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Abstract— Thermal monitoring plays an essential role in
ensuring safe, efficient and long-lasting operation of lithium-
ion batteries (LiBs). Existing methods in the literature mostly
rely on physics-based thermal models. However, an accurate
physical thermal model is practically hard to obtain due to
various uncertainties such as uncaptured dynamics, parameter
errors, and unknown cooling conditions. Motivated by this
problem, this paper considers a data-driven approach named
Kriged Kalman filter to estimate the temperature field of LiBs.
First, we demonstrate that the evolution of a pouch-type LiB
cell’s temperature field can be formulated as a spatio-temporal
random field in a physically consistent manner. Then, we
leverage the Kriged Kalman filter to update and reconstruct
the random temperature field sequentially through time using
sensor data. Our simulations show that the proposed approach
can accurately reconstruct the LiB cell’s temperature field with
a small number of sensors.

I. INTRODUCTION

Recent technological advances have continuously pushed
up the specific energy of lithium-ion batteries (LiBs) and
driven down their cost [1]. However, concerns over their
thermal safety remain strong in the wake of a few high-
profile fire incidents. The primary cause of LiB fires is
thermal runaway, which occurs mostly in cases of abnormal
heating or excessively high ambient temperature [2]. The
thermal state also plays an important role in a LiB cell’s
capacity, voltage and cycle life other than safety, which is
why LiBs usually must operate between —10~50°C [3].
Real-time thermal monitoring is thus crucial to improving
the operating safety and performance of LiBs.

This problem has attracted a growing body of research
due to its significance. Most of the existing studies rest on
the use of physics-based thermal models. Lumped modeling
has emerged as a popular approach in this regard because
of its computational efficiency. The study in [4] develops
an equivalent circuit model to capture the lumped thermal
dynamics at the surface and core of a cylindrical cell.
Further, more sophisticated thermal circuit networks have
found them useful for modeling pouch-type cells and battery
packs [5]-[7]. Although computationally fast, the lumped
models sacrifice fidelity and often struggle to capture the
spatially non-uniform and variable temperature distribution
of LiB cells or packs. To estimate the spatial non-uniformity,
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several works study the temperature estimation problem
with two or three-dimensional thermal models derived from
the energy balance equation proposed by [8]. In [9], a
two-dimensional thermal model is considered to estimate
a pouch cell’s surface temperature distribution. In [10], a
temperature-dependent impedance model is developed from
a two-dimensional thermal model to estimate the temper-
ature distribution of cylindrical cells. In [11, 12], a three-
dimensional thermal model is constructed to estimate the
temperature distribution of a LiB pack composed of prismatic
cells. Note that a related line of research is coupling a
thermal model with an electrochemical model to achieve
finer-resolution thermal modeling [13]-[15]. The obtained
models will require expensive computation even though they
have high predictive accuracy. This makes them less suitable
for real-time thermal monitoring.

However, there are two challenges in using physical
models for LiB thermal monitoring. First, accurate physical
modeling is hard to develop due to time-consuming analysis
and validation, and even if a model is developed, it is not
possible to fully capture the factors that affect the thermal
behaviors of a LiB cell or system. Second, it can often be
difficult to determine the parameters of a physical model,
and tedious experiments or empirical guesses may become
necessary [16]. Parameter drifts due to aging or changes in
ambient conditions will further add to the difficulty.

Alternative to physical modeling, spatio-temporal statisti-
cal modeling and estimation have gained increasing use in
describing and predicting complex systems or processes with
both spatially distributed and temporally evolving dynamics.
The essence of this approach lies in characterizing a spatio-
temporal process of interest as a random field, in which the
variations in time and space are captured by its mean and
covariance models. Based on the random field, the Bayesian
method can be employed for estimation when measurements
arrive. Specifically, in the classical Kriging approach, spatial
processes modeled as Gaussian random fields are estimated
by computing the posterior Gaussian distributions [17]. For
spatial fields that evolve over time, a spatio-temporal Kriging
approach named Kriged Kalman filter (KKF) has proven
useful [18]-[20]. The spatio-temporal statistical modeling
and estimation approach has many successful applications,
such as monitoring air pollutant levels and sea surface
temperature [21]. However, this approach has attracted little
attention in the field of battery research, despite an emerging
interest in data-driven battery modeling, e.g. [22].

