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Abstract— Optimal power management (OPM) is critical for
large-scale battery energy storage systems. Today’s methods
often require formidable computational effort due to the design
based on centralized numerical optimization. Thus, this paper
investigates computationally distributed OPM where the agents
based on the cells communicate over a network to cooperatively
solve the OPM problem. We propose an accelerated tracking
alternating direction method of multipliers (ADMM) algorithm
to solve the distributed OPM. The proposed algorithm em-
beds dynamic average consensus and Nesterov’s acceleration
technique in the ADMM algorithm. Not only is the proposed
algorithm fully distributed without a need for fusion or aggre-
gating nodes, but it also accelerates the convergence. The paper
formulates the OPM in a model predictive control framework
where it seeks to regulate the charging/discharging power of
each battery cell to minimize the total power losses and promote
balanced use of the constituent cells while complying with the
safety constraints. The paper provides ample simulation results
to demonstrate the effectiveness and advantages of the proposed
distributed OPM in terms of computation and convergence.

I. INTRODUCTION

Large-scale battery energy storage systems (BESS) have

found wide use in various sectors to enable applications such

as electric vehicles, electric aircraft, and grid-scale energy

storage. They comprise a large number of battery cells and a

battery management system (BMS) to regulate the charging

and discharging of the cells to guarantee their safe and reli-

able operation. Conventional BMS algorithms are often too

simplistic to extract the full potential of BESS. Thus arises

a pressing need to develop advanced BMS algorithms to

achieve sophisticated functions. A provenly useful approach

to this end is to enable independent power management at

the level of individual cells within BESS. A few optimal

power management (OPM) algorithms have emerged in this

regard. However, they often require hefty computational

efforts due to the use of numerical optimization techniques,

making them hardly applicable especially for large-scale

BESS. While the literature includes many OPM studies for

different types of BESS, few of them have attempted to

improve the computational efficiency of OPM.

The OPM problem for BESS encompasses a set of key

issues, including but not limited to cell balancing, power

loss minimization, and charging control. The crucial role

that it plays in BESS operation has made it an appealing
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subject of study. Early studies usually focus on cell balancing

based on optimization. The work in [1] employs linear

programming to balance the state-of-charge of the cells

of a pack with either minimum time or minimum energy

dissipation. The notion is then extended in [2] to achieve two-

level balancing, i.e., cell-to-cell balancing at intra-module

level, and module-to-module balancing at inter-module level.

The study in [3] identifies that a circuit designed for SoC

balancing can potentially offer more functions, if using

converters with bidirectional power flow control. This leads

to the formulation of a multi-objective convex optimization

problem in [3] to optimally balance the cells in terms of SoC,

terminal voltage equalization, and temperature distribution.

The method is further improved in [4] by introducing power

loss minimization in the problem formulation. It further

finds utility in enabling the OPM for a BESS in [5] based

on a hybridization of cells, supercapacitors, and converters.

Extending [5], the work in [6] presents a multi-layer model

predictive control (MPC) framework to divide OPM tasks

into two layers running at different time scales for the sake of

less computation. Another important dimension of the OPM

problem, BESS charging control also admits solutions from

the perspective of optimization. Multi-objective optimization

is exploited in [7] to enable user-defined charging under cell

balancing and temperature constraints.

In hindsight, the existing OPM approaches harness the

power of optimization to bring about a few valuable functions

for BESS for better performance, safety, and longevity. How-

ever, numerical optimization at their basis usually requires

many computational resources. The computational demand

will reach a formidable level when a large-scale BESS

imposes a large number of optimization variables. Even

though the literature presents some hierarchical frameworks

to alleviate the issue, there is still a research gap toward

BESS OPM with high computational efficiency.

