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Abstract— Thermal monitoring plays an essential role in
ensuring safe, efficient and long-lasting operation of lithium-
ion batteries (LiBs). Existing methods in the literature mostly
rely on physics-based thermal models. However, an accurate
physical thermal model is practically hard to obtain due to
various uncertainties such as uncaptured dynamics, parameter
errors, and unknown cooling conditions. Motivated by this
problem, this paper considers a data-driven approach named
Kriged Kalman filter to estimate the temperature field of LiBs.
First, we demonstrate that the evolution of a pouch-type LiB
cell’s temperature field can be formulated as a spatio-temporal
random field in a physically consistent manner. Then, we
leverage the Kriged Kalman filter to update and reconstruct
the random temperature field sequentially through time using
sensor data. Our simulations show that the proposed approach
can accurately reconstruct the LiB cell’s temperature field with
a small number of sensors.

I. INTRODUCTION

Recent technological advances have continuously pushed

up the specific energy of lithium-ion batteries (LiBs) and

driven down their cost [1]. However, concerns over their

thermal safety remain strong in the wake of a few high-

profile fire incidents. The primary cause of LiB fires is

thermal runaway, which occurs mostly in cases of abnormal

heating or excessively high ambient temperature [2]. The

thermal state also plays an important role in a LiB cell’s

capacity, voltage and cycle life other than safety, which is

why LiBs usually must operate between −10∼50◦C [3].

Real-time thermal monitoring is thus crucial to improving

the operating safety and performance of LiBs.

This problem has attracted a growing body of research

due to its significance. Most of the existing studies rest on

the use of physics-based thermal models. Lumped modeling

has emerged as a popular approach in this regard because

of its computational efficiency. The study in [4] develops

an equivalent circuit model to capture the lumped thermal

dynamics at the surface and core of a cylindrical cell.

Further, more sophisticated thermal circuit networks have

found them useful for modeling pouch-type cells and battery

packs [5]–[7]. Although computationally fast, the lumped

models sacrifice fidelity and often struggle to capture the

spatially non-uniform and variable temperature distribution

of LiB cells or packs. To estimate the spatial non-uniformity,
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several works study the temperature estimation problem

with two or three-dimensional thermal models derived from

the energy balance equation proposed by [8]. In [9], a

two-dimensional thermal model is considered to estimate

a pouch cell’s surface temperature distribution. In [10], a

temperature-dependent impedance model is developed from

a two-dimensional thermal model to estimate the temper-

ature distribution of cylindrical cells. In [11, 12], a three-

dimensional thermal model is constructed to estimate the

temperature distribution of a LiB pack composed of prismatic

cells. Note that a related line of research is coupling a

thermal model with an electrochemical model to achieve

finer-resolution thermal modeling [13]–[15]. The obtained

models will require expensive computation even though they

have high predictive accuracy. This makes them less suitable

for real-time thermal monitoring.

However, there are two challenges in using physical

models for LiB thermal monitoring. First, accurate physical

modeling is hard to develop due to time-consuming analysis

and validation, and even if a model is developed, it is not

possible to fully capture the factors that affect the thermal

behaviors of a LiB cell or system. Second, it can often be

difficult to determine the parameters of a physical model,

and tedious experiments or empirical guesses may become

necessary [16]. Parameter drifts due to aging or changes in

ambient conditions will further add to the difficulty.

Alternative to physical modeling, spatio-temporal statisti-

cal modeling and estimation have gained increasing use in

describing and predicting complex systems or processes with

both spatially distributed and temporally evolving dynamics.

The essence of this approach lies in characterizing a spatio-

temporal process of interest as a random field, in which the

variations in time and space are captured by its mean and

covariance models. Based on the random field, the Bayesian

method can be employed for estimation when measurements

arrive. Specifically, in the classical Kriging approach, spatial

processes modeled as Gaussian random fields are estimated

by computing the posterior Gaussian distributions [17]. For

spatial fields that evolve over time, a spatio-temporal Kriging

approach named Kriged Kalman filter (KKF) has proven

useful [18]–[20]. The spatio-temporal statistical modeling

and estimation approach has many successful applications,

such as monitoring air pollutant levels and sea surface

temperature [21]. However, this approach has attracted little

attention in the field of battery research, despite an emerging

interest in data-driven battery modeling, e.g. [22].