The goal of this paper is to develop a data-driven but
physically meaningful approach to estimate the temperature



distribution of a LiB cell in real time. We will consider a
pouch-type LiB cell for the purpose of illustration, even
though the approach can be generalized to LiBs of other
types. We summarize our contributions as follows.

o We translate a pouch-type LiB cell’s thermal model
based on heat transfer principles into a spatio-temporal
random field. This leads to a statistically sound but
physically consistent representation of the cell’s ther-
mal process. Further, with a data-driven nature, the
representation allows to make sense of data to capture
uncertainties that evade physical modeling.

o« We apply the KKF to predict and track the evolution
of the spatio-temporal random field using real-time
measurement data. As such, the cell’s temperature field
is reconstructed to enable effective thermal monitoring.

This paper is organized as follows. Section II presents the
physical thermal model for pouch cells and its solution.
In Section III, we formulate a spatial-temporal random
temperature field based on the solution in Section II. Then,
we present the thermal monitoring scheme of the field via
the KKF. We also provide a brief overview of the field’s
parameter estimation procedure. Later, Section IV shows
our simulation validation. Finally, Section V presents our
conclusions and future research directions.

II. THERMAL MODEL OF POUCH-TYPE L1B CELLS AND
ITS SOLUTION

This section introduces a two-dimensional thermal model
of pouch-type LiB cells and its analytical solution. It pro-
vides a physical basis for the subsequent derivation of the
pouch cell’s spatio-temporal random temperature field.

A. Thermal Model of a LiB Pouch Cell

We consider a LiB pouch cell as shown in Fig. 1, which
has dimensions of L;xLoxLs along the xy, zo and z3
axes. Because L3 < Ly, Lo, the cell’s heat transfer behavior
along the x3 axis is negligible. By contrast, the thermal
dynamics in the x;-x5 plane is more intense and complex.
Hence, we focus on only the electrode domain to develop a
parsimonious but physically coherent two-dimensional ther-
mal model. According to the energy balance principle, the
temperature field within the electrode domain evolves along
a two-dimensional heat diffusion equation [23]:

oT o*T 8T 2
pCPE =k <3_13% + 6_$%> — L—ShT-i-q, (D)

where T = T — T is the temperature difference between
the cell and environment, p is the cell’s mass density, c,
is the specific heat, k is the thermal conductivity, h is the
convection coefficient. On the right-hand side of (1), the first
term is due to the heat conduction along the -z, plane. The
second term results from the volumetric heat removal due to
convection on the cell’s surfaces. The third term, ¢, is the
volumetric heat generation rate in the cell which follows
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Fig. 1: Schematic diagram of a pouch-type LiB cell.

where V' = L;LsL3 is the cell’s volume, I is the applied
current, and Rz, is the cell’s internal resistance. Here, we only
consider the Joule heat since it is the main heating source of
the LiB, but other heat sources, such as entropic heat [24],
are also possible to be included in the model. Furthermore, a
weight function w(xy, z5) is introduced to capture the cell’s
nonuniform heat generation in the x;-z2 plane [9].

Next, we take into account the process noise that exists
in the thermal dynamics of the LiB pouch cell. To simplify
notation, we will denote x = (z1,22) and X' = (2, %)
as two locations within the cell’s electrode domain £2, and
t, t' denote two time instants. The thermal noise is usually
modeled as a white noise process W with zero mean and
covariance

Cov (W (x,1), W(x',t)) = 6(t — ') Qw (x, X'),

where §(-) is the Dirac delta function [25]. This indicates
W is uncorrelated in time. Adding this noise term and
reformulating the equation, (1) becomes a stochastic partial
differential equation

oT T = 0°T -
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where a = k/(pc,), b = 2h/(pcpLs), ¢ = 1/(pcy).