Distributed control has proven as a useful paradigm for

control of large-scale systems. It distributes a control task and

consequently, the computation, among the constituent units

(often referred to as agents) of a system. This hence leads

to high computational efficiency and scalability. The idea

has found its way into BESS power control. For example,

the studies in [8, 9] views the cells or modules constituting

a BESS as independent agents, and then leverages the

concept of distributed average consensus of networked multi-

agent systems to design SoC balancing algorithms. Com-

putationally fast as they are, these methods, however, lack

optimality by design and thus are unable to optimize some

important metrics, e.g., power losses, for BESS. Distributed



optimization holds a promise to overcome this limitation but

has never been explored for the BESS OPM problem, even

though it has been used for coordination of distributed energy

resources (DERs), e.g., [10–12].

This paper proposes to harness the power of distributed op-

timization to achieve computationally viable OPM of large-

scale BESS. We first formulate the OPM problem from the

perspective of distributed optimization. In the formulation,

the cells are treated as agents, and they perform individual

computation to collectively minimize a global cost function

under local constraints. Specifically, the global cost is set as

the total power loss, and local constraints derive from the

dynamics of the cells, SoC and temperature balancing re-

quirements, and safety limits. We then propose an accelerated

tracking alternating direction method of multipliers (ADMM)

to solve the distributed OPM problem. The proposed accel-

erated ADMM algorithm is fully distributed and provides an

improved convergence rate. We conduct simulations to show

the effectiveness of the proposed algorithm. We also compare

the obtained results with a previously proposed algorithm to

demonstrate its advantages in computation and convergence.

II. OPTIMAL POWER MANAGEMENT OF BESS

This section describes the considered circuit structure of a

large-scale BESS, its electro-thermal modeling, and the OPM

formulation.

A. Circuit Structure of a Large-Scale BESS

Fig. 1 depicts the circuit structure of the considered large-

scale BESS, which was first introduced by the authors

in [13, 14]. The BESS comprises n cells, with each cell

connected with a converter. We refer to such a cell-converter

pair as a module. The modules are assumed to be connected

in series here, even though the connection between them

can be made reconfigurable as shown in [14]. The converters

allow bidirectional power conversion to charge and discharge

the cells. They hence can take the role of independently

managing the power of the cells to provide the capability

of cell-level control. The capability lays a basis for various

advanced functions, including power loss minimization and

cell balancing. In this paper, we leverage the structure

to achieve OPM for the BESS and particularly, focus on

enabling distributed optimization among the modules for

high computational efficiency.

B. Electro-thermal Modeling

To begin with, we seek to characterize the electrical

dynamics of each module of the BESS. We use the Rint

model to represent a cell, which comprises a voltage source

and an internal series resistor. The DC/DC converters are

also modeled by an ideal DC transform in series connection

with a resistor. We illustrate the module model in Fig. 1.

Considering cell j, the governing equations of the Rint model

are:

q̇j(t) = − 1

Q̄j
ij(t), (1a)

vj(t) = uj(qj(t))−Rjij(t), (1b)
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Fig. 1: The circuit structure of large-scale BESS.

where vj , uj , Rj , ij , Q̄j , qj are the terminal voltage, open-

circuit voltage (OCV), internal resistance, current, capacity,

and SoC, respectively. The output power of module j can be

expressed as

Pj = uj(qj(t))ij(t)−Rji
2
j (t)−RCj

i2j (t), (2)

where Rji
2
j (t) and RCj

i2j (t) represent the internal power

losses of cell j and converter j, respectively. The described

electrical model is sufficiently expressive and computation-

ally amenable.

Next, we can proceed to the thermal dynamics of the

cells. We assume a lumped thermal capacitance for a cell,

and the cell is subject to two effects on its temperature:

heat generation caused by the power losses due to the cells’

internal resistors, and heat dissipation to the environment due

to convection. Considering cell j, the thermal dynamics is

given by

Cth,j Ṫj(t) = Rji
2
j (t)− (Tj(t)− Tenv)/Rconv, (3)

where Cth,j , Tj , Tenv, and Rconv are the thermal capacitance,

cell’s temperature, environmental temperature, and convec-

tive thermal resistance, respectively. With the electro-thermal

models for all the cells, we are ready to formulate the OPM

problem for the BESS.