The goal of this paper is to develop a data-driven but

physically meaningful approach to estimate the temperature



distribution of a LiB cell in real time. We will consider a

pouch-type LiB cell for the purpose of illustration, even

though the approach can be generalized to LiBs of other

types. We summarize our contributions as follows.

• We translate a pouch-type LiB cell’s thermal model

based on heat transfer principles into a spatio-temporal

random field. This leads to a statistically sound but

physically consistent representation of the cell’s ther-

mal process. Further, with a data-driven nature, the

representation allows to make sense of data to capture

uncertainties that evade physical modeling.

• We apply the KKF to predict and track the evolution

of the spatio-temporal random field using real-time

measurement data. As such, the cell’s temperature field

is reconstructed to enable effective thermal monitoring.

This paper is organized as follows. Section II presents the

physical thermal model for pouch cells and its solution.

In Section III, we formulate a spatial-temporal random

temperature field based on the solution in Section II. Then,

we present the thermal monitoring scheme of the field via

the KKF. We also provide a brief overview of the field’s

parameter estimation procedure. Later, Section IV shows

our simulation validation. Finally, Section V presents our

conclusions and future research directions.

II. THERMAL MODEL OF POUCH-TYPE LIB CELLS AND

ITS SOLUTION

This section introduces a two-dimensional thermal model

of pouch-type LiB cells and its analytical solution. It pro-

vides a physical basis for the subsequent derivation of the

pouch cell’s spatio-temporal random temperature field.

A. Thermal Model of a LiB Pouch Cell

We consider a LiB pouch cell as shown in Fig. 1, which

has dimensions of L1×L2×L3 along the x1, x2 and x3

axes. Because L3 � L1, L2, the cell’s heat transfer behavior

along the x3 axis is negligible. By contrast, the thermal

dynamics in the x1-x2 plane is more intense and complex.

Hence, we focus on only the electrode domain to develop a

parsimonious but physically coherent two-dimensional ther-

mal model. According to the energy balance principle, the

temperature field within the electrode domain evolves along

a two-dimensional heat diffusion equation [23]:

ρcp
∂T̃

∂t
= k

(
∂2T̃

∂x2
1

+
∂2T̃

∂x2
2

)
− 2

L3
hT̃ + q̇, (1)

where T̃ = T − T∞ is the temperature difference between

the cell and environment, ρ is the cell’s mass density, cp
is the specific heat, k is the thermal conductivity, h is the

convection coefficient. On the right-hand side of (1), the first

term is due to the heat conduction along the x1-x2 plane. The

second term results from the volumetric heat removal due to

convection on the cell’s surfaces. The third term, q̇, is the

volumetric heat generation rate in the cell which follows

q̇ =
I2(t)Re

V
w(x1, x2),

Fig. 1: Schematic diagram of a pouch-type LiB cell.

where V = L1L2L3 is the cell’s volume, I is the applied

current, and Re is the cell’s internal resistance. Here, we only

consider the Joule heat since it is the main heating source of

the LiB, but other heat sources, such as entropic heat [24],

are also possible to be included in the model. Furthermore, a

weight function w(x1, x2) is introduced to capture the cell’s

nonuniform heat generation in the x1-x2 plane [9].

Next, we take into account the process noise that exists

in the thermal dynamics of the LiB pouch cell. To simplify

notation, we will denote x = (x1, x2) and x′ = (x′
1, x

′
2)

as two locations within the cell’s electrode domain L2, and

t, t′ denote two time instants. The thermal noise is usually

modeled as a white noise process W with zero mean and

covariance

Cov (W (x, t),W (x′, t′)) = δ(t− t′)QW (x,x′),

where δ(·) is the Dirac delta function [25]. This indicates

W is uncorrelated in time. Adding this noise term and

reformulating the equation, (1) becomes a stochastic partial

differential equation

∂T̃

∂t
= a

(
∂2T̃

∂x2
1

+
∂2T̃

∂x2
2

)
− bT̃ + cq̇ +W, (2)

where a = k/(ρcp), b = 2h/(ρcpL3), c = 1/(ρcp).

Finally, we include the convective boundary conditions on

the four edges of the cell’s rectangular region as

∂T̃

∂x1
− h

k
T̃ = 0 at x1 = 0, (3a)

∂T̃

∂x1
+

h

k
T̃ = 0 at x1 = L1, (3b)

∂T̃

∂x2
− h

k
T̃ = 0 at x2 = 0, (3c)

∂T̃

∂x2
+

h

k
T̃ = 0 at x2 = L2. (3d)



The initial condition is given by a Gaussian process prior

T̃ (x, t0) ∼ GP(m0(x), C0(x,x
′)). (4)

The initial-boundary value problem (IBVP) set by (2)-(4)

presents a description of the thermal dynamics of a pouch-

type LiB cell from the physical perspective.