Finally, we include the convective boundary conditions on
the four edges of the cell’s rectangular region as

S—Z—%T:O at 1 =0, (3a)
g—Z—l—%T:O at 1 = L1, (3b)
g_i_%fz() at o =0, (3¢)
g—z %T:O at x9 = L. (3d)



The initial condition is given by a Gaussian process prior
T(x,t0) ~ GP(mo(x), Co(x,x)). 4)

The initial-boundary value problem (IBVP) set by (2)-(4)
presents a description of the thermal dynamics of a pouch-
type LiB cell from the physical perspective.

B. Analytical Solution

Here, we present the analytical solution to the IBVP
problem formulated in Section II-A. The solution of the
IBVP can be expressed via the integral transform of the
Green’s function [26]. It follows that

T(x,t) :// T(x',s)G(x,x',t — s) dx’
L2
t
—|—/ // cq(x',7)G(x,x', t — 1) dx'dr
s L2

t
+ / / W', 7)G(x,x',t — 7)dx'dr,
s L2

where G(x,x’,-) is the Green’s function of the IBVP prob-
lem, ¢ and s < ¢ are two arbitrary time instants. Here, the
third term on the right-hand side is a Gaussian process with
zero mean and covariance function [25]

t
QT}(X7 X/;t - S) :/ / 2 G(X/’ylat - T)

// G(x,y,t—7)Qwl(y,y')dy dy’ dr.
EQ

If considering the time range (t;_1,t;] from the k& — 1-th to
the k-th discrete time instants, we can exactly express the
solution at tj as the following discrete-time model

T(x,tx) = // T(x' t,_1)G(x,x'; Aty,) dx’'
4
+/ // cq(x' ty—1)G(x,x' t, — 7) dx'dr
tr—1 L2

+n(x, k), 5)

where Aty =t — ti—1 is the time interval, and n(x, tx) ~
GP(0,Q,(x,x"; Aty)). Note that, throughout the paper, we
consider Aty to be known and fixed, and ¢(x, t;—1) does not
change within Aty,. In this case, 7(x, t;) becomes a Gaussian
process which is uncorrelated in time.

The solution (5) shows the time evolution of a pouch cell’s
temperature field from a physical perspective. It contains
unknown parameters which must be estimated by physical
experiments. In reality, there still exist uncaptured dynamics
which harm its accuracy.

III. THERMAL MONITORING BASED ON THE KKF

In this section, we construct a spatio-temporal random
temperature field for pouch cells based on the solution in
(5). Then, we will introduce a monitoring scheme of the
temperature field using the KKF. Finally, we provide an
overview of the parameter estimation of the field.

A. Spatio-Temporal Random Field

We assume the mean of the pouch cell’s temperature
field evolves along T'(x,tx). The method taken in [18, 19]
expresses the mean through an expansion of a set of complete
and orthonormal basis functions {¢;(x)}5°; on £?
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where «;(ty) is a random time series for each i € {1,2,...}.
Due to completeness, we can also expand the Green’s
function as follows:

th

G(x,x'; Aty,) = Zﬂl(x)¢l(x’

where {f;(x)}2, are some functlons of x. We have
ftt:_l (x,x,t), — 7)dT = fo G(x,x',¢)d¢. Then, by
truncating the infinite series and using the orthonormality of
the basis functions, we can rewrite (5) as (7), where

Aty
K(x) = (cRe/V) //LZ w(x") G(x,x',¢) d¢ dx’

0
is a function of x, and

a(ty) = (a(ty), ..,an(ty) | € RY,
B(x) = (B(x), .. An(x)) " € RY,
p(x) = (p1(x), ... on(x)) | €RY,

To compensate for the truncation errors and to deal
with the spatial uncertainties not included in T'(x,t;), we
introduce a Gaussian process v(x,t;) with zero mean and
covariance

Cov (v(x,t),v(x,t") =6(t —t")Q.,(x,x).