C. OPM Problem Formulation

We consider an OPM problem to minimize the power

losses of the BESS while promoting the balanced use of

the cells and complying with the safety constraints. In this

regard, we consider predictive optimization over a receding

horizon and define the cost function as

J(t) =

∫ t+H

t

⎛
⎝ n∑

j=1

(Rj +RC)i
2
j (t)

⎞
⎠ dt, (4)

where H is the horizon length. Further, the following con-

straints guarantee the safe operation of the BESS.

imin
j ≤ iLj ≤ imax

j , (5a)

qmin
j ≤ qj ≤ qmax

j , (5b)

where imin/max
j and qmin/max

j represent the lower/upper bounds

for the cells’ current and SoC. We also impose two balancing

constraints in terms of SoC and temperature to encourage the

balanced use of the cells.

|qj(t)− qavg(t)| ≤ Δq, (6)

|Tj(t)− Tavg(t)| ≤ ΔT, (7)

where qavg(t) and Tavg(t) are the average SoC and tempera-

ture of the BESS, and Δq and ΔT are the maximum tolerated

deviation of the SoC and temperature from the respective

average. To meet the output power demand, we enforce the

following power conservation constraint:

n∑
j=1

Pj = Pout, (8)

where Pout is the output power demand. Putting together

the cost function and the constraints, we express the OPM

problem as follows:

min
ij ,j=1,...,n

J(t),

s.t. (1b), (3), (5a) − (8).
(9)

Note that the optimization problem in (9) is non-convex due

to the power conservation constraint (8). The solution is non-

trivial and computationally expensive. We address this issue

by a slight relaxation of the problem to make it convex, as

suggested in [15].

D. Convex Formulation of OPM Problem

Here, we briefly discuss the convex formulation of the

OPM problem (see [5] for more details). First, we assume

a piecewise linear approximation for the SoC/OCV curve of

cell j.

uj(qj(t)) = αi
j + βi

jqj(t), (10)

where αi
j and βi

j define the y-intercept and slope of the ith
line segment of cell j. The convexification proceeds with a

change of variables. We define the cell’s energy as follows:

Ej(t) =
1

2
Cju

2
j (qj(t))− E0

j , (11)

where E0
j is the cell’s initial energy, and Cj = Q̄j/βj .

Substituting (10) into (11) and using (1b), one can find that

the cell’s energy is governed by a linear dynamic equation:

Ėj(t) = −Pbj , (12)

where Pbj (t) = uj(qj(t))ij is the internal power of cell j.

The power loss of module j is also expressed in terms of

Pbj as follows:

Plj (t) =
(Rj +RCj )CjP

2
bj
(t)

2(Ej(t) + E0
j )

. (13)

Since our goal is to minimize the power losses, we can relax

(13) for the sake of convexity as follows:

Plj (t) ≥
(Rj +RC)CjP

2
bj
(t)

2(Ej(t) + E0
j )

. (14)

Finally, we can rewrite the safety, balancing, and power

conservation constraints (5)-(8) in terms of Ej , Pbj , and Plj ,

and further apply discretization with a step size of Δt to

obtain the following discrete-time convex OPM problem:

min
Pbj

,j=1,...,n

n∑
j=1

H∑
k=1

P 2
lj [k] + λ(E)ξ

(E)2

j [k] + λ(T )ξ
(T )2

j [k],

Safety constraints:√
2

Cj
(Ej [k] + E0

j )i
min
Lj

≤ Pbj [k] ≤
√

2

Cj
(Ej [k] + E0

j )i
max
Lj

,

1

2
Cju

2
j (q

min
j [k]) ≤ Ej [k] + E0

j ≤ 1

2
Cju

2
j (q

max
j [k]),

Balancing constraints:∣∣∣∣∣ 2

Cj
Ej [k]− 1

n

n∑
l=1

2

Cl
El[k]

∣∣∣∣∣ ≤ ΔEj + ξ
(E)
j [k],

|Tj [k]− Tavg[k]| ≤ ΔT + ξ
(T )
j [k],

Power loss constraint:

Plj [k] ≥
(Rj +RC)CjP

2
bj
[k]

2(Ej [k] + E0
j )

,

Energy dynamics:

Ej [k + 1]− Ej [k] = −Pbj [k]Δt,

Thermal dynamics:

Tj [k + 1] = Tj [k] +
Δt

Cth,j

[
Plj [k]− (Tj [k]− Tenv)/Rconv

]
,

Power supply-demand balance:
n∑

j=1

Pbj [k]− Plj [k] = Pout[k].