B. Analytical Solution
Here, we present the analytical solution to the IBVP

problem formulated in Section II-A. The solution of the

IBVP can be expressed via the integral transform of the

Green’s function [26]. It follows that

T̃ (x, t) =

∫∫
L2

T̃ (x′, s)G(x,x′, t− s) dx′

+

∫ t

s

∫∫
L2

cq̇(x′, τ)G(x,x′, t− τ) dx′dτ

+

∫ t

s

∫∫
L2

W (x′, τ)G(x,x′, t− τ) dx′dτ,

where G(x,x′, ·) is the Green’s function of the IBVP prob-

lem, t and s < t are two arbitrary time instants. Here, the

third term on the right-hand side is a Gaussian process with

zero mean and covariance function [25]

Qη(x,x
′; t− s) =

∫ t

s

∫∫
L2

G(x′,y′, t− τ)∫∫
L2

G(x,y, t− τ)QW (y,y′) dy dy′ dτ.

If considering the time range (tk−1, tk] from the k − 1-th to

the k-th discrete time instants, we can exactly express the

solution at tk as the following discrete-time model

T̃ (x, tk) =

∫∫
L2

T̃ (x′, tk−1)G(x,x′; Δtk) dx
′

+

∫ tk

tk−1

∫∫
L2

cq̇(x′, tk−1)G(x,x′, tk − τ) dx′dτ

+ η(x, tk), (5)

where Δtk = tk − tk−1 is the time interval, and η(x, tk) ∼
GP(0, Qη(x,x

′; Δtk)). Note that, throughout the paper, we

consider Δtk to be known and fixed, and q̇(x, tk−1) does not

change within Δtk. In this case, η(x, tk) becomes a Gaussian

process which is uncorrelated in time.
The solution (5) shows the time evolution of a pouch cell’s

temperature field from a physical perspective. It contains

unknown parameters which must be estimated by physical

experiments. In reality, there still exist uncaptured dynamics

which harm its accuracy.

III. THERMAL MONITORING BASED ON THE KKF

In this section, we construct a spatio-temporal random

temperature field for pouch cells based on the solution in

(5). Then, we will introduce a monitoring scheme of the

temperature field using the KKF. Finally, we provide an

overview of the parameter estimation of the field.

A. Spatio-Temporal Random Field

We assume the mean of the pouch cell’s temperature

field evolves along T̃ (x, tk). The method taken in [18, 19]

expresses the mean through an expansion of a set of complete

and orthonormal basis functions {φi(x)}∞i=1 on L2

T̃ (x, tk) =
∞∑
i=1

αi(tk)φi(x),

where αi(tk) is a random time series for each i ∈ {1, 2, ...}.

Due to completeness, we can also expand the Green’s

function as follows:

G(x,x′; Δtk) =

∞∑
l=1

βl(x)φl(x
′),

where {βl(x)}∞l=1 are some functions of x. We have∫ tk
tk−1

G(x,x′, tk − τ) dτ =
∫Δtk
0

G(x,x′, ζ) dζ. Then, by

truncating the infinite series and using the orthonormality of

the basis functions, we can rewrite (5) as (7), where

κ(x) = (cRe/V )

∫∫
L2

w(x′)
∫ Δtk

0

G(x,x′, ζ) dζ dx′

is a function of x, and

α(tk) = (α1(tk), ..., αN (tk))
� ∈ R

N ,

β(x) = (β1(x), ..., βN (x))
� ∈ R

N ,

φ(x) = (φ1(x), ..., φN (x))
� ∈ R

N .

To compensate for the truncation errors and to deal

with the spatial uncertainties not included in T̃ (x, tk), we

introduce a Gaussian process ν(x, tk) with zero mean and

covariance

Cov (ν(x, t), ν(x′, t′)) = δ(t− t′)Qν(x,x
′).