It captures small-scale spatial variability but does not have
temporal dynamics. Then, the predictive distribution of the

temperature at any location x is given by
Y (x,t) = T(x, tr) + v(x, tg)

= (pT(x)a(tk) + v(x, tr). (6)

T(x, 1) = ¢(x) T alty)

-] (e

+ U(X, tk)
= B(x) a(ti—1) + KT (tr—1) + (%, ti)

)) (;@(x)m(x')) '+ [ (CP“’;”RWX')) ( / M G0 d<> ax

(7



Considering sensors are placed at M locations
{s1,..., 80} of the pouch cell to collect measurements, we
can write down the evolution of the coefficient vector cx(ty)
as

a(ty) = Aa(tkfl) + BIQ(tkfl) + 7(tx), ()

where J = (&' ®)'®', B = JK, A = JB, j(t}) =
Jn(tx), and

® = [¢(s1), ..., (snr)] | € R,

B=[(s1), ... B(sm)] " € RM*N,

K = (5(51), ... i(snr)) | € RM,
n(ty) = (77(517%)7 (s te) | € RM.

For the M sensor locations, the noisy measurement vector
is given by

Z(ty) =Y () + €(tx)
= Pa(ty) +v(ty) + e(ty), )
where €(tz) ~ N(0,0%Iyr<ar) € RM is the white Gaussian
measurement noise, 7 € RM*M ig the identity matrix,
and

,Z(sar )| € RM,
(Skfvtk?) T € RMv
(5]\/[7tk)>—r € RM

Z(ty) = (Z(s1,tk), -
Y (tr) = (Y(s1,t), -
v(ty) = (v(s1,tk), -

Up to this point, we have formulated a spatio-temporal
random field Y (x,¢;) to represent the LiB pouch cell’s
thermal process. This statistical representation is data-driven
in nature but physically consistent. Its mean T'(x, t;) is a
linear combination of some known basis functions ¢(x)
with the coefficient «(t;) evolving in time according to
(8). In addition, the term v(x,t;) captures some small-scale
uncertainties that 7'(x, t;,) does not take into account. We can
use a random field setup in the form of Y (x, ;) to track the
time evolution of a pouch cell’s temperature field. Here, we
highlight two points. First, Y (x, ;) is continuous in space
and discrete in time. This form allows the reconstructed
temperature field to have a high spatial resolution. Second,
the dimension of «(ty) is the same as the number of chosen
¢(x), providing flexibility for balancing the computational
efficiency and accuracy of the model.

B. Spatio-Temporal Monitoring of the Field

Taking a Bayesian probability perspective, the spatio-
temporal monitoring of the temperature field in real time
boils down to compute the posterior distribution of Y (x, ¢)
conditioned on the up-to-date measurements Z(t1.;) =

{Z(t1),..., Z(tg)}. It can be done in two steps. The first
one is to sequentially estimate c(t;) using the up-to-date
measurements; the second one is to do Bayesian universal
Kriging [27].

The linear state-space model in (8)-(9) demonstrates the
temporal evolution of «(t)) and the measurements at differ-
ent sensor locations. Given this model, an optimal estimate
of a(t) can be computed sequentially here using the well-
known Kalman filter. It consists of two steps.

Step 1 - Prediction: Computing a(t) | Z(t1.5—1) which
follows a normal distribution with mean

Gty | tre—1) = E(a(te) | Z(t1:x-1))
= Ad(tk_1 | t1k—1) + BI2(tk_1)

and covariance

Xt | t1:k—1) = Cov (a(ty) | Z(t1:4-1))

= AX(tp—1 | f1:k71)AT + Qg,

where Q5 = Cov(7(ty)) € RVXN,

Step 2 - Update: Calculating a(t) | Z(t1.;) which is a
normal distribution with mean

&ty | tik) = E(alty) | Z(t1k))
= Gty | t1:k—1)

+ Gi(ty) (Z(ty) — Pélty, | trp_1))

and covariance

S(tg | t1.k) = Cov (a(ty) | Z(t1.1))
=Xty | t1:k—1) — Gr(tr) PE(tk | t1:6-1),

where Gk (ty) is the Kalman gain given by

-1

Gr () =S(t | tre1)@T (B (t | 1)@ + V)