(15)

In (15), we have also relaxed the balancing constraints by

introducing the slack variables ξ(E) and ξ(T ). This helps

prevent the optimization problem from becoming infeasible

when the balancing constraints cannot be satisfied. The

penalty weights λ(E) and λ(T ) associated with the slack

variables in the cost function penalize the violation of the

balancing constraints.



Note that the OPM problem in (15) is convex but involves

6nH optimization variables to be computationally expensive

when the BESS is large-scale and has a large number of

cells. This issue significantly hinders the applicability of

(15) in practical adoptions. Therefore, we will subsequently

develop a distributed optimization algorithm where each

cell determines its optimal output power with a manageable

computational burden.

III. DISTRIBUTED OPM

This section starts with the setup of the distributed OPM

as a distributed optimization problem. We then propose the

accelerated tracking ADMM algorithm, named as the DOPM
algorithm, to address the considered problem.

A. Problem Setup

Let us consider the large-scale BESS shown in Fig. 1 and

assume the n modules as independent agents to distributively

solve the OPM problem in (15). In sequel, we interchange-

ably refer to the modules as agents. We can translate the

OPM problem in (15) into the following form:

min
xj ,j=1,...,n

n∑
j=1

H∑
k=1

fj(xj [k]), (16a)

s.t. xj ∈ Xj , j = 1, ..., n, (16b)
n∑

j=1

Axj [k] = b[k], k = 1, ..., H, (16c)

where xj = [ Pbj
Plj

Ej Tj ξ
(E)
j ξ

(T )
j ]

�
collects the opti-

mization variables of module j, fj(xj) = xjQx�
j , Q =

diag(0, 1, 0, 0, λ(E), λ(T )), A = diag(1,−1, 0, 0, 0, 0), and

b = Pout. In above, Xj is a feasible set to summarize the

safety, balancing, power loss, energy dynamics, and tem-

perature dynamics constraints in (15). The supply-demand

balance constraint in (15) is the linear coupling constraint

in (16c). We intend to develop a distributed solution to

the problem in (16). In the solution, each agent determines

its local decision variables xj to minimize the global cost

function in (16a). Each agent must also satisfy the local

constraint in (16b), and the global linear coupling constraint

in (16c).

Remark 1. For all j = 1, ..., n, the function fj is strongly
convex and the set Xj is convex and compact based on the
OPM problem formulation.

Next, we assume that the modules or agents communicate

based on a network topology. The topology graph is defined

as G = (V , E), where the node set V = {1, ..., n} and

the edge set E ⊆ V × V represent the agents and the

communication links, respectively. The edge (i, j) ∈ E if and

only if agents i and j communicate. The neighboring agents

to agent i are denoted by Ni = {j ∈ V | (i, j) ∈ E}. It is

worth noting that the communication graph does not have to

coincide with the electrical connection topology of the cells.

We assume G as undirected and connected. We also assign a

weight wij for the edge (i, j) to indicate agent i’s emphasis

on information received from agent j. If (i, j) �∈ E , wij = 0.

We define a consensus matrix W whose (i, j)th entry is wij ,

and impose a balanced information exchange assumption on

W , i.e., W = W� and W1n = W�1n = 1n. Note that this

assumption is common in the distributed consensus literature

[16].

Given the above distributed OPM problem, we propose

an accelerated tracking ADMM algorithm to solve (16) so

as to overcome the computational complexity facing the

centralized OPM problem in (15).