It captures small-scale spatial variability but does not have

temporal dynamics. Then, the predictive distribution of the

temperature at any location x is given by

Y (x, tk) = T̃ (x, tk) + ν(x, tk)

= φ�(x)α(tk) + ν(x, tk). (6)

T̃ (x, tk) ≈ φ(x)�α(tk)

=

∫∫
L2

(
N∑
i=1

αi(tk−1)φi(x
′)

)(
N∑
l=1

βl(x)φl(x
′)

)
dx′ +

∫∫
L2

(
cI2(tk−1)Re

V
w(x′)

)(∫ Δtk

0

G(x,x′, ζ) dζ

)
dx′

+ η(x, tk)

= β(x)�α(tk−1) + κ(x)I2(tk−1) + η(x, tk) (7)



Considering sensors are placed at M locations

{s1, ..., sM} of the pouch cell to collect measurements, we

can write down the evolution of the coefficient vector α(tk)
as

α(tk) = Āα(tk−1) + B̄I2(tk−1) + η̄(tk), (8)

where J = (Φ�Φ)−1Φ�, B̄ = JK, Ā = JB, η̄(tk) =
Jη(tk), and

Φ = [φ(s1), ..., φ(sM )]
� ∈ R

M×N ,

B = [β(s1), ..., β(sM )]
� ∈ R

M×N ,

K = (κ(s1), ..., κ(sM ))
� ∈ R

M ,

η(tk) = (η(s1, tk), ..., η(sM , tk))
� ∈ R

M .

For the M sensor locations, the noisy measurement vector

is given by

Z(tk) = Y (tk) + ε(tk)

= Φα(tk) + ν(tk) + ε(tk), (9)

where ε(tk) ∼ N (0, σ2IM×M ) ∈ R
M is the white Gaussian

measurement noise, IM×M ∈ R
M×M is the identity matrix,

and

Z(tk) = (Z(s1, tk), ..., Z(sM , tk))
� ∈ R

M ,

Y (tk) = (Y (s1, tk), ..., Y (sM , tk))
� ∈ R

M ,

ν(tk) = (ν(s1, tk), ..., ν(sM , tk))
� ∈ R

M .

Up to this point, we have formulated a spatio-temporal

random field Y (x, tk) to represent the LiB pouch cell’s

thermal process. This statistical representation is data-driven

in nature but physically consistent. Its mean T̃ (x, tk) is a

linear combination of some known basis functions φ(x)
with the coefficient α(tk) evolving in time according to

(8). In addition, the term ν(x, tk) captures some small-scale

uncertainties that T̃ (x, tk) does not take into account. We can

use a random field setup in the form of Y (x, tk) to track the

time evolution of a pouch cell’s temperature field. Here, we

highlight two points. First, Y (x, tk) is continuous in space

and discrete in time. This form allows the reconstructed

temperature field to have a high spatial resolution. Second,

the dimension of α(tk) is the same as the number of chosen

φ(x), providing flexibility for balancing the computational

efficiency and accuracy of the model.

B. Spatio-Temporal Monitoring of the Field

Taking a Bayesian probability perspective, the spatio-

temporal monitoring of the temperature field in real time

boils down to compute the posterior distribution of Y (x, tk)
conditioned on the up-to-date measurements Z(t1:k) :=

{Z(t1), ...,Z(tk)}. It can be done in two steps. The first

one is to sequentially estimate α(tk) using the up-to-date

measurements; the second one is to do Bayesian universal

Kriging [27].

The linear state-space model in (8)-(9) demonstrates the

temporal evolution of α(tk) and the measurements at differ-

ent sensor locations. Given this model, an optimal estimate

of α(tk) can be computed sequentially here using the well-

known Kalman filter. It consists of two steps.

Step 1 - Prediction: Computing α(tk) | Z(t1:k−1) which

follows a normal distribution with mean

α̂(tk | t1:k−1) := E (α(tk) | Z(t1:k−1))

= Āα̂(tk−1 | t1:k−1) + B̄I2(tk−1)

and covariance

Σ(tk | t1:k−1) := Cov (α(tk) | Z(t1:k−1))

= ĀΣ(tk−1 | t1:k−1)Ā
�
+Qη̄,

where Qη̄ := Cov(η̄(tk)) ∈ R
N×N .

Step 2 - Update: Calculating α(tk) | Z(t1:k) which is a

normal distribution with mean

α̂(tk | t1:k) := E (α(tk) | Z(t1:k))

= α̂(tk | t1:k−1)

+GK(tk) (Z(tk)−Φα̂(tk | t1:k−1))

and covariance

Σ(tk | t1:k) := Cov (α(tk) | Z(t1:k))

= Σ(tk | t1:k−1)−GK(tk)ΦΣ(tk | t1:k−1),

where GK(tk) is the Kalman gain given by

GK(tk) =Σ(tk | t1:k−1)Φ
�
(
ΦΣ(tk | t1:k−1)Φ

� + V σ

)−1

.