Here, V, = Q. + 02I]y[><M S RMXM, Q. =
Cov(v(ty)) = [Qu(si, sj)] € RM*M,

Given the sequentially estimated coefficient &(tx | t1.1),
the covariance X (y | t1.x) and the random field in (6), the
posterior predictive distribution p (Y (x,tx) | Z)(t1.k)) of
the temperature field at any time instant ¢; and location x can
then be determined via the Bayesian universal Kriging. The
result follows a normal distribution with mean (10) and co-
variance (11), where I'(x) = (Q. (%, 51), ..., Qv (X, sM))T €
RM™ . In the sense of minimum mean squared error, the
optimal estimator of Y (x, #;,) is the mean Y (x, tj, | t1.;) of
the posterior distribution, and the covariance Xy (x, ty | t1.x)
characterizes the confidence of this estimation.

Y (%, ty | k) =B (Y (x,t) | Z(trr)) =
Ey(x,tk | tl:k) = COV (Y(X,tk) | Z(tlzk))

= Q,(x,x)

P(x)"

alty | tg) +T(x) TV !

STV, T + (600 - @TVIIT()

(Z(ty) — Pa(ty | trk)) (10)

St | ti) (¢(x) - <I>TV;1I‘(X)) (11)



C. Parameter Estimation of the Field

Successful spatio-temporal monitoring of the LiB cell
requires the parameters of the random field to be known.
The basic parameters and functions are summarized as
{A,B,Q,—,, o(x),Q,(x,x),02, 110, X0}, where pp and X
are the mean and covariance of the initial coefficient (o),
respectively. Other matrices in Section III-B can be deter-
mined from the ¢(x), @, (x,x’) and o2 above. Here, the
choice of basis functions ¢(x) is not unique, as long as they
are complete and orthonormal on £2. For other parameters
and functions, they can be identified purely based on a time-
series temperature data Z(¢;.7) collected at M locations and
T time intervals from the LiB cell. Specifically, we follow a
two-level hierarchical procedure.

The first level focuses on the identification of o2 and
Q. (x,x’). The measurement error o> can be obtained from
the properties of the temperature sensor used. If such infor-
mation is not available, o2 can also be estimated together
with the spatial covariance function @, (x,x’) through their
relation with the empirical variogram of the data. Interested
readers are referred to [21] for a detailed description of
the empirical variogram. Note that one assumption we can
make is that v is an isotropic process, i.e., Q,(x,x) =
K, (|[x — x/||) for some function K,. This assumption is
valid since the dimensions of pouch cells are small enough.

The second level deals with the remaining parameters,
ie, 0 = {A,B,Qg, 1o, S0 }. An effective approach is the
maximum likelihood estimation, which boils down to solving
the maximization problem as follows:

0= arggnang(Z(tltT)) = logpo(Z(t1.1)),

where pp(Z(t1.7)) is the joint density or likelihood of the
data and Ly (Z(t1.7)) is the log-likelihood. A number of
methods are available to find 6 for linear state-space models.
The expectation-maximization (EM) algorithm is used in this
paper due to its conceptually simple procedure [28, 29].

Remark 1: For the sake of coherence and clarity, we
consider the same M sensors in Section III-B and III-C.
However, the number and location of the sensors do not
have to be the same. Specifically, one may collect data from
more locations in the parameter estimation stage to obtain
an accurate model, while only applying a small number of
sensors when estimating the temperature field of a LiB pouch
cell. Correspondingly, the dimension and computational costs
of matrices V,, I'(x), and ® are reduced. This is a valuable
feature since in practice the number of sensors available
when performing temperature estimation may be limited. We
will demonstrate this strategy in Section IV.

IV. SIMULATION VALIDATION

The previous sections illustrate our proposed method for
thermal monitoring of pouch-type LiB cells via the KKF. In
this section, a simulation is provided to show the effective-
ness of this method.
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Fig. 2: Modified US06 current profile.
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Fig. 4: EM iterations for maximum likelihood estimation.