B. Proposed Accelerated Tracking ADMM Algorithm

To begin with, the augmented Lagrangian for (16) is

L(x, λ) =
n∑

j=1

H∑
k=1

fj(xj [k]) + λ�d+
μ

2
||d||22, (17)

where λ ∈ R
H is the dual variable, and μ is a positive

penalty parameter, and

d̃[k] =
n∑

j=1

(Axj [k]− bj), (18a)

d =
[
d̃[1] ... d̃[H]

]�
, (18b)

b =
n∑

j=1

bj . (18c)

We can now express the dual problem of (16) as

max
λ

min
x∈X

L(x, λ). (19)

Here, we assume that the primal problem (16) and the

dual problem (19) admit an optimal solution x∗ and λ∗,

respectively. One can use the ADMM method to solve (19),

which alternately updates x and λ in an iterative procedure

[17]. The iterations are as follows:

xr+1
1 = argmin

x1

L(x1, x
r
2, ..., x

r
n;λ

r),

xr+1
j = argmin

xj

L(xr+1
1 , ..., xr+1

j−1, xj , x
r
j+1, ..., x

r
n;λ

r),

λr+1 = λr + μdr+1,

where r represents the iteration number, and dr+1 is obtained

by applying xr+1
j to (18a) and (18b). Note that dr measures

the infeasibility of the solution xr. The x-optimization steps

of the ADMM algorithm are sequential rather than parallel,

slowing down the algorithm. In addition, the λ-update step

is not distributed and requires a central node to gather all the

decision variables xj . Some studies have presented parallel

ADMM algorithms to address the sequential x-optimization

steps for the ADMM [18, 19]. However, these algorithms

require a centralized λ-update step.

A tracking ADMM algorithm is developed in [20] to

enable a fully distributed solution. We propose to modify

the algorithm in this work to accelerate its convergence

and improve its computational speed. To fully distribute the

update of λ, all agents are assumed to keep a local copy of

λr and dr, denoted by λr
j and drj , respectively. A consensus



TABLE I: Distributed OPM via Accelerated Tracking

ADMM (DOPM)

1: Initialization
2: x0

j = x̂0
j ∈ Xj

3: d0j = d̂0j = Ax0
j − bj

4: λ0
j = λ̂0

j ∈ RH

5: Repeat until convergence
6: δrj =

∑
i∈Nj

wjid
r
i , δ̂rj =

∑
i∈Nj

wjid̂
r
i

7: l̂rj =
∑

i∈Nj
wjiλ̂

r
i

8: xr+1
j = argminxj

∑H
k=1 fj(xj [k]) + l̂r

�
j Axj,1:H+

μ
2

∥∥∥δ̂rj −Ax̂j,1:H +Axj,1:H

∥∥∥2
2

9: dr+1
j = δrj +Axr+1

j,1:H −Axr
j,1:H

10: λr+1
j = l̂rj + μdr+1

j

11: λ̂r+1
j = λr+1

j + η ar−1
ar+1

(λr+1
j − λr

j)

12: x̂r+1
j = xr+1

j + η ar−1
ar+1

(xr+1
j − xr

j)

13: d̂r+1
j = δ̂rj +Ax̂r+1

j,1:H −Ax̂r
j,1:H

14: r ← r + 1

scheme can then be applied to enforce the agreement among

the local copies as follows:

δrj =
∑
i∈Nj

wjid
r
i , (20a)

lrj =
∑
i∈Nj

wjiλ
r
i , (20b)

where δrj and lrj are the local estimates of dr and λr, respec-

tively. The introduction and use of the local variables λr
j

and drj allow a fully distributed parallel ADMM algorithm.

To speed up the convergence, we propose to leverage the

Nesterov’s acceleration technique in [21]. The Nesterov’s

technique is based on using previous two optimal points,

instead of the mere previous one, for the optimization. We

define the accelerated decision variables x̂r+1
j and λ̂r+1

j as

follows:

x̂r+1
j = xr+1

j + η
ar − 1

ar+1
(xr+1

j − xr
j), (21a)

λ̂r+1
j = λr+1

j + η
ar − 1

ar+1
(λr+1

j − λr
j), (21b)

a1 = 1, ar+1 =
1 +

√
1 + 4a2r
2

, r = 1, 2, ... (21c)

where η ∈ (0, 1) is the discount factor. We define the

infeasibility measure of the x̂r as follows:

ˆ̃
dr[k] =

n∑
j=1

(Ax̂r
j [k]− bj), (22a)

d̂r =
[
ˆ̃
dr[1] ...