Here, V σ = Qν + σ2IM×M ∈ R
M×M , Qν :=

Cov(ν(tk)) = [Qν(si, sj)] ∈ R
M×M .

Given the sequentially estimated coefficient α̂(tk | t1:k),
the covariance Σ(tk | t1:k) and the random field in (6), the

posterior predictive distribution p (Y (x, tk) | Z)(t1:k)) of

the temperature field at any time instant tk and location x can

then be determined via the Bayesian universal Kriging. The

result follows a normal distribution with mean (10) and co-

variance (11), where Γ(x) = (Qν(x, s1), ..., Qν(x, sM ))
� ∈

R
M . In the sense of minimum mean squared error, the

optimal estimator of Y (x, tk) is the mean Ŷ (x, tk | t1:k) of

the posterior distribution, and the covariance ΣY (x, tk | t1:k)
characterizes the confidence of this estimation.

Ŷ (x, tk | t1:k) := E (Y (x, tk) | Z(t1:k)) = φ(x)�α̂(tk | t1:k) + Γ(x)�V −1
σ (Z(tk)−Φα̂(tk | t1:k)) (10)

ΣY (x, tk | t1:k) := Cov (Y (x, tk) | Z(t1:k))

= Qν(x,x)− Γ(x)�V −1
σ Γ(x) +

(
φ(x)−Φ�V −1

σ Γ(x)
)�

Σ(tk | t1:k)
(
φ(x)−Φ�V −1

σ Γ(x)
)

(11)



C. Parameter Estimation of the Field

Successful spatio-temporal monitoring of the LiB cell

requires the parameters of the random field to be known.

The basic parameters and functions are summarized as

{Ā, B̄,Qη̄,φ(x), Qν(x,x
′), σ2, μ0,Σ0}, where μ0 and Σ0

are the mean and covariance of the initial coefficient α(t0),
respectively. Other matrices in Section III-B can be deter-

mined from the φ(x), Qν(x,x
′) and σ2 above. Here, the

choice of basis functions φ(x) is not unique, as long as they

are complete and orthonormal on L2. For other parameters

and functions, they can be identified purely based on a time-

series temperature data Z(t1:T ) collected at M locations and

T time intervals from the LiB cell. Specifically, we follow a

two-level hierarchical procedure.

The first level focuses on the identification of σ2 and

Qν(x,x
′). The measurement error σ2 can be obtained from

the properties of the temperature sensor used. If such infor-

mation is not available, σ2 can also be estimated together

with the spatial covariance function Qν(x,x
′) through their

relation with the empirical variogram of the data. Interested

readers are referred to [21] for a detailed description of

the empirical variogram. Note that one assumption we can

make is that ν is an isotropic process, i.e., Qν(x,x
′) =

Kν(‖x − x′‖) for some function Kν . This assumption is

valid since the dimensions of pouch cells are small enough.

The second level deals with the remaining parameters,

i.e., θ = {Ā, B̄,Qη̄, μ0,Σ0}. An effective approach is the

maximum likelihood estimation, which boils down to solving

the maximization problem as follows:

θ̂ = argmax
θ

Lθ(Z(t1:T )) := log pθ(Z(t1:T )),

where pθ(Z(t1:T )) is the joint density or likelihood of the

data and Lθ (Z(t1:T )) is the log-likelihood. A number of

methods are available to find θ̂ for linear state-space models.

The expectation-maximization (EM) algorithm is used in this

paper due to its conceptually simple procedure [28, 29].

Remark 1: For the sake of coherence and clarity, we

consider the same M sensors in Section III-B and III-C.

However, the number and location of the sensors do not

have to be the same. Specifically, one may collect data from

more locations in the parameter estimation stage to obtain

an accurate model, while only applying a small number of

sensors when estimating the temperature field of a LiB pouch

cell. Correspondingly, the dimension and computational costs

of matrices V σ , Γ(x), and Φ are reduced. This is a valuable

feature since in practice the number of sensors available

when performing temperature estimation may be limited. We

will demonstrate this strategy in Section IV.

