A multi-step alignment of the detectors is performed. Alignment with respect to the LHC
collimators is followed by relative alignment of the sensor planes within a Roman Pot (RP) and
among all RPs. Then, global alignment is performed with respect to the LHC beam with elastic
events collected in low luminosity runs, and is extrapolated to the RP’s positions in the high
luminosity fills. Finally, the timing detectors are aligned with respect to the tracking detectors.
The alignment uncertainties are 150 ym and 100 ym in the horizontal and vertical projections,
respectively. The precision of the relative alignment between near and far RPs is better than
10 pm.
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A precise modelling of the LHC optics is a necessary precondition for the reconstruction. The
track horizontal and vertical positions at the RPs can be obtained from the proton kinematics
at the interaction point via the optical functions. The horizontal dispersion, D,, is calibrated
using the L, = 0 constraint from the data and a sample of (semi)exclusive dimuon events.
The horizontal dispersion carries information on the dependence of the optics model on the
horizontal crossing angle. The parameters of the optics model (half crossing angle, quadrupole
positions and magnet strengths) are determined from a fit to the beam position obtained from
the beam position monitors and RPs, and the measured horizontal dispersion. The vertical
dispersion is estimated from the vertical vertex position and the vertical scattering angle. The
effective length and its derivative with respect to the position along the beam are calibrated at
¢ = 0 using elastic events, where ¢ is the relative momentum loss of a forward proton.

An approximate determination of ¢ and of the vertical scattering angle can be performed with
the information of a single RP. A more accurate and complete determination of the proton kine-
matics is obtained by combining the information from both tracking RPs in each arm. The two
reconstruction methods are referred to as single- and multi-RP. The single-RP reconstruction
has significantly lower resolution especially because of the neglected term proportional to the
horizontal scattering angle. A large bias at small and large ¢ is hence observed given the asym-
metric acceptance in the horizontal scattering angle. The multi-RP reconstruction has a much
better resolution, negligible bias and comparable systematic uncertainties at small and inter-
mediate ¢. At large ¢, the effect of the systematic uncertainty in the optics calibration is larger
for the multi-RP reconstruction.

A fast simulation of the proton propagation along the beam line and of the PPS detectors has
been developed. It includes realistic beam parameters and beam smearing effects; the cali-
brated optics model; the LHC aperture limitations; the simulation of the detector planes and
sensor geometry, acceptance and spatial resolution; and a realistic simulation of the proton
arrival time.

A sample of (semi)exclusive dimuon events has been analyzed in order to validate the proton
reconstruction. A good correlation between the measured proton ¢ values and those inferred
from the dimuon system is observed. The data are well described by the simulation. As ex-
pected, the multi-RP reconstruction shows a better resolution than the single-RP method.

The proton reconstruction efficiency has been measured for the different data taking periods. It
depends on different multiplicative factors describing the sensor efficiency, the reconstruction
algorithm efficiency, and the effect of interactions along the proton path. The silicon pixel de-
tector efficiency is caused by the radiation damage. The silicon strip detector efficiency loss is
caused by radiation damage and in addition by multiple tracks in the same event. The effect of
radiation damage is studied as a function of the integrated luminosity and is significant in the
region closest to the detector edge facing the beam. The efficiency of the multi-RP reconstruc-
tion is smaller than that for the single-RP reconstruction, because of the sensor efficiency of the
extra RP, and the effect of multiple, ambiguous proton combinations between tracks from the
near and far detectors.

The correlation between the difference in arrival time of protons in the two detector arms and
the z vertex position has been studied using low pileup data. The width of the z position
residuals is consistent with the single-arm timing resolutions. For part of the data taking period
they are better than 100 ps, corresponding to ~2 cm.

The performance of the Precision Proton Spectrometer in Run 2 has proven the feasibility of
continuously operating a near-beam proton spectrometer at a high luminosity hadron col-
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lider. PPS has had no impact on the operation of LHC in terms of background, heating, or
impedance. The success of PPS has been made possible by two independent collaborations,
CMS and TOTEM, joining forces to pursue a common physics interest.
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