ˆ̃
dr[H]

]�
. (22b)

Note that d̂r corresponds to dr in the same way x̂r does to

xr in (18). We also enforce all the agents to maintain a local

copy of d̂r and agree it that by a consensus scheme, similar

to the procedure for dr in (20a) as follows:

δ̂rj =
∑
i∈Nj

wjid̂
r
i . (23)

The local copies d̂rj will be used in the x-minimization step

of the proposed algorithm. After the x-minimization step, we

update drj and d̂rj as follows:

dr+1
j = δrj +Axr+1

j,1:H −Axr
j,1:H , (24a)

d̂r+1
j = δ̂rj +Ax̂r+1

j,1:H −Ax̂r
j,1:H , (24b)

where

Axr
j,1:H =

[
Axr

j [1] ... Axr
j [H]

]�
.

Given x0
j = x̂0

j ∈ Xj , d0j = d̂0j = Ax0
j − bj , and λ0

j = λ̂0
j ∈

RH , each agent solves the following optimization problem

in parallel:

xr+1
j = argmin

xj

L(x̂r
1, x̂

r
2, ..., xj , ..., x̂

r
n; λ̂

r). (25)

Expanding the Lagrangian in (25) using (17), one can derive

the following:

xr+1
j = argmin

xj

n∑
j=1

H∑
k=1

fj(xj [k])+

λ̂r�
(
d̂rj −Ax̂r

j,1:H +Axj,1:H

)
+

μ

2

∥∥∥d̂rj −Ax̂r
j,1:H +Axj,1:H

∥∥∥2
2
. (26)

By neglecting the constant terms with respect to xj , the x-

minimization step can be expressed as:

xr+1
j = argmin

xj

H∑
k=1

fj(xj [k]) + λ̂�
j Axj,1:H+

μ

2

∥∥∥d̂rj −Ax̂j,1:H +Axj,1:H

∥∥∥2
2
.

(27)

The overall proposed algorithm is summarized in Table I.

In the proposed DOPM algorithm, Steps 6 and 7 perform

consensus to guarantee the agreement among drj , d̂rj , and

λ̂r
j , respectively. Step 8 performs the x-minimizations in

parallel among the agents. Step 10 calculates the λr+1
j ,

which is fully distributed. The proposed algorithm not only

offers fully distributed and parallel optimization but also

accelerates the convergence rate, conductive to the OPM of

large-scale BESS. The following section will compare the

proposed algorithm with the tracking ADMM algorithm for

demonstration.

IV. SIMULATION RESULTS

This section presents the simulation results to assess the

performance of the proposed DOPM algorithm. The specifi-

cations of the considered BESS are summarized in Table II.

We consider a receding horizon of ten seconds, i.e., H = 10.

We also define an arbitrarily connected graph over which the

cells communicate. We choose the consensus matrix to be

W = I−αL where I is the identity matrix with appropriate

size, L is the Laplacian matrix of the graph, and α = 0.1.
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Fig. 2: Simulation results of the SoC and temperature balancing. (a) The SoC of the cells. (b) The temperature of the cells.

TABLE II: Specifications of the BESS

Symbol Parameter Value [Unit]

n Number of battery cells 12

Q̄ Cell nominal capacity 2.5 [A.h]

R Cell internal resistance 31.3 [mΩ]

[qmin, qmax] Cell SoC limits [0.05,0.95]

[imin, imax] Cell current limits [-7.5,7.5] [A]

Cth Thermal capacitance 40.23 [J/K]

Rconv Convection thermal resistance 41.05 [K/W]

Tenv Environment temperature 298 [K]

Δq SoC balancing threshold 0.8%

ΔT Temperature balancing threshold 0.5 [K]

Δt Sampling time 1 [s]
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Fig. 3: The output power of the cells.