IV. SIMULATION VALIDATION

The previous sections illustrate our proposed method for

thermal monitoring of pouch-type LiB cells via the KKF. In

this section, a simulation is provided to show the effective-

ness of this method.
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Fig. 4: EM iterations for maximum likelihood estimation.

A. Simulation Settings

We consider a LiMn2O4 pouch cell as used in [13].

The cell has a capacity of 14.6 Ah and dimensions of

192×145×5.4 mm. We perform a CFD simulation of the

cell’s thermal and electrochemical behavior using the AN-

SYS Fluent package to generate the ground truth dataset. In

the CFD simulation, we mesh the electrode domain into a

20×17 grid. The environmental temperature is set to 300 K.

The selection of the sensor locations and the current

profiles are critical. For sensor locations, a rule of thumb

is to make them broadly cover the pouch cell’s electrode

domain. Here, we select 18 (16 black and 2 red asterisks in

Figs. 5a-5d) of the 20×17 grid nodes and place sensors on

them. In the training (parameter estimation) phase, the data

collected by all sensors are used. However, only the sensors

placed on the two red asterisks are used during the testing

(KKF-based thermal monitoring) phase. The current profile

to generate the training data should be chosen such that it

covers the cell’s operating current and temperature range. In
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Fig. 5: Monitoring of the pouch cell’s temperature field under a modified US06 current profile. First row: the true temperature

field. Second row: the estimated temperature field by the KKF approach. ∗ and ∗ denote sensor locations. The training phase

uses data from all the sensors labeled as ∗ and ∗; the testing phase uses data from only two sensors labeled as ∗.

our simulation, the training data are generated by applying

a 5 C constant discharging current to the cell. Then, we test

the KKF using a data set generated by a modified US06 [30]

profile shown in Fig. 2.

B. Simulation Results

We apply the 5 C discharging current to the cell for 670

seconds. The data collected from the 18 sensors are used for

model training. The measurement is assumed to be noise-

free since the data are generated by the CFD simulation.

Besides, we use a set of 11 complete and orthonormal basis

functions φ(x). Now, based on the hierarchical procedure in

Section III-C, the first step is the identification of the co-

variance function Kν . We consider the squared-exponential

kernel. Fig. 3 illustrates the identified Kν . As expected,

the covariance between two locations decreases as their

distance increases. We can then determine the covariance

matrix and the measurement matrix based on this empirical

covariance function. Finally, we estimate the parameter set θ
in Section III-C by maximizing the log-likelihood function

Lθ(Z(t1:T )) via the EM algorithm. We run the EM algorithm

for 10 iterations. Fig. 4 shows the change in log-likelihood

value. As expected, the value increases with the number of

iterations.

With the model identified above, the temperature field

of the pouch cell can be estimated by running the KKF

in Section III-B. Only the two sensors located at the red

asterisks are used here. The KKF can provide accurate

temperature estimation. Under the US06 testing profile, the

maximum absolute estimation error for all locations and

all time instants is 1.01 K. Further, Figs. 5a-5d show the

comparison of the true and the estimated temperature field

when the modified US06 current profile is applied to the cell.

The first row illustrates the true temperature field at different

time instants. The temperature and its spatial non-uniformity

increase through time due to the heat generation in charg-

ing/discharging. The second row shows the temperature field

estimated by the KKF at different time instants. It has great

accuracy compared to the truth, despite the use of only two

sensors. It is worth mentioning that our simulations show

that an increase in estimation accuracy can be expected in

two ways. First, we can use more sensors during the training

phase, as placing sensors at more locations can provide more

information about the temperature field. Second, we can

increase the number of basis functions when constructing

the model, which leads to a coefficient vector α(tk) of a

higher dimension, though the computational cost will also

increase accordingly.

V. CONCLUSIONS

Effective thermal monitoring is essential for the safety

and performance of LiBs in their operation. In this paper,

we study the spatio-temporal thermal monitoring for LiB

based on a data-driven approach named KKF. Starting from

the heat transfer principles, we uniquely show that the

temperature evolution of a pouch cell can be formulated



as a spatio-temporal random field with physical consisten-

tency. The parameters of the field are fully determined by

the data collected from temperature sensors according to a

hierarchical scheme. Leveraging the spatio-temporal random

field, the KKF is applied to estimate the temperature field

when the measurements come sequentially. Our simulation

demonstrates that the approach can provide accurate temper-

ature estimation for LiB using a small number of sensors.

Our future work will include experimental validation of the

KKF approach and investigate its application to various LiB

thermal management tasks.
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