A. Simulation Settings

We consider a LiMnyO4 pouch cell as used in [13].
The cell has a capacity of 14.6 Ah and dimensions of
192x145%x5.4 mm. We perform a CFD simulation of the
cell’s thermal and electrochemical behavior using the AN-
SYS Fluent package to generate the ground truth dataset. In
the CFD simulation, we mesh the electrode domain into a
20x 17 grid. The environmental temperature is set to 300 K.

The selection of the sensor locations and the current
profiles are critical. For sensor locations, a rule of thumb
is to make them broadly cover the pouch cell’s electrode
domain. Here, we select 18 (16 black and 2 red asterisks in
Figs. 5a-5d) of the 20x 17 grid nodes and place sensors on
them. In the training (parameter estimation) phase, the data
collected by all sensors are used. However, only the sensors
placed on the two red asterisks are used during the testing
(KKF-based thermal monitoring) phase. The current profile
to generate the training data should be chosen such that it
covers the cell’s operating current and temperature range. In
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Fig. 5: Monitoring of the pouch cell’s temperature field under a modified US06 current profile. First row: the true temperature
field. Second row: the estimated temperature field by the KKF approach. * and % denote sensor locations. The training phase
uses data from all the sensors labeled as * and *; the testing phase uses data from only two sensors labeled as .

our simulation, the training data are generated by applying
a 5 C constant discharging current to the cell. Then, we test
the KKF using a data set generated by a modified US06 [30]
profile shown in Fig. 2.

B. Simulation Results

We apply the 5 C discharging current to the cell for 670
seconds. The data collected from the 18 sensors are used for
model training. The measurement is assumed to be noise-
free since the data are generated by the CFD simulation.
Besides, we use a set of 11 complete and orthonormal basis
functions ¢(x). Now, based on the hierarchical procedure in
Section III-C, the first step is the identification of the co-
variance function K,,. We consider the squared-exponential
kernel. Fig. 3 illustrates the identified K,. As expected,
the covariance between two locations decreases as their
distance increases. We can then determine the covariance
matrix and the measurement matrix based on this empirical
covariance function. Finally, we estimate the parameter set ¢
in Section III-C by maximizing the log-likelihood function
Lo(Z(ty.7)) via the EM algorithm. We run the EM algorithm
for 10 iterations. Fig. 4 shows the change in log-likelihood
value. As expected, the value increases with the number of
iterations.

With the model identified above, the temperature field
of the pouch cell can be estimated by running the KKF
in Section III-B. Only the two sensors located at the red
asterisks are used here. The KKF can provide accurate

temperature estimation. Under the US06 testing profile, the
maximum absolute estimation error for all locations and
all time instants is 1.01 K. Further, Figs. 5a-5d show the
comparison of the true and the estimated temperature field
when the modified US06 current profile is applied to the cell.
The first row illustrates the true temperature field at different
time instants. The temperature and its spatial non-uniformity
increase through time due to the heat generation in charg-
ing/discharging. The second row shows the temperature field
estimated by the KKF at different time instants. It has great
accuracy compared to the truth, despite the use of only two
sensors. It is worth mentioning that our simulations show
that an increase in estimation accuracy can be expected in
two ways. First, we can use more sensors during the training
phase, as placing sensors at more locations can provide more
information about the temperature field. Second, we can
increase the number of basis functions when constructing
the model, which leads to a coefficient vector «(ty) of a
higher dimension, though the computational cost will also
increase accordingly.

V. CONCLUSIONS

Effective thermal monitoring is essential for the safety
and performance of LiBs in their operation. In this paper,
we study the spatio-temporal thermal monitoring for LiB
based on a data-driven approach named KKF. Starting from
the heat transfer principles, we uniquely show that the
temperature evolution of a pouch cell can be formulated



as a spatio-temporal random field with physical consisten-
tency. The parameters of the field are fully determined by
the data collected from temperature sensors according to a
hierarchical scheme. Leveraging the spatio-temporal random
field, the KKF is applied to estimate the temperature field
when the measurements come sequentially. Our simulation
demonstrates that the approach can provide accurate temper-
ature estimation for LiB using a small number of sensors.
Our future work will include experimental validation of the
KKF approach and investigate its application to various LiB
thermal management tasks.
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