Note that W satisfies the balanced information exchange

assumption (see [16] for more details). The output power

profile for Pout is based on periodic charging/discharging,

with each cycle lasting for 300 s and using an average output

power of 220 W. We use the CVX package to configure and

solve the optimization problem [22].

The initial SoC of the cells follows a normal distribution

with a mean of 70% and a variance of 1%. The initial

temperature of the cells is similarly drawn from a normal

distribution with a mean of 298 K and a variance of 1 K.
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Fig. 5: The evolution of ‖d‖2 of the optimization problem

at a specific time step.

Further, the cells are made heterogeneous by varying the

internal resistances using a zero-mean white Gaussian noise

with a variance of 4 mΩ.

Fig. 2 shows the SoC and temperature balancing perfor-

mance of the proposed DOPM algorithm. According to Fig. 2

(a), the cells’ initial SoC are not inside the tolerance bound.

However, the proposed DOPM algorithm drives the cells’ SoC

to reach into the bound after about 160 seconds and continues

to optimally regulate the charging and discharging power of

the cells to maintain their balanced SoC.

Fig. 2 (b) depicts the cells’ temperatures and their de-

viation from the average, respectively. Initially, the cells’

temperatures are not within the desired bound. The proposed



DOPM algorithm successfully controls the cells’ temperatures

to reach a balanced temperature within about 170 seconds.

The cells’ temperatures remain balanced afterward, with

minor violations due to the slack variables.

To further investigate the proposed DOPM algorithm, Fig. 3

depicts the output power of the cells. For better visualization,

we show a magnified view of the time interval of 280 < t <
320 s. According to Fig. 3, the output power is not equally

distributed among the cells. Instead, it is optimally allocated

among the cells to minimize the total power losses based

on their own conditions and the need for balanced SoC and

temperature.

To show the efficacy of the proposed DOPM algorithm, we

solve the distributed power management problem with the

proposed DOPM and the tracking ADMM algorithm in [20].

Fig. 4 compares the performance of these two algorithms in

terms of the number of iterations. Note that the optimization

problem generates 720 optimization variables at every time

step. We observe that the proposed DOPM algorithm requires

fewer iterations to reach the optimal power of the cells. This

also implies that the proposed DOPM algorithm needs less

computation time for convergence.

Fig. 5 also illustrates the evolution of ‖d‖2 over iterations

for an arbitrary time step. The optimization algorithms are

designed to stop when ‖d‖2 falls below 1 W. Note that zero

‖d‖2 values indicate that the linear equality constraint is

satisfied, i.e.,
∑n

j=1 Axj [k] = b[k], k = 1, ..., H . According

to Fig. 5, at this specific time step, the proposed DOPM
algorithm stops after 15 iterations, whereas the tracking

ADMM algorithm takes 33 iterations.

V. CONCLUSIONS

The sweeping adoption of BESS has stimulated a critical

need for OPM to minimize power losses under practical

constraints due to safety, cell balancing, and power supply-

demand consistency. This paper focuses on enabling dis-

tributed OPM that is computationally efficient and scalable to

large-scale BESS. We first considered a BESS architecture,

which is characterized by converter-based cell-level power

control, and formulated a centralized OPM problem based

on convex optimization. To substantially reduce the compu-

tational cost, we proposed a distributed OPM setup, in which

the cells act like independent agents to compute their own

decisions toward global OPM while exchanging information

with each other. Then, we developed an accelerated tracking

ADMM algorithm to address the distributed OPM problem.

The algorithm by design combines the tracking ADMM

algorithm with an acceleration procedure to deliver a faster

computation. Further, the algorithm is fully distributed to

require no information fusion or aggregation. The simulation

results have corroborated the effectiveness of the proposed

algorithm and indicated lower computation time and fewer

iterations compared to the literature.
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Howey, “Smart and hybrid balancing system: Design, modeling,
and experimental demonstration,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 12, pp. 11 449–11 461, 2019.

[6] R. de Castro, H. Pereira, R. E. Araújo, J. V. Barreras, and H. C